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Introduction 

 

The immune system 

The human immune system is crucial to our survival since among other functions it protects the 

integrity of the tissues against pathogens invading from our environment and helps limit damage 

exerted by our microbial adversaries. The intact skin and the mucosal membranes in the gut and 

lung provide a first physical barrier that effectively prevent pathogens such as bacteria from invading 

the human body. In case this first line of defence is breached, the pathogen is confronted by the 

immune system. The human immune system can be divided into an innate and an adaptive arm.  

 

Innate immune system 

The first line of defence against invading pathogens consists of the innate immune system. The 

innate immune response has evolved to recognize a broad spectrum of pathogens and defends the 

host from infection by pathogens in an apparent non-specific manner. Moreover, this part of the 

immune system provides immediate defense against infection (1). The system is composed of both 

humoral and cellular mechanisms. The complement system is key component of the humoral 

mechanism (2), whereas the cellular arm consists of many cell types, including granulocytes, 

monocytes, macrophages and natural killer (NK) cells. In contrast to the adaptive immune system, 

exposure of the innate immune system to a pathogen does not induce immunological memory, i.e., 

the ability to react more rapid and specific upon a second contact with the pathogen. 

Phagocytosis of invading pathogens represents an early and crucial event in host defense. 

Phagocytic cells include granulocytes, monocytes, tissue macrophages and dendritic cells. 

Phagocytosis starts with the binding of a pathogen to cell surface receptors, and is followed by the 

uptake of the pathogen into a vesicle designated phagosome (3). Next, the phagosome fuses with 

lysosomes and subsequently matures into a phagolysosome (3). Pathogens contained within a 

phagolysosome are destroyed by lowered pH, enzymatic hydrolysis, and radical attack (3,4).  

Recognition of pathogens is dependent on the binding of pathogen-derived structures to 

germline-encoded pathogen recognition receptors (PRRs) expressed by phagocytes (5,6). PRRs 

bind pathogen-associated molecular patterns (PAMPs) which are conserved between classes of 

pathogens (7,8). PRRs are involved in phagocytosis of pathogens and in the activation of pro-

inflammatory pathways and recruitement of inflammatory cells (7). Phagocytes express membrane-

bound as well as cytosolic PRRs. Of membrane-bound PRRs, perhaps the best known are the Toll-

like receptors (TLRs) . The TLR family forms a class of PRRs consisting of at least 10 members that 

each recognize a different classe of pathogen-derived patterns (9). Apart from TLRs, membrane-

bound C-type lectins and the cytosolic nucleotide binding oligomerization domain (NOD)-like 

receptors (NLRs) and retinoic acid inducible gene (RIG)-I-like helicases (RLHs) play important roles 

in triggering innate immune responses (10-12). Members of the NLR family form the central 
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components of inflammasomes and act as intracellular sensors that detect cytosolic microbial 

components (10). The inflammasome is a multiprotein complex involved in activating caspase-1 and 

-5, leading to the processing and secretion of the pro-inflammatory cytokines IL-1 and IL-18. In 

addition, some of the PRRs are secreted into the bloodstream. Secreted PRRs include the C-type 

lectin mannan-binding lectin (MBL), collectins and ficolins (12). These PRRs bind to a wide range of 

bacteria, viruses, fungi and protozoa and serve to opsonise pathogens, help to activate complement 

and allow for enhanced recognition by phagocytic cells (12).  

The early phase of an inflammatory response is characterised by an alteration of the local 

vascular permeability and influx of inflammatory cells. Upon recognition of pathogens via PRRs, 

cells of the innate immune system produce a wide range of inflammatory mediators such as 

cytokines, chemokines and interferons (IFN). These mediators orchestrate the development of the 

adaptive immune response.  

  

Adaptive immune system 

When pathogens successfully evade the innate immune system, a second line of protection is 

provided by the specific or adaptive immune system. The adaptive immune system provides a 

stronger and pathogen specific immune response and induces an immunological memory that 

enables it to react more promptly and specifically upon a second encounter with the same pathogen. 

Like the innate immune system, the adaptive immune system consists of a humoral and a cellular 

part. B cells and T cells are the major types of lymphocytes of the specific immune system (13). B 

cells are involved in the humoral part, whereas T cells are involved mainly in the cellular part, 

though intracellular signalling by soluble factors, interleukins or cytokines, plays a role in both arms. 

B cells produce specific antibodies that specifically recognize and neutralize pathogens. 

Naïve B cells express a unique membrane bound B cell receptor (BCR). Ligation of the BCR on 

these cells by pathogen-derived structures induces the proliferation and differentiation of the cells 

into antibody secreting plasma cells (14). Generally, B cells require help from activated T helper 

cells to mature into fully activated plasma cells (15).  

 Two major subtypes of T cells can be distinguished: CD4
+
 T helper cells and CD8

+
 

cytotoxic T cells, subtypes that play a distinct function. T cells express a membrane bound T cell 

receptor (TCR), which can recognize antigens bound to the major histocompatibility complex (MHC). 

There are two different classes of MHC molecules of importance here: MHC class I and MHC class 

II. MHC class I molecules are expressed on all cells and present intracellular-derived antigens to 

CD8
+
 cytotoxic T cells, whereas MHC class II molecules are expressed only on professional antigen 

presenting cells (APC) like dendritic cells (DC) and macrophages, and present antigens of an 

extracellular origin to CD4
+
 T cells. CD4

+
 T helper cells help regulate the immune response, for 

instance to intracellular bacterial pathogens like Salmonellae and Mycobacteria, whereas CD8
+
 

cytotoxic T cells eliminate mainly virally-infected cells.   
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T helper cell immune responses: Th1, Th2 and Th17  

An effective and specific immune response against pathogens that invade the human body is 

dependent on the differentiation of T lymphocytes into effector cells. Specific immune responses are 

driven by the emergence of pathogen-specific effector CD4
+
 T-cell subsets: the Th1 cells, which 

primarily produce IFN-; Th2 cells, which produce IL-4, IL-5, IL-10 and IL-13 (16); and the recently 

discovered Th17 cells, producing IL-17.  

Differentiation of naïve CD4
+
 T cells into effector CD4

+
 T cells is dependent on the type of 

pathogen and is guided by cells of the innate immune system. Th1 cells control intracellular 

pathogens, including viruses and bacteria, and are involved in autoimmune diseases (17). For 

example, host defense against intracellular bacterial pathogens such as Salmonellae and 

Mycobacteria is dependent on the type-1 IL-12/IL-23/IFN- pathway and deficiencies of components 

of this pathway render patients highly susceptible to infections with these pathogens (18). The Th2 

cells are important in defence against helminths. In addition, the Th2 cell is thought to be the central 

effector cell in the pathogenesis of atopic allergic diseases (19). For example, IL-4 and IL-13 elicit 

antigen-specific IgE production in B cells, essential for the immediate hypersensitivity response, 

leading to mast cell degranulation and the subsequent release of histamine (20). The exact function 

of Th17 cells still has to be established. However, this T helper cell subset is thought to play an 

important role in the defense against bacterial, fungal, and viral infections at mucosal surfaces (21). 

In addition, Th17 cells are thought to be crucial for the development of various auto-immune 

diseases.  

The activation and differentiation of naïve T helper cells is thought to be dependent on 

three signals (22). The first signal results from ligation of T-cell receptors (TCRs) by pathogen-

derived peptides, presented by MHC class II molecules on the cell surface of APCs. This signal 

determines the antigen-specificity of the response. The second signal is provided by the co-

stimulatory molecules CD80 and CD86 expressed by the APC, which bind and activate CD28 on the 

T cell. TCR triggering in the absence of this co-stimulatory signal leads to the induction of anergic T 

helper cells and might lead to tolerance. The third signal is the polarizing signal and depends on the 

cytokines activating the T cell. IL-12 and IL-4 are seen as the major polarizing cytokines for naïve T 

helper cells to differentiate into Th1 and Th2 cells, respectively (23,24). Both signals 2 and 3 are 

thought to be dependent on the binding of specific microbial products or endogenous danger signals 

on receptors expressed by APCs and the resultant cytokine production (22,25). 

 

Cytokines 

Innate and adaptive immunity are not just sequential mechanisms, but rather are interwoven and 

regulating each other in many reciprocal pathways. For instance, the innate immune system 

provides the cells of the adaptive system with information via the secretion of soluble mediators and 
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cell-cell contact. One of these soluble mediators is IFN-. IFN- is critical to many immune 

responses and regulates many processes.  

 

Interferon- 

Effective defence against different types of pathogens require different types of immune responses 

to be elicited. IFN- plays a central role in the type-1 immune response and is critical to innate and 

adaptive immunity against intracellular bacteria and parasites. IFN- and IFN-R-deficient mice 

develop normally, however, these mice display selective defects in the immune response against 

pathogens, including Salmonellae and Mycobacteria (26-31). Humans with IFN-R1 or IFN-R2 

deficiency show a clinical presentation similar to that observed in the mouse
 
models; the patients 

have impaired Th1-immunity and suffer from unusually severe
 
infections caused by weakly virulent

 

Mycobacteria
 
(32). On the other side, in both IFN- transgenic mice and in SOCS1-deficient mice, 

lacking negative feedback of the IFN- signal transduction pathway, fatal multi-system inflammation 

is observed (33,34).  

 

Interferon- production 

At early stages of infection, IFN- secretion by
 
NK cells, NK-like T cells, NKT cells, T cells and 

CD8
+
 T cells is crucial, whereas later on, T lymphocytes

 
become the major source of IFN- when the 

adaptive immune response has evolved (35-39). IFN- produced in the early phases of an infection 

by the innate immune system skews the adaptive immune
 
response towards a T helper 1 (Th1) 

phenotype (40-42). IFN- production is controlled by cytokines secreted by antigen presenting cells 

(APC).
 
The IL-12 cytokine family (e.g. IL-12, IL-23 and IL-27) is thought to be of major importance in 

the induction of IFN- production. IL-18 and IL-1 are known to synergise with IL-12 and IL-23 in 

inducing IFN- production in various cell types (43,44). Together, these cytokines
 
serve in the 

coupling of the innate and adaptive immune response (45). 

 

Interferon- functions 

IFN- is produced by Th1 cells, skews the immune response further towards a Th1 phenotype and 

inhibits Th2 cell populations. After binding of IFN- to the IFN-R complex on its target cells, many 

effects are induced, including the following:  

1) IFN- enhances the synthesis of components of the complement cascade and the acute 

phase response, thereby enhancing the humoral arm of innate immunity (46-49).  

2) The availability of sufficient iron is essential for the growth of many pathogens. IFN- 

limits the availability of iron by reducing serum iron and increasing ferritin levels, thereby 

inhibiting growth of many extracellular pathogens (50). To inhibit the growth of intracellular 
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pathogens within infected macrophages, IFN- reduces the uptake of iron and increases 

iron efflux (51).  

3) IFN- contributes to macrophage activation by increasing phagocytosis (52-54). IFN- 

increases the expression of the high-affinity IgG receptor, FcRI (CD64) on the 

granulocyte, monocyte and macrophage cell surface. This receptor binds IgG, allowing for 

enhanced phagocytosis, binding of immune-complexes, and antibody-dependent cellular 

cytotoxicity (55,56).  

4) IFN- induces antimicrobial effector function. After phagocytosis of a pathogen, IFN- 

enhances phagosome-lysosome fusion in infected macrophages and speeds up the 

maturation and acidification of the phagolysosome (57-60). IFN- enhances the expression 

of proteins involved in the subsequent destruction of pathogens in the phagolysosome, 

including immunity-related GTPases (IRG) (61), natural resistance-associated macrophage 

protein (NRAMP1) and proteins involved in the oxidative burst (62-64). The membrane-

associated complex NADPH mediates the formation of superoxide anions (O2
-
). IFN- in 

synergy with TNF, enhances the transcription of genes encoding gp91-phox, p47-phox and 

p67-phox, all components of the NADPH complex, thereby promoting formation of this 

complex and the production of O2
- 
anions and hydrogen peroxide (65). Furthermore, IFN- 

enhances the production of nitric oxide (NO), an unstable radical gas. IFN- maximises the 

expression of inducible nitric oxide synthase (iNOS), an enzyme that catalyzes the 

oxidation of one of the guanidino nitrogens of l-arginine to nitric oxide (NO) (52).  

5) In addition, IFN- enhances antigen processing and the expression of the MHC class I 

and II molecules, thereby increasing antigen presentation and promoting the induction
 
of 

cell-mediated immunity (66,67). The IFN- induced up-regulation of class
 
I MHC increases 

the potential for cytotoxic T cells to recognize infected cells. On the other hand, via the up-

regulation of class II MHC molecules, IFN- promotes the activation of CD4
+
 T helper cells.  

6) Immunoglobulines are important for the opsonisation and neutralisation of many 

pathogens. IFN- stimulates immunoglobulin (Ig) production and matures the antibody 

response by the induction of class switching in B cells (68).  

7) IFN- primes cells for more rapid and heightened production of pro-inflammatory 

cytokines upon TLR stimulation (69-71). For example, in the course of an immune 

response, the IFN- produced by innate immune cells provides a strong positive feedback 

loop to enhance IL-12, IL-23 and TNF production by monocytes and macrophages (69-71), 

thereby enhancing Th1 immunity.  
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Interferon- signal transduction  

The IFN-R is comprised of two ligand-binding
 

IFN-R1 chains associated with two signal-

transducing IFN-R2
 
chains (Fig. 1) (66). Binding of IFN- as a non-covalently linked homodimer to 

its receptor induces receptor oligomerization and activation of the receptor-associated Janus 

kinases (JAK)1 and JAK2 by trans-phosphorylation. JAK1 and JAK2 associate with the IFN-R1 and 

IFN-R2, respectively. JAK1 phosphorylates the functionally critical tyrosine residue on position 440 

(Y440) in the intracellular domain of each IFN-R1 chain. The Y440 serves as the docking site for 

signal transducer and activator of transcription (STAT)1. After docking to the Y440, STAT1 is 

phosphorylated 

 

 

Figure 1. IFN- signal-transduction. IFN- oligomerization of the IFN--receptor subunits IFN-R1 and IFN-R2 leads to the 

phosphorylation and activation of JAK1, JAK2 and the tyrosine 440 of the IFN-R1. Subsequently STAT1 docks to the 

phosporylated IFN-R1 to become phosphorylated itself. Phosphorylated STAT1 dimerizes and translocates to the nucleus 

where it binds to GAS-elements. Among the primary response genes are a number of transcription factors including IRF-1. IRF-1 

plays a role in regulating the expression of secondary response genes through promoters with IRSE-like motifs. To a lesser 

extent, IFN- signalling also results in the formation of STAT1:STAT1:IRF-9 and STAT1:STAT2:IRF-9 (ISGF3) complexes 

 

on its tyrosine 701 (Y701) and serine 727 (S727) residues (66). Phosphorylation of the Y701 is 

essential for subsequent dimerisation of STAT1 molecules, while the phosphorylation of the S727 is 

IF
N

-R
1

IF
N

-R
2

JAK2

JAK1

Nucleus

Cytosol

IRF1

IF
N

-R
1

IF
N

-R
2

JAK1

JAK2

STAT1STAT1
P

STAT1
P

STAT1
P

STAT2

IRF-9

STAT1
P

STAT2
P

IRF-9

STAT1
P

STAT2
P

IRF-9

IRF-1

GASISRE

MHCI IL12A, IL12B

IFN-IFN-

ISRE-like element

P

P

STAT1
P

STAT1
P IRF-1



General Introduction 

 

 12 

needed for full transcriptional activity. After being phosphorylated, STAT1 dissociates from the 

receptor, dimerizes and translocates to the nucleus, where it directly regulates the expression of 

IFN- responsive genes (e.g. ICAM1) (72), or indirectly activates genes, via the induction of 

transcription factors such as interferon regulatory factor (IRF)1, IRF8 and CIITA (e.g. IL12B, IL12A, 

B2M and HLA) (73-76). Apart from STAT1 homodimers, IFN- induces, although to a lesser extent, 

STAT1/STAT2/IRF-9 complexes (also known as IFN-stimulated gene factor 3 (ISGF3)). ISGF3 

induces target genes containing an interferon-stimulated response element (ISRE) element. Via the 

induction of these transcription factors, IFN- regulates a wide range of distinct cellular programs via 

the activation of multiple
 
genes.  

 

The IL-12 cytokine family  

Cytokines can be classified based on size, gene organization, sequence homology and structural 

motifs, such as the common four-helix bundle present in type I cytokines (77). Type I cytokines 

regulate development, differentiation, and activation of immune cells and cells of the inflammatory 

system (77). The cytokines IL-12, IL-23, IL-27 and IL-35 are members of the IL-12 cytokine 

subfamily, which is part of the type I cytokine superfamily. A specific feature of the members of the 

IL-12 cytokine family is that they are formed by heterodimerization of specific subunits. IL-12p40 can 

be secreted as a monomer or as a disulfide-linked heterodimer, linked to IL-12p35 or IL-23p19 (78). 

When IL-12p40 is bound to IL-12p35, it forms IL-12. While the IL-12p40 is homologous to the α-

chain of the soluble IL-6 receptor, the IL-12p35 subunit is structurally related to the type I cytokines. 

The complex of IL-23p19 and IL-12p40 forms IL-23. IL-23p19 was identified on the basis of its 

homology with IL-6 and the IL-12p35 chain (78). The discovery of IL-23 led to a re-evaluation of the 

function of IL-12 in experiments based on the neutralization or deletion of IL-12p40. In mice, IL-

12p40 can form a homodimer named IL-12p80, in humans however, IL-12p80 is not reported 

(79,80).  

Similar to IL-12 and IL-23, IL-27 is a heterodimeric cytokine consisting of Epstein-Barr virus-induced 

molecule 3 (EBI3), an IL-12p40 homologue, noncovalently bound to p28, an IL-12p35 homologue 

(81). EBI3 has also been reported to bind to IL-12p35, forming IL-35 (82,83). The major cellular 

source of IL-12, IL-23 and IL-27 are APCs. By contrast, murine IL-35 is produced by regulatory T 

cells (83). Human regulatory T cells do not constitutively express IL-35 (84). However, human 

rhinovirus stimulated DCs induce IL-35 production in FOXP3 negative regulatory T cells (85). The 

IL-12 cytokine family members are thought to be crucial in the development and maintenance of a 

Th1 response and in mice deficiency in either IL-23 or
 
IL-12 significantly compromises the host‟s 

ability to
 
eliminate pathogens (18,86). 
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Regulation of IL-12 and IL-23 production 

IL-12 and IL-23 share the common IL-12p40 subunit. For the production of IL-12, both IL-12p40 and 

IL-12p35 must be co-expressed, whereas for the expression of IL-23 IL-12p40 and IL-23p19 must 

be co-expressed. The expression of the p40, p35 and IL-23p19 genes is independently regulated. 

IL-12p40 is produced in large excess over the IL-12 and IL-23 hetero-dimers; a role of this excess 

IL-12p40 remains unknown. Prior to secretion, the various subunits are assembled to form the 

different hetero-dimeric cytokines. After dimerisation, N-linked glycosylation of IL-12p35 is a required 

step in the secretion of IL-12 (87).  

A variety of stimuli can induce IL-12 and IL-23 production. For example, monocytes, 

macrophages and dendritic cells (DCs) produce IL-23 following exposure to PAMPs that act through 

TLRs (88). In contrast to IL-23, an extra stimulus such as IFN- is needed for the induction of IL-12 

(40,89). In line, in whole blood assays with bloodcells obtained from patients with complete IFN-R 

deficiency, no IL-12 production can be detected in response to M. bovis BCG infection in vitro (90). 

IFN- primes for IL-12 production and enhances IL-23 production in human monocytes and 

macrophages (71,89,91). In contrast, IFN- is reported to inhibit IL-23 production in human DCs 

(89), indicating a dual role for IFN- in the regulation of IL-23 production, depending on the cell type.  

The balance between IL-12 and IL-23 production is dependent on the specific TLR being 

stimulated. In human DCs TLR2 ligands increase IL-23, but at the same time inhibit IL-12 production 

(91). In addition, activation of human myeloid DCs by TLR4 ligands, like lipopolysaccharide (LPS), 

leads to the expression of p19, p35 and p40 the building blocks of both IL-23 and IL-12. TLR2 

activation by peptidoglycan (PGN), however, induces high levels of IL-23, but not of p35 expression 

or IL-12 synthesis (92,93). Not all TLR2 agonists are equally good IL-23 inducers: for instance, PGN 

is a more potent IL-23 inducer than PAM3CSK4 (94), which can be explained by the fact that PGN 

not only stimulates IL-23 production via TLR2 but also via NOD2 stimulation by the intracellular PGN 

metabolite muramyl dipeptide (MDP) (93). These data indicate that synergy between TLR2 and 

NOD2 agonists favour the induction of IL-23. In addition, several combinations of TLR agonists 

induce both IL-12 and IL-23. TLR3 and TLR4 ligands synergize with TLR8 ligands in the induction of 

both IL-12 and IL-23 (88,95,96). Other PRRs influence the balance between IL-12 and IL-23 

production. The dectin-1 agonist -glucan curdlan induces IL-23 synthesis by DCs without inducing 

IL-12 production (97), indicating that signalling through C-type lectins also favours IL-23 production.  

Commensal gram-negative bacteria as well as gram-positive bacteria are able to induce 

p19 expression in DCs. Intact gram-positive bacteria, however, preferentially stimulate production of 

IL-12 over IL-23 (98). Gram-negative bacteria induce more IL-23 compared to gram-positive 

bacteria, indicating that a component of gram-negative bacteria synergizes with PGN, a cell-wall 

component of both gram-negative and gram-positive bacteria, in the induction of IL-23. 

A variety of cytokines is known to modulate IL-12 and IL-23 production. Harris et al. 

showed that IL-1 induces IL-23 production in human monocytes in response to gliadin (99). GM-
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CSF primes monocytes for enhanced IL-23 production in response to a variety of TLR agonists (88). 

Moreover, macrophages generated in the presence of GM-CSF (type 1 macrophages) produce IL-

23 in response to various stimulations, whereas macrophages generated under pressure of M-CSF 

(type 2 macrophages) do not (89). Furthermore, GM-CSF is known to amplify the IL-23 inducing 

activity of prostaglandin E2 (PGE2) in a synergistic manner (100). In combination with GM-CSF, IL-4 

is used for the in vitro generation of DCs and known to enhance IL-12 production (101,102). IL-4 

downregulates IL-23p19 mRNA, IL-12p40 mRNA and IL-23 protein expression in virally infected 

macrophages (103) and inhibits TLR agonist induced IL-23 production in DCs (104). These results 

suggest that IL-4 can shift the balance between IL-23 and IL-12 production towards IL-12. In 

contrast to IL-4, PGE2 inhibits IL-12 production, but stimulates IL-23 expression in LPS-treated DC 

in mice (100,105,106), thereby inducing a shift in the IL-23/IL-12 balance in favour of IL-23. The 

effect of PGE2 is dependent on the induction of cAMP (107). The nucleotide adenosine triphosphate 

(ATP) also influences the balance between IL-12 and IL-23 in DCs, favouring a shift towards IL-23 

(107). IL-10 is a potent negative regulator of many pro-inflammatory cytokines, including IL-12 and 

IL-23. IL-10
-/-

 mice produce more IL-23 in response to LPS, compared to wild-type mice (108). Both 

IL-12 and IL-23 can induce IL-10 production (109-111), which may provide a negative feedback 

signal. Finally, IL-12 and IL-23 seem to cross-regulate each other. IL-23 deficient mice produce 

higher levels of IL-12 in a colitis model and IL-23 suppresses IL-12 production in murine DCs upon 

TLR stimulation (112), suggesting an inhibiting role of IL-23 on IL-12 synthesis. 

 Activated T cells regulate IL-12 and IL-23 production by cell-cell contact, via a mechanism 

in which CD40L expressed on activated T cells after activation binds CD40 on APCs. Apart from 

IFN-, CD40-CD40L interactions seem to be crucial for the induction of IL-12. CD40 or CD40L 

deficient mice fail to produce IL-12 in response to Leishmania infection (113). In monocyte-derived 

DCs, both IL-12 and IL-23 production are upregulated after CD40 ligation (78,98,104,114-117). 

Furthermore, ligation of CD40L by CD40 enhances the IFN- inducing capacities of IL-12 on T cells 

(118).  

Summarizing, regulation of IL-12 and IL-23 production during infection is dependent on a 

complex network of mediators; the TLRs stimulated by the infective agent, the cytokines induced 

and contact dependent T-cell regulation. Importantly, IL-12 production is dependent on IFN- and 

CD40-CD40L interactions, whereas these stimulations are not needed for the induction of IL-23. 

Moreover, IL-23 production is preceding IL-12 production during infections (89,119,120).  

 

Biological functions of IL-12 and IL-23: induction of IFN- and the Th1 (and Th17) response  

Generally, IL-12 is thought to be the primary trigger that initiates Th1 differentiation and IFN- 

production (Fig. 2). As mentioned earlier, paradoxically, for the induction of IL-12 production, the 

Th1 cytokine IFN- is needed (40). Moreover, Abdi et al. showed that Th1 polarization is critically 

dependent on IFN-. This means that for the initiation of Th1 differentiation, IFN- is needed to 
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complement this “third signal”. Naïve T cells and APCs are unable to produce this cytokine, 

indicating that other cells producing IFN- are needed for the initiation of Th1 differentiation. As 

mentioned, the primary sources of IFN- include effector cells of the innate immune system like NK 

cells, NKT cells, NK-like T cells and T cells, therefore these cells may provide this third signal 

(41,121,122). NK and NKT cells constitutively express IFN- mRNA, allowing rapid induction and 

secretion of IFN- (123). Moreover, NK derived IFN- is known to push differentiation of T helper 

cells into the Th1 subclass (41,42). However, the stimuli leading to the initial IFN- production in 

these cells are not well characterized.  

 

 

 

Figure 2: IL-12 family members and T helper cell subsets. All IL-12 family members are composed of two subunits. IL-12, IL-

23 and IL-27 are produced by dendritic cells, macrophages, monocytes and B cells. IL-12 promotes Th1 cell differentiation. IL-23 

can induce both IFN- and IL-17 and is involved in both Th1 and Th17 cell differentiation. IL-27 promotes Th1-cell differentiation, 

an effect that is most prominent in the absence of IL-12, whereas at later stages of the immune response IL27 inhibits Th1 cells. 

IFN- inhibits both Th2 and Th17 cells. In contrast to the other IL-12 family members IL-35 is produced by regulatory T cells and 

inhibits proliferation of all T cell lines.  

 

IL-23 is produced early in infections, without the need of IFN-. Moreover, this cytokine is capable of 

inducing IFN- production (43,78,88,103,124). IL-23 is among the first cytokines secreted by APCs 

in response to stimulation with PAMPs such as LPS (89). Thus, early APC-derived IL-23 may be an 

initial trigger of IFN- production. Experimental data in favour of this hypothesis comes from the 

observation that mice deficient in the p40 subunit of IL-12/23 are far more impaired in their ability to 

generate Th1 responses to pathogens as Salmonellae and Mycobacteria than are mice lacking the 

p35 subunit of IL-12 (125-128), suggesting a role for IL-23 in the induction of IFN- production. Also 

the fact that IL-23 induces the expression of substance P (129), a peptide reported to enhance IFN- 
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production by Th1 cells, in macrophages points to a role of IL-23 in the initiation of IFN- production 

(130). 

Other cytokines, including the IL-12 family member IL-27, are reported to regulate Th1 differentiation 

early in infection, independently of IL-12 (131-133) (Fig. 2). Although several lines of evidence 

indicate that IL-23 and IL-27 have a role in the induction of IFN-, it should be noted that none of 

these cytokines is indispensable for the induction of a Th1 response (134-136). This suggests that 

several factors, including IL-23, IL-27 can induce IFN- production, without the need of all these 

factors being produced. Apart from IL-23 and IL-27, IL-1 and IL-18, both members of the IL-1 family 

of cytokines, are likely to be involved in the induction of innate IFN-. Both IL-1 and IL-18 are 

released soon after the first contact between phagocytes and pathogens and both these cytokines 

promote IFN- production by NK cells and T cells (44,137). Moreover, IL-18 is essential in the innate 

immune activation of CD4 T cells in Salmonella-infected mice (137).  

Concluding, IL-12 is likely to be involved in the maintenance of an ongoing Th1 response, while 

other cytokines like IL-23 are involved in the initiation of a Th1 immune response. 

 

IL-12 and IL-23 receptor 

Structure and expression 

IL-23 and IL-12 signal through a common IL-12Rβ1 chain complemented by the IL-23R and the IL-

12Rβ2, respectively (Fig. 3). While IL-12Rβ1 is constitutively expressed in activated CD4
+
 T cells, 

NK cells and NK-like T cells (17,138), IL-23R and IL-12Rβ2 expression are critical for the ability to 

respond to IL-23 and IL-12, respectively. To generate a high affinity binding site for IL-12, both the 

IL-12Rβ1 and IL-12Rβ2 chains need to be co-expressed (139). The IL-12Rβ2 expression is highly 

regulated on T cells. Resting T cells do not express IL-12Rβ1 or IL-12Rβ2 receptors, but these 

subunits are induced upon T-cell activation, and receptor expression correlates with IL-12 

responsiveness (140). Furthermore, the IL-12R2 is expressed on Th1 cells, but not on Th2 cells 

(141). In Th1 cells, the expression of the IL-12Rβ2 chain is upregulated by IL-12 itself, IFN-, IL-18 

and IL-27 (124,142). 

The IL-23R protein is very similar to IL-12R2, in particular with respect to the two cytokine 

binding domains and the immunoglobulin domain. IL-23R expression patterns are not well defined, 

because a specific antibody for FACS staining is not available (109). Expression of the IL23R mRNA 

has been reported in a broad range of cells, including memory T cells, NK-like T cells, Th1, Th2 as 

well in Th17 clones, T cells, NKT cells, NK cells, DCs and in activated macrophages (43,78,143-

148). Apart from lymphocytes, also microglia, a type of glial cell that acts as the first and main form 

of active immune defense in the central nervous system, are reported to express IL23R mRNA and 

to respond to IL-23 (149). The Th1 associated transcription factor T-bet is involved in the induction 

of both the IL-23R mRNA and the IL-12Rβ2 (150). 
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Figure 3. IL-12 and IL-23 signal transduction. IL-12 and IL-23 activate the JAK/STAT pathway. IL-12 is composed of IL-12p40 

and p35 subunits that bind to IL-12Rβ1 and β2, respectively. Upon binding of IL-12 to its receptor, TYK2 and JAK2 associate 

with the IL-12Rβ1 and β2, respectively, followed by JAK transphosphorylation and subsequent phosphorylation of the receptor 

chains by activated JAKs. Subsequently, the IL-12Rβ2 is phosphorylated and serves as a docking site for STAT molecules. 

STAT4 binds to the receptor chain and is phosphorylated. Next STAT4 homodimers are formed and translocate to the nucleus 

where they bind to STAT-binding elements, like in the IFN- promoter, and regulate transcription. IL-23 is a heterodimeric 

cytokine composed of p40 and p19 that bind to the IL-12Rβ1 and the IL-23 receptor (IL-23R), respectively. Like IL-12, IL-23 

stimulation induces JAK2 and TYK2 phosphorylation. Subsequently, mainly STAT3 is phosporylated.  

 

Signal transduction 

The IL-23R associates with JAK2, whereas the IL-12Rβ1 associates with TYK2 (Fig. 3) (144). Upon 

binding of IL-23 to the IL-23 receptor complex, JAK2 and TYK2 are phosphorylated. Subsequently, 

STAT1, STAT3, STAT4 and STAT5 can dock to the receptor and are reported to be phosphorylated, 

however, the most prominent STAT induced
 
by IL-23 is STAT3 (43,109,144,151). The tyrosine 

residues of the IL-23R responsible for STAT recruitment have not yet been established. The human 
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IL-23R contains seven tyrosine residues, three of which represent putative Src Homology 2(SH2)-

binding sites which may be involved in binding the SH2-sites of STAT meolecules (144,152).  

Similar to the IL-23R, the IL-12Rβ2 associates with JAK2, which is phosporylated upon 

binding of IL-12 to the IL-12 receptor complex. IL-12Rβ1 bound TYK2 is also phosphorylated after 

binding of IL-12 to the receptor complex. During IL-12 signal transduction, STAT4 docks to the 

tyrosine 800 of the IL-12Rβ2 chain and this tyrosine is critical for IL-12 signal transduction (153). In 

contrast to IL-23, IL-12 mainly induces STAT4 phosphorylation.  

After phosphorylation of STAT molecules in response to either IL-12 or IL-23, the 

phosporylated STAT molecules dimerize to form homo- and heterodimers and subsequently 

translocate to the nucleus to regulate their target genes. STAT3 is critical in IL-23-dependent 

induction of IL-17 (151,154-156). Experiments eluding the role of STAT4 in the development of Th17 

cells are contradictive (154,157,158). IL-23 and IL-12 are both inducers of IFN- and IL-10 (78,109). 

STAT4 is essential for IL-12 induced IFN- (159). STAT4 is likely to be important in IL-23 induced 

IFN-, however, this is not yet elucidated.  

 

Mendelian Susceptibility to Mycobacterial Disease.  

Patients have been described with unusually severe
 

infections caused by otherwise poorly 

pathogenic Mycobacteria
 
and Salmonellae, a condition also known as Mendelian Susceptibility

 
to 

Mycobacterial Disease (MSMD [MIM 209950 [OMIM]) (18). MSMD is a heterogeneous
 
disorder that 

can be caused by mutations in genes involved
 
in the Th1 - IL-12/-23/IFN- - cytokine signalling 

cascade. In these patients, genetic
 
defects have been identified in the genes encoding IL-12p40, IL-

12Rβ1, TYK2, IFN-R1, IFN-R2, and STAT1 proteins (32). 

 

Deficiencies in the IL-12 and IL-23 pathways 

 

IL-12p40 

In total 20 cases of IL-12p40 deficiency have been reported and five different mutations in the IL12B 

gene have been found (160). All known IL12B mutations are recessive and result in complete IL-

12p40 deficiency with a lack of detectable IL-12p40 secretion by cells of the patients (161,162). 

These patients lack active IL-12 and IL-23. As a result, these patients produce severely reduced 

amounts of IFN- in vitro (162). 

In three children (one Pakistani and two Indian), a large homozygous deletion causing a 

frameshift in the IL12B gene has been identified, resulting in a protein of 184 amino acids including 

only 139 out of the 328 original amino acids in the N-terminal region and 45 novel amino acids in the 

C-terminal region (161-163). This protein cannot be detected and the stability is unknown. 

Interestingly, Pulickal et al report one female sibling homozygous for this mutation who was not 

clinically affected, suggesting a multifactorial basis for the observed phenotype in the clinically 
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affected sibling. Four kindreds from Saudi Arabia were found to have a small insertion (316insA) 

causing a frameshift, resulting in a short protein lacking the amino acids essential for dimerization 

with IL-12p35 (161). Small frameshift deletions (528del2 and 297del8) resulting in a premature stop-

codon were detected in four patients (age between 3 months-28 years) who presented with Bacillus 

Calmette-Guérin (BCG)-itis (164,165). Interestingly, all patients with IL-12p40 deficiencies who were 

BCG vaccinated developed BCG-itis (161,162,164,165). In about half of the cases, salmonellosis 

was reported (161,162). 

 

IL-12R1 

Since IL-12R1 is an essential component of IL-12R as well as IL-23R, deficiencies of this receptor 

chain will affect both IL-12R and IL-23R dependent signalling. Over eighty individuals have now 

been reported with complete IL-12Rβ1 deficiency (165-177), resulting in deficient IFN- production. 

IL-12Rβ1 deficiency is the most frequent known genetic cause of MSMD. Mycobacterial infection 

and salmonellosis are the infectious diseases most frequent found in these patients.  

Most reported IL-12R1 mutant alleles cause recessive complete IL-12Rβ1 deficiency. In 

most cases IL-12R1 expression is abrogated due to a diverse array of mutations, including 

nonsense (167), missense (169-171,173,178-180), and splice mutations (165,169,175,181), 

microinsertions (182), microdeletions (165,169), microduplications (182) and large deletions 

(167,174,183,184). Fieschi et al. reported a patient with a large in-frame deletion
 
in the IL12RB1, 

resulting in the surface expression of nonfunctional
 
IL-12R1 (183). This same deletion was found in 

an unrelated 6 year old boy (184). In all IL-12Rβ1-deficient patients both IL-12 and IL-23 responses 

are abrogated and IL-12 and IL-23-dependent production of
 
IFN- is severely impaired (90,183,185). 

One patient with a partial IL-12R1 deficiency has been reported (169). In this patient, IL-12 

response was diminished, but not abrogated.  

 Several siblings of IL-12Rβ1 deficient patients have been identified that were homozygous 

for the same IL12RB1 mutation as the index patient, however, they remained asymptomatic with 

regard to unusual infections with intracellular bacteria (172,173). The clinical penetrance of IL-

12R1 deficiency is estimated between 66 (10-15) and 91% (49 of 54) (32,186), suggesting more 

factors play a role in the increased susceptibility to mycobacterial and salmonella infections in these 

patients. Patients with a deficiency of the IL-12p40 subunit or the IL-12R1 have defects in both the 

IL-12 and IL-23 cascade, however, the relative roles of IL-12 and IL-23 are not known. 

Infections with BCG in patients with IL-12p40 deficiency or IL-12R1
 
deficiency apparently 

protect against
 
subsequent illness due to nontuberculous environmental Mycobacteria, but not 

against disease due to Salmonellae. Unlike salmonellosis, recurrent mycobacterial
 
infections are 

rare in these patients (173). Moreover, patients with a defect in the IL-12R1 are reported who 

controlled BCG after receiving vaccinations, indicating that in some patients IL-12 and IL-23 are 

redundant for mounting an effective immune response against BCG (187). 
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TYK2 

TYK2 is involved in multiple signalling pathways, including IL-23 and IL-12 (173).  

Minegishi et al. identified a homozygous TYK2 mutation in a patient who had been clinically 

diagnosed with hyper-IgE syndrome (188). This patient suffered a BCG lymphadenitis and a non-

typhi Salmonella infection. Furthermore, this patient showed unusual susceptibility to various 

microorganisms including virus and fungi (188). Apart from IL-23 and IL-12, the IL-6, IL-10 and type 

I interferon pathways were impaired in cells from this patient, demonstrating that TYK2 plays 

obligatory roles in multiple cytokine signals involved in innate and adaptive immunity. These data 

suggest that TYK2 deficiency is characterised by a broad spectrum of clinical features, including 

both autosomal recessive hyper-IgE syndrome (AR-HIES) and MSMD.  

 

Deficiencies in the IFN- signalling pathway 

IFN-R deficiencies selectively predispose to severe infections due to poorly pathogenic 

mycobacteria, but by contrast with IL-12/IL-23 system defects, only rarely leads to non-typhoid 

Salmonellae infection. IFN-R deficiency is a heterogeneous disorder with different clinical, genetic, 

immunological, and histopathological types. In addition, various STAT1 deficiencies have been 

described, all impairing IFN- signal transduction. 

 

IFN-R1 

Patients with partial and complete IFN-R1 deficiencies have been described. All patients with 

autosomal recessive complete IFN-R1 deficiency present with symptoms of BCG-itis or 

environmental mycobacteria infection within the first 5 years of life (189). Complete IFN-R1 

deficiency is characterised by a complete lack of functional IFN-R1. This lack of functional IFN-R1 

can be due to mutations that preclude expression of IFN-R1 on the cell surface (190-194). 

Mutations leading to the abrogation of cell surface expression identified to date, include nonsense 

and splice mutations and frameshift deletions and insertions, all resulting in a premature stop codon 

upstream from the segment encoding the transmembrane domain. In several patients, missense 

mutations or a small deletion in the region encoding the ligand binding domain of the IFN-R1 have 

been identified. The resulting mutant receptors (C77Y, V61Q, 295del12 and 652del3) show no 

binding of IFN- (195).  

In contrast to complete deficiency, partial IFN-R1 deficiency is associated with milder 

course of infections and patients with partial IFN-R1 deficiency may remain asymptomatic for much 

longer periods of time, possibly even until late adulthood (189). Partial IFN-R1 deficiencies are 

mainly due to truncations in the cytoplasmic domain of the receptor. In exon 6, a small deletion 

hotspot is found around nucleotide 818, favouring mispairing events during replication (196-198). A 

frameshift due to the deletion of four nucleotides (818del4) leads to a premature stop codon. The 
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truncated receptor lacks the signalling domains as well as the receptor recycling domain, resulting in 

accumulation of non-functional IFN-R1 proteins that are thought to exert a dominant-negative effect 

over normal IFN-R1 molecules encoded by the wild-type allele. In a patient suffering recurrent 

Mycobacterium avium osteomyelitis, a mutation at nucleotide 832 (designated E278X) was identified 

(199). This mutation causes a premature stop codon
 
and results in truncated IFN-R1 lacking the 

recycling domain, leading to accumulation of the non-functional receptor on the cell membrane. This 

mutant receptor, like the 818del4 mutant receptor, exerts a dominant-negative effect. In a Japanese 

girl suffering BCG lymphadenitis after BCG vaccination, another dominant negative mutation 

(774del4) was detected (200). Like the 818del4, this mutation produces a truncated form of the IFN-

R1 which lacks the recycling domain, resulting in overexpression of the mutant receptor and a 

dominant-negative effect on IFN- signalling. Storgaard et al. report a patient with a nucleotide 

deletion at position 794, resulting in an overexpressed negative dominant receptor as well (201). 

Two children of healthy heterozygous parents have been reported with a homozygous variant (I87T) 

IFN-R1, affecting the extracellular part of the receptor (202). When homozygous, this mutation 

leads to a severely reduced, but not completely abrogated, response to IFN-. In addition, in one 

patient a missense mutation (V63G) in the region encoding the ligand binding domain of the IFN-

R1 has been identified, severely impairing cellular response to IFN- (203). 

 

IFN-R2 

IFN-R2 deficiency is a rare form of MSMD. Mutations can lead to partial and complete IFN-R2 

deficiencies. Four mutations leading to complete IFN-R2 deficiencies have been reported. In a child 

with disseminated Mycobacterium fortuitum and M. avium complex infections, a two-base pair 

homozygous recessive frameshift deletion has been found in the IFNGR2 coding region (204). This 

deletion results in a premature stop in the extracellular region and the abrogation of IFN- 

responsiveness. The second form of complete IFN-R1 deficiency was detected in three children 

from two families. In these children a T168N missense mutation was detected in the IFN-R2. This 

missense mutation resulted in a receptor with an extra consensus site for N-glycosylation, resulting 

in a extra polysaccharide chain being added to the IFN-R2. The addition of this polysaccharide 

chain resulted in the expression of a non-functional IFN-R2 on the cell surface (205). In another 

patient, an in-frame microinsertion in the IFNGR2 was discovered, leading to an receptor of 

abnormally
 
high molecular weight and most of the protein remained intracellular (206). The IFN-R2 

expressed on the cell surface was non-functional. In two siblings, a deletion in the IFN-R2 

transmembrane domain (791delG) causing a frameshift and premature stop codon 8 triplets
 

downstream was found (207). This deletion in the transmembrane domain disables golgi processing
 

and subsequent cell surface expression. The two siblings were homozygous for this mutation and 
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their cells were not responsive to IFN-. Their heterozygous parents were healthy and showed a 

diminished IFN- responsiveness.  

  One partial IFN-R2 deficiency has been reported so far. In a person with a history of 

recurrent infections with BCG and Mycobacterium abscessus, a homozygous nucleotide substitution 

in IFNGR2 was detected (208). This nucleotide substitution resulted in an amino acid substitution 

(A114C) in the extracellular region of the encoded receptor. The resulting receptor was expressed 

on the cell surface. Cellular responses to IFN- however, were impaired but not abolished, indicating 

a partial deficiency. 

 

STAT1 

Signal transducer and activator of transcription 1 (STAT1) is critical for cellular responses to type I 

(IFN-α/β) and type II (IFN-) IFNs (67). In 2001, the first human germline mutation of STAT1 was 

found and associated with susceptibility to mycobacterial disease (209). In cells from a 

heterozygous patient, a missense mutation (L706S) resulted in impaired STAT1 Tyr-701 

phosphorylation and affects the IFN- activation factor (GAF) mediated IFN- response, but not the 

interferon-stimulated gene factor 3 (ISGF3) mediated IFN- response, in a dominant negative 

manner (209). Two siblings homozygous for the STAT1 missense mutation P696S, displayed 

severely impaired but not abolished responses to IFN-, IFN-/, IFN-1 and IL-27 (210). The 

mutation impaired splicing of the mRNA The misspliced forms lacking exon 23 were not translated 

into a mature protein and residual full-length mRNA resulted in low but detectable normal functional 

STAT1 protein. The affected patients suffered severe but curable intracellular bacterial and viral 

infection. Two recessive complete mutations of the STAT1-binding domain have been described as 

well (211). The resulting STAT molecules are normally phosphorylated but the nuclear-translocated 

STAT1-dimers do not bind correctly to IFN- activation site (GAS) elements. The patients having 

these mutations were highly susceptible to mycobacterial infections. Both patients died of 

overwhelming viral infections (212), indicating both the type I and type II interferon pathways were 

affected by these mutations. In a patient suffering disseminated BCG infection, abrogation of STAT1 

expression was reported (213). Complete STAT1 deficiency resulted from a frameshift due to a 

homozygous insertion (1928insA), causing a premature stop codon and thereby abrogation of 

STAT1 expression. The lack of STAT1 resulted in unresponsiveness of cells to IFN- and IFN-. 

This patient died after bone marrow transplantation, from a fulminant EBV infection. 

 

IFN- 

No patients have been described with genetic IFN- deficiency. Despite the fact that IFN- deficient 

mice develop normally (29), in humans IFN- deficiency may be incompatible with life. However, 

acquired IFN- deficiencies secondary to neutralizing auto-antibodies have been described in over 

ten patients (214-217). These patients were susceptible primarily to mycobacterial infections. 
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Treatment options 

For all patients, early diagnosis of infection and appropriate antibiotic therapy, based on the 

sensitivity of the (myco-) bacterial species identified, is crucial. Patients with IL- 12p40, IL-12R1, 

and partial IFN-R defects usually respond well to antibiotic treatment.  

Patients with mutations in the IL-12R1 or IL-12p40 lack the effects of IL-12 and IL-23 and 

therefore produce little IFN- in response to infections. Apart from the appropriate antibiotics, these 

patients can benefit from treatment with recombinant IFN- (163,184,218,219). Studies of IFN- 

therapy in patients with partial IFN-R1 or partial IFN-R2 deficiencies have not been performed. 

However, patients suffering partial IFN-R deficiency can benefit from treatment with high dose 

recombinant IFN- (189). By contrast, patients with complete IFN-R1, complete IFN-R2 or STAT1 

deficiencies are not able to respond to IFN- and thus will not benefit from treatment with 

recombinant IFN-. Moreover, these patients are less responsive to antimicrobial treatment (220). 

Hematopoietic stem cell transplantation (HSCT) is theoretically a curative treatment for these 

patients, however, a poor outcome is reported in most of the patients who received HSCT (221). To 

prevent infections in these patients, prophylactic life-long anti-microbial therapy is indicated. In 

contrast to patients with complete IFN-R or complete STAT1 deficiency, mycobacterial infection in 

patients with other deficiencies usually can be controlled and the need for prophylactic treatment is 

controversial. Patients doing well without prophylaxis have been reported (208,222). In addition, in 

patients with defects in the IL-12p40 subunit or in the IL-12R1 chain the use of prophylactic 

treatment after the clearance of the first infection, to prevent the recurrence of mycobacterial 

infections is unclear, while in these patients new episodes of mycobacterial infections generally do 

not develop (172). However, recurrent infections with Salmonellae are common.  

 In two patients, with complete IFN-R1 and complete IFN-R2 deficiency respectively, 

suffering from disseminated infection with Mycobacterium avium complex, treatment with IFN- as 

additional therapy has been described (223,224), however, the effect of this treatment remains 

unclear. Hematopoietic stem cell transplantation is the only available curative treatment of complete 

IFN-R and STAT1 deficiencies, however, the overall success rate of stem cell transplantation is low 

(221). 
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Outline of Thesis 

 

Part 1: The role of IL-23 in inducing IFN- production and in the initiation of a Th1 response. 

IL-12 is thought to be the classical IFN- inducing cytokine. However, for APCs to produce IL-12 in 

response to PAMPs like LPS, IFN- itself is needed as an additional stimulus. This indicates that 

another factor is needed to drive early IFN- production, allowing for IL-12 production and 

subsequent amplification of IFN- production. IL-23 and IL-18 are among the first cytokines secreted 

by APC in response LPS, without the need of IFN-. We hypothesized that early APC-derived IL-23 

may be an initial trigger of IFN- production in NK and NK-like T cells and in Chapter 1, we 

evaluated the IFN- inducing capacities of IL-23 and IL-18 on CD56
+
 NK and NK-like T cells.  

IL-23 is produced by APC like monocytes and macrophages. In Chapter 2, the effect of a 

variety of TLR agonists, as well as infection with live Salmonella, on the production of IL-23, IL-18 

and IL-1 by monocytes and macrophages were tested. Next, the role of these cytokines in the 

induction of IFN- was elucidated. Finally, we evaluated the role of IL-23 induced IFN- in the 

priming for subsequent IL-12 production by monocytes.  

 

Part 2: Genetic variations in the type-1 cytokine pathway. 

The effects of IL-23 on its target cells are mediated via a receptor complex consisting of an IL-

12Rβ1 and a specific IL-23R chain. The R381Q and P310L variants of the IL-23R have been 

reported to be associated with autoimmune diseases, suggesting they have an effect on IL-23R 

function. In chapter 3, these variants and a newly discovered IL-23R variant, namely Y173H, were 

functional characterized.  

In the IFN-R1, one of the IFN- receptor chains, several amino acid substitutions have 

been reported that abrogate IFN- signalling. These substitutions lead to enhanced susceptibility to 

infection with weakly pathogenic mycobacteria and salmonellae, as described above. More common 

amino acid variations in the IFN-R1 may also have an effect on IFN-R function, albeit more subtle. 

In chapter 4 we describe two new variants of the IFN-R1, namely S149L and 352M. To compare 

the effect of the variations at a molecular level, we cloned the IFN-R1 and the newly discovered 

IFNGR1 variants, as well as four known polymorphisms (V14M, V61I, H335P, L467P, all six 

reported missense mutations (V61Q, V63G, C85Y, C77Y, C77F, I87T) and the 818del4 mutant. For 

all these variants, we analyzed the signal transduction, the regulation of CD54, CD64, HLA-DR and 

HLA class I expression and the cytokine production in response to IFN-. 
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Part 3: Treatment options for a genetic deficiency in the type-1 cytokine pathway.  

Patients with complete deficiency of the IFN-R1 are not responsive to IFN- and therefore adding 

IFN- to traditional treatment of infections with antibiotics is not an option in these patients. A severe 

clinical course is seen in IFN-R deficient patients and these patients often succumb to 

mycobacterial
 
infections very early in life. In chapter 5 we evaluated the ability of recombinant IFN- 

to compensate for the absence of IFN- effects in cells obtained from an IFN-R1 deficient patient. 

 

In the final section the results of the previous chapters will be summarized and discussed. 
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