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Preface

In psychology it is commonly known that by studying pathological
cases, one gains more insight into normal functioning. For example,
one may think of testing which functions are affected in a patient who
has suffered brain damage to the frontal lobe. This does not just help in
treating the patient, but also gives important insight into the tasks per-
formed by the frontal lobes of ordinary people, without brain damage.

Analogously, I deliberately seek out pathological cases in statistics,
in which two views (one based on data compression, the other on the
traditional frequentist perspective) appear to be in conflict. In the first
part of the thesis, the pathology is called the catch-up phenomenon and
a cure based on switching between models is proposed. In addition,
two more chapters are included on similar switching approaches. In the
second part of the thesis, deviant behaviour of the so-called minimum
description length (MDL) estimator is studied. Although the literature
contains a cure, it is based on modifying the MDL estimator, which un-
dermines its data compression interpretation. By refining existing tech-
niques, I improve diagnostics of the undesirable behaviour and show
that in certain common cases the MDL estimator is well-behaved even
without modification. These cases are characterized using a measure
of dissimilarity between probability distributions that was introduced
by Alfréd Rényi in the nineteen-sixties. Although Rényi’s dissimilarity
measure has been around for almost fifty years and frequently appears
in mathematical proofs, there exists no overview of its technical prop-
erties. The second part of the thesis therefore also includes an overview
of the properties of Rényi’s dissimilarity measure.
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6.3 Rényi divergence as a function of its order for fixed dis-
tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

ix





Chapter 1

Introduction

[T]he object of statistical methods is the reduction of data. A quan-
tity of data, which usually by its mere bulk is incapable of entering
the mind, is to be replaced by relatively few quantities which shall
adequately represent the whole, or which, in other words, shall
contain as much as possible, ideally the whole, of the relevant in-
formation contained in the original data.

R. A. Fisher, 1922

It has been recognised at least since Fisher [1922] that statistics and in-
formation are closely related. After the theory of information got its
proper foundation by the seminal work of Shannon [1948], a series of
authors have therefore attempted to base statistics directly on informa-
tion theory.

In Shannon’s setup, data sequences are considered random samples
from a known probability distribution, and the amount of informa-
tion they contain is measured by the expected length of their shortest
possible description. This expected description length turns out to be
uniquely determined by the distribution of the data.

His approach can be extended to nonrandom data sequences by fo-
cusing on descriptions in the form of computer programs, from which
the data can be reconstructed by a computer. Although there exist many
different programming languages in which computer programs can be
expressed, the choice of programming language can only change the
shortest possible description length by a constant, as was independently
discovered by Solomonoff, Kolmogorov and Chaitin in the nineteen-
sixties. This constant does not grow with the length of the data se-

1



2 Chapter 1. Introduction

quence, and therefore does not matter for sufficiently long sequences
[Li and Vitányi, 2008]. Having thus obtained a measure of the amount
of information in nonrandom data sequences, Kolmogorov introduced
a method to split the description of the data into a structure compo-
nent, called the minimal sufficient statistic, and a noise component that
is indistinguishable from completely random data. For sufficiently long
data sequences, this minimal sufficient statistic captures all patterns in
the data that can be described by a computer program [Kolmogorov,
1974, Vitányi, 2005, Cover and Thomas, 1991].

Ironically, however, there is no effective way to compute the minimal
sufficient statistic itself, so it cannot be used in practice. A practical vari-
ation based on minimizing the description length of the data was there-
fore proposed by Rissanen [Rissanen, 1978, 1983, 1989, 2007, Grünwald,
2007].1 Rather than restricting attention to computer programs, this
minimum description length (MDL) approach relies on a set of probabil-
ity distributions to determine the language in which the data can be
described. The set may be a parametric statistical model, in which case
MDL can be used for parameter estimation; or it can be the union of
multiple such models, in which case MDL can be used both to select
the model (structure) and to estimate its parameters; or the set of dis-
tributions may even be nonparametric. This approach was reconnected
with random data sequences by findings mainly due to Barron, Rissa-
nen and Yu [Barron and Cover, 1991, Barron, Rissanen, and Yu, 1998],
who showed that the MDL estimator satisfies certain statistical prop-
erties that Fisher would appreciate. In particular, it is consistent, and
automatically prevents overfitting complex models to the data, in the
sense that the models fit the data well but lead to poor predictions on
unseen data from the same source. This line of work is continued in the
present thesis, in which all topics are related to theoretical properties of
the MDL estimator.

Overview of the Thesis The remainder of this chapter introduces the
MDL estimator and related ideas, which motivate the developments in
the rest of the thesis. Although all chapters can be read independently,
for a full appreciation it is therefore recommended to read the present
chapter first.

1Similar methods where suggested earlier by Wallace and Boulton [1968]. See also
[Wallace and Freeman, 1987].
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The rest of the thesis is split in two parts. In Chapter 2 of Part I we in-
vestigate cases in which standard MDL model selection leads to subop-
timal predictions of future data. It is found that this may be explained
by the fact that there exist shorter descriptions of the data than the de-
scriptions used by standard MDL. Based on this insight, we modify the
standard MDL estimator such that it can use these shorter descriptions
and show that this resolves the problem. As a by-product, our investi-
gations shed new light on an old discussion in statistics about whether
one should use an AIC-type method or a BIC-type method for model
selection. (The details of this debate will be introduced in Chapter 2.)

The shorter descriptions found in Chapter 2 are based on combi-
nations of the models that use a different model for different parts of
the data. In Chapter 3 a new method is introduced that automatically
determines the optimal bias towards splitting the data into more parts.
In Chapter 4 we discuss whether the parts should be modelled indepen-
dently, or as part of the rest of the data. A new method is introduced to
deal with the first case, which is appropriate, for example, for certain
time series data.

In Part II we also study the quality of predictions based on the MDL
estimator, and investigate under which conditions they converge to the
best possible predictions. In order to prove a very general convergence
result, previous authors have proposed to modify the standard esti-
mator in a way that, contrary to its design philosophy, increases the
description length of the data (see Section 1.3.4). Chapter 5 provides a
preliminary discussion of whether this modification is really necessary.
Examples are provided showing that no general convergence result can
be obtained if the modification is simply omitted, but then it is also
shown that in certain common settings no modification is necessary.
These settings are characterized using a measure of dissimilarity be-
tween probability distributions called Rényi divergence [Rényi, 1961].
Although Rényi divergence has been around for almost fifty years and
appears in many proofs, there exists no overview of its technical prop-
erties. Chapter 6 remedies this situation by formally proving the basic
properties of Rényi divergence.

A more detailed outline of the thesis is provided in Section 1.5, at
the end of this chapter.



4 Chapter 1. Introduction

Overview of Chapter 1 We will proceed to define the MDL estima-
tor and discuss its possible motivations in the next section. Then, in
Section 1.2, we will introduce the required information theoretic back-
ground on description lengths, before discussing the MDL estimator in
the context of parameter estimation in Section 1.3. In Section 1.4 the es-
timator is extended to model selection, which is its most common area
of application. The chapter concludes with an outline of the remainder
of the thesis.

1.1 On Minimizing Description Length

Given a countable set of densitiesM = {p1, p2, . . .}, which we will call
a (statistical) model, and data D, the MDL estimator selects the density
that achieves

min
p∈M

{
L(p)− log p(D)

}
, (1.1)

where the logarithm is to base 2. As discussed below, the nonnegative
numbers L(p) satisfy Kraft’s inequality, ∑p 2−L(p) ≤ 1, and are inter-
preted as the description lengths (or code lengths as they will later be
called) of the densities. Note that higher density p(D), which means a
better fit on the data, implies that − log p(D) is smaller. MDL therefore
trades off the fit of p on the data with the complexity of p, as measured
by L(p). The choice of L(p) and extensions to uncountable models will
be discussed in Section 1.3.5.

The minimum description length estimator gets its name from the
fact that L(p)− log p(D) may be regarded as the length of a two-part
description of the data, as explained in Section 1.3.2. Here L(p) rep-
resents the relevant information in the data, and − log p(D) represents
the noise. MDL’s choice for the shortest such description may be moti-
vated in three ways.

The Data Compression Motivation First, some authors, most notably
Rissanen [2007], argue that finding the shortest possible description
of the data should be taken as the main goal of statistical inference.
MDL may then be viewed as an attempt to achieve this goal, subject
to the constraint that descriptions are of the form L(p)− log p(D). We
will call this the data compression motivation for MDL. Note that it
leaves open the possibility that descriptions taking a different form may
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be shorter and should therefore be preferred. The data compression
motivation is appealing because it incorporates in a very direct way
the statistical objective expressed by Fisher of representing the data by
fewer quantities that adequately represent the whole: the amount of
information in the data is (1.1); then the noise is discarded and the
relevant information (the identity of a density fromM) is retained. We
see thatM determines not only which information is relevant, but also
how much information is present in the first place. Ideally, to fully
explain the data, the model M should therefore make the description
length (1.1) as small as possible.

The argument for data compression is based on the fact that any
regularity in the data may be used to reduce its description length
[Grünwald, 2007, Chapter 1]. Minimizing description length, then, is
an attempt to capture as much regularity as possible. For example,
it is well-known from information theory that any known probabilistic
pattern in the data can be used to shorten their description: the less uni-
form their distribution, the more succinctly the data can be described.
Informally, the same phenomenon can also be observed in natural lan-
guage, in which the number

“one million”

can be described using fewer letters than the number

“five hundred twenty-four thousand, two hundred
eighty-eight”,

because it has more structure in the decimal system, which underlies
natural language. In applying these ideas, one quickly realises that
structure or regularity depends on the language used to describe the
data. For example, if natural language had been based on the binary
system, then the fact that the second of the two numbers above hap-
pens to be 219, would allow it to be described using fewer letters than
the first, which becomes “11110100001001000000” in binary. And if a
known probabilistic pattern is to be fully exploited to shorten the de-
scription of the data, then the description language must depend on
their distribution. As a consequence, it is a modelling decision which
language to use. In MDL this choice is determined by the modelM.
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The Frequentist Motivation The data compression motivation should
be considered nonstandard, and probably even controversial, because it
interprets probabilities (or rather their negative logarithm) as descrip-
tion lengths instead of limiting relative frequencies, which is their clas-
sical frequentist interpretation [Wasserman, 2005]. In contrast to MDL,
the design of frequentist statistical methods is based on the assumption
that the data form a random sample from a hypothetical infinite popu-
lation [Fisher, 1922], and their quality is judged based on long run fre-
quency properties under assumptions on the nature of this population.
For example, a frequentist method may be designed to estimate the den-
sity of the true distribution of the data under the assumption that this
density is differentiable. However, although modern frequentist meth-
ods strive to keep the number of assumptions about the population to a
minimum [Wasserman, 2006], they do not resolve two concerns raised
by adherents of the data compression point of view. The first concern is
that even a relatively weak assumption like differentiability of the true
density is already quite strong: for example, if an observed datum is
the sum of a large number of independent discrete random variables,
then even though it may be approximately normally distributed (by the
central limit theorem), its density will still be discontinuous [Grünwald,
2007, Example 17.1]. The second concern is that whether the data form
a random sample from the proposed population in the first place, may
be impossible to verify [Barron et al., 1998] or in some cases does not
even make sense. For example, in Chapter 2 Markov models will be
used to model the English text in the famous novel “Alice’s Adventures
in Wonderland” by Lewis Carroll. Should we really imagine this book
to be a random sample from a hypothetical infinite set of books written
by Lewis Carroll? Or should the population consist of books by any
British author? Or perhaps just books in general, including those in
Russian? Certainly the patterns found using Markov chains are differ-
ent for “Alice’s Adventures in Wonderland” than they would be for a
Russian text.

In spite of these concerns, it seems hard to argue with the posi-
tion that if the frequentist assumptions apply, then long run frequency
guarantees are desirable, and one would rightfully be dissatisfied if
they could not be given. Several such guarantees for the MDL estima-
tor appear below, as Theorems 1.3, 1.4 and 1.5. For frequentists these
may provide a justification of MDL that does not refer to any descrip-
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tion lengths. And from a data compression point of view, they provide
valuable insight into the data compression properties of MDL.

The Bayesian Motivation or a Motivation for Bayes Finally, there
exists yet another approach to statistics, called Bayesian inference, which
is very popular in, for example, the field of machine learning [Bishop,
2006]. SupposeM = {pθ | θ ∈ {1, 2, . . .}} is a statistical model, indexed
by a parameter θ. Then the Bayesian approach assumes that one can
always assign so-called prior probabilities π(θ) to the possible values of
θ. Interpreting pθ(D) as the conditional density of data D given the
parameter θ, this defines a joint distribution on D and θ with density

p(θ, D) = π(θ)pθ(D),

on which various types of inference can be based in a coherent way
[Bernardo and Smith, 1994]. For example, one may compute the condi-
tional probability that θ = 3 given the observed data D. The Bayesian
approach generalises to uncountable and even nonparametric models,
and methods for approximate inference exist that make the required
computations practical in many cases, including elaborate hierarchical
models.

Bayesian inference may have a frequentist interpretation if the prior
probabilities are set equal to known relative frequencies of a population,
but typically such relative frequencies are not known and the prior is
determined either based on subjective beliefs or on a reference analysis
such that its influence on the inference procedure is as small as possible
in a certain sense [Bernardo and Smith, 1994]. In these typical cases,
Bayesian procedures are controversial, because they do not necessarily
give any long run frequency guarantees [Wasserman, 2005].

There is another way to interpret Bayesian inference, however,
which is by a formal equivalence with minimum description length
methods. In particular, Section 1.3.3 discusses how MDL minimizes the
Bayesian probability of error, and in Section 1.4 it is seen how Bayes-
ian model selection with certain objective priors can be regarded as an
MDL procedure. Therefore, from a Bayesian perspective one may re-
gard the MDL estimator as a Bayesian estimator, where the choices of
L suggested in Section 1.3.5 correspond to objective choices of priors,
based on data compression considerations. Alternatively, however, one
may also regard MDL as a justification for using these Bayesian meth-
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ods, which is meaningful regardless of any prior beliefs. This perspec-
tive only applies when Bayes and MDL coincide, and requires that the
prior probabilities have good data compression properties. Frequentist
results about MDL then transfer to their corresponding Bayesian coun-
terparts. A further comparison between MDL and Bayes is provided by
Grünwald [2007, Chapter 17].

1.2 Information Theoretic Preliminaries

The amount of information in an object x ∈ X can be measured by
the smallest number of symbols from a finite alphabet A a hypothetical
sender, Alice, needs to send to a hypothetical receiver, Bob, to uniquely
identify x among all other objects in X . There are two plausible com-
munication models2, which might be called the letter model and the
telegraph model. In the letter model, Alice sends Bob a letter in which
she has written her message using only symbols from A. In the tele-
graph model, Alice sends her message by first sending the first symbol,
then sending the second symbol, and so on, until she comes to the end.
To avoid confusion, she has to make clear to Bob when her message
ends, for example by sending a special STOP-symbol. We will now
formalise these models. Then it will be argued that only the telegraph
model is appropriate to measure information. (The restriction to what
we call the telegraph model is standard in information theory.) Finally,
it will be shown how message lengths in the telegraph model map to
probabilities and vice versa.

The Letter Model: Arbitrary Codes We will say that Alice’s message
encodes an object x from among a countable set X by a corresponding
code word s ∈ A∗ =

⋃∞
`=0A`, which is a finite string of elements from

A. It is required that code words are unambiguous in the sense that
they identify at most one element x ∈ X . That is, there should exist
a decoding function C−1 : A∗ → X , which maps code words to objects
from X and may be undefined for some code words that are not used.

2Here the word “model” is used in its general meaning, and does not refer to the
statistical concept of a set of probability distributions, which is used elsewhere in this
thesis.
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Then, a function C is called a code3 if there exists a decoding function
C−1 such that C maps any x ∈ X to the set C(x) = {s | C−1(s) = x} of
code words that decode to x. The difference between the letter model
and the telegraph model lies in which codes they allow. In the letter
model, every possible code is allowed.

Example 1.1. Let X = {red, green, blue} and A = {0, 1}. Then
the following function C is a code: C(red) = {00}, C(green) =
{01}, C(blue) = {1}. If instead C(blue) = {1, 11}, then C would also
be a code. But if C(blue) = {1, 00, 11}, then C would not be a code,
because the code word 00 could not be unambiguously decoded.

Given a code C, we measure the amount of information in x ∈ X
by its code length L(x), which is defined as the length of the shortest
code word for x. That is, L(x) = min{`(s) | s ∈ C(x)}, where `(s) de-
notes the number of symbols from A in the code word s. For example,
`(01) = 2. If no code word is associated with x (i.e. C(x) is empty),
then we define L(x) = ∞.

The Telegraph Model: Prefix-free Codes In the telegraph model Al-
ice and Bob also communicate using a code, but this code has to satisfy
an extra requirement: it should always be clear to Bob when Alice is
done sending her message. The reason for this, informally, is to disal-
low messages like:

“A. . . , no wait, I actually meant B!”

when A is also a possible message in itself. In this case Bob cannot de-
code the message A before knowing that communication has finished.
Formally, the restriction imposed by the telegraph model is that codes
should be prefix-free. That is, there should not exist any two distinct
code words s and s′ (that are both used) such that s is a prefix of s′.
We observe that putting a special STOP-symbol at the end of each code
word is one possible (but rather inefficient) way of guaranteeing that a
code is prefix-free.

Prefix-free codes have the useful property that the code words for
any two prefix-free codes may be concatenated to form a new prefix-free

3As discussed by Grünwald [2007, p. 80], the definition of a code differs between
various standard texts on information theory. The present definition essentially follows
[Li and Vitányi, 2008].
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code. That is, if CX and CY code for objects x and y from X and Y ,
respectively, with code lengths LX (x) and LY (y), then CX×Y (x, y) =
{sxsy | sx ∈ CX (x), sy ∈ CY (y)} is a prefix-free code for objects from
X ×Y , with code lengths

LX×Y (x, y) = LX (x) + LY (y).

For example, if X = {red, green, blue} and 11 and 011 are codewords
for red and green, respectively, under a prefix-free code C, then by
concatenating C with itself we can encode the sequence red, green by
11011.

Restriction to Prefix-free Codes At first sight, both the telegraph
model and the letter model may seem reasonable ways of measuring
the information in an object. However, it turns out that only the tele-
graph model can ensure that information is sub-additive, in the sense
that the information in objects x and y separately is never less than the
information in (x, y) together. In other words, it should not be possible
to transmit x and y using fewer symbols using two messages, than it
takes to transmit them in a single message. Therefore only the telegraph
model is appropriate to measure information.

To make this argument precise, suppose CX and CY encode objects
x and y from countable sets X and Y , respectively, with code lengths
LX and LY . Then if LX (x) and LY (y) are reasonable measures of the
amount of information in x and y, there should exist a code CX×Y to
encode objects (x, y) ∈ X ×Y such that

LX×Y (x, y) ≤ LX (x) + LY (y) (sub-additivity) (1.2)

for all x and y.
For the telegraph model it is easy to construct a code CX×Y that

satisfies (1.2) with equality, simply by concatenating CX and CY as
described above. The letter model, however, does not satisfy sub-
additivity, as shown by the following counterexample.

Example 1.2. Observe that sub-additivity implies that, for any code CX
and any integer n, there should exist a code CX n such that

LX n(xn) ≤
n

∑
i=1

LX (xi), for all xn = x1, . . . , xn ∈ X n. (1.3)
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m 5 6 7 8 9 10
( 5

m−5)25 32 160 320 320 160 32

Table 1.1: Counts from Example 1.2

Consider now CX (a) = {1}, CX (b) = {11}, CX (c) = {0}, CX (d) = {00}
for X = {a, b, c, d} and A = {0, 1}. For this code there are ( n

m−n)2n

choices of xn such that ∑n
i=1 LX (xi) = m. Table 1.1 tabulates this for

n = 5. We see there are 192 sequences x5 such that ∑5
i=1 LX (xi) ≤ 6.

However, there are only 27 − 1 = 127 code words of length at most 6.
Therefore, there does not exist a code CX n that achieves (1.3) and we
conclude that the letter model does not satisfy sub-additivity.

In light of the above, we adopt the telegraph model, which corre-
sponds to restricting ourselves to prefix-free codes. (This restriction
is standard in information theory [Cover and Thomas, 1991]4.) In the
sequel, when we say code, we will actually mean prefix-free code.

Code Lengths are Probabilities There is a fundamental limit to how
many objects from X can be assigned short code lengths. This limit is
expressed by Kraft’s inequality [Cover and Thomas, 1991]:

Theorem 1.1 (Kraft’s Inequality). Let a = |A| denote the number of avail-
able coding symbols. Then the code lengths of any prefix-free code satisfy

∑
x∈X

a−L(x) ≤ 1. (1.4)

Conversely, for any function L : X → N that satisfies (1.4) there exists a
prefix-free code with code lengths equal to L.

Kraft’s inequality suggests a correspondence between codes and
probability distributions: consider a nonnegative function p on X such
that

∑
x∈X

p(x) ≤ 1. (1.5)

Such functions are called probability mass functions. If (1.5) holds with
equality, then p defines an ordinary probability distribution on X . We

4Although it is usually motivated differently, using an argument based on unique
decodability of the concatenation of a code with itself.
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will call such ordinary distributions complete. Alternatively, if the in-
equality in (1.5) is strict, then p still defines a measure on X , which
we will call an incomplete distribution. One may think of incomplete
distributions as complete distributions with some probability mass on
an extra object outside of X . They are commonly used in information
theory, for example because they simplify axiomatic characterizations
of measures of entropy and information [Rényi, 1961].

The correspondence suggested by Kraft’s inequality can now be for-
mulated as follows: for any code with code lengths L(x), p(x) = a−L(x)

is a probability mass function that defines a (possibly incomplete) prob-
ability distribution. And vice versa, for any (possibly incomplete) dis-
tribution with probability mass function p, there exists a code with
code lengths L(X) =

⌈
− loga p(x)

⌉
. Here dze denotes rounding up z to

the nearest integer. Rounding up − log p(x) is necessary because code
lengths are restricted to be integers by definition. In statistical or data
compression applications, however, − log p(x) will typically be so large
that the effect of rounding is negligible and can easily be ignored. For
example, if x = x1, . . . , xn is a sample of size n, then − log p(x) will
typically be linear in n. Adopting therefore this minor idealisation, we
find that code lengths and probabilities become formally equivalent:

Definition 1.1 (Idealised Code Lengths). A function L : X → R is called
an (idealised) code length function if

L(x) = − loga p(x) for all x ∈ X (1.6)

for some (possibly incomplete) probability mass function p on X , where
a = |A| denotes the number of available coding symbols.

Apart from a constant multiplication factor 1/ log(a), this definition
is independent of the choice of A, which makes choosing the base of
the logarithm a matter of convenience. By default we will take a = 2,
such that code length is measured in bits. But sometimes it will be
convenient to use a = e to get the natural logarithm, for which code
length is measured in nats. Note that the larger p(x), the smaller L(x),
and that L(x) is never negative.

The correspondence between code lengths and probabilities from
Definition 1.1 is not just of a syntactic nature. For any distribution, the
corresponding code length function uniquely achieves the minimum
code length in expectation, which is called the entropy of the distribution
[Cover and Thomas, 1991, Theorems 5.3.1 and 5.4.3]:
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Theorem 1.2. If X is distributed according to P, then for any (idealised) code
length function L

E[L(X)] ≥ E[− log P(X)],

with equality if and only if L(X) = − log P(X).

A similar result holds in probability [Cover and Thomas, 1991, The-
orem 5.11.1]. The upshot of this section, therefore, is that (idealised)
code lengths and probabilities are equivalent in a strong sense, and
can be identified. Based on this reasoning, in future chapters we often
interpret the negative logarithm of probabilities as code lengths. Our
results, however, do not rely on this interpretation.

1.3 MDL Parameter Estimation

With the information theoretic preliminaries out of the way, let us move
on to fill in some details that were left out when the minimum descrip-
tion length estimator was introduced in Section 1.1. We then present
some of its frequentist properties and finally the choice of code lengths
for the densities in the model will be discussed.

1.3.1 MDL Estimator

Let X n denote the direct product of n copies of a sample space X ,
and let M = {p1, p2, . . .} be a countable statistical model, where each
p ∈ M is a density on X n with respect to a common σ-finite dominating
measure µ. We use the corresponding upper-case letter (e.g. P) to refer
to the distribution corresponding to a density (e.g. p). An estimator is
a measurable function p̂ : X n → M that maps any data xn ∈ X n to an
element p̂(xn) of the model M. For example, the maximum likelihood
estimator is defined as

p̂(xn) = arg max
p∈M

p(xn),

whenever the maximum maxp∈M p(xn) is uniquely achieved.
Let L : M→ R be an (idealised) code length function. Then the min-

imum description length estimator with density code lengths L is defined
as

p̈(xn) = arg min
p∈M

{
L(p)− log p(xn)

}
.
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If there are multiple p achieving the minimum, then the one with small-
est code length L(p) is selected. Any further ties are resolved arbitrarily,
for example by selecting p with smallest index in M. Note that, if M
is finite, then the maximum likelihood estimator is a special case of the
MDL estimator, with density code lengths L(p) that are the same for all
p ∈ M.

1.3.2 Coding Interpretation

The main interpretation of the MDL estimator is as a minimizer of the
length of a two-part description of the data.

Countable Sample Space To give the precise interpretation, suppose
first that X is countable (i.e. the data are discrete) and that each p ∈ M
is a probability mass function on X n. Then, for data xn ∈ X n, we
may interpret Lp(xn) = − log p(xn) as the (idealised) code length of
xn under the code corresponding to p. Consequently, the data can be
described in two parts: first encode p using L(p) bits and then encode
xn using Lp(xn) bits. For any p ∈ M, this gives a total description
length of

L(p) + Lp(xn) (1.7)

bits. Among such descriptions of the data, the minimum description
length estimator selects the shortest.

Clearly, neither the modelM nor the choice of density code lengths
L is allowed to depend on xn. To allow otherwise would present the
receiver of a message encoding xn with a Catch-22 problem: in order to
decode the message, he would have to knowM and L, but in order to
know bothM and L he would first have to decode the message.

Also note that the MDL estimator does not depend on the actual
choice of code words, but only on their lengths. For idealised code
lengths these lengths only depend on the alphabetA through a constant
multiplication factor, which does not affect the estimator. Thus the
choice of alphabet does not matter, as it should not.

Uncountable Sample Space As there are only a countable number of
possible code words, the previous coding interpretation does not di-
rectly apply when X is uncountable, since there are not enough code
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words to encode more than a vanishingly small fraction of an uncount-
able set. Nevertheless, one may regard this as the limiting case of
recording the data to increasingly high precision.

Suppose for concreteness that X = R (the reasoning generalises to
higher dimensions as well) and that densities are with respect to the
standard Lebesgue measure µ. Let [xn]d denote xn ∈ X n with each
outcome xi recorded to d decimal places. For given precision d, the
MDL estimator prefers p ∈ M over q ∈ M if

log
Q([xn]d)
P([xn]d)

< L(q)− L(p),

where Q([xn]d) or P([xn]d) denotes the probability of the set of data
sequences that agree with xn up to d decimal places. As p(xn) =
limd→∞ P([xn]d)/µ([xn]d) almost everywhere, the limiting case as the
precision goes to infinity, is

log
q(xn)
p(xn)

< L(q)− L(p)

for almost every xn, which matches the definition of the MDL estimator
for uncountable X . Consequently, taking X to be uncountable corre-
sponds to recording the data to infinite precision.

Remark 1.1. One may regard the supposition that data are recorded to
infinite precision as an unrealistic idealisation. Reassuringly, however,
Barron [1985] shows that the MDL estimator is well-behaved even if
the precision d is taken into account and is allowed to depend on the
sample size n. See also the comments by Barron and Cover [1991]. We
now leave such issues, as they are outside the scope of this thesis.

1.3.3 Bayesian Interpretation

A secondary interpretation of the MDL estimator can be given from a
Bayesian perspective. Let M = {p1, p2, . . .} be a model with a count-
able number of elements. Each element p ∈ M is a density on X n with
respect to a common σ-finite dominating measure µ. Let π be a prior
probability mass function on M and let p̂ : X n → M be an estimator.
For any measurable event A ⊆ X n, let 1A denote its indicator func-
tion, which is 1 on A and 0 otherwise. Then the Bayesian probability of
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misidentifying the true density p ∈ M, drawn randomly according to
π, is

∑
p

π(p)P( p̂ 6= p) =
∫

∑
p

π(p)p(xn) 1{ p̂(xn) 6=p} dµ.

Consequently, the Bayes estimator, which by definition minimizes this
misidentification probability, has to maximize

π(p)p(xn) ∝ π(p | xn) (1.8)

almost everywhere, where π(p | xn) = π(p)p(xn)/ ∑p p(xn)π(p) de-
notes the Bayesian posterior probability of p given xn and the ∝-relation
expresses that two quantities are equal up to a constant multiplication
factor. As maximizing (1.8) is equivalent to minimizing

− log π(p)− log p(xn), (1.9)

it follows that the estimator that minimizes the Bayesian misidentifi-
cation probability, is equal to the MDL estimator with density code
lengths L(p) = − log π(p). Based on this correspondence, it is com-
mon in the literature to define the density code lengths by specifying
a distribution π. Although this distribution π is usually not based on
any Bayesian considerations, it is convenient to refer to it as a prior
nonetheless. In the remainder we will adopt this convention.

MDL is Not Bayes The previous discussion might seem to suggest
that MDL is really just Bayes in disguise. However, as will be seen
when we come to the selection of π, the coding interpretation leads to
choices of priors that cannot usually be reconciled with the belief that
a true density is drawn according to such a prior. In particular the
optimal MDL priors will often depend on the sample size, and, when
model selection is introduced in Section 1.4, it will be seen how MDL
leads to procedures that in some cases are even formally non-Bayesian.
This section, then, should not be taken as an attempt to justify MDL by
giving it a Bayesian interpretation. On the contrary, its point is to show
that Bayesian methods (with certain priors) may be justified by rein-
terpreting them from a coding perspective. Indeed, Grünwald [2007,
p. 543] shows that the priors that make Bayesian inference behave badly
in an (in)famous example by Diaconis and Freedman [1986], are not ac-
ceptable according to the criteria for density code lengths formulated
in Section 1.3.5, because they do not compress the data.
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1.3.4 Frequentist Properties

The following theorems show that MDL automatically avoids overfit-
ting, regardless of the size or complexity of the model M. This stands
in contrast with the behaviour of the maximum likelihood estimator,
which needs to be modified by adding appropriate penalizations to
complex densities if the model is sufficiently rich.

Let M = {p1, p2, . . .} be a set of densities on X . The densities are
extended to multiple outcomes xn ∈ X n by taking products: p(xn) =
∏n

i=1 p(xi). Let π be a (possibly incomplete) probability mass function
onM, and let p̈ denote the corresponding MDL estimator with density
code lengths L(p) = − log π(p). Recall that in this context we refer
to π as a prior, even though it need not be based on any Bayesian
considerations.

1.3.4.1 Consistency

The following result by Barron and Cover [1991] shows that MDL is
consistent if the outcomes are independent and identically distributed
(i.i.d.), and the model contains the true density:

Theorem 1.3 (Consistency). Suppose X1, . . . , Xn are drawn independently
according to a density q ∈ M with finite code length (i.e. L(q) < ∞), and the
density code lengths do not depend on n. Then

p̈ = q

for all sufficient large n, with probability one.

MDL consistency extends to non-i.i.d. settings as long as the dis-
tributions in the model are asymptotically sufficiently distinguishable
in a suitable sense [Grünwald, 2007, Theorem 5.1]. It is crucial for the
consistency of MDL that it takes the density code lengths into account.
This is illustrated by considering the way it resolves the grue paradox
[Goodman, 1955].

Example 1.3 (The Grue Paradox). Let x1, . . . , xn be a sequence of obser-
vations of the colour of emeralds, which are assumed to be either green
or blue. Let an emerald be grue if it is green and observed before the t-
th observation is made, or blue and observed after the t-th observation.
Likewise, call an emerald bleen if it is blue and observed before the t-th
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observation is made, or green and observed after the t-th observation.
The original paradox casts doubt on whether there is any objective ba-
sis, based on observing that x1, . . . , xn are all green5, to predict that all
emeralds are in fact green. As Goodman observes, if t is larger than
n, then based on these observations we might equally well predict that
all emeralds are grue. Any objection to the extent that green is more
plausible than grue, because grue and bleen are defined in terms of
green and blue, can be rebutted by noting that blue and green might
equally well have been defined in terms of grue and bleen. As formu-
lated by Goodman, there is no escape from the grue paradox. But, if we
allow an infinitely continuing series of observations, such that n even-
tually becomes arbitrarily large, then there does exist an answer, and it
is provided by MDL.

To preclude the trivial answer that grue is ruled out as soon as n > t,
we consider the model M = {pt | t = 1, . . . , ∞}, where pt assigns
probability one to all emeralds being grue, with grue defined relative
to t. This ensures that for any n, there exists t > n. Formally, let pt be
a point-mass on the infinite sequence of observations that are green up
till outcome xt and blue afterwards, such that pt(xn) = 0 if t < n and
pt(xn) = 1 otherwise. Note that p∞ corresponds to the truth that all
emeralds are green. Now let L(pt) be arbitrary density code lengths,
which are finite for all t, including t = ∞. Then the MDL estimator
selects

p̈ = arg min
{pt : t≥n}

L(pt).

That is, it selects the simplest density consistent with the observations,
where simplicity is measured by L(pt). Let S ⊆ M \ {p∞} denote
the set of densities that are at least as simple as the true density, ex-
cept for the truth itself. Then L(pt) ≤ L(p∞) for all pt ∈ S and by
Kraft’s inequality (1.4) the set S must be finite. As a consequence
tS = max{t | pt ∈ S} is also finite, and for all n > tS MDL will cor-
rectly predict that all emeralds are green. We see that all densities that
are simpler than the truth are eventually ruled out as n grows. The sim-
plest remaining density is then the correct one. The reason that MDL
is consistent in general is similar: the density code lengths essentially

5This observation should come as no surprise, since, according to Wikipedia
[Wikipedia entry on emerald, 2010], the word emerald derives from the Semitic word
izmargad, which has green as its alternative meaning.



1.3. MDL Parameter Estimation 19

restrict the model to a finite set that includes the truth, from which the
data then determine the true density. This is most clearly expressed by
the proof of Theorem 5.1 in [Grünwald, 2007].

If in fact all emeralds turn out to be grue (for some arbitrary t), then
by the same reasoning we see that MDL would also figure this out.
This holds regardless of the choice of density code lengths, as long as
we make some choice. By contrast, the maximum likelihood estimator
does not resolve the paradox, because it does not provide any way to
choose between the densities that are consistent with the data. There is,
however, one limitation to MDL’s resolution of the grue paradox, which
is that for no given n one can be certain that the truth has already been
discovered. In the words of Barron and Cover [1991]: “You know, but
you do not know you know.”

1.3.4.2 Rates of Convergence

Theorem 1.3 shows that MDL will eventually, possibly for very large
n, identify the true density. This raises the question of how well MDL
approximates the truth for any finite n. Theorem 1.4 below gives an
answer. It measures the quality of the MDL approximation in terms of
Rényi divergence, under a condition on the tails of the prior.

For any densities p and q on X , let

Dα(p‖q) = 1
α−1 log

∫
pαq1−α dµ

denote the Rényi divergence (of order α) of p from q. For continuity in α,
Rényi divergence of order α = 1 is defined equal to the Kullback-Leibler
divergence

D(p‖q) = EP log
p(X)
q(X)

.

Chapter 6 gives an overview of the properties of Rényi divergence. We
note already that convergence in D1/2 implies convergence in the better
known squared Hellinger distance Hel2(p, q) =

∫
(√p−√q)2 dµ, because

D1/2(p‖q) ≥ Hel2(p, q).

In addition, Rényi divergence is nondecreasing in its order α and for
α = 2 it is smaller than the χ2-distance [Gibbs and Su, 2002].
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For λ ≥ 1, let p̈λ denote the λ-MDL estimator, defined by

p̈λ(xn) = arg min
p∈M

λL(p)− log p(xn).

For λ = 1, this is just the ordinary MDL estimator. As will be explained
in Chapter 5, other values of λ may be interpreted as applying the
ordinary MDL estimator with a prior w(p) ∝ π(p)λ that satisfies the
light-tails condition of Barron and Cover [1991]:

∑
p∈M

w(p)1/λ < ∞.

The following result, which is essentially Theorem 15.3 of Grünwald
[2007], shows that if the true density can be approximated well by a
sufficiently simple element of M, then the density selected by λ-MDL
converges to the true density in Rényi divergence.

Theorem 1.4 (Convergence). Suppose Xn = X1, . . . , Xn are distributed
i.i.d. according to a density q on X , which need not be a member of M. Let
p̂ : X n → M be any estimator and abbreviate p̂ = p̂(Xn). Then for any
λ > 1 and ε > 0

Dα(q‖ p̂) ≤ λL( p̂)− log p̂(Xn) + log q(Xn)
n

+ λε (1.10)

with probability at least 1− e−nε, where α = 1− 1/λ. Moreover

EXn Dα(q‖ p̂) ≤ EXn

[
λL( p̂)− log p̂(Xn) + log q(Xn)

n

]
. (1.11)

Proof. Let f (p, xn) =
(

p(xn)/q(xn)
)1/λ

for p ∈ M, xn ∈ X n, and for
the remainder of this proof adopt the convention that 0/0 = 1. Then

1 ≥∑
p

π(p) = ∑
p

π(p)
EXn f (p, Xn)
EYn f (p, Yn)

= EXn ∑
p

π(p) f (p, Xn)
EYn f (p, Yn)

≥ EXn
π( p̂) f ( p̂, Xn)
EYn f ( p̂, Yn)

= EXn Z(Xn),

where we have introduced the abbreviation

Z(Xn) =
π( p̂) f ( p̂, Xn)
EYn f ( p̂, Yn)

.
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As additivity of Rényi divergence (see Chapter 6) implies that

λ log Z(Xn) = nDα(q‖ p̂)− λL( p̂) + log
p̂(Xn)
q(Xn)

,

(1.10) follows by rewriting the following application of Markov’s in-
equality:

Q
(

Z(Xn) ≥ enε

)
≤ e−nε EXn Z(Xn) ≤ e−nε

and (1.11) is obtained from

EXn log Z(Xn) ≤ log EXn Z(Xn) ≤ 0,

which uses Jensen’s inequality.

The bounds of the theorem are optimized by letting p̂ be the λ-
MDL estimator p̈λ. We see that the more this estimator compresses the
data (i.e., the smaller λL( p̈λ) − log p̈λ(xn)), the better it learns. In par-
ticular, the right-hand side of (1.11) goes to zero if the true density q
can be approximated well by a sufficiently simple density in M. This
is illustrated by the following corollary, which shows that the λ-MDL
estimator converges to q at a rate that trades off the complexity L(p)
of an approximation p ∈ M with the quality of that approximation,
measured in terms of the Kullback-Leibler divergence D(q‖p).

Corollary 1.1. Let p̈λ be the λ-MDL estimator for λ > 1, and suppose Xn =
X1, . . . , Xn are i.i.d. according to a density q on X . Then for α = 1− 1/λ

E Dα(q‖ p̈λ) ≤ min
p∈M

{
λL(p)

n
+ D(q‖p)

}
. (1.12)

Consequently, if q ∈ M then

E Dα(q‖ p̈λ) ≤ λL(q)
n

. (1.13)

Note that, for λ ≥ 2, the theorem and its corollary still hold if Rényi
divergence is replaced by the squared Hellinger distance. Unfortu-
nately, they become vacuous as λ ↓ 1, corresponding to the ordinary
MDL estimator. Thus, MDL estimators based on a prior with “light
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tails” converge to the true density, but unfortunately we cannot estab-
lish the same result for arbitrary MDL estimators. We postpone further
discussion of this issue to Chapter 5, where it is the main topic.

The second step of the corollary, (1.13), is really a significant weak-
ening compared to (1.12), because it restricts attention to q ∈ M. By
contrast, (1.12) also applies to q that can only be approximated by el-
ements of M. Although we may consider such q to be infinitely com-
plex: L(q) = ∞, they can still be learned as long as M contains an
approximating sequence p1, p2, . . . such that both D(q‖pn) → 0 and
L(pn)/n → 0. Such approximations underlie applications of MDL in
nonparametric settings (see Section 1.4.4).

If q ∈ M, but L(q) is still so large (relative to the sample size) that
(1.13) is vacuous, then for all practical purposes we are in the same
case as above, and if a simpler approximation to q exists, it will lead
to better predictions. As will be discussed next, this provides a formal
justification for Occam’s razor.

Occam’s Razor By definition the MDL estimator trades off goodness-
of-fit on the data against complexity of the densities. This can be in-
terpreted as a formalisation of Occam’s razor: the heuristic commonly
applied in science, which suggests to prefer simple explanations over
more complex ones. Occam’s razor has sometimes been criticised on
the grounds that it represents a naive belief that simple explanations
are more likely to be true than complex ones [Domingos, 1999]. Equa-
tion 1.12 in Corollary 1.1, however, presents a different motivation for
Occam’s razor. It shows that simple approximations to the truth lead
to better convergence rates and therefore make better predictions of
future data, even if the truth is very complex. On the other hand, Equa-
tion 1.13, which directly relates convergence to the complexity of the
truth, becomes vacuous if the truth is too complex to learn at the current
sample size. In conclusion: if the truth is very complex, it is preferable
to learn a simple approximation, because this will lead to better pre-
dictions on future data. As more data become available, increasingly
complex (approximations of the) truth can be considered.

Remark 1.2 (Related Work). Up to a constant multiplicative factor, Theo-
rem 1.4 can also be obtained as a special case of Theorem 2.1 by Zhang
[2006], which is based on a convex duality used in PAC-Bayesian gener-
alisation error bounds. In addition, Zhang considers various improve-
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ments of the theorem, which are required to obtain optimal conver-
gence rates in parametric settings. In Chapter 5 we will discuss a pre-
cursor of Theorem 1.4 that was introduced by Barron and Cover [1991].
Grünwald [2007, p. 483] describes its history in minimum description
length inference in more detail.

1.3.5 Objective Density Code Lengths

Perhaps the most important insight of MDL theory is that the data com-
pression perspective leads to objective criteria for choosing density code
lengths (or, equivalently, a prior π). These code lengths do not repre-
sent any prior beliefs, but rather should be interpreted as strategies for
data compression. It is worth emphasizing a point made by Grünwald
[2007, p. 33]: while a prior belief can be true or false, a strategy cannot
be true or false in any sense; it can only be clever or stupid. Let us
consider a criterion to measure the cleverness of strategies.

Models Provide a Baseline LetM = {p1, p2, . . .} be a model, and let
L(p) be density code lengths relative to this model. Then MDL encodes
the data using

L2-p(xn) = min
p∈M

{
L(p)− log p(xn)

}
(1.14)

bits. Consequently, the best code length we could hope to achieve by
carefully choosing the density code lengths is to come as close as pos-
sible to

inf
p∈M
− log p(xn) = − log p̂(xn), (1.15)

where p̂ = arg maxp∈M p(xn) denotes the maximum likelihood density.
Thus (1.15) provides a baseline, against which we may compare our
actual code lengths. Although the baseline itself is unachievable (except
for degenerate cases, the ‘code lengths’ (1.15) will not satisfy Kraft’s
inequality), it turns out that in many cases it is possible to choose L(p)
such that the overhead of the MDL code lengths (1.14) compared to the
baseline is small.

Finite Models For simplicity, suppose first that M contains only a
finite number m of densities, which is small relative to the sample size
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n. (Say, log m = O(log n).) Then we can take the uniform prior, leading
to constant density code lengths L(p) = log m. As n gets large, log m
bits are negligible compared to − log p(xn), which is typically linear in
n. This can also be seen in Corollary 1.1, where λL(p)/n goes to zero
quickly if L(p) = O(log n). So the two-part MDL code is almost as
good as if we had known the best possible p in advance. Therefore, for
sufficiently small models, the uniform prior compresses as well as any
other possible prior, and can be chosen for completely objective data
compression reasons.

We will see next that surprisingly rich classesM are still sufficiently
small to use a similar objective approach, although the appropriate
prior is typically not uniform onM.

Parametric Models Suppose M = {pθ | θ ∈ Θ ⊆ Rd} is a para-
metric model that is continuously parametrised by d parameters θ =
(θ1, . . . , θd). Then |M| = ∞ and there exists no code for all possible pa-
rameters of M. Nevertheless, we can still apply a similar approach as
before if the number of distinguishable distributions in M (in a sense
that will be made more precise later) is sufficiently small.

Suppose that, even though M itself is infinite, there exist a finite
number of densities p1, . . . , pm such that

min
1≤j≤m

− log pj(xn) ≤ − log p̂(xn) + C (1.16)

for all xn for some constant C. Then M can be reduced to a finite
model M̈ = {p1, . . . , pm} essentially without harming the compression
that can be achieved by its elements, and if m is sufficiently small, we
can use the same approach as in the previous section. The density code
lengths are then determined, not by the size of M, but by the number
of elements in M̈. This leads to an important insight: the complexity
of densities is not an inherent property of the densities themselves, but
rather of the smallest number m such that (1.16) can be satisfied, which
is a measure for the richness or complexity of M. This approach is
similar to the use of sieves by Grenander [1981]. Consider the following
example.

Example 1.4 (Bernoulli Model). Let M = {pθ | θ ∈ [0, 1]} be the
Bernoulli model, where X = {0, 1} and pθ(1) = θ. Distributions are ex-
tended to multiple outcomes by taking products: pθ(xn) = ∏n

i=1 pθ(xi).
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Let θ̂ = θ̂(xn) = ∑n
i=1 xi/n denote the maximum likelihood parameter.

Lemma 3.4 in Chapter 3 shows that there exists a finite set of parame-
ters {θ̈1, . . . , θ̈m} with m = O(

√
n) such that

min
1≤j≤m

− log pθ̈j
(xn) ≤ − log pθ̂(xn) + C (for all xn)

for some constant C that does not depend on n or xn. (These points are
essentially spaced uniformly in a parametrisation by φ = arcsin

√
θ.)

Then the MDL estimator relative to model M̈ = {pθ̈1
, . . . , pθ̈m

} with
uniform density code lengths L(j) = log m, encodes the data using

L2-p(xn) = log m + min
1≤j≤m

− log pθ̈j
(xn) ≤ 1

2
log n + C′ − log pθ̂(xn)

(1.17)
bits, where θ̂ ∈ [0, 1] denotes the maximum likelihood parameter in the
full Bernoulli model and C′ is a constant dependent on C and the max-
imum ratio between m and

√
n. In addition, Theorem 1.4 shows that if

the data are generated by any Bernoulli distribution with parameter θ,
then the λ-MDL estimates relative to the restricted set M̈ converge to θ
at rate

E Dα(pθ‖ p̈λ) ≤ λ log m + C
n

≤
λ
2 log n + C′

n
,

even if θ is not among the discretised parameters {θ̈1, . . . , θ̈m}. (Some
readers may notice that this is a log n factor short of the optimal rate
O(1/n); this extra factor can be removed by using a more refined ver-
sion of Theorem 1.4 [Zhang, 2006].)

For general parametric models it may not always be possible to sat-
isfy (1.16) uniformly for all data xn ∈ X n, but we can come close: let
Γ ⊂ Θ be an arbitrary compact subset of the interior of the parameter
space Θ. Then if the maximum likelihood estimator satisfies the central
limit theorem for θ ∈ Γ andM satisfies certain weak smoothness condi-
tions, (1.16) can be satisfied with the same constant C for all sequences
xn such that the maximum likelihood parameter θ̂(xn) lies in Γ [Rissa-
nen, 1996, Grünwald, 2007, Theorem 10.1]. (The latter reference restricts
attention to so-called exponential families, but presumably generalises
to general parametric families.) In such cases one may approximate Θ
by a sequence Γ1 ⊂ Γ2 ⊂ · · · ⊂ Θ such that

⋃
k Γk = Θ and for any data

xn let C in (1.16) depend on the smallest k such that θ̂(xn) ∈ Γk. Then
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C will be bigger as θ̂(xn) lies closer to the boundary of Θ. If the data
are sampled from a density pθ ∈ M, then by the law of large numbers
there will almost surely be a fixed k such that θ̂ ∈ Γk for all sufficiently
large n.

Example 1.5 (Normal Location Family). LetM = {pµ | µ ∈ R} denote
the normal location family with densities

pµ(x) = 1√
2πσ

e−
(x−µ)2

2σ2 ,

which share a fixed variance σ2. Densities are again extended to mul-
tiple outcomes by taking products. Suppose that the maximum likeli-
hood parameter µ̂ = µ̂(xn) = ∑n

i=1 xi/n lies inside a known interval
Γ = (a, b):

a < µ̂(xn) < b. (1.18)

Then using

− ln pµ(xn)− [− ln pµ̂(xn)] =
n(µ− µ̂)2

2σ2 ,

where ln denotes the natural logarithm, we can cover Γ by m = (b −
a)
√

n/(2σ) bins of size 2σ/
√

n, which ensure that for any xn satisfying
(1.18)

min
1≤j≤m

− ln pµ̈j(xn) ≤ − ln pµ̂(xn) +
1
2

,

where µ̈1, . . . , µ̈m denote the centers of the bins. It follows that there
exists a two-part code with code lengths (measured in nats)

LΓ(xn) = ln m + min
1≤j≤m

− ln pµ̈j(xn)

such that

LΓ(xn)− [− ln pµ̂(xn)] ≤ ln m +
1
2

=
1
2

ln n + ln
b− a

2σ
+

1
2

for all xn such that a < µ̂(xn) < b. Grünwald [2007, Chapter 11] dis-
cusses codes with code lengths L such that L(xn) − [− ln pµ̂(xn)] in-
creases in a principled way as (a, b)→ (−∞, ∞).
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Optimal Discretisation The previous discussion leads to the follow-
ing question: for general models, what is the smallest number of densi-
ties m such that (1.16) can be satisfied? In particular, are m = O(

√
n) for

the Bernoulli model and m = (b− a)
√

n/(2σ) for the normal location
family with restricted maximum likelihood optimal? These questions
may be answered by comparing the two-part code lengths

L2-p(xn) = min
p∈M̈

{
L(p)− log p(xn)

}
(1.19)

of the MDL code for the discretised model M̈ to the code lengths of the
code that comes as close as possible to the baseline set byM, uniformly
on all data xn ∈ Y ⊆ X n. For example, Y may be the set of all xn with
maximum likelihood parameter in Γ. Such a code may be a one-part
code, meaning that it is not required to explicitly encode a density from
M, but only needs to encode the data.

For any code with code lengths L(xn), be it one-part or two-part,

R(M, L, xn) = L(xn)− inf
p∈M
− log p(xn)

is called the regret of L with respect to modelM on data xn, because it
measures how much longer our description of the data is when we use
L instead of the optimal code based onM in hindsight, after seeing the
data. The worst-case regret for xn ∈ Y is therefore

sup
xn∈Y

R(M, L, xn).

It is uniquely minimized by the code corresponding to the normalized
maximum likelihood (NML) distribution with density

pNML(xn) =
supp∈M p(xn)

Z(n)
,

where the normalization

Z(n) = ∑
xn∈Y

sup
p∈M

p(xn)

is called the Shtarkov sum (relative to Y) [Shtar’kov, 1987] and its loga-
rithm, log Z(n), is called the parametric complexity of M [Barron et al.,
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1998]. For uncountable sample spaces, the sum in the normalization is
replaced by an integral over Y . Note that the NML distribution need
not exist, because Z(n) may be infinite.

One may view the parametric complexity as the value of a zero-sum
game, in which a Statistician first picks a code with the intent of mini-
mizing the regret and then Nature picks the data that maximizes the re-
gret. From this perspective, the code lengths LNML(xn) = − log pNML(xn)
form an equalizer strategy for Statistician, which achieves the same re-
gret R(M, LNML, xn) = log Z(n) on all data xn ∈ Y . Thus

sup
xn∈Y

R(M, LNML, xn) = log Z(n).

The fact that PNML(Y) = 1 implies that no other distribution has at least
as high density on all xn ∈ Y . In terms of codes this means that any
other code must have higher regret than LNML for some data xn ∈ Y .
Therefore the smallest worst-case regret on Y we could hope for with
any code is the parametric complexity, log Z(n). This holds in particular
for the two-part MDL code with code lengths L2-p as in (1.19).

The Shtarkov sum Z(n) can be interpreted as a volume that
is proportional to the number of distinguishable distributions in M,
where distinguishability is measured using Kullback-Leibler diver-
gence [Grünwald, 2007, Balasubramanian, 1997]. This makes the
Shtarkov sum and its logarithm, the parametric complexity, inherent
measures of the complexity of M. As a direct consequence, they play
a fundamental role in MDL model selection, which is discussed in Sec-
tion 1.4.

If Y is the set of all xn with maximum likelihood parameter in a
compact subset Γ of the interior of the parameter space Θ, then the
parametric complexity can often be approximated by

log Z(n) =
d
2

log
n

2π
+ log

∫
Γ

√
|I(θ)|dθ + o(1), (1.20)

where |I(θ)| denotes the Fisher information at θ, d denotes the num-
ber of free parameters of the model and o(1) → 0 as n → ∞. This
approximation holds if the maximum likelihood estimator satisfies the
central limit theorem for θ ∈ Γ and M satisfies certain weak smooth-
ness conditions (which do not require it to be i.i.d.) [Rissanen, 1996].
Although for some models the o(1) term may go to zero very slowly,
the approximation is quite accurate in the following examples.



1.4. MDL Model Selection 29

Example 1.4 (cont.) Recall that in the Bernoulli example we have con-
structed a two-part code with code lengths L2-p such that the worst-case
regret for any data xn ∈ X n was bounded by 1

2 log n + C′. In this case
the worst-case regret is

log Z(n) =
1
2

log n +
1
2

log
π

2
+ o(1)

[Xie and Barron, 2000]. Thus we see that the two-part code with m =
O(
√

n) is indeed optimal up to a constant. As d = 1 and the Fisher
information equals θ−1(1− θ)−1 for the Bernoulli model, such that∫ 1

0

√
|I(θ)|dθ = π,

we also see that the approximation (1.20) applies.

Example 1.5 (cont.) In the normal location family the worst-case regret
of LΓ over data in Y = {xn | µ̂(xn) ∈ Γ = (a, b)} was bounded by
1
2 log n + log b−a

2σ + 1
2 . In this case the parametric complexity is exactly

log Z(n) =
1
2

log n + log
b− a√

2πσ

[Grünwald, 2007, p. 298]. As the difference, 1
2 + 1

2 log π
2 , is constant, we

find that the two-part code LΓ is essentially optimal.
As d = 1 and the Fisher information is 1/σ2, it turns out that in this

special case the approximation (1.20) is exact with o(1) = 0. We also see
that log Z(n) → ∞ as (a, b) → (−∞, ∞). Therefore there does not exist
a code that achieves finite worst-case regret relative to the unrestricted
set Y = X n.

1.4 MDL Model Selection

We turn to MDL model selection. Suppose we have a countable number
of parametric modelsM1,M2, . . ., and the goal is to select one of them
based on data xn, and possibly estimate its parameters as well. For
example, Mk might be the set of Markov chains that take into account
the k previous outcomes, parametrised by their transition probabili-
ties. Or Mk may be the set of all histograms with k fixed-width bins,
parametrised by the density in each bin.
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As MDL automatically protects against overfitting (Theorems 1.3
and 1.4), we can in principle just define the model class M =

⋃
kMk

and use MDL to estimate its parameters. But there is a complication: as
this meta-model M will usually have very large or infinite parametric
complexity, we cannot choose a prior that guarantees the same regret
on all possible data sequences, as suggested in the previous section.
We will therefore have to make more use of the structure supplied by
the models and aim at achieving uniform regret only relative to each
submodelMk. This works as follows.

1.4.1 Estimating Both Structure and Parameters

Let log Zk(n) be the parametric complexity of Mk at sample size n,
and assume that the models M1,M2, . . . are ordered from simple to
complex: Z1(n) ≤ Z2(n) ≤ · · · . Let us first consider how to estimate
both the model structure k and the parameters ofMk at the same time.
In this case we treat each model Mk as before, and associate with it a
discretised model M̈k and density code lengths Lk for the elements of
M̈k. We now associate density code lengths

L(p) = min
{k : p∈M̈k}

{
L(k) + Lk(p)

}
with the elements of the model class M̈ =

⋃
k M̈k, where L(k) are

code lengths for k that increase only slowly with k. For concrete-
ness, let us take L(k) = − log π(k) with π(k) = k−1(k + 1)−1, such
that L(k) ≤ 2 log(k + 1) increases only logarithmically in k. The fact
that L(k) assigns larger code length to models with a higher index k
is usually of no concern, since such models also have bigger paramet-
ric complexity, so that Lk(p) will typically dominate L(k) anyway. To
summarize, model structure k and parameters can be estimated simul-
taneously using the MDL estimator:

p̈ = arg min
p∈M̈

{
L(p)− log p(xn)

}
= arg min

k∈N,p∈M̈k

{
L(k) + Lk(p)− log p(xn)

}
,

where we have identified p ∈ M̈k with the pair (k, p).
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Suppose the models are i.i.d. Then by Corollary 1.1 the λ-MDL
estimator p̈λ converges at rate

E Dα(q‖ p̈λ) ≤ min
k∈N,p∈M̈k

{
2λ log(k + 1) + λLk(p)

n
+ D(q‖p)

}
to any i.i.d. density q. Note that q need not lie in any of the models,
as long as it can be approximated in Kullback-Leibler divergence by a
sequence of elements fromM. This is the case, for example, in density
estimation with histograms, where the estimated densities are typically
not histograms themselves.

1.4.2 Estimating Structure Only

Suppose we are interested only in selecting a single model among the
candidates M1,M2, . . . and we do not need to estimate the parame-
ters of the model at the same time. This may be the case, for exam-
ple, in linear regression if each of the models corresponds to a differ-
ent subset of the regressor variables. The reason for model selection
may then be to determine the relevant variables, while an estimate
of their coefficients is not required [Grünwald, 2007, p. 25]. In such
a setting, instead of explicitly discretising each Mk into M̈k such that
Lk(xn) = minp∈M̈k

Lk(p) − log p(xn) achieves worst-case regret close
to the parametric complexity, we can directly use the normalised max-
imum likelihood code! This gives rise to the following MDL model
selection procedure:

arg min
k

L(k)− log pNML, k(xn) = arg min
k

L(k) + log Zk(n)− log p̂k(xn),

where pNML, k and p̂k denote the normalised maximum likelihood (NML)
density and the maximum likelihood density for model Mk, respec-
tively. This procedure is optimal in the sense that pNML, k achieves the
smallest possible worst-case regret relative toMk.

We see that MDL model selection may be interpreted as a penalised
maximum likelihood procedure, which penalises modelMk by its para-
metric complexity log Zk(n) (and L(k), but the influence of this term
is usually small). The parametric complexity arises unavoidably from
coding considerations as the smallest possible worst-case regret relative
to modelMk, and Zk(n) has an interpretation as the number of distin-
guishable distributions in Mk. Thus, unlike the ordinary maximum



32 Chapter 1. Introduction

likelihood estimator, the MDL estimator scales up from parameter es-
timation to model selection without modification, and its complexity
penalty does not arise from asymptotic analysis under probabilistic as-
sumptions, but has a coding interpretation at the actual sample size
n.

Remark 1.3 (Luckiness). One may also look at model selection the other
way around. Suppose we have a big model M with (too) large para-
metric complexity compared to the sample size. For example, we may
have log Z(n) ≈ n. Then there is no point in treating all elements of
M on the same footing, since their estimate will not converge (see The-
orem 1.4). In such cases it is essential to introduce more bias into the
choice of the density code lengths. This can be done by carving upM
into submodelsM1,M2, . . . such thatM =

⋃
kMk. One may then pro-

ceed as above, regardingM1,M2, . . . as models andM as a model class
that is their union. This is called a luckiness approach: if one is lucky,
the data can be compressed by a submodel with small parametric com-
plexity and their structure will be learned at a small sample size; if one
is unlucky then one will have added L(k) + log Zk(n)− log Z(n) ≤ L(k)
bits to the density code lengths, which is typically small compared to
log Z(n), so one will not lose much. The use of luckiness is advocated
by De Rooij and Grünwald [2010].

1.4.3 Universal Coding

In practice MDL model selection is often based on approximations of
the normalised maximum likelihood density. There are two options
here: one is to use (1.20), but that only really works if the o(1) term
it contains is sufficiently small. Otherwise none of MDL theory ap-
plies and we do not have any guarantees about performance. A better
alternative is therefore to apply MDL with distributions that approxi-
mate the NML distribution. Although such distributions may not ex-
actly minimize the worst-case regret, at least they define real codes and
therefore the data compression interpretation and theoretical results
still apply. One example is the two-part code above, based on discretis-
ing each Mk into a corresponding M̈k. But there are two important
other choices as well. Such codes, which try to minimize the worst-case
regret compared to Mk, will be called universal codes. This informal
definition is slightly stronger than the standard definition [Grünwald,
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2007]. Under our definition, the NML code is the optimal universal
code.

1.4.3.1 Bayesian Universal Code

There is a close connection between MDL and Bayesian model selec-
tion. The reason is that, for appropriate priors, the Bayesian marginal
likelihood often achieves small worst-case regret, and sometimes even
gets close to the optimal worst-case regret: the parametric complexity.

Countable Models Suppose M = {p1, p2, . . .} is a countable model
and presume, for simplicity, that the data are discrete. Then, given a
prior probability mass function w onM, the Bayesian marginal likelihood
is the distribution defined by

b(xn) = ∑
p∈M

w(p)p(xn). (1.21)

The corresponding code with code lengths − log b(xn) is called the
Bayesian universal code. Let us compare this to the two-part code

L2-p(xn) = min
p∈M

L(p)− log p(xn)

with density code lengths L(p) = − log w(p), which corresponds to the
(incomplete) distribution defined by

p2-p(xn) = max
p∈M

w(p)p(xn).

As the sum in (1.21) can be bounded from below by its largest term,
we find that b(xn) ≥ p2-p(xn) and therefore the Bayesian universal code
always achieves shorter code lengths than the two-part universal code:

− log b(xn) ≤ L2-p(xn) for all xn.

It follows that, from a data compression point of view, the Bayesian
marginal likelihood should always be preferred over the two-part code
based on the same prior! Unfortunately, the Bayesian universal code
cannot be applied directly to parameter estimation, but it can be used
in model selection. MDL model selection then becomes

min
k

L(k)− log bk(xn),
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where bk denotes the Bayesian marginal likelihood for Mk. For the
prior π(k) such that L(k) = − log π(k), we see that a model Mk is
preferred over another modelMm if

bk(xn)
bm(xn)

>
π(m)
π(k)

.

The left-hand side of this expression may be recognised as the Bayes fac-
tor [Kass and Raftery, 1995]. Bayes factors model selection is therefore
formally equivalent to MDL model selection using Bayesian universal
codes. As will be seen next, this correspondence generalises to contin-
uous sample spaces and uncountable models, as long as within-model
priors wk are used that ensure the Bayesian universal code has small
worst-case regret.

Parametric Models Let X = Ra for any finite dimension a, and let

M = {pθ | θ ∈ Θ ⊆ Rd} (1.22)

be a parametric model with d parameters, with densities extended to
multiple outcomes by taking products. Then for any prior density w on
Θ, the density of the Bayesian marginal likelihood becomes

b(xn) =
∫

w(θ)pθ(xn) dθ. (1.23)

With a suitable choice of w, this turns out to be a good candidate to
approximate the NML distribution. For a class of models called expo-
nential families [Grünwald, 2007] it is even possible to (asymptotically)
achieve the optimal worst-case regret, equal to (1.20). The class of ex-
ponential families includes the Poisson family, the geometric family of
distributions, and the Bernoulli and multinomial models. Furthermore,
the set of normal distributions of arbitrary mean and variance is also an
exponential family. On the other hand, there are also many paramet-
ric models that are not exponential families, like mixtures of normal
distributions.

Suppose that M is an exponential family. Then for data xn such
that the maximum likelihood parameter θ̂ lies is a compact subset of the
interior of Θ, and a continuous prior density w that is bounded away
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from zero, the regret of the Bayesian universal code can asymptotically
be approximated by

− log b(xn)− [− log pθ̂(xn)] =
d
2

log
n

2π
+ log

√
|I(θ̂)|

w(θ̂)
+ o(1), (1.24)

where |I(θ)| denotes the Fisher information at θ [Grünwald, 2007, The-
orem 8.1]. Comparison with (1.20) shows that Bayes asymptotically
achieves the parametric complexity if we use Jeffreys’ prior

w(θ) =
√
|I(θ)∫ √
|I(θ) dθ

.

Other priors are also acceptable as long as they dominate Jeffreys’ prior.
Grünwald [2007, Chapter 8] provides a discussion of the extent to which
these results extend beyond exponential families.

The preceding discussion provides a data compression motivation
for the use of Bayesian universal codes. There also exists a frequen-
tist motivation, which holds for arbitrary parametric models, not just
exponential families. This frequentist motivation is that MDL model se-
lection with the Bayesian marginal likelihood is consistent, in the sense
that if the data are sampled from a distribution in one of the models,
then it selects that model with probability one for all sufficiently large
samples [Dawid, 1992b, Barron et al., 1998].

The formal statement of this result (Theorem 1.5 below) requires
an interpretation of the Bayesian marginal likelihood as a probabilistic
source B∞ on infinite sequences of outcomes x∞ = x1, x2, . . . This source
has the marginal distribution defined by (1.23) for any finite number of
outcomes n. For two parametric models M1 and M2, the correspond-
ing sources B∞

1 and B∞
2 will often be quite different, in the sense that

there exists a measurable event A ⊆ X∞ such that B∞
1 (A) = 1 and

B∞
2 (X∞ \ A) = 1. In this case B∞

1 and B∞
2 are called mutually singular.

Mutual singularity is quite common. It occurs, for example, if the mod-
els contain stationary ergodic distributions and the priors are mutually
singular on the space of distributions. This is the case, for example,
if the models are parametric families of i.i.d. or Markov distributions,
and the parameter spaces are of different dimensionality and absolutely
continuous prior densities are assigned to each dimension [Barron et al.,
1998, Dawid, 1992b]. See Section 2.6 of Chapter 2 for further discussion.
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Section 6.5.7 of Chapter 6 also relates mutual singularity on infinite se-
quences to Rényi divergence.

Theorem 1.5 (Model Selection Consistency). LetM1,M2, . . . be paramet-
ric models of form (1.22) with priors w1, w2, . . . such that the corresponding
Bayesian marginal likelihoods B∞

1 , B∞
2 , . . . on infinite sequences are mutually

singular. Let Θk denote the parameter space ofMk and let

k̈ = k̈(Xn) = arg min
k

L(k)− log bk(Xn)

denote the MDL estimator for model selection with Bayesian universal codes
on a sample X1, . . . , Xn of size n, where the code lengths L(k) are finite for all
k. Then, for all k∗, for wk∗-almost all θ∗ ∈ Θk∗ ,

k̈ = k∗

for all sufficiently large n, with Pθ∗-probability one.

When the asymptotic expansions (1.20) and (1.24) for NML and
Bayes with Jeffreys’ prior hold uniformly for all models, Theorem 1.5
implies that model selection based on NML is also consistent. However,
whether this is typically the case is not known.

Predictive Interpretation When models are used to make predictions,
it is often convenient to look at the Bayesian and NML universal codes
in a different way: their code lengths can be interpreted as the cumula-
tive loss incurred when sequentially predicting the data xn = x1, . . . , xn,
and as a consequence, MDL and Bayes factors model selection can be
interpreted as selecting the model with smallest cumulative prediction
error.

For simplicity, assume that X is countable. Consider the follow-
ing sequential prediction problem: for t = 1, . . . , n, predict xt given
knowledge only of the preceding outcomes x1, . . . , xt−1 by specifying a
probability distribution Pt for xt. The quality of predictions is measured
by the log(arithmic) loss:

`(xt, Pt) = − log Pt(xt),

which may be interpreted as the code length of xt under the code cor-
responding to Pt. Suppose that Q is any distribution on all data xn and
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Pt is its marginal distribution on xt conditioned on the preceding out-
comes xt−1, so that Pt(xt) = Q(xt | xt−1). Then the cumulative loss on
xn is

n

∑
t=1

`(xt, Pt) = − log
n

∏
t=1

Pt(xt) = − log Q(xn).

We see that the cumulative prediction error of predicting according to
the conditional distributions of Q is equal to the code length of xn under
Q. In particular, by letting Q be the Bayesian marginal likelihood, we
can rewrite MDL or Bayes factors as selecting the model that achieves

min
k

L(k) +
n

∑
t=1

`(xt, Q(· | xt−1)).

Thus, apart from a constant offset L(k) per model, MDL or Bayes
factors selects the model with smallest cumulative prediction error
when sequentially predicting the data. This interpretation is especially
appropriate if the selected model is to be used to make predictions of
future data (see Chapter 2): in the case of the Bayesian marginal likeli-
hood, the prediction of a hypothetical new outcome xn+1 outside of the
given sample would be Q(xn+1 | xn). We see that the corresponding
loss `(xn+1, Q(· | xn)) is just a continuation of the sequence of losses on
the sample xn.

1.4.3.2 Plug-in Universal Code

In the previous section we saw that the conditional distributions of a
universal code can be used as sequential predictions Pt. Reversing the
construction, one can also plug in the predictions of some estimator for
the parameters of a parametric modelM = {pθ | θ ∈ Θ ⊆ Rd} as con-
ditional probabilities to construct a universal code. For any estimator
θ̂ : X t−1 → Θ that is defined for all t, this gives:

Ppl(xn) =
n

∏
t=1

Pθ̂(xt−1)(xt | xt−1).

The fact that the estimator used to predict xt depends only on the pre-
ceding outcomes xt−1 and not on xt or any following data, guarantees
that − log Ppl(xn) is a code length. The corresponding code, with code
lengths − log Ppl(xn), is called a plug-in code. Thus, letting P1

pl, P2
pl, . . . be
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plug-in codes for models M1,M2, . . . with estimators θ̂1, θ̂2, . . ., MDL
selects the model that achieves

min
k

L(k)− log Pk
pl(xn) = min

k
L(k) +

n

∑
t=1
− log Pθ̂k(xt−1)(xt | xt−1).

If a (possibly smoothed, see below) maximum likelihood estimator is
plugged in, then MDL model selection based on the plug-in universal
code is often consistent: if the data are sampled from a distribution
in one of the models, then it selects that model with probability one
for all sufficiently large samples [Dawid, 1992b, de Luna and Skouras,
2003, Hemerly and Davis, 1989]. This is in contrast to the maximum
likelihood estimate on all data, − log Pθ̂(xn)(xn), which does not satisfy
Kraft’s inequality and is susceptible to overfitting when used as a basis
for model selection. Plug-in codes appeal when the same estimator θ̂ is
used for prediction of future data, outside of the sample xn. The plug-
in code lengths are also sometimes easier to compute than the code
lengths for other universal codes, especially if the models are not i.i.d.

Theoretical analysis of plug-in codes has focused on smoothed ver-
sions of the maximum likelihood estimator. The following example
illustrates smoothing and its necessity.

Example 1.4 (cont.) Let M = {pθ | θ ∈ [0, 1]} be the Bernoulli model,
and let θ̂ = θ̂(xn) = n1/n denote the ordinary maximum likelihood
estimator, where ny denotes the number of occurrences of y in xn. Al-
though the maximum likelihood estimator is consistent if the data are
generated by a Bernoulli distribution, its estimates are often extreme on
very small samples, which ruins its coding performance. To illustrate,
consider data xn such that the first three outcomes are 0, 0, 1. Then
Pθ̂(x2)(x3) = 0, such that

− log Ppl(xn) ≥ − log Pθ̂(x2)(x3) = ∞.

This problem can be avoided by changing the estimator to

θ̂′(xn) =
n1 + a

n + a + b

for positive numbers a and b. These numbers may be interpreted as
adding a fake ones to the data and b fake zeroes, such that every pos-
sible outcome has been observed before seeing the real data. This pre-
vents the estimator from assigning probability zero to any outcome.
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In general, padding the data with initial fake outcomes to prevent the
maximum likelihood estimator from giving zero probability is called
smoothing.

Under certain conditions, including that the data are sampled from
an element of the model, the plug-in code Ppl based on a smoothed
maximum likelihood estimator is guaranteed to have small regret in a
weak expected sense:

E
[
− log Ppl(Xn) + log Pθ̂(Xn)(Xn)

]
=

d
2

log n + O(1), (1.25)

where the expectation is with respect to an element of M [Grünwald,
2007] and the term O(1) can asymptotically be bounded above by a
constant. See also [Rissanen, 1986, 1989, Wei, 1992]. As in model se-
lection it is usually not the case that all models contain the true dis-
tribution, (1.25) does not directly justify using plug-in codes based on
smoothed maximum likelihood estimators for model selection. Indeed,
although model selection based on the plug-in code for a smoothed
maximum likelihood estimator is typically consistent (see above), it per-
forms somewhat worse than model selection based on NML or Bayes
[Grünwald and de Rooij, 2005]. However, it has recently been shown
that it is possible to construct different estimators that do not suffer
from this problem [Kotłowski et al., 2010, Grünwald and Kotłowski,
2010].

1.4.4 Nonparametric Models

MDL may also be used in nonparametric settings. Barron and Cover
[1991] work out two applications, in which they show that the right-
hand side of (1.12) in Corollary 1.1, which they call the index of resolv-
ability, converges to zero at a certain rate. The first application follows
the pattern of Section 1.4.1: the models are either polynomials or splines
of order k. They construct a two-part universal code for every model
and also encode k to allow the appropriate order to be determined au-
tomatically. Then they show that the index of resolvability converges to
zero at rate O(( log n

n )2r/(2r+1)) if the data are drawn i.i.d. from any den-
sity p on the open interval (0, 1) that satisfies the smoothness condition∫ 1

0

(
dr

dxr log p(x)
)2

dx < ∞
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for some unknown r ≥ 1. Notably, the indicated rate of convergence
holds without prior knowledge of r. Note also that the densities sat-
isfying the smoothness condition need not be polynomials or splines
themselves, as long as they can be arbitrarily well approximated in
Kullback-Leibler divergence by polynomials or splines, respectively.

Barron and Cover also provide a fully nonparametric example,
which does not involve any parametric models at all. In this example a
nonparametric set of densities is reduced to a finite set in a way similar
to the construction for parametric models in Section 1.3.5. The size of
the finite set is determined by the so-called Kolmogorov ε-entropy of
the nonparametric set of densities. See [Barron and Cover, 1991] for
details.

While the results of Barron and Cover apply to two-part codes, other
work has focused on other universal codes. Notably, Seeger et al. [2008]
prove a regret bound for Bayesian Gaussian process models in nonpara-
metric regression. They show that the regret compared to a regression
function from a reproducing kernel Hilbert space that is determined by
the parameters of the Gaussian process, grows quadratically with the
norm of the regression function. It follows that Gaussian processes have
very good universal coding properties relative to regression functions
with small norm. See also [Grünwald, 2007].

Instead of the regret, Rissanen et al. [1992] and Yu and Speed [1992]
analyse the closely related redundancy, which may be regarded as an
in-expectation analog of the regret. Using histogram models to esti-
mate bounded densities on the unit interval with bounded derivatives,
they find that MDL model selection based on Bayesian universal codes
misses the optimal minimax redundancy by (only) a logarithmic fac-
tor. In Chapter 2 we provide an explanation for this lack of optimality,
which we call the catch-up phenomenon. Based on this explanation, we
introduce a new model selection method, which still has a data com-
pression interpretation, but provably does not suffer from the catch-
up phenomenon. This method can be applied to arbitrary models, for
which the impact of the catch-up phenomenon may be larger.

1.5 Organisation of this Thesis

As we have seen, MDL inference views densities and models as strate-
gies for data compression. This stands in sharp contrast to making
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assumptions about an underlying distribution generating the data, as
is standard even in nonparametric statistics. Strategies are either good
or bad, and certainly we do not expect bad models to magically lead to
good inference. But, unlike assumptions, strategies can never be true
or false. Therefore, if the MDL premise of making data compression
a fundamental notion can hold its ground, it promises a robust kind
of statistics, which does not break down when standard, but hard to
verify, assumptions fail.

This makes it worthwhile to stress test the data compression prin-
ciples behind the minimum description length principle. A natural
starting point are cases where MDL disagrees with a more standard
frequentist analysis. This thesis analyses two such cases. The first case,
studied in Part I, deals with switching between prediction strategies.
The second case, described in Part II, deals with the strange λ > 1
condition from Theorem 1.4.

1.5.1 Part I: Switching between Models

In Chapter 2 it is found that standard MDL model selection, as described
in this introduction, may lead to suboptimal predictions of future data.
This problem is then remedied by constructing a code that achieves bet-
ter data compression than the standard code, by combining models into
a meta-model that sequentially switches between them. Thus we see
that standard MDL fails, but the underlying principle, data compres-
sion, holds its ground. Chapters 3 and 4 study the general phenomenon
of switching between predictors from a related perspective called pre-
diction with expert advice. In Chapter 3 a new method is introduced that
automatically determines the optimal switching rate when switching
between predictors. In Chapter 4 we discuss whether the parts between
switches should be modelled independently, or as part of the rest of the
data. A new method is introduced to deal with the first case, which is
appropriate, for example, for certain time series data.

As there are many connections between MDL and other statistical
methods, studying MDL usually sheds new light on other methods as
well. To bring out these connections, Chapter 2 uses statistical terminol-
ogy and restricts attention to the Bayesian and plug-in universal codes,
as these correspond to widely used Bayesian and frequentist methods.
The results of Chapters 3 and 4 on the other hand are described using
the framework of prediction with expert advice.
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1.5.2 Part II: MDL Convergence and Rényi Divergence

In this introduction multiple motivations for using the MDL estimator
have been presented. There is, however, some tension between them.
On the one hand the frequentist convergence result Theorem 1.4 sug-
gests that λ-MDL should be used with λ > 1. But, on the other hand,
from the data compression point of view this just seems to be wasting
bits and should therefore be avoided. It seems that at least one of the
two ideas must be missing something.

Chapter 5 takes a closer look at Theorem 1.4. It explains how λ > 1
may be interpreted as a condition on the density code lengths, and ex-
amples are given that show that ordinary 1-MDL need not converge
at all if this condition is completely removed. Although no definitive
verdict is reached on the appropriateness of data compression as a fun-
damental principle, two new theorems comparable to Theorem 1.4 (but
using a weaker mode of convergence) are proved, which show that
λ > 1 is actually a stronger condition than necessary. This shows that
the λ > 1 condition does not tell the full story either, and should not
be interpreted as a necessary requirement. Some preliminary conse-
quences of the theorems are presented, which do not follow from the
λ > 1 condition.

The new theorems formulate conditions on the density code lengths
in terms of Rényi divergence, but although Rényi divergence was intro-
duced in the nineteen-sixties and appears in many computations, there
exists no overview of its technical properties. Chapter 6 remedies this
situation by formally proving the basic properties of Rényi divergence.
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Chapter 2

Catching Up Faster by Switching Sooner:
A predictive approach to adaptive estimation
with an application to the AIC-BIC Dilemma

Prediction and estimation based on Bayesian model selection and
model averaging, and derived methods such as BIC, do not always con-
verge at the fastest possible rate. We identify the catch-up phenomenon
as a novel explanation for the slow convergence of Bayesian methods,
and use it to define a modification of the Bayesian predictive distribu-
tion, called the switch distribution. When used as an adaptive estimator,
the switch distribution does achieve optimal cumulative risk conver-
gence rates in nonparametric density estimation and Gaussian regres-
sion problems. We show that the minimax cumulative risk is obtained
under very weak conditions and without knowledge of the underlying
degree of smoothness.

Unlike other adaptive model selection procedures such as AIC and
leave-one-out cross-validation, BIC and Bayes factor model selection are
typically statistically consistent. We show that this property is retained
by the switch distribution, which thus solves the AIC-BIC dilemma for
cumulative risk. We give a ‘prequential’ interpretation to the switch
distribution, show how to efficiently implement it, and illustrate its
performance on a regression problem with simulated data.

2.1 Introduction

Given a countable number of models (sets of probability distributions),
we consider the related tasks of model selection, model averaging and adap-
tive estimation. In model selection, the goal is to find the model that best
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explains the given data. In model averaging, one aims to predict future
data from the same source based on a weighted combination of the
models. The inferred model or model average may further be used as a
basis for adaptive density and regression estimation, in which the goal
is to construct estimators that are simultaneously minimax rate optimal
with respect to different classes of smoothness.

Some broadly applicable model selection methods such as
AIC [Akaike, 1974] and leave-one-out cross-validation (LOO) [Stone,
1977] lead to predictions and corresponding adaptive estimators that
are risk optimal in a variety of settings. On the other hand, other
popular methods such as the BIC criterion [Schwarz, 1978] and related
methods such as Bayes factor model selection [Kass and Raftery, 1995],
standard minimum description length (MDL) model selection [Barron
et al., 1998] and prequential model validation [Dawid, 1984] are typ-
ically suboptimal for prediction and estimation: in many settings, at
sample size n the convergence of Bayes factors, MDL, and BIC is a fac-
tor O(log n) slower [Rissanen et al., 1992, Foster and George, 1994, Yang,
1999, Grünwald, 2007]. In this chapter we argue that the slow conver-
gence of Bayes factors (and other BIC-like methods) is caused by the
catch-up phenomenon, which we will introduce shortly. Our attempt to
address this problem takes the form of the switch distribution, a practical
method (an efficient and very simple algorithm is given in Section 2.2.5)
that can be used either directly to predict new outcomes sequentially,
or as a basis for model selection and adaptive estimation. The switch
distribution may be viewed as an extension of Bayesian Model Averag-
ing or Bayes factor model selection. The standard Bayes factor method
is based on a prior distribution on a countable set of distributions
p1, p2, p3, . . .; usually, but not necessarily, these are themselves Bayesian
marginal distributions relative to some parametric modelsM1,M2, . . .
In contrast to a prior on p1, p2, . . ., the switch distribution employs a
prior defined on sequences of the p1, p2, . . ., allowing different pj, and
thus different modelsMj, to be used for prediction at different sample
sizes. In our treatment, as explained in Section 2.3, the pj are viewed
as prediction strategies which may be Bayesian marginal distributions
but can also be based on estimators such as maximum likelihood or
least-squares. In this sense the switch distribution is more general than
a Bayesian marginal distribution and is best interpreted as a prequential
forecasting system [Dawid, 1984].
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The general idea behind the switch distribution is explained further
in Section 2.1.2. Our first main result, Theorem 2.1 in Section 2.5.3,
shows that in a general i.i.d. setting that includes many nonparametric
density and Gaussian regression estimation problems, adaptive estima-
tion based on the switch distribution is optimal relative to the cumulative
Kullback-Leibler (KL) risk. More precisely, suppose that data are sampled
from a density p∗, and p∗ is estimated based on a collection of para-
metric models, where the number of considered models is not more
than polynomial in the sample size. Then, as long as the problem is
not “too easy”, unlike for Bayesian model averaging, the ratio of the cu-
mulative risk incurred by the switch distribution and that incurred by
any model selection criterion whatsoever converges to 1. By the prob-
lem being “not too easy” we mean that the minimax cumulative risk
should be at least of order (log n)2, a requirement that is satisfied for
all nonparametric classes including the standard Sobolev, Hölder and
Besov classes [Yang and Barron, 1999]. Thus, the switch distribution
may be interpreted as an adaptive estimator which achieves minimax
rates without knowledge of the underlying degree of smoothness. The
proof requires that the switch distribution is defined with respect to
an augmented set of prediction strategies, which increases the time re-
quired to process a sample of size n by a factor n. As an alternative we
provide Theorem 2.2, which is based on a version of the switch distri-
bution that uses only two prediction strategies per considered model,
and therefore has a much faster implementation. The drawbacks are
that we impose stronger conditions on the considered models, and that
the ratio of cumulative risks may converge to a constant larger than 1.
In Section 2.7 we provide experiments with simulated data which sug-
gest that both switch distributions also perform well in practice with
small samples.

In the statistical literature, predictive performance is usually mea-
sured in terms of instantaneous risk rather than cumulative risk. As
shown in Proposition 2.3 (Section 2.8.3), under the conditions of the
fast switch distribution, both versions of the switch distribution may
be further modified so that they achieve the minimax instantaneous KL
risk to within a constant factor larger than one.
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2.1.1 Main Application: the AIC-BIC Dilemma

Compared to other broadly applicable model selection criteria such as
AIC and LOO, the main advantage of the switch distribution is its prov-
able rate optimality under substantially weaker conditions. A second
advantage is that, unlike AIC and LOO, the switch distribution is statis-
tically consistent under fairly weak conditions, i.e. the probability under
the true distribution that the correct model is selected converges to 1.
This is shown in our third main result, Theorem 2.3. Thus, switching re-
solves a version of the AIC-BIC dilemma where predictive performance
is measured in terms of cumulative risk [Yang, 2005, 2007a,b]. This
dilemma concerns the question whether in any given practical situation,
one should adopt an AIC-type method (close to optimal for prediction,
yet inconsistent) or a BIC-type method (suboptimal for prediction, yet
consistent): we show that, when one is interested in cumulative risk,
then in contrast to AIC, the switch distribution is consistent, and in
contrast to BIC, it is rate optimal. In adaptive estimation however, it
may often be more appropriate to consider the instantaneous rather
than the cumulative risk. In this scenario, a result of Yang [2005] ap-
plies, which (roughly) states that in the parametric context, there can be
no method that achieves both consistency and a minimax optimal con-
vergence rate. Relating our results to this second interpretation is more
subtle; some connections are indicated in the discussion (Section 2.8).

2.1.2 Main Idea: the Catch-Up Phenomenon

Suppose we use parametric models Mk = {pθ | θ ∈ Θk} to describe a
sequence of observations xn = x1, . . . , xn, where each outcome is drawn
from some space X ; for simplicity we assume X to be countable in
this introduction, but we do not have this restriction in the rest of the
chapter.

In Bayes factors model selection or Bayesian model averaging, prior
densities wk are defined for the parameter spaces Θk of each modelMk.
We can subsequently compute the Bayesian marginal likelihood of the
data as follows:

pk(xn) =
∫

θ∈Θk

pk,θ(xn)wk(θ) dθ. (2.1)

Additionally, a prior mass function π on the model indices {1, 2, . . .} is
defined. The Bayes factors approach to model selection is to select the
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model k with maximum posterior probability

π(k | xn) =
pk(xn)π(k)

∑k′ pk′(xn)π(k′)
.

In prediction, Bayesian model averaging (BMA) proceeds based on the
marginal distribution on data pbma(xn) = ∑k pk(xn)π(k). BMA pre-
dicts any new outcome xn+1 ∈ X outside of the sample xn according
to pbma(xn+1 | xn), which is equal to a combination of the models’ pre-
dictions in which the models are weighted according to their posterior
probability:

pbma(xn+1 | xn) = ∑
k

pk(xn+1 | xn)π(k | xn). (2.2)

We now discuss how the predictions pbma(xn+1 | xn) and p(xn+1 | xn)
may be interpreted as a continuation of predictions on the sample xn,
and how − log pbma(xn) and − log pk(xn) may be interpreted as the
cumulative prediction error of pbma and pk on xn.

Let p be any distribution on samples xn, like for example pk or
pbma. Then for most xn the probability p(xn) is exponentially small
in n. It is therefore common to consider − log p(xn), which we call
the code length of xn. Note that small code length corresponds to large
probability. Here and in the remainder we let log denote the logarithm
to base two, so that code length is measured in bits. Our terminology
is motivated by the Kraft inequality in information theory, which links
code lengths to probability distributions [Cover and Thomas, 1991], but
code length may also be interpreted as the cumulative log(arithmic) loss
incurred when sequentially predicting x1, . . . , xn by conditioning p on
the past [Barron et al., 1998, Grünwald, 2007, Dawid, 1984, Rissanen,
1984]. To see this, assume the outcomes xn = x1, . . . , xn are given in a
natural order (if not, pick some order at random), and let xi = x1, . . . , xi
denote the first i of them. The (i + 1)-th outcome is then predicted
by the conditional probability p(xi+1 | xi) = p(xi+1)/p(xi), and the
quality of this prediction is measured by the log loss − log p(xi+1 | xi).
Summing up the prediction errors, we see that the code length of the
sample is equal to the cumulative log loss of the predictions:

n

∑
i=1
− log p(xi | xi−1) = − log

n

∏
i=1

p(xi | xi−1) = − log p(xn). (2.3)
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In particular, the code lengths of pbma and pk may be interpreted as cu-
mulative prediction errors on the sample. Furthermore, if we predict an
(n + 1)-st outcome outside of the sample xn according to p(xn+1 | xn),
the loss we incur may be viewed as the continuation of the sequence of
losses within the sample. (Again, this holds for both pbma and pk.) As
such, the fact that the sample contains n outcomes is not particularly
special, and may equivalently be viewed as truncating an infinite sam-
ple after the first n observations. From this perspective, it is natural to
study what happens when n is varied, even if one is only interested in
prediction for any particular n.

Like the prediction pbma(xn+1 | xn), the posterior probability π(k |
xn) ∝ pk(xn)π(k) may also be interpreted in terms of code length: apart
from the constant (i.e. not dependent on n) influence of the prior π(k),
it assigns large probability to models Mk that give large probability
pk(xn) to the data or, equivalently, achieve small code length or cumu-
lative prediction error as measured by log loss. Note that the ratio of
posterior probabilities of two models is exponential in their difference in
code length!

We are now ready to compare the predictive performance of BMA
to the best possible predictions based on the models. To this end,
let k̂ ≡ k̂(xn) = arg mink− log pk(xn) denote the index of the model
achieving the smallest cumulative loss (or code length) when sequen-
tially predicting xn. Then prediction using BMA guarantees that the
difference between our code length and the code length achieved by
k̂ is in the range [0,− log π(k̂)], whatever data xn are observed. (This
follows by (2.3) and bounding the sum ∑k pk(xn)π(k) from below by
the term for k̂ and from above by pk̂(xn).) If, for all k, − log π(k) (which
is constant in n) is small compared to − log pk(xn) (which is typically
linear in n), then this implies that BMA predicts essentially as well as
the model that turns out to be the best one in retrospect, whatever this
model may be. Although this is quite remarkable, the main insight of
this chapter is that it is often possible to combine the predictions of the
models in a way that achieves smaller code length even than k̂! This can
be done if the index of the best predicting model changes with the sample
size n in a predictable way. Such cases are common in model selection,
for example with nested models. If M1 ⊂ M2 then p1 may predict
better than p2 at small sample sizes (roughly becauseM2 has more pa-
rameters that need to be estimated thanM1), while p2 may give better
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predictions at large sample sizes (because M2 can fit more patterns in
the data). This phenomenon is essentially just the bias-variance trade-off.
The behaviour of Bayesian model averaging in such a setting is illus-
trated by Figure 2.1.
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Figure 2.1: The Catch-up Phenomenon

The figure compares the code lengths for two Markov chain models
of different order on the first n characters of Lewis Carroll’s “Alice’s
Adventures in Wonderland” as a function of n, where each character in
the book is considered an outcome1. It shows the code length differ-
ence − log p2(xn) − (− log p1(xn)), where pk is the Bayesian marginal
likelihood for the model Mk containing the k-th order Markov chains,
parametrised by their transition probabilities. The book uses 84 distinct
symbols. For simplicity we used uniform (Dirichlet(1, 1, . . . , 1)) priors,
but the same phenomenon occurs for other common priors such as Jef-
freys’ prior. The graph is restricted to the first half of the book only, to
highlight the region of interest; the full text is 166 926 characters long.2

1An e-book version of “Alice’s Adventures in Wonderland” was made available by
project Gutenberg at www.gutenberg.org.

2The total code lengths for the full book are 603 906 and 554 494 bits for the first and
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Note that if the difference in code length increases over an interval,
this means that on average p1 is making better predictions of those out-
comes than p2, and vice versa. To select the best predictor, one would
therefore like to estimate the (sign of the) derivative of the graph. We
see that on the first 26 000 outcomes, p1 gets ahead by about 7 200 bits,
but that p2 predicts better afterwards. Ideally, we would therefore like
to predict the first 26 000 outcomes like p1 and then switch to predict-
ing like p2 for the remainder of the novel. However, BMA (with prior
π(1) = π(2) = 1/2 on the models) only starts to behave like p2 when p2
catches up with p1 around n = 58 000. This is explained by the fact that
the posterior depends, not on the derivative, but on the height of the
graph, and is exponentially concentrated on the model with smallest
code length. The result is that, between the maximum of the graph and
the point where it reaches zero, pbma behaves like p1 while p2 is making
better predictions: since at n = 26 000, p2 is 7 200 bits behind, and at
n = 58 000, it has caught up, in between p2 must have outperformed p1
by 7 200 bits!

Note that the models M1 and M2 in this example are very crude;
for this particular application much better models are available. Fig-
ure 2.1 is intended as a simple illustration of the catch-up phenomenon
only. However, the general phenomenon that different models predict
better at different sample sizes occurs widely, both in theoretical set-
tings and on real-world data. For example, we have encountered the
same catch-up phenomenon in regression with polynomials (see Sec-
tion 2.7), and in unreported experiments to select the number of bins in
histogram density estimation. We argue that failure to take this effect
into account explains the suboptimal convergence rates of Bayes factors
model selection and related methods. In Section 2.2 we define an alter-
native way of combining two distributions p1 and p2 into a single distri-
bution psw, which we call the switch distribution. Figure 2.1 shows that
the switch distribution first predicts roughly like p1, but switches to p2
almost immediately after it starts making better predictions.3 It essen-

second order Markov chains, respectively, and 554 495 and 546 698 bits for BMA and
the switch distribution.

3In fact, p2 already slightly outperforms p1 over short sequences of outcomes before
n = 26 000. This is exploited by the switch distribution, which can switch back and
forth between the available predictors if necessary (see Section 2.2.2). The sharp drop
around sample size 29 100 corresponds to “The Mouse’s Tale” which uses long strings
of spaces for unusual indentation, a structure that cannot be represented well by a first



2.1. Introduction 53

tially does this no matter what sequence xn is actually observed. The switch
distribution is a modification of the Bayesian marginal distribution that
assigns positive prior weight to predicting with different models at dif-
ferent sample sizes, instead of putting all prior weight on prediction
with the same model for all sample sizes, like BMA. This allows us to
avoid the implicit, and often wrong, a priori assumption that a single
model will be the best predictor at all sample sizes. After conditioning
on data, the posterior we obtain therefore gives a better indication of
which model predicts best at the actual sample size, and hence achieves
smaller risk. Indeed, the switch distribution, when viewed in terms of
the sequential predictions it induces, is closely related to earlier algo-
rithms for tracking the best expert in the universal prediction literature
[Koolen and de Rooij, 2008a, Herbster and Warmuth, 1998, Vovk, 1999,
Volf and Willems, 1998, Cesa-Bianchi and Lugosi, 2006]; however, both
the context in which we apply the switch distribution and the theorems
that we prove, are very different.

2.1.3 Overview

In Section 2.2 we define the switch distribution and give an explicit al-
gorithm for its practical application. While we switched between only
two models in the example above, the general definition allows switch-
ing between any countable number of models. The predictions for each
model may either be based on the Bayesian predictive distribution or
on parameter estimation, like for example maximum likelihood. This
is explained in Section 2.3, which also discusses model selection in the
sequential prediction setting. A first (minor) result is presented in Sec-
tion 2.4, were we define minimax (cumulative) risk and it is shown
that, like Bayesian model averaging, the switch distribution achieves
the minimax cumulative risk in typical parametric settings. Our main
cumulative risk convergence results, however, are for nonparametric
model classes. These results, which are presented in Section 2.5, ap-
ply regardless of whether prediction is based on the Bayesian predic-
tive distribution or on parameter estimation. They are followed by our
main consistency result in Section 2.6, which only applies to Bayesian
prediction strategies. Section 2.7 contains a simulation study of linear
regression with polynomials. The discussion in Section 2.8 puts our

order Markov chain.
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work in a broader context and explains how it fits into the existing lit-
erature. In particular, Section 2.8.3 shows how the switch distribution
may be further modified to achieve the minimax instantaneous rather
than cumulative risk. We end with a brief conclusion. The proofs of all
results are at the end of the chapter, in Sections 2.9 and 2.10.

2.2 The Switch Distribution

2.2.1 Preliminaries

For any set S , let Sn denote the n-fold Cartesian product, let S∗ :=⋃∞
n=0 Sn and let S∞ denote the (uncountable) set of infinite sequences

over S . Analogously, let xn denote an n-tuple x1, . . . , xn (x0 is the empty
sequence) and let x∞ denote an infinite sequence.

Consider a random process X∞ ∈ X∞, where each outcome takes
values in a space X ⊆ Rd of finite dimension d ∈ Z+ = {1, 2, . . .}.
We call p a (sequential) prediction strategy for X∞ if it issues a density
p(xn+1 | xn) on xn+1 ∈ X for all xn ∈ X ∗. If the data are assumed
to be drawn from a distribution p∗ we sometimes call the prediction
strategy p an estimator to emphasize that p is intended to approximate
p∗. For simplicity, we assume throughout that this density is taken
relative to either the usual Lebesgue measure (if X is continuous) or
the counting measure (if X is countable). In the latter case p(xn+1 | xn)
is a probability mass function. Such sequential prediction strategies are
sometimes called prequential forecasting systems [Dawid, 1984]. An
instance is given in Example 2.2 below.

Our notation emphasises that the conditional densities of a distri-
bution may always be viewed as a prediction strategy; vice versa, the
predictions of any prediction strategy p may be viewed as the condi-
tional probabilities of a distribution for X∞ with density

p(xn) = p(x1) · p(x2 | x1) · . . . · p(xn | xn−1). (2.4)

With some abuse of notation, we also use the symbol p to denote this
distribution. For countable sample spaces, such a distribution can al-
ways be defined; for uncountable X we require the following standard
measurability assumption: for any n ∈ Z+ and any fixed measurable
event An+1 ⊆ X the probability p(An+1 | xn) should be a measurable
function of xn (see e.g. [Shiryaev, 1996, p. 249, Theorem 2]).
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2.2.2 Definition

We start with a given, countable set of prediction strategies {pk | k ∈
A}; see Example 2.1 below for a concrete case. Based on the set {pk |
k ∈ A}, we first define a new family Q = {qs | s ∈ S} of prediction
strategies that switch between them. The parameter set S for these
switching strategies is defined as

S =
{
((t1, k1), . . . , (tm, km)) ∈ (Z+×A)m | m ∈ Z+, 1 = t1 < . . . < tm

}
.

(2.5)
Each parameter s ∈ S specifies the indices k1, . . . , km of m original pre-
diction strategies to be used by qs in sequence, and the sample sizes
t1, . . . , tm at which switches occur from one strategy to the next. For-
mally,

qs(xn+1 | xn) = pk j(xn+1 | xn) for the largest j ≤ m

such that tj ≤ n + 1.
(2.6)

For example, t4 is the index of the first outcome that is predicted using
pk4 . The extra switch-point t1 is included to simplify boundary cases;
we fix t1 = 1 so that k1 represents the strategy that is used first, before
any actual switch takes place. Thus the total number of switches is
m − 1. Switching to the same predictor multiple times (consecutively
or not) is allowed.4

The switch distribution is a Bayesian mixture of the elements of Q
according to a prior π on S:

Definition 2.1 (Switch Distribution). The switch distribution psw, defined
with respect to a prior probability mass function π on s, is the distribu-
tion for (X∞, s) with density

psw(xn, s) := qs(xn) π(s) (2.7)

for any xn ∈ X ∗, and s ∈ S.

Hence the marginal switch distribution on n outcomes has density

psw(xn) = ∑
s∈S

qs(xn) π(s). (2.8)

4It is not necessary here, but the definitions and the algorithm can be modified to
disallow such reflexive switches.
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By Bayes’ theorem, the prior π, conditioned on observed data xn, in-
duces a posterior distribution psw(s | xn) ∝ qs(xn)π(s) on switching
strategies s. The marginal of this posterior on the prediction strategy
that is used to predict the next outcome will be of special interest. For
s =

(
(t1, k1), . . . , (tm, km)

)
, define the random variable Kn(s) = k j∗ ,

where j∗ is the largest j such that tj ≤ n. Thus, Kn(s) is the predic-
tion strategy that is used by qs to predict the n-th outcome. We can
then consider, say, the posterior probability assigned to each prediction
strategy upon observing xn:

psw(Kn+1 = k | xn) =

 ∑
s:Kn+1(s)=k

psw(xn, s)

 /psw(xn). (2.9)

This quantity is computed by the algorithm presented in Section 2.2.5;
it is also used to define a model selection criterion based on the switch
distribution in Section 2.3.

2.2.3 Structure of the Prior

Partly to allow for an efficient algorithm (see Section 2.2.5), and partly
because it facilitates our further results, we require that π can be written
in the form

π((t1, k1), . . . , (tm, km))

= µ(m)

m−1

∏
j=1

κtj(k j)τ(Z = tj+1 | Z > tj)

 λtm(km). (2.10)

Here, µ is a prior probability mass function on the number of predic-
tion strategies m, which is equal to the number of switches plus one.
Further, τ is a prior mass function on the switching indices, which are
the integers greater than one, and for all n ∈ Z+, κn is a prior mass
function on some subset of strategies indexed by K ⊆ A and λn is a
prior on some subset of strategies indexed by L ⊆ A. The set K in-
dexes the prediction strategies that can be switched to while switching
has not yet stabilized, i.e. if one will switch at least once more in the
future. The set L indexes the set of final prediction strategies that can
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be switched to at the last switch. We sometimes blur the distinction be-
tween prediction strategies and their indices and say, for example, that
K “contains” prediction strategies.

In the basic version of the switch distribution, we do not distinguish
between L andK, and set L = K = A. For our convergence rate results,
however, we will consider advanced versions of the switch distribution,
in which L is still a given set of prediction strategies, but K contains
slightly modified versions of the prediction strategies in L. These will
be introduced in Section 2.5.1. It will then become necessary to allow
κn to depend on n. For computational reasons it may also be conve-
nient to allow λn to depend on n (since no computation is necessary
for prediction strategies with zero prior probability), and we therefore
allow this in our definitions and theorems. All our results, however, are
easiest to understand when λn does not depend on n.

Our algorithm, and consistency and convergence rate theorems all
impose further conditions on the prior π, which will be stated in each
case. For concreteness, we remark that every prior of the following
form is compatible with all our results in the following sections:

µ(m) = 2−m, τ(n) =
1

n(n− 1)
,

and κn and λn are uniform on their support,
(2.11)

as long as the supports of κn and λn never shrink with n and are at
most of polynomial size in n.

Example 2.1. In the Markov chain example of Figure 2.1, psw is instan-
tiated as follows. We set L = K = A = {1, 2}, and define the prior
π using (2.11), where the support of κn and λn is equal to A for all
n. For k ∈ A, pk, as used in (2.6), is defined as the Bayesian marginal
likelihood (see (2.1)) relative to the k-th order Markov model equipped
with the uniform prior. The pk are viewed as prediction strategies by
defining pk(xn+1 | xn) = pk(xn+1)/pk(xn), such that the corresponding
distribution is the standard Bayesian predictive distribution after condi-
tioning on observations xn [Bernardo and Smith, 1994].

In all applications in this chapter, the prediction strategies pk will
be based on (parametric) modelsMk. They will either be Bayesian pre-
dictive distributions as in Example 2.1, or parameter estimators relative
toMk, as explained in Section 2.3. Note however that, in principle, the
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switch distribution may be applied to completely arbitrary prediction
strategies: pk could just as well represent the prediction of next day’s
probability of rain as issued by a weather forecaster on television.

2.2.4 Comparison to Bayesian model averaging

As discussed in the introduction, one advantage of averaging over a set
of predictors P = {p1, p2, . . .} using pbma is that it guarantees a bound
− log π(k̂) on the difference in code length with the best predictor pk̂.
This property is shared by psw, which multiplicatively dominates pbma.
To see this, let L = P and define λ1 to be equal to the prior used
in pbma. (The set K may be arbitrary, for example equal to L.) Then
comparison with the switch distribution shows that BMA corresponds
to using a prior that allows no switches at all between predictors. This
corresponds to the case m = 1 in the prior from (2.10). We therefore
find that

psw(xn) ≥ ∑
s∈{((1,k))|k∈L}

π(s)qs(xn)

= µ(1) ∑
k∈L

λ1(k)pk(xn) = µ(1)pbma(xn)

for all n, xn. Thus, psw can be smaller than pbma by at most a constant
factor µ(1), which is the prior probability of never switching between
predictors. The converse of this is not true however: as Figure 2.1 il-
lustrates, the switch distribution may achieve substantially smaller code
length than pbma. This is also seen in the simulation study in Section 2.7.

2.2.5 Hidden Markov Model and Efficient Computation

The following material is mostly of practical interest and can be skipped
by readers who wish to reach the more theoretical material with as few
distractions as possible.

Under certain conditions on the prior π, the switch distribution can
be represented by a hidden Markov model (HMM) [Rabiner, 1989] with
state transition diagram as in Figure 2.2. This is the case if µ is geo-
metric, i.e. µ(m) = θm−1(1 − θ) for some 0 ≤ θ ≤ 1. For each time
step, the hidden state of the HMM represents the following informa-
tion: (1) the prediction strategy that is used to predict the outcome at
that time step, and (2) whether or not further switches are still possible.
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Figure 2.2: State transitions in the HMM for six prediction strategies

In Figure 2.2 there are six prediction strategies A = {1, 2, 3, 4, 5, 6}, and
support(λn) = L = {1, 2, 3, 4}, support(κn) = K = {1, 2, 5, 6} for all n;
each column of numbered circles denotes the alternative values that the
hidden states can take, italics indicate that no further switches are pos-
sible; and we abbreviate τi = τ(Z = i + 1 | Z > i). Note that the lower
transitions in Figure 2.2 keep track of prediction strategies in K, for
which further switches will occur, whereas the upper part tracks pre-
diction strategies in L, for which switching has stabilized. See [Koolen
and de Rooij, 2008b,a] for more details about this interpretation and a
proof that the definition of the switch distribution used in this chapter
and its definition in terms of an HMM coincide.

Most densities of interest, such as psw(xn+1 | xn), psw(xn) and
psw(Kn+1 = k | xn), are easy to obtain if we can sequentially compute
the marginal density psw(Kn+1 = k, Xn = xn) for all n = 1, . . . , N, which
can be done using the Forward Algorithm for HMMs [Rabiner, 1989].
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Its instantiation for the switch distribution is given by Algorithm 2.1.
The algorithm maintains weights for any prediction strategy that was
assigned positive weight in the past. Let Sλ

n :=
⋃n

i=1 support(λn) and
Sκ

n :=
⋃n

i=1 support(κn). The algorithm then runs as follows.

Algorithm 2.1 Switch(xN)
1 for k ∈ Sκ

1 do wκ[k] ← κ1(k) · θ end for
2 for k ∈ Sλ

1 do wλ[k] ← λ1(k) · (1− θ) end for
3 for n=1, . . . , N do
4 for k ∈ Sκ

n ∪ Sλ
n do

5 vκ ← wκ[k] if k ∈ Sκ
n , and 0 otherwise

6 vλ ← wλ[k] if k ∈ Sλ
n , and 0 otherwise

7 Output (n, k, vκ + vλ) . Report psw(Kn = k, Xn−1 = xn−1)
8 end for
9 for k ∈ Sκ

n do wκ[k] ← wκ[k] · pk(xn | xn−1) end for
10 for k ∈ Sλ

n do wλ[k] ← wλ[k] · pk(xn | xn−1) end for
11 pool← τn ·∑k∈support(κn) wκ[k]
12 for k ∈ Sκ

n+1 ∪ Sλ
n+1 do

13 vκ ← wκ[k] if k ∈ Sκ
n , and 0 otherwise

14 vλ ← wλ[k] if k ∈ Sλ
n , and 0 otherwise

15 wκ[k] ← vκ · (1− τn) + pool · κn(k) · θ
16 wλ[k] ← vλ + pool · λn(k) · (1− θ)
17 end for
18 end for
19 Compute and output psw(KN+1 = k, XN = xN) as in lines 4–8.

The total running time of Algorithm 2.1 is O(∑N
n=1 |Sκ

n |+ |Sλ
n |), which

is linear in the number of outcomes N and the sizes of the supports.
For example, if support(κn) = support(λn) = A, then the running time
is |A| · O(N), which is typically of the same order as that of model
selection criteria like AIC and BIC. For an example where the supports
do depend on n, see Section 2.5.3, Example 2.4.

The algorithm may also be understood as one of a variety of expert
tracking algorithms [Koolen and de Rooij, 2008b,a]. In fact, it may be
viewed as a generalisation of the Fixed-share algorithm [Herbster and
Warmuth, 1998]: the main difference is that Fixed-share does not in-
clude states in the HMM from which no further switches are possible
(i.e. it fixes θ = 1). However, a distinction between K and L is necessary
to get a consistent method. In addition, whereas Fixed-share always
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uses a geometric prior τ with a parameter that needs to be tuned, we
allow any choice of τ, which allows us to get a parameterless algorithm
that achieves the minimax cumulative risk.

2.3 Model Selection, Prediction and Estimation

We consider a two-stage approach to inference based on a sequence
of models M1,M2, . . . In the first stage, for all k = 1, 2, . . ., a single
“meta” prediction strategy pk is associated with each model Mk. In
the second stage, these prediction strategies are either used to select
a single model based on the observed data xn, or they are combined
further into a “meta meta” prediction strategy for prediction of future
outcomes. We treat these stages as orthogonal to gain flexibility, even
though many methods described in the literature define both stages in
tandem.

2.3.1 Stage 1: Models and Associated Prediction Strategies

We define a model M as a set of prediction strategies. A model is
more commonly viewed as a set of distributions, but since distribu-
tions can be viewed as prediction strategies as explained above, we
may think of a model as a set of prediction strategies as well. With
each model, we associate a single “meta” prediction strategy; the mod-
els themselves are only used in terms of these meta strategies and are
not referenced directly. Our results about predictive performance in
Sections 2.4 and 2.5 apply regardless of how these meta strategies are
defined; for our consistency result there are some restrictions that are
explained in Section 2.6. We proceed with some important examples
for parametric modelsM = {pθ | θ ∈ Θ ⊆ Rd}.

First, a natural approach is to define a parameter estimator θ̂ : X ∗ →
Θ, which maps any data xn of any length n to a “best guess” of the
true/best parameter in the model. The next outcome is subsequently
predicted using the strategy that is selected by the parameter estimator:
p(xn+1 | xn) = pθ̂(xn)(xn+1 | xn). Recall that by (2.4) this also defines a
joint density p(xn) = p(x1 | x0) · . . . · p(xn | xn−1).

Second, the Bayesian approach to model selection or model averag-
ing goes the other way around. Given a prior density w on Θ, it first
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defines a joint density on xn, called the marginal likelihood, as

p(xn) =
∫

θ∈Θ
pθ(xn)w(θ) dθ. (2.12)

This induces the Bayesian prediction strategy

p(xn+1 | xn) =
p(xn+1)
p(xn)

=
∫

θ∈Θ
pθ(xn+1 | xn)w(θ | xn) dθ, (2.13)

where w(θ | xn) = pθ(xn)w(θ)/
∫

pθ(xn)w(θ) dθ is the posterior. If
p(xn) = 0, then the Bayesian prediction p(xn+1 | xn) is not defined.
In practice this is usually of minor concern, either because p(xn) is
positive for almost all xn, or because one can make some reasonable
default choice for p(xn+1 | xn) when it is not.

Example 2.2. Consider the Bernoulli model M = {pθ | θ ∈ [0, 1]} that
regards X1, X2, . . . as a sequence of independent, identically distributed
(i.i.d.) Bernoulli random variables taking values in X = {0, 1}, with
pθ(Xn+1 = 1) = θ. Given past data xn, we may predict xn+1 using the
maximum likelihood (ML) estimator for xn: θ̂(xn) = n−1 ∑n

i=1 xi, but
then the prediction of x1 is undefined, and the first outcome different
from x1 is assigned probability 0, yielding infinite code length. If we
use a “smoothed” ML estimator, like the Laplace estimator θ̂′(xn) =
(1 + ∑n

i=1 xi)/(n + 2), then all predictions become well defined and we
are guaranteed finite loss. It is well-known that the prediction strategy
pθ̂′ equals the Bayesian predictive distribution based on a uniform prior.
Thus in this special case prediction based on parameter estimation and
the Bayesian prediction strategy coincide!

Using a model in terms of a single associated prediction strategy p is
known as the prequential approach to statistics [Dawid, 1984] or predictive
MDL [Rissanen, 1984]. Regardless of whether p is based on parameter
estimation or on Bayesian predictions, we may usually think of it as a
universal code relative to the model [Grünwald, 2007].

2.3.2 Stage 2: Model Based Prediction and Model Selection

Let M1,M2, . . . be parametric models, with associated prediction
strategies p1, p2, . . . For example, Mk may be the set of all k-th order
Markov chains, or it may be the set of k-bin histograms in a density
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estimation setting, parametrised by the densities in the bins, or, in a re-
gression setting,Mk may be the set of degree (k− 1) polynomials with
standard normal noise. (In the regression setting the prediction strate-
gies in the model are also given access to the explanatory variables; see
Sections 2.5.5 and 2.7.) In general, the number of parameters in Mk
does not need to be a straightforward function of k; for example, in a
regression setting with two explanatory variables Z1 and Z2, we may
first let M(k1,k2) indicate the model of polynomials with terms of the

form θj1,j2 Zj1
1 Zj2

2 with 0 ≤ j1 ≤ k1, 0 ≤ j2 ≤ k2, and then define Mk in
terms of a suitable 1-to-1 correspondence between (k1, k2) and k.

Model based prediction means combining the “meta” prediction
strategies p1, p2, . . . into yet another, “meta meta” prediction strategy
p. Analogous to when the prediction strategies in the model were com-
bined into a single prediction strategy associated with the model, we
describe the two main methods to achieve this.

Model Selection Criteria Define a function δ : X ∗ → A which maps
any data xn of any length n to a “best guess” of the true/best model.
We can then predict the next outcome using the prediction strategy
that is selected by δ: p(xn+1 | xn) = pδ(xn)(xn+1 | xn). This is the
analogue of using a parameter estimator in stage 1; on this level we
call such a function a model selection criterion. AIC, BIC and LOO are
examples of model selection criteria; in a Bayesian setting reporting the
full posterior distribution on the model index is usually advocated, but
when pressed for a single answer, a Bayesian may report the “maximum
a posteriori” (MAP) model (as in Bayes factors model selection), which
is also a model selection criterion in the sense considered here.

If we assume that the data are sampled i.i.d. from some distribution
p∗, then, in light of the discussion in Section 2.3.1, we may also think of
the prediction strategy pδ(xn)(xn+1 | xn) as a density estimator of p∗. As
we will see in Section 2.5, the resulting estimators can be adaptive in a
very strong sense.

Thus, model selection criteria can be used to define a prediction
strategy, or as adaptive estimators. Yet they are also important in their
own right as tools to determine, given a fixed data set, which model
best explains these data; if that is the goal, an important property for a
model selection criterion to have is consistency, which means that given
enough data it always selects the true model, if there is one. (See also
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Section 2.6.)

Model Averaging The strategies associated with the models can also
be combined by taking a weighted mixture of their predictions. The
prototypical example is Bayesian model averaging, in which the predic-
tions associated with the models are weighted by the posterior prob-
ability of the model, as in (2.2). It has been found that prediction us-
ing model averaging often performs substantially better than prediction
based on model selection (see, for example [Kontkanen et al., 2000]); for
this reason, while strictly AIC is a model selection criterion, its defini-
tion is sometimes extended to assign weights to the models when it is
used for prediction [Akaike, 1979] (see also Section 2.7).

2.3.3 Model Selection and Prediction with the Switch Distri-
bution

Model selection and prediction with the switch distribution is very sim-
ilar to normal Bayes factors model selection and Bayesian model aver-
aging. There are two important differences: first, the posterior distri-
bution is on the switch parameters S rather than simply on the mod-
els. After observing xn, in order to obtain the weights of the predic-
tion strategies to predict xn+1, the posterior is marginalised using the
random variable Kn+1 as in (2.9). (Ignoring normalisation, it is these
marginalised weights that Algorithm 2.1 keeps track of.)

A second difference is that the switch distribution can be defined
with respect to more prediction strategies than just those corresponding
to the models: in our results, the set L indexes the models, but the set K
indexes a set of variations of the corresponding prediction strategies (see
Section 2.5). Hence we define the following model selection criterion for
the switch distribution, which selects a model index from L only:

δsw(xn) = arg max
k∈L

psw(Kn+1 = k | xn). (2.14)

As mentioned, the goal for this model selection criterion is to select a
model with index k ∈ L that is good specifically at predicting the next
outcome xn+1. In Section 2.6 we show that, under mild conditions, this
model selection criterion is also consistent.

Prediction of xn+1 given xn with the switch distribution is done us-
ing the predictive density psw(xn+1 | xn) = psw(xn+1)/psw(xn). In
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Section 2.5 we show that under mild conditions psw(xn+1 | xn) asymp-
totically achieves the minimax cumulative Kullback-Leibler risk.

2.4 Risk Bounds: Preliminaries and Parametric Case

In this section we analyse the performance of the switch distribution in
terms of cumulative Kullback-Leibler risk. We define the central notions
of (parametric and nonparametric) model classes, Kullback-Leibler risk,
and worst-case and minimax (cumulative) risk. We illustrate these by
showing that, in the parametric case, like Bayesian model averaging, the
switch distribution achieves the minimax cumulative risk under mild
conditions. This serves as a preparation for Section 2.5, where we con-
sider nonparametric model classes and show that unlike Bayesian model
averaging, the switch distribution under mild conditions still achieves
the minimax cumulative risk.

2.4.1 Model Classes

The setup is as follows. SupposeM1,M2, . . . is a sequence of paramet-
ric models with associated prediction strategies p1, p2, . . . as before. Let
us writeM = ∪∞

k=1Mk for the union of the models. Although formally
M is a set of prediction strategies, it will often be useful to consider the
corresponding set of distributions for X∞ = (X1, X2, . . .). With minor
abuse of notation we will denote this set byM as well.

To test the predictions of the switch distribution, we will want to as-
sume that X∞ is distributed according to a distribution p∗ that satisfies
certain restrictions. These restrictions will always be formulated by as-
suming that p∗ ∈ M∗, whereM∗ is some restricted set of distributions
for X∞. (Note that in p∗ and M∗, the star is simply part of the name,
not the Kleene star operator.)

For simplicity, we will also assume throughout that, for any n, the
conditional distribution p∗(Xn | Xn−1) has a density (relative to the
Lebesgue or counting measure) with probability one under p∗. For
example, if X = [0, 1], thenM∗ might be the set of all product measures
that have uniformly bounded densities with uniformly bounded first
derivatives.

We call M and M∗ model classes. In the parametric setting, we
have M∗ ⊆ M; we briefly consider this case in Example 2.3 and Sec-



66 Chapter 2. Catching Up Faster by Switching Sooner

tion 2.4.4. Our strongest risk convergence results however, presented
in Section 2.5, deal with situations in which M∗ \M is non-empty.
We are mostly interested in cases where M∗ represents what is com-
monly called a nonparametric model class. For a concrete example, see
Section 2.5.5.

2.4.2 Risk

For two distributions p and q, the Kullback-Leibler (KL) divergence
from p to q is defined as

D(p‖q) = EY∼p

[
log

p(Y)
q(Y)

]
.

KL divergence is never negative, and reaches zero if and only if p = q.
Given Xn−1 = xn−1, we measure how well any estimator p predicts Xn
in terms of the KL divergence D(p∗(Xn | xn−1)‖p(Xn | xn−1)) [Barron,
1998]. Taking an expectation over Xn−1 leads to the standard definition
of the risk of estimator p at sample size n relative to KL divergence:

r(p∗, p, n) = EXn−1∼p∗

[
D
(

p∗(Xn | Xn−1)‖p(Xn | Xn−1)
)]

. (2.15)

In a sequential prediction setting, it is natural to consider not only the
standard KL risk, but also the cumulative risk

R(p∗, p, n) =
n

∑
i=1

r(p∗, p, i).

The cumulative risk is equal to the information theoretic redundancy,
i.e. the Kullback-Leibler divergence on n outcomes (see e.g. [Barron,
1998] or [Grünwald, 2007, Chapter 15]): for all n it holds that

R(p∗, p, n) =
n

∑
i=1

Ep∗

[
log

p∗(Xi | Xi−1)
p(Xi | Xi−1)

]

= Ep∗

[
log

n

∏
i=1

p∗(Xi | Xi−1)
p(Xi | Xi−1)

]
= D

(
p∗(n)‖p(n)

)
,

(2.16)

where the superscript (n) indicates that p∗(n) and p(n) are distributions
for Xn. This implies the following proposition, which underlies all our
convergence rate results:
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Proposition 2.1. Let p1 and p2 be densities on n outcomes. Suppose that
p1 dominates p2 by a factor of c ∈ (0, 1], i.e. for all xn ∈ X n, p1(xn) ≥
c · p2(xn). Then for every p∗, R(p∗, p1, n) ≤ R(p∗, p2, n)− log c.

Note that the proposition does not require the sequence X∞ to be inde-
pendent and identically distributed (i.i.d.) under p∗.

Example 2.3. As we observed in Section 2.2.4, the switch distribution
dominates Bayesian model averaging by a factor µ(1). By Proposi-
tion 2.1 this means that, for all distributions p∗, irrespective of whether
p∗ ∈ M or not, R(p∗, psw, n) ≤ R(p∗, pbma, n)− log µ(1). Thus the cu-
mulative risk of the switch distribution is bounded by the risk of Bayes
up to a constant that does not depend on n. In fact, our results in
Section 2.5 imply that in nonparametric model averaging, the switch
distribution achieves substantially smaller cumulative risk than pbma.
Furthermore, our experiments (Section 2.7) suggest that in practice also
in the parametric case (i.e. p∗ ∈ Mk for some k), the cumulative risk of
the switch distribution may be substantially smaller than that of Bayes-
ian model averaging, but we have no general theorems to substantiate
this. A difficulty in formulating such a result is that, as we shall see
in Section 2.4.4, for any parametric model Mk, in the worst case over
p∗ ∈ Mk, the cumulative risks of psw and pbma are of comparable size.

2.4.3 Minimax Risk Convergence

We have defined the risk of an estimator p with respect to a fixed dis-
tribution p∗, but we are really interested in investigating the behaviour
of the standard risk and the cumulative risk of the switch distribution
in the worst case over all possible p∗ ∈ M∗. Define the worst case in-
stantaneous risk and worst-case cumulative risk of an estimator p as,
respectively,

rm(p, n) = sup
p∗∈M∗

r(p∗, p, n); Rm(p, n) = sup
p∗∈M∗

n

∑
i=1

r(p∗, p, i).

Note that the supremum is taken outside of the sum: we consider
worst-case cumulative risk rather than cumulative worst-case risk,
which is unreasonably adversarial in the sequential setting. The corre-
sponding minimax risk notions are obtained by minimising the worst-
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case risk:

rmm(n) = inf
p

rm(p, n); Rmm(n) = inf
p

Rm(p, n),

where the infimum is over all possible estimators, as defined in Sec-
tion 2.2.1. (Note that p is not required to be a member of M∗ or M.)
Minimax cumulative risk has previously been studied by, among oth-
ers, Haussler and Opper [1997], Rissanen et al. [1992], Barron [1998],
Yang and Barron [1999] and Poland and Hutter [2005].

Our results below are interesting only if Rmm(n) is finite, which
implies that rmm(i) ≤ Rmm(n) should be finite as well, for all i ≤ n.
Conversely, finiteness of rmm(1) implies finiteness of rmm(i) for all i ≥ 1
and hence finiteness of Rmm(n) ≤ ∑n

i=1 rmm(i). Thus, in all results
below, whenever we refer to a model class M∗, we implicitly assume
that rmm(1) is finite.

To conveniently compare asymptotic behaviour of functions we use
the following notation:

Definition 2.2. For two nonnegative functions g, h : Z+ → R∪{∞},
we write g � h or h � g if for all ε > 0 there exists an n0 such that
g(n) ≤ (1 + ε)h(n) for all n ≥ n0.

Like ordinary inequality, � is reflexive ( f � f for all f ) and transitive
( f � g and g � h implies f � h). Note that g � h is equivalent to
lim supn→∞ g(n)/h(n) ≤ 1 as long as h(n) is never zero, and that g ≤ h
implies g � h.

We can now easily define the two notions of minimax risk con-
vergence that are of interest in this chapter we say that an estima-
tor p achieves the minimax risk up to factor c if rm(p, n) � c · rmm(n),
and similarly, p achieves the minimax cumulative risk up to factor c if
Rm(p, n) � c · Rmm(n). See Section 2.8.3 for further discussion of the
relationships between these two convergence notions.

2.4.4 The Parametric Case

As shown by Clarke and Barron [1990], for a d-dimensional parametric
family Mk = {pθ | θ ∈ Θk}, under suitable regularity conditions, in-
cluding a compactness condition on Θk, the cumulative risk of Bayesian
prediction strategies pk defined as in (2.12) satisfies, uniformly for all
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p∗ ∈ Mk:

R(p∗, pk, n) =
d
2

log n + O(1),

for continuous prior densities w(θ) > 0. (See also (1.24) in Chap-
ter 1.) In [Clarke and Barron, 1994] they further show that the min-
imax cumulative risk relative to the model class M∗ := Mk satisfies
Rmm(n) = (d/2) log n + O(1) as well. It follows that pk achieves the
minimax cumulative risk relative toMk. Since pbma dominates pk (by a
factor determined by its prior probability), Proposition 2.1 implies that
pbma also achieves the minimax cumulative risk up to factor 1; and since
(by Example 2.3) psw dominates pbma, the switch distribution achieves
the same.

In the nonparametric case, where p∗ is in none of the considered
models, the minimax optimal cumulative risk grows more quickly.
Then the cumulative risk of pbma may not be minimax optimal anymore
[Rissanen et al., 1992] whereas, as we show in the following section, un-
der mild conditions, the cumulative risk of psw is.

2.5 Two Cumulative Risk Bounds

In this section we present our risk bounds for nonparametric adaptive
estimation based on the switch distribution. We first need to introduce
the notion of “frozen” prediction strategies, that keep issuing the same
prediction even as they are conditioned on more and more data, which
will be required in the proofs of both cumulative risk theorems. We
then introduce the notion of an oracle, which is essentially a model
selection criterion augmented with knowledge of the true distribution.
Theorem 2.1, our strongest cumulative risk result, is presented in Sec-
tion 2.5.3. As mentioned in the introduction it requires augmenting the
set of considered prediction strategies with linearly many frozen strate-
gies, leading to a slower algorithm. A faster, but somewhat weaker,
alternative is provided by Theorem 2.2 in Section 2.5.4.

2.5.1 Frozen Strategies

In the definition of the switch distribution we distinguished between
K, which indexes prediction strategies from which one will switch at
least once more in the future, and the set L, which indexes the set of
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final prediction strategies that can be switched to at the last switch. In
the basic version of the switch distribution, we set L = K. This version
works well empirically, and can be proved to achieve the minimax cu-
mulative risk in some particular nonparametric settings (such as those
of Barron and Sheu [1991]; see [Van Erven et al., 2008a] for details). Yet
it is hard to prove general results about its risk behaviour, for reasons
we explain below. To make the switch distribution more amenable to
mathematical analysis, we allow K to contain “frozen” (explained be-
low) versions of the strategies in L, so that K 6= L. Employing frozen
strategies allows us to prove convergence rate results for quite general
settings. Since our definition of frozen strategies only applies to i.i.d.
data, we will restrict to this setting for the remainder of this section:

Definition 2.3 (Standard IID). We call a distribution p∗ for X∞ = X1, X2,
. . . “standard IID” if the random variables X1, X2, . . . are independent
and identically distributed under p∗, and p∗(X1) has a density (relative
to the Lebesgue or counting measure). We call a model class M∗ “stan-
dard IID” if all p∗ ∈ M∗ are standard IID. For any two standard IID
distributions p∗, p, we abbreviate D(p∗‖p) := D(p∗(X1)‖p(X1)).

For sufficiently regular i.i.d. models and suitable estimators pk, the
risk r(p∗, pk, n) converges to infp∈Mk D(p∗‖p), the smallest risk obtain-
able by any distribution within Mk. Roughly, the larger n, the more
data available to base the prediction pk(xn+1 | xn) on, and the smaller
the risk r(p∗, pk, n). However, it turns out that the risk does not always
decrease monotonically; for an example of temporarily increasing risk,
see [Barron, 1998, Section 7]. The proof techniques we have developed,
however, only apply if r(p∗, pk, n) is either nonincreasing or increases
only very little in that supk∈A(r(p∗, pk, n + 1)− r(p∗, pk, n)) = O(1/n).
To prove risk convergence rates, we could simply impose this condition
on the predictors pk, but, since it turns out to be hard to verify, this
is not satisfactory. Instead, we therefore include modified prediction
strategies whose risk can be guaranteed to be nonincreasing. This is
achieved by “freezing” the issued predictions as follows.

Definition 2.4 (Frozen Strategies). Let t = t1, t2, . . . be a finite or infinite
sequence of integers with 1 = t1 < t2 < t3 < . . . and let |t| denote
the number of elements of the sequence; if this number is infinite, we
have |t| = ∞. Let {pk | k ∈ L} be a set of prediction strategies. For
each k ∈ L, we define a new prediction strategy pk◦t by setting, for all
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xn+1 ∈ X ∗, pk◦t(xn+1 | xn) = pk(xn+1 | xtj−1), where j ∈ {1, . . . , |t|} is
the largest j′ such that tj′ ≤ n + 1. We call pk◦t the “strategy pk frozen at
times t”.

Any reasonable estimator pk based on parametric models Mk
“learns” from experience, so that the predictions pk(xn+1 | xn) depend
on xn; for the case thatMk is the Bernoulli model, this is illustrated in
Example 2.2. If a strategy pj is frozen at a single point in time t0, i.e.
t = t0, then the resulting strategy pj◦t “stops learning” at time t0 and
predicts using the same distributions for all n ≥ t0. If pj is frozen at
a sequence of time points t = t1, t2, . . ., then the resulting strategy pj◦t
stops learning between t1 and t2, is brought up to date (‘thawed’) again
at t2, stops learning again between t2 and t3, and so on.

2.5.2 Oracles, Fast and Slow Switch Distribution

To apply our theorems below to a specific model class, one first has to
define an oracle [Donoho and Johnstone, 1994] that achieves the desired
cumulative risk. Model selection criteria are examples of oracles, but or-
acles are more powerful as they can additionally use knowledge about
the true distribution p∗. In this chapter, we adopt a broad definition
that gives the oracle full access to p∗:

Definition 2.5 (Oracle). An oracle is a function ω :M∗×X ∗ → A that,
given not only the observed data xn ∈ X ∗, but also the true distribution
p∗ ∈ M∗, selects a prediction strategy ω(p∗, xn). We say that ω is an
oracle relative to (prediction strategy sets) L1,L2, . . . if for all p∗ ∈ M∗,
all n ≥ 0, all xn ∈ X n, ω(p∗, xn) ∈ Ln+1. We let pω(xn+1 | xn) :=
pω(p∗,xn)(xn+1 | xn) denote the prediction strategy associated with oracle
ω.

We will compare the switch distribution to oracles relative to fixed
strategy sets L1 ⊆ L2 ⊆ . . . ⊆ L. In the following two subsections, we
establish minimax cumulative risk rates for two versions of the switch
distribution. For both versions, we let Kn contain frozen versions of the
prediction strategies in Ln. In our theorems, we will define the switch
distributions such that Kn and Ln are subsets of the supports of κn and
λn, respectively, so that the switch distribution can mimic the behaviour
of the oracle. In the slow switch distribution, we set

Kn = {k ◦ t | k ∈ Ln, t ∈ {1, . . . , n}}. (2.17)
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That is, for each k ∈ Ln, the prediction strategies available at time n
include versions of pk frozen at all t ≤ n. Note that for all pk ∈ Ln, the
prediction strategy pk◦n ∈ Kn issues the same prediction for the next
outcome. While in the basic switch distribution Kn = Ln, in the slow
switch distribution |Kn| = n|Ln|. In processing this larger set of predic-
tion strategies, the algorithm described in Section 2.2.5 becomes slower
by a factor of Θ(n) compared to the basic switch distribution, which
motivates the name “slow” — note that “slow” refers to running time
rather than the rate at which switches take place. In Section 2.5.3 we
show that, under weak conditions, the slow switch distribution achieves
the minimax cumulative risk up to factor one, which is optimal.

In Section 2.5.4 we consider the fast switch distribution, in which Kn
contains only a single frozen version of pk for each k ∈ Ln. The freezing
times are chosen the same for all k and occur at exponentially increasing
intervals. In this way we have |Kn| = |Ln|, which is the same as for
the basic switch distribution. Thus the algorithm for the fast switch
distribution is as fast as for the basic switch distribution. However, the
faster running time (compared to the slow switch distribution) comes
at a price: we can only prove that the fast switch distribution achieves
the minimax cumulative risk under somewhat stronger conditions, and
only up to a suboptimal constant factor.

For both the slow and fast switch distributions, we prove cumulative
risk bounds below that depend on the following condition on the prior
distribution used in the definition of psw:

Condition 2.1. The prior π of the switch distribution is defined as in
(2.10) and satisfies

− log µ(m) = O(m),
− log τ(t) = O(log t),
− log κn(k) = O(log n) uniformly for all k ∈ Kn.

This condition expresses that the tails of the distributions τ and κn
are at least of polynomial thickness, and that the set of accessible pre-
diction strategies Kn is at most polynomially large in n, which implies,
if Kn and Ln are related as above, that Ln is also at most polynomially
large. Thus, the number of models we can consider is at most polyno-
mial in n.
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Example 2.4. Suppose that L is countably infinite, e.g. L = Z+. We
may set, for example, Ln = {1, . . . , dnae} for some finite a > 0. Note
that the number of models of a given dimension may be large, as long
as the total number of models equals dnae. Then, in order to satisfy
Condition 2.1, we may make suitable choices for µ and τ and take λn =
λ and κn = κ independent of n, for example as λ(k) = 1/(k(k + 1)) and
κ(k ◦ t) = 1/(k(k + 1) t(t + 1)). Although this satisfies the condition,
the predictions psw(xn+1 | xn) cannot be computed by the algorithm of
Section 2.2.5, which requires the supports of λn and κn to be finite. To
apply the algorithm, we may instead reduce the supports of λn and κn
to Ln and Kn, respectively, and use the sample size dependent prior
suggested in (2.11). The resulting running time for data x1, . . . , xn will
then be of order ∑n

i=1(|Ki| + |Li|); this is O(n2+a) or O(n1+a) for the
slow and fast switch distributions, respectively.

2.5.3 Cumulative Risk Bound for Slow Switch Distribution

The cumulative risk of the slow switch distribution is asymptotically
equal to that of any oracle, provided that the cumulative risk of that
oracle is not too small:

Theorem 2.1 (Cumulative Risk for Slow Switch Distribution). Fix L1 ⊆
L2 ⊆ · · · ⊆ L and define K1,K2, . . . as in (2.17). Let M∗ be standard
IID and suppose the switch distribution satisfies Condition 2.1. Then, for any
oracle ω relative to prediction strategies L1,L2, . . . that satisfies

(log n)2+α

Rm(pω, n)
→ 0 (2.18)

for some α > 0, the worst-case cumulative risk of the switch distribution grows
no faster than the worst-case cumulative risk of ω:

Rm(psw, n) � Rm(pω, n). (2.19)

Note that every model selection criterion such as AIC or BIC that,
at sample size n, is allowed to choose a model in Ln, is a special case
of an oracle relative to L1,L2, . . . Therefore, to make the theorem more
concrete, it is useful to explicitly consider the case in which ω is in fact
a model selection criterion. In that case, the condition (2.18) will be sat-
isfied for all model classesM∗ that are usually called “nonparametric”:
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for such model classes, the minimax risk rmm(n) is typically of order
n−α(log n)β for some 0 < α < 1 and β ∈ R and thus satisfies rmm(n) �
n−γ for some 0 < γ < 1. If ω is a model selection criterion, then (by
Proposition 2.2 below) Rm(pω, n) ≥ Rmm(n) � nrmm(n) � n1−γ, and
(2.18) holds. Hence Theorem 2.1 implies the following:

Corollary 2.1. Suppose M∗ is a standard IID model class such that
(log n)2+α/Rmm(n) → 0 for some positive α, for example if rmm(n) � n−γ

for some γ < 1. Then for any model selection criterion δ : X n−1 → Ln, which
selects only prediction strategies from Ln, the worst-case cumulative risk of
the switch distribution grows no faster than the worst-case cumulative risk of
δ. That is,

Rm(psw, n) � Rm(pδ, n), (2.20)

where pδ is the prediction strategy with predictions pδ(xn)(xn+1 | xn).

In particular, for all model classes that are commonly called “non-
parametric”, the slow switch distribution performs at least as well as,
for example, AIC and leave-one-out cross-validation (LOO). Note how-
ever that AIC and LOO always output a single model index whereas
the switch distribution is allowed to predict using a weighted mixture
of the pk’s. Let us consider in more detail an example where a Bayesian
procedure with a sample size dependent prior achieves the minimax
rate, and Theorem 2.1 implies that switching achieves the minimax rate
as well, based on a prior that does not depend on the sample size.

To give but one example, Ghosal et al. [2008] analyse exponential
families defined on X = [0, 1]. In their set-up, MJ is a log spline den-
sity model for splines of some fixed order q and resolution K, where
J = q + K− 1, which is a (J − 1)-dimensional exponential family. Now
suppose that the true density p∗ belongs to the class of α-smooth func-
tions Cα[0, 1]. Ghosal et al. show that, at sample size n, a Bayes proce-
dure with dimension Jn,α =

⌊
n1/(2α+1)

⌋
and, for each J, a fixed smooth

prior wJ on the canonical parameters forMJ , achieves the optimal rate
of convergence n−α/(2α+1) in Hellinger distance. Since they make the
further assumption that the density of p∗ and all densities in MJ are
uniformly bounded away from 0 and ∞, convergence in Hellinger risk
at rate of order r(n) implies convergence in instantaneous KL risk at
rate of order r(n)2 and vice versa [Barron and Cover, 1991]. Thus, they
also achieve the optimal rate n−2α/(2α+1) in KL risk. Their procedure



2.5. Two Cumulative Risk Bounds 75

is not “adaptive”, since the prior depends on n and on the unknown
smoothness α. Ghosal et al. [2008, page 75] show that, by putting a dis-
crete prior µα on the set of rational-valued smoothnesses α ∈ Q+, they
can achieve the optimal rate up to a logarithmic factor. They write: “we
believe that the logarithmic factor is not a defect of our proof, but con-
nected to this prior. . . the logarithmic factor can be removed by using
special sample-size dependent priors λn,α (depending on n) that put less
mass on small models”. Note that, if the belief of Ghosal et al. is correct,
then sample-size independent priors also lead to an extra logarithmic
factor in the cumulative KL rate of the Bayesian procedure. This may be
viewed as an instance of the catch-up phenomenon. Indeed, if we use
the switch distribution, we can achieve the cumulative minimax rate
without extra logarithmic factor: we set L = Z+, define the predictive
distribution pJ based on the same prior wJ as Ghosal et al. and we use
the prior λn(J) = λ(J) = 1/J(J + 1) and the corresponding κ(J) as
in the beginning of Example 2.4, and any suitable µ and τ such that
Condition 2.1 holds. By Theorem 2.1, the switch distribution based on
this prior adaptively achieves the optimal rate n1/(2α+1) in the cumu-
lative sense. Here we applied Theorem 2.1 with the oracle set to the
procedure of Ghosal et al. with the sample size-dependent priors λn,α,
that are needed for Bayesian model averaging to achieve the minimax
instantaneous rate; but the switch distribution itself avoids the use of
any sample size-dependent priors to achieve that rate.

2.5.3.1 Remarks

1. Interestingly, the theorem and corollary also apply in the “mis-
specified” case in which M∗ contains some p∗ that cannot be ap-
proximated arbitrarily well by the list of models M1,M2, . . ., i.e. if
infk∈L,p∈Mk D(p∗‖p) > 0. In that case, the cumulative risk of any
oracle, including any model selection method, will increase, to first
order, as αn for some α > 0, and the cumulative risk of the switch
distribution will increase as αn for the α achieved by the best oracle.

2. Condition 2.1 implies that |Kn| ≤ na for some fixed a > 0. Since
for the slow switch distribution |Ln| = |Kn|/n, this implies that the
model selection criterion δ mentioned in Corollary 2.2 must output
a model with index in a set with grows maximally polynomially in
n. While it may grow superlinearly, it cannot grow exponentially,
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which precludes application of the corollary in the general variable
selection problem, where, at time n, one wants to select between a
number of models that is exponential in n. This is discussed further
in the Section 2.8.5.

3. The theorem is asymptotic, but by keeping track of constants one
can also show that

Rm(psw, n) ≤ 2Rm(pω, n) + c1(log n)2+α + c2,

where the constants c1 and c2 depend on the prior. Thus, in this
sense the cumulative risk of the switch distribution is close to that of
the oracle for every n.

2.5.4 Cumulative Risk Bound for Fast Switch Distribution

To get minimax convergence rates for the fast switch distribution, we
need to impose the following condition on the model class:

Condition 2.2. Relative toM∗, the minimax risk rmm does not decrease
too fast in the sense that, for some nondecreasing, strictly positive func-
tion h0 and constants 0 < c1 ≤ c2 and 0 ≤ γ < 1, it satisfies

c1h0(n) � nγrmm(n) � c2h0(n). (2.21)

As can be seen by inspecting the proof of Theorem 2.2 below, this
condition implies condition (2.18) and is therefore stronger. Yet, it is
still weak enough to be satisfied by all model classes that are usu-
ally called nonparametric, including the regression setting discussed
in Section 2.5.5 below. Note that it allows cases such as rmm(n) =
Θ(n−α(log n)β) for α < 1, β ∈ R. (For β < 0, take γ > α and let
h0(n) = Θ(nγ−α(log n)β).) The smaller γ, the better the bound in Theo-
rem 2.2 below.

If Condition 2.2 holds, we can establish minimax cumulative risk
rates up to a constant factor c determined by the constants c1 and c2
and γ. The key here is the following relation between cumulative and
instantaneous risk, proved in Section 2.9.3:

Proposition 2.2. Suppose thatM∗ is a standard IID model class. Then

rmm(n) � n−1Rmm(n) ≤ n−1
n

∑
i=1

rmm(i).
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Furthermore, if M∗ satisfies Condition 2.2 with constants c1, c2 and γ, and
rmm(n) < ∞ for all n, then also

n−1
n

∑
i=1

rmm(i) � c2

c1

1
1− γ

rmm(n).

Based on this proposition, in Section 2.9.4 we prove the following
theorem:

Theorem 2.2 (Cumulative Risk for Fast Switch Distribution). Suppose
M∗ is a standard IID model class that satisfies Condition 2.2 with constants
c1, c2 and γ. Suppose that there exists an oracle ω relative to sets of prediction
strategies L1 ⊆ L2 ⊆ · · · ⊆ L that achieves the minimax risk up to a non-
decreasing function f : Z+ → [1, ∞), i.e. rm(pω, n) � f (n) rmm(n), and is
such that rm(pω, n) < ∞ for all n. Let psw be the switch distribution with a
prior that satisfies Condition 2.1, and with K1,K2, . . . defined as

Kn = {k ◦ t | k ∈ Ln}

for an infinite increasing sequence t = t1, t2, . . . with t1 = 1 and tj ≥
a exp(bj) for positive constants a and b. Then the switch distribution achieves
the minimax cumulative risk up to factor c f (n) for a constant c. Specifically,

Rm(psw, n) � c f (n) Rmm(n),

with c given by

c =
(

c2

c1

)2

· 1
1− γ

sup
j≥1

(
tj+1 − 1

tj

)γ

. (2.22)

In applications we can take, for example, tj = 2j−1, or, to get slightly
better bounds, we may take tj = max{j, d(1 + ε)j−1e} for some small
ε > 0, so that the rightmost factor in (2.22) is bounded by (1 + ε)γ.
Analogously to Corollary 2.1, Theorem 2.2 implies the following:

Corollary 2.2. SupposeM∗ is a standard IID model class that satisfies Con-
dition 2.2. Let the fast switch distribution be as in Theorem 2.2. If there
exists any model selection criterion δ : X n−1 → Ln at all that achieves the
minimax risk up to a factor c3, and δ has finite worst-case risk for all n, then
the fast switch distribution achieves the minimax cumulative risk up to factor
c′ = c · c3, where c is as in (2.22), i.e.

Rm(psw, n) � c′Rmm(n).
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Thus, in typical nonparametric settings in which AIC or leave-one-
out cross-validation achieve the minimax risk, the fast switch distribu-
tion also achieves this risk in the cumulative sense, albeit only up to a
factor c′, which may be larger than 1. Remarks analogous to remarks 1
through 3 below Corollary 2.1 apply to Corollary 2.2 as well.

2.5.5 Example: Gaussian Regression with Random Design

We now show that switching achieves the minimax cumulative risk in
an important special case: Gaussian regression with random design
relative to regression functions in certain Besov spaces. We do this by
applying Theorems 2.1 and 2.2 to a result of Baraud [2002]. Readers
who are not familiar with adaptive estimation theory may want to skip
this section and focus on our practical regression experiments in Sec-
tion 2.7 instead.

Let (X1, Y1), (X2, Y2), . . . be independent, identically distributed
pairs of random variables, with Xi taking values in A ⊆ Rd for some
d > 0 and Yi real-valued. We assume that the explanatory variables Xi
are all distributed according to a (possibly unknown) design distribution
and that Yi depends on Xi as

Yi = f ∗(Xi) + ξi,

where f ∗ is an unknown regression function from a set F ∗ of candidate
functions, and the random variables ξ1, ξ2, . . . are distributed according
to an error distribution, which we shall assume to be Gaussian with zero
mean and known variance σ2.

The set of candidate regression functions F ∗ is approximated by a
finite or countably infinite number of linear spaces F0,F1, . . . of func-
tions from A to R. Here each Fk contains all linear combinations of the
members of a finite orthonormal basis

Sk = {φ(k,1), . . . , φ(k,mk)},

which contains mk linearly independent functions from A to R.
In one of his results, Baraud [2002] specializes this setting as fol-

lows: he lets A = [0, 1] and assumes that the design distribution has
some density p∗X that is bounded away from 0 and ∞. For some r ≥ 1,
he lets F1,F2, . . . each consist of piecewise polynomials of degree less
than r on regular grids, where the grid width of functions in Fk is 2−k.
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In addition, we let F0 = {0} contain only the identically-0 function. Ba-
raud defines Besov balls Bα,2,∞(R) of radius R in a certain Besov space
that depends on α (see [Yang and Barron, 1999, DeVore and Lorentz,
1993] for the definition of Besov spaces). His Theorem 2.1 now implies
that for this choice of F0,F1, . . ., under certain assumptions, there exists
an adaptive estimator that does not depend on R or α and achieves the
minimax quadratic risk relative to

F ∗ = Bα,2,∞(R)

for any fixed, but unknown R > 0 and α ∈ (0, r). As shown by Yang
and Barron [1999, page 1591], this minimax risk is of order n−2α/(2α+1).
Baraud’s estimator may be interpreted as first selecting, based on the
data, a “model” Fk̂ from the list F0,F1, . . ., and then estimating the
parameters of Fk̂ using the least-squares estimator. It always satisfies
k̂ ≤ Jn for some Jn ≤ log n, but note that the dimensionality of any
model Fk is exponential in k. For further details, we refer to [Baraud,
2002].

To apply our results to this setting, we need to recast it as a density
estimation problem. This is done in the standard manner. For each k,
we may parametrise the elements of Fk by θ = (θ1, . . . , θmk) ∈ Rmk , such
that fθ ∈ Fk is

fθ(Xi) =
mk

∑
j=1

θjφ(k,j)(Xi).

We then define a corresponding modelMk as the family of conditional
distributions pθ(Yi | Xi) that are normal distributions with mean fθ(Xi)
and variance σ2. The least squares estimator in the original setting is
equivalent to the maximum likelihood estimator in the density estima-
tion setting. Hence the prediction strategy for modelMk is defined by
pk(Yn+1 | xn+1, yn) := pθ̂k(xn,yn)(Yn+1 | xn+1), where θ̂k(xn, yn) ∈ Rmk is
the ML estimator within Mk. (The ML estimator may not be uniquely
defined for the first few outcomes, but this can be addressed by using
any default prediction strategy p0 that guarantees a finite risk. Since
the ML estimator is uniquely defined almost surely for n > mk, this
does not change the asymptotics. We omit the details.) From this per-
spective Baraud’s model selection criterion becomes equal to AIC on a
subset F1, . . . ,FJn of the models, except that it selects F0 if the norm of
the maximum likelihood estimate exceeds a certain threshold.
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For regression with independent Gaussian errors, the expected KL
divergence is proportional to the expected quadratic (L2) error:

Ep∗X D(p∗(Y | X)‖pθ(Y | X)) =
1

2σ2 Ep∗X ( fθ(X)− f ∗(X))2.

Therefore, the minimax instantaneous quadratic risk is also propor-
tional to the minimax KL risk of the corresponding prediction strategy,
and the same holds for the cumulative risks. By Proposition 2.2 this
cumulative minimax risk is of order n · n−2α/(2α+1) = n1/(2α+1), and is
achieved by Baraud’s adaptive least-squares estimator. The correspond-
ing adaptive density estimator thus achieves the same cumulative KL
risk, up to a constant factor.

As formulated, Theorem 2.1 cannot be applied to conditional den-
sities, but we can extend it by deconditioning as follows: for each
pθ(Y|X), we define the joint density pθ(X, Y) := pθ(Y|X)p∗X(X). The
predictions of the switch distribution for the joint densities then also
take the form psw(X, Y) = psw(Y|X)p∗X(X), where psw(Y|X) does
not depend on p∗X. The theorem can then be applied to the mod-
els M′

0,M′
1, . . . of the joint densities. Since, for all joint densities p,

Ep∗X D(p∗(Y|X)‖p(Y|X)) = D(p∗(X, Y)‖p(X, Y)), Theorem 2.1 also ap-
plies to the modelsM1,M2, . . . consisting of the conditional densities,
as long as we can equip the switch distribution with a prior for which
Condition 2.1 holds.

Since the model Fk chosen by Baraud’s adaptive estimator at sample
size n always satisfies k ≤ log n [Baraud, 2002, Eq. 17] we may simply
take Ln = {0, . . . , log n}, Kn as in (2.17) and the prior π defined as
in (2.11). Then Theorem 2.1 implies that the slow switch distribution
achieves the same cumulative KL risk n1/(2α+1) as Baraud’s adaptive es-
timator, up to asymptotically the same factor. The minimax cumulative
KL risk relative to the Besov balls Bα,2,∞(R) is also of order n1/(2α+1)

[Yang and Barron, 1999, page 1592]. Therefore, the switch distribution
achieves the minimax cumulative KL risk in this setting. By defining
Kn as in Theorem 2.2 and using again a uniform prior on Kn, we can
also verify that the conditions of Theorem 2.2 hold, and hence that the
fast switch distribution also achieves the minimax cumulative KL risk.

We stress that this is just one particular instance of an adaptive es-
timator to which our theorem can be applied. For example, Baraud’s
estimator applied to another collection of Fk based on wavelets leads to
the minimax quadratic risk over some Besov balls Bα,l,∞(R) with l ≥ 1;
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Birgé [2004] extends these results to yet more general settings using ro-
bust rather than least-squares estimators; in all these cases, Theorem 2.1
can be used to show that the slow and fast switch distribution, based
on the same estimators, achieve the minimax cumulative KL risk.

2.6 Consistency

In Section 2.3.3 we have introduced the model selection criterion δsw,
which selects the model from L with highest posterior probability un-
der the switch distribution. It is natural to ask whether δsw is consis-
tent, in the sense that it asymptotically selects the true modelMk∗ with
probability one if the data X∞ are actually distributed according to a
distribution inMk∗ .

Ordinary Bayes factor model selection is consistent if the prediction
strategies associated with the models are also Bayesian, and if the mod-
els are sufficiently distinct in the sense that the corresponding predic-
tion strategies are mutually singular [Barron et al., 1998]. (Two distribu-
tions p1 and p2 on X∞ are mutually singular if there exists a measurable
set A ⊆ X∞ such that p1(A) = 1 and p2(A) = 0.) To prove consistency
of δsw we require similar conditions, except that the mutual singular-
ity requirement is made somewhat stricter; this is discussed below the
theorem.

Theorem 2.3 (Consistency). Let support(λ1) ⊆ support(λ2) ⊆ · · · and
assume L =

⋃∞
n=1 support(λn). For all k ∈ L, let pk be a Bayesian predic-

tion strategy relative to some parametric model Mk = {pθ | θ ∈ Θk} with
corresponding prior density wk. Let psw be the switch distribution with prior
π as in (2.10). Suppose the following conditions hold:

1. If k, k′ ∈ support(λn+1), then pk(X∞ | Xn) and pk′(X∞ | Xn) are mutu-
ally singular with probability one if Xn is distributed according to either pk
or pk′ .

2. Let Bk
n = {((t1, k1), . . . , (tm, km)) ∈ S | tm ≤ n + 1, km = k} denote the

set of switching parameters that select pk at their last switch, which also
occurs no later than n + 1. For all k ∈ L, there should exist an nk ≥ 0
such that

∑
s∈Bk

nk

π(s)qs(Xnk) > 0 (pk-a.s.) (2.23)
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Then, for all k∗ ∈ L, for all θ∗ ∈ Θk∗ except for a subset of Θk∗ of wk∗-measure
0, the posterior distribution of the switch distribution on Kn+1 satisfies

psw(Kn+1 = k∗ | Xn) n→∞−→ 1 with pθ∗-probability 1, (2.24)

which implies consistency of δsw as defined in (2.14).

For k ∈ L such that λ1(k) is positive, (2.23) in the second require-
ment is trivially satisfied with nk = 0. This is the case case for all
k ∈ L if the support of λn does not depend on n. For nk > 0, the
second requirement expresses that if λ1(k) = 0, but λnk+1(k) > 0, then
there should be some way for the switch distribution to switch to k
without giving zero density to the data. This requirement is already
satisfied if there is a single prediction strategy pk with λ1(k) > 0 such
that pk(xn+1 | xn) > 0 for all xn, xn+1.

Thus the requirements of Theorem 2.3 are primarily about the pre-
diction strategies pk indexed by L; the second condition is the only
constraint on the prediction strategies indexed by K. As such, the con-
sistency theorem applies to the basic version of the switch distribution,
as well as to the slow and fast switch distributions of Section 2.5. It
is even more widely applicable, as, in contrast to our risk rate results
above, it does not require i.i.d. data.

Requirement 1 deserves some further discussion. We first consider
ordinary mutual singularity. Consider two Bayesian prediction strate-
gies p1 and p2 with priors w1 and w2 on parameter spaces Θ1 and Θ2 of
the corresponding models M1 and M2. Then p1(X∞) and p2(X∞) are
mutually singular if the models contain stationary ergodic distributions
and the induced priors on the space of distributions are mutually singu-
lar. This is the case, for example, if the elements ofM1 andM2 are i.i.d.
or Markov distributions, and Θ1 and Θ2 are of different dimensionality
with priors w1 and w2 that are absolutely continuous with respect to
Lebesgue measure [Barron et al., 1998, Dawid, 1992b]. Note that this
includes the case of nested modelsM1 ⊂ M2 that are parametrised in
the same way (i.e. Θ1 ⊂ Θ2), because then the difference in dimension
ensures that w2(Θ1) = 0.

Thus the requirement that p1(X∞) and p2(X∞) are mutually sin-
gular is quite weak. However, we require mutual singularity to hold
conditional on almost all initial sequences of outcomes xn. If p1(Xn)
and p2(Xn) are equivalent (i.e. either distribution is absolutely contin-
uous with respect to the other), then the posteriors w1(θ | Xn) and
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w2(θ | Xn) are almost surely well defined and mutual singularity of
the priors w1(θ) and w2(θ) implies mutual singularity of the posteriors,
such that Requirement 1 is satisfied under the same weak conditions as
were given for mutual singularity of p1(X∞) and p2(X∞). If they are
not equivalent, then it matters how p1(Xn+1 | xn) and p2(Xn+1 | xn) are
defined when p1(xn) = 0 or p2(xn) = 0. If for all xn this is done such
that p1(X∞ | xn) and p2(X∞ | xn) are mutually singular, then again
Requirement 1 is satisfied under the conditions above.

Thus, the consistency theorem applies in many of the situations
where Bayes factor model selection is used [Kass and Raftery, 1995],
including, for example, learning of the number of components of a
mixture distribution, Markov order estimation (as in the introductory
example), histogram density estimation with fixed bin widths (see be-
low) and Gaussian regression with random design. In all these cases,
for k 6= k′, the models Mk and Mk′ either have empty intersection or
are nested but of different dimensionality, which is sufficient for Re-
quirement 1.

2.6.1 Combining Risk Results and Consistency

Although both our cumulative risk theorems and our consistency the-
orem are quite general, there is one difficulty in applying both at the
same time. The risk theorems allow us to piggyback on existing re-
sults where an estimator is proved to achieve minimax risk. However,
these estimators are often not Bayesian, so that the requirement of The-
orem 2.3 is not satisfied. There are three obvious methods to bridge
this gap: first, in the current framework the prediction strategies in
K are defined to be frozen versions of the prediction strategies in L;
thus K necessarily contains (frozen versions of) Bayesian estimators if
consistency is to be established. However the framework can be relaxed
somewhat, by allowing K to consist of (frozen versions of) non-Bayesian
estimators, while L remains unchanged. A second solution would be
to generalise Theorem 2.3 to other estimators (an initial such generali-
sation is provided by [Van Erven et al., 2008a]).

In the following example we take a third approach: we show that
the risk of the Bayesian estimator must be so close to the risk of an
estimator that is known to achieve minimax risk, that it must achieve
minimax risk itself. In the regression setting of the example above,
the Bayesian predictions based on Jeffreys’ prior are almost identical
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to ML predictions (Section 2.5.5). In similar fashion it is possible to
establish minimax cumulative risk as well as consistency for histogram
density estimation, where the models Mk are regular, fixed-bin width
histograms (as in, e.g., [Rissanen et al., 1992]).

Example 2.5. We now show that both our results on achieving the min-
imax cumulative risk as well as our consistency theorem can be ap-
plied to Gaussian linear regression with random i.i.d. design. We con-
sider Gaussian models M0,M1, . . . based on linear combinations of
orthonormal bases S0, S1, . . . as described in Section 2.5.5, where each
modelMk is represented by a Bayesian estimator pJP

k based on Jeffreys’
prior. The result holds for general bases S0, S1, . . ., not just those con-
sidered by Baraud [2002].

Let φk(x) = (φ(k,1)(x), . . . , φ(k,mk)(x)) and let Φk =
(φk(x1)T, . . . , φk(xn)T)T be the n × mk design matrix (see, e.g.
[Grünwald, 2007, page 357]). The Bayesian prediction strategies
pJP

k are similar to the prediction strategies pk(Yn+1 | xn+1, yn) based
on the ML estimator θ̂k(xn, yn), as defined in Section 2.5.5. In both
cases the predictive distribution is Gaussian with the same mean
φk(xn+1)T θ̂k(xn, yn). But whereas the variance for the ML estimator
pk is σ2, the variance of pJP

k is σ2(1 + φk(xn+1)T(ΦT
k Φk)−1φ(xn+1)). As

with the ML estimator, pJP
k is not uniquely defined for the first few

outcomes, for which we have to substitute a default strategy p0 that
guarantees a finite risk. If the design matrix is almost surely invertible,
as is implied by the assumption in Baraud’s result that p∗X has a density
relative to Lebesgue measure, this does not change the asymptotics.

Theorem 2.3 extends to conditional densities by deconditioning as
in Section 2.5.5. Its requirements are now satisfied: mutual singular-
ity follows from the i.i.d. setup, and because all predictive densities
are positive, Requirement 2 is also trivially satisfied. We thus obtain
consistency of the switch distribution for regression with pJP

k .
At the same time, switching based on pJP

k achieves the minimax risk
in the setting of Baraud that we described in Section 2.5.5. In that sec-
tion, we already indicated that switching with ML-based pk achieves the
minimax risk. Minimaxity of switching based on pJP

k follows because of
the following fact: let (X1, Y1), (X2, Y2), . . . be as specified in the begin-
ning of Section 2.5.5. Then for any k and n such that θ̂k(Xn, Yn) exists
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almost surely, the KL risk of pJP
k is no larger than the risk of the pk:

r(p∗, pJP
k , n + 1) ≤ r(p∗, pk, n + 1).

This follows from calculations based on the relations between KL diver-
gence and squared error as in [Grünwald, 2007, Chapter 12]. We omit
the details.

2.7 Simulation Study

In order to test the switch distribution as a general tool for model selec-
tion and prediction, we consider sequential polynomial regression on
simulated data. The general setup is as in Section 2.5.5; but instead of
Baraud’s instantiation we use A = [−1, 1] and Sk = {x0, x1, . . . , xk}, Fk
being the corresponding space of linear combinations of Sk, i.e. the set
of all k-degree polynomials, and Mk being the corresponding condi-
tional densities. We take a fixed variance σ2 = 1. As in Example 2.5, we
associate Bayesian prediction strategies p0, p1, . . . with the models, with
Jeffreys’ prior on the model parameters.

We consider polynomials of order 0 up to a fixed maximum order
K. Six methods are evaluated: C = {Fast switch, Slow switch, Basic
switch, Bayes, AIC, BIC}. With each method, we associate a model
selection criterion and an estimator.

The switch distribution is defined as in Section 2.2.2; the associ-
ated model selection criterion is given by (2.14). We used Ln = L =
{0, 1, . . . , K} and three different definitions of Kn: for the basic switch
distribution we have Kn = L; for the slow and fast switch distribu-
tions, Kn is defined as in (2.17) and Theorem 2.2, respectively. In case
of the fast switch distribution, the prediction strategies were frozen at
each distinct value of

⌊
1.1i
⌋

for i = 0, 1, 2, . . . The priors are chosen as
in (2.11), where the supports of λn and κn are Ln and Kn, respectively.

The Bayesian method uses a uniform prior on the models; the model
that maximises the a posteriori probability is selected. Prediction pro-
ceeds using model averaging, where the models are weighted according
to their posterior probabilities.

The AIC and BIC criteria associate values vk with the order k poly-
nomial models; for AIC this is vk = − ln p̂k + (k + 1) and for BIC
vk = − ln p̂k + 1

2 (k + 1) ln n, where p̂k = max{p(yn | xn) | p ∈ Mk}
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is the maximum likelihood of the data using the order k polynomial
model. The model k selected by AIC or BIC is the one that minimises
vk; while for AIC and BIC prediction is often done using the selected
model only, to obtain competitive results it is necessary to use a mix-
ture of p0, . . . , pK, as proposed by Akaike [1979]. Thus, for AIC and
BIC the predictions {pk(Yn+1|xn+1, yn) | k ∈ Ln} are weighted using
wk = exp(−vk)/ ∑K

k=0 exp(−vk).
We have subjected these model selection criteria to a simulation ex-

periment which is most easily expressed in the form of an algorithm.
As input it takes a “true” regression function f ∗ : [−1, 1] → R, the
number of outcomes N to be predicted, the maximal model order K
and the number of runs R.

Algorithm 2.2 Test( f ∗, N, K, R)
1 for r = 1, . . . , R do
2 for n = 1, . . . , N do
3 for c ∈ C do
4 Ask criterion c to select a model k ∈ L
5 Sample xn uniformly at random from [−1, 1].
6 Ask criterion c to form prediction p(Yn | xn, yn−1).
7 Sample yn from a normal density with mean f ∗(xn) and

variance 1.
8 Accumulate individual sequence redundancy

log2

(
ϕ(yn − f ∗(xn))
p (yn | xn, yn−1)

)
, where ϕ is the standard

normal density
9 end for

10 end for
11 end for

By subsequently averaging the results from the R runs, we obtain es-
timates of the mean selected model and of the cumulative risk as a
function of the number of observations for each method.

We ran the testing algorithm with the following two sets of param-
eters:

1. f ∗(x) = 1.5x3 − 0.96x; R = 200, N = 1000 and K = 6.

2. f ∗(x) = 2 if x ∈ [− 1
2 , 1

2 ] and −2 otherwise; R = 50, N = 600 and
K = 35.
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(For the slow switch distribution we used a reduced value of N, in
order to obtain a running time comparable to that of the other criteria.)
In the first experiment, the generating distribution is in M3 (the set
of third degree polynomials with standard normal noise), so we are
in a parametric scenario where consistency is relevant. In the second
experiment, the true distribution is not in any of the models, but it
can be arbitrarily well approximated by polynomials, a prototypical
nonparametric scenario.

Results The left column of Figure 2.3 shows the results for the first
experiment, the right column for the second experiment. The first row
shows an example data set, together with f ∗ and an example fit for one
or two reasonable models. The second row shows the average index
of the selected model for each criterion. The third row shows the es-
timated cumulative risk (measured in bits), with an indication of the
standard error of the estimate (standard deviation of the individual
runs divided by

√
R).

In the parametric case, we would expect Bayes, BIC and all versions
of the switch distribution to consistently select a degree of 3 for suffi-
ciently large sample sizes. This is confirmed by the results, but note
in Figure 2.3c that Bayes and BIC appear to require a larger sample
on average before detecting that M3 is true. Also, the slow switch
distribution seems to select models of a slightly lower order than the
two fast varieties of switching. Finally, the AIC criterion is by far the
most responsive: it is substantially quicker to determine that at least a
degree 3 polynomial is required to obtain the best predictions; on the
other hand even after a lot of data have become available, AIC often
selects a polynomial order larger than three, as it is inconsistent. In Fig-
ure 2.3e we see that generally, the quicker a method is to detect when
the third degree polynomial model starts making the best predictions,
the smaller its cumulative risk. Thus, AIC is a clear winner, followed
by the fast and basic switch distributions, then the slow switch distri-
bution, and finally BIC and Bayes. The more conservative behaviour of
the latter two methods is explained by the occurrence of the catch-up
phenomenon. Interestingly, over roughly the first 100 outcomes AIC
actually performs worst: it starts selecting higher order models even be-
fore the instantaneous risk for those models drops below that for lower
order models. Possibly this effect can be mitigated using a small sample
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Figure 2.3: Sequential polynomial regression results



2.7. Simulation Study 89

correction for AIC, such as in AICc [Burnham and Anderson, 2002].
In this parametric experiment, eventually all consistent methods se-

lectM3, so their instantaneous risks converge to the instantaneous risk
of p3. Thus, the difference in cumulative risk for these methods will
converge to a constant. In fact, by n = 1000 the lines for each method
already appear to run more or less parallel. Empirically, AIC seems to
follow the same trend; it is unclear whether its cumulative risk has the
same asymptotics.

In the nonparametric case (the right column of Figure 2.3), we ob-
serve an even greater discrepancy in the model order selected by BIC
and Bayes compared to the methods that do not suffer from the catch-
up phenomenon. As in the parametric case, AIC initially selects models
of an overly high order, for which it is punished slightly in terms of cu-
mulative risk. From n = 300 onwards AIC and the switch distributions
seem to be in approximate agreement on the best model order, whereas
Bayes and BIC lag behind dramatically. As a result, the differences in
cumulative risk for these methods are substantially larger than in the
parametric experiment.

Interpretation The experiments confirm the theoretical results of the
chapter: (1) all considered methods except AIC are consistent, (2) BIC
and Bayes suffer from the catch-up phenomenon and as such issue infe-
rior predictions. The predictive performance of the switch distribution,
at least in its fast and basic incarnations, is competitive with AIC.

Note that the cumulative risk for all methods is actually quite small
in these particular experiments: only about 20 bits in the parametric
case. Because of this, the size of Kn, which determines the overhead of
switching, can have a substantial effect on the results. This is proba-
bly why the slow switch distribution appears to be more “sluggish” in
switching to higher order models than the fast and basic switch distri-
butions: since Kn contains substantially more prediction strategies for
the slow switch distribution than for the other two variants, the prior
probability κn(k) = 1/|Kn| of switching to a particular estimator pk will
be correspondingly lower.

This is clearly an issue that deserves careful consideration in prac-
tice if the cumulative risk is very small. Whether or not it is small
depends very much on the setting; recall that in the Markov chain ex-
ample in the introduction a single switch yielded a reduction in code
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length of about 7 000 bits. Compared to this the overhead induced by a
couple of switches is negligible. Even when the cumulative risk is very
small, it still cannot do much harm to use the switch distribution; for
the prior used in these experiments the cumulative risk of the switch
distribution is at most one bit more than that of Bayes (see Example 2.3).

2.8 Discussion

In this section we put our results in a broader perspective. First we
discuss the AIC-BIC dilemma in more detail. Then we consider two al-
ternative criteria of predictive performance that one might be interested
in: first, how well does the switch distribution predict when only the
model with highest posterior probability is used for prediction, instead
of a mixture? Second, our analysis is in terms of the minimax cumula-
tive risk; to what extent do our results carry over to the instantaneous
risk setting? Then, since most of our results about cumulative risk are
for the nonparametric setting, we compare our approach to the non-
parametric Bayesian methods that have proved to be quite effective in
recent years. Finally, we indicate a number of areas where our results
might be strengthened in future research.

2.8.1 The AIC-BIC Dilemma

Over the last 25 years or so, the question of whether to base model se-
lection on AIC or BIC type methods has received a lot of attention in
the theoretical and applied statistics literature, as well as in fields such
as psychology and biology, where model selection plays an important
role [Speed and Yu, 1993, Hansen and Yu, 2001, 2002, Barron et al., 1994,
Forster, 2001, de Luna and Skouras, 2003, Sober, 2004]. It has even been
suggested that, since these two types of methods have been designed
with different goals in mind (optimal prediction vs “truth hunting”), it
may simply be the case that no procedures exist that combine the best
of both types of approaches [Sober, 2004]. Still, for practitioners, the
incompatibility of the two methods remains worrying. Consider, for
example, a psychologist who wants to determine how some response Y
(e.g., reaction times in a memory experiment) depends on input vari-
ables X and Z (e.g. gender and age). He models Y as a sum of a linear
function of X and a polynomial of Z. Now according to some statisti-
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cians, we are supposed to tell the psychologist: if you use an AIC-type
method, you need fewer data to learn a model that predicts well. But,
in case Y is independent of X, then you may not find out, even if you
do have a lot of data. On the other hand, if you use a BIC-type method,
the situation is reversed. Thus, you should first determine what your
goal is — finding out about independency or prediction — and only
then can I tell you what method to use. The problem with this is that
in practice, the psychologist’s main goal is often neither predictive op-
timality nor consistency; so he cannot tell. He just wants a method
that gives useful insight into the structures underlying the data, and he
wants to use this insight to guide his further research. To gain confi-
dence that the chosen method will do a good job towards this inherently
vague goal, he would like the method to satisfy as many sanity checks
as possible. Thus, consistency and predictive optimality play the role
of sanity checks rather than direct goals, and we feel that if a method
exists that satisfies both checks, then this may be a good method for the
practitioner to use.

Now, if the AIC-BIC dilemma is interpreted as a conflict between
consistency and optimal sequential prediction, then cumulative risk
is a natural and often considered performance criterion Haussler and
Opper [1997], Rissanen et al. [1992], Barron [1998], Yang and Barron
[1999] and Poland and Hutter [2005], and we can reasonably claim
that our results solve the dilemma. However it can also be interpreted
as a dichotomy between model selection for truth finding and model
selection-based (nonsequential) estimation. In that case we do leave a
number of loose ends that are discussed in Sections 2.8.2 and 2.8.3.

2.8.1.1 Earlier Approaches

Several other authors have provided procedures which have been de-
signed to behave like AIC whenever AIC is better, and like BIC when-
ever BIC is better; and which empirically seem to do so. These in-
clude model meta-selection [de Luna and Skouras, 2003, Clarke, 1997],
and Hansen and Yu’s gMDL version of MDL regression [Hansen and
Yu, 2001]; also the “mongrel” procedure of Wong and Clarke [2004]
has been designed to improve on Bayesian model averaging for small
samples. Compared to these other methods, ours seems to be the first
that provably is both consistent and minimax optimal in terms of cu-
mulative risk, for some classes M∗. The only other procedure that we
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know of for which somewhat related results have been shown, is a ver-
sion of cross-validation proposed by Yang [2007a] to select between AIC
and BIC in regression problems. Yang shows that a particular form of
cross-validation will asymptotically select AIC in case the use of AIC
leads to better predictions, and BIC in the case that BIC leads to bet-
ter predictions. In contrast to Yang, we use a single paradigm rather
than a mix of several ones (such as AIC, BIC and cross-validation) —
essentially our paradigm is just that of universal individual-sequence
prediction, or equivalently, the individual-sequence version of predic-
tive MDL, or again equivalently, Dawid’s prequential analysis applied
to the log scoring rule. Indeed, our work has been heavily inspired by
prequential ideas. In [Dawid, 1992a] it is already suggested, without
giving any details, that model selection should be based on the tran-
sient behaviours in terms of sequential prediction of the estimators for
the models: one should select the model that is optimal at the given
sample size, and this will change as more data become available.

2.8.2 Model Selection vs Model Averaging

In model selection, we are usually given a batch sample at some fixed
sample size n and have to choose one (or a few) models. For example, a
scientist such as the psychologist above may ask a statistician to advise
on a good model. Suppose the statistician advises to use a particular
model. The scientist and his colleagues may then adopt this model as a
working hypothesis, and use it to make predictions about future data,
using some estimator defined relative to the chosen model. As it is
unrealistic to switch between models with each new observation, they
will tend to use the same model for a while.

If selecting a low-risk model is the goal, then two issues crop up.
First, our risk convergence results only apply when predictions are al-
lowed to be a mixture of the predictions of the models, but this may be
impractical. One may therefore prefer a model selection criterion that
uses the predictions of a single model only. It is quite possible that an
analogue of the results in Section 2.5 still holds in this situation; estab-
lishing whether it does is posed as an open problem in Section 2.8.5.

Second, in the model selection setting, the instantaneous risk at sam-
ple size n, rather than the cumulative risk, is the relevant quantity, since
it will determine the quality of the scientist’s predictions for several fu-
ture samples xn+1, xn+2, . . . In the following subsection we discuss to
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what extent our results transfer to instantaneous risk.

2.8.3 Cumulative vs Instantaneous Risk

In the parametric case, based on Theorem 2.3 and the discussion in Sec-
tion 2.4.4, the switch distribution is consistent under mild conditions,
and achieves the minimax cumulative risk. However, an intriguing re-
sult was obtained by Yang [2005], who shows that there are scenarios
in linear regression where no model selection or model combination
criterion can be both consistent and achieve the minimax rate of con-
vergence; Yang [2007b, Theorem 3] gives an explicit lower bound on the
factor by which consistent model selection procedures must miss the
minimax rate in a simple linear regression problem. In other words,
there are parametric scenarios where it is possible, quite straightfor-
ward even, to achieve minimax cumulative risk while retaining con-
sistency, whereas minimax instantaneous risk is impossible to achieve
without losing consistency. In such cases, clearly, the switch distribu-
tion does not achieve minimax instantaneous risk.

Let us nevertheless compare instantaneous risk to cumulative risk
for fixed p∗. As shown in [Grünwald, 2007], instantaneous risk con-
vergence is a stronger notion than cumulative risk convergence: for
example, suppose we are in the nonparametric setting and the instanta-
neous risk satisfies r(p∗, p, n) � cn−γ, then one can easily verify that the
average cumulative risk satisfies n−1R(p∗, p, n) � cn−γ. The converse
does not hold: clearly, the instantaneous risk may be larger than the
average cumulative risk for some n. However [Grünwald, 2007, Theo-
rem 15.2, page 473], the gap between any two n and n′ > n at which
the risk of p exceeds cn−γ must grow without bound as n increases.
Thus, small cumulative risk implies small instantaneous risk at “most”
sample sizes.

Perhaps more significantly, in the nonparametric case a simple mod-
ification of the switch distribution actually achieves minimax instanta-
neous risk, whenever the switch distribution itself achieves the mini-
max cumulative risk. Let psw be the fast or the slow switch distribution
of Sections 2.5.3 and 2.5.4, and define the time average of the switch
distribution as

p̄sw(Xn = x, Kn = k | xn−1) :=
1
n

n

∑
i=1

psw(Xi = x, Ki = k | xi−1),



94 Chapter 2. Catching Up Faster by Switching Sooner

so that the corresponding predictive distribution satisfies

p̄sw(Xn = x | xn−1) = ∑
k∈A

1
n

n

∑
i=1

psw(Xi = x, Ki = k | xi−1)

=
1
n

n

∑
i=1

psw(Xi = x | xi−1).

We have the following result, proved in Section 2.9.3:

Proposition 2.3. Suppose M∗ is a standard IID model class that satisfies
Condition 2.2 with constants c1 and c2, and rmm(n) < ∞ for all n. If
Rm(psw, n) � c3 Rmm(n) for a constant c3, then

rm( p̄sw, n) � c2

c1

c3

1− γ
rmm(n).

Note that, if x1, x2, . . . are such that for some fixed k∗, psw(Kn = k∗ |
xn) → 1 as n → ∞, then by definition of p̄sw, we must also have that
p̄sw(Kn = k∗ | xn) → 1. Hence, consistency of the switch distribution
implies consistency of the time-averaged switch distribution. Conse-
quently, under the appropriate conditions, the time-averaged switch
distribution resolves the following version of the AIC-BIC: it is consis-
tent in the parametric case, and achieves the minimax instantaneous
risk in the nonparametric case. Since, intuitively, p̄sw learns (much)
“more slowly” than psw, we suspect that when Condition 2.2 applies,
psw also achieves the minimax instantaneous risk, and hence also re-
solves this version of the AIC-BIC dilemma.

2.8.4 Nonparametric Bayes

Our results mostly apply to nonparametric inference, where the true
distribution is not assumed to be a member of a parametric model.
In practice, Bayesian model averaging on a set of parametric models
is often used in such scenarios, but a subjective Bayesian should not
be surprised that this gives suboptimal results, since under the stan-
dard hierarchical prior used in pbma (first a discrete prior on the model
index, then a density on the model parameters), we have that with
prior-probability 1, p∗ is “parametric”, i.e. p∗ ∈ Mk for some k. Thus
from the subjective perspective, the hierarchical prior is not really suit-
able for the situation that we are trying to model, and one should use
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a nonparametric prior instead. Indeed, nonparametric Bayesian meth-
ods have become very popular in recent years, and they often work
very well in practice. Still, their practical and theoretical performance
strongly depend on the used priors, and it is often far from clear what
prior to use in what situation. In some situations, certain nonparametric
priors achieve optimal rates of convergence, but others can even make
Bayes inconsistent [Diaconis and Freedman, 1986, Grünwald, 2007].

In minimum description length inference, there are no philosophi-
cal objections to doing nonparametric inference using parametric mod-
els. In fact, approximating nonparametric families by sequences of
finite dimensional parametric models is a standard approach [Barron
and Cover, 1991]. Consequently, we view the switch distribution as an
MDL method, even though its definition is compatible with the Bayes-
ian framework. Apart from choosing a reasonable sequence of paramet-
ric models, it does not require any difficult modelling decisions. Nev-
ertheless, under reasonable conditions the switch distribution achieves
the minimax cumulative risk in nonparametric settings, while at the
same time, in the words of Barron and Cover, “we retain the possibility
of delight in the discovery of the correct family in the finite-dimensional
case”.

2.8.5 Future Work

We conclude the discussion by suggesting three directions in which our
results might be extended.

Other Ways to deal with Increasing Risk - non-i.i.d. settings The
“fast” and “slow” versions of the switch distribution differ in their se-
lection of frozen strategies in the definition of Kn. The basic switch
distribution uses Kn = Ln, which works well in practice but invalidates
the proofs of Theorems 2.1 and 2.2. It seems unlikely to us that increas-
ing risk would harm performance of the switch distribution too much
in practice. The question thus becomes: is there a reasonable assump-
tion one can make about how much the risk is allowed to grow, so that
an analogue of Theorem 2.1 can be shown for the basic switch distribu-
tion with Kn = Ln? Relatedly, the basic switch distribution was shown
in the introduction to empirically behave very well in a non-i.i.d. set-
ting, a setting that our current risk convergence theorems cannot deal
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with. Dealing with increasing risk may also allow one to extend the
convergence rate theorems to non-i.i.d. settings.

Predictive Performance in the Model Selection Setting It is unclear
whether there is an analogue of our cumulative risk theorems for model
selection rather than averaging. For example, in Figure 2.1, sequentially
predicting using the prediction strategy pδsw(xn) for the model with in-
dex δsw(xn), which has maximum a posteriori probability (MAP) un-
der the switch distribution, is only a few bits worse than predicting by
model averaging based on the switch distribution, and still outperforms
standard Bayesian model averaging by about 7 200 bits. However, it is
unclear whether or not prediction based on selecting a single model
will always perform this well. Analogous results in the MDL litera-
ture suggest that a theorem bounding the risk of switch-based model
selection, if it can be proved at all, would bound the squared Hellinger
rather than the KL risk [Grünwald, 2007, Chapter 15].

Exponentially Many Models Because of Condition 2.1, our theoreti-
cal results do not cover the case in which |Ln|, the number of considered
models, is exponential in the sample size. Yet this case is very impor-
tant in practice, for example in the variable selection problem [Shibata,
1983, Li, 1987, Yang, 1999], where at sample size n one considers all 2n

possible subsets of n variables. In such cases AIC is known to lead to
severe overfitting [Yang, 1999], and is therefore not suitable.

As it seems clear that the catch-up phenomenon will also occur in
model selection problems with exponentially many models, it is an in-
teresting open question whether, for suitable priors λ and κ, the switch
distribution can achieve the minimax cumulative risk. To make the
method practical, one would then also have to address the computa-
tional issues that arise with so many models. Finally, the relation with
the popular and computationally efficient L1-approaches to model se-
lection [Tibshirani, 1996] is as yet also unclear.

2.9 Cumulative Risk Proofs

This section gives the proofs of Theorems 2.1 and 2.2 in Section 2.5, and
of Propositions 2.2 and 2.3.
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2.9.1 Oracle Approximation Lemma

The proofs of Theorems 2.1 and 2.2 both depend on the following
bound on the excess cumulative risk of the switch distribution com-
pared to any oracle.

Lemma 2.1 (Oracle Approximation Lemma). Let psw be the switch dis-
tribution defined with respect to a prior π (that can be written in the form
(2.10)). LetM∗ be a standard IID model class, and let ω be an oracle relative
to K1,K2, . . . Finally, let m(n) be the maximum number of different prediction
strategies that ω uses before the n-th outcome, i.e.

m(n) = max
p∗∈M∗

max
xn∈X n

∣∣∣{i : 2 ≤ i ≤ n, ω(p∗, xi) 6= ω(p∗, xi−1)}
∣∣∣+ 1.

(2.25)
We then have, for any p∗ ∈ M∗,

R(p∗, psw, n)−R(p∗, pω, n) ≤ Lm(m(n)+ 1)+ m(n)
(

Lk(n)+ Lt(n + 1)
)

,

where

Lm(m) = max{ − log µ(a) | 1 ≤ a ≤ m }
Lt(n) = max{ − log τ(t) | 1 < t ≤ n }
Lk(n) = max{− log κt(k) | k ∈ Kt, 1 ≤ t ≤ n}.

Since this holds uniformly for all p∗ ∈ M∗, we also have

Rm(psw, n)− Rm(pω, n) ≤ Lm(m(n) + 1) + m(n)
(

Lk(n) + Lt(n + 1)
)

.

The bound of the lemma may be interpreted as a uniform bound
on the number of bits required to encode how ω switches between
prediction strategies. Note that in particular, if π satisfies Condition 2.1,
then

Lm(m(n) + 1) + m(n)
(

Lk(n) + Lt(n + 1)
)

= O
(

m(n) log n
)

.

Proof. For arbitrary p∗ ∈ M∗ and xn ∈ X ∗, let m denote the number
of different prediction strategies k′1, . . . , k′m selected by the oracle ω to
predict xn, and let 1 = t′1 < t′2 < · · · < t′m denote the sample sizes at
which ω switches between them. That is,

t′j = min
{

i | t′j−1 < i ≤ n, ω(p∗, xi) 6= ω(p∗, xi−1)
}
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for j = 2, . . . , m, and k′j = ω(p∗, t′j) for j = 1, . . . , m.
Because ω selects its predictions from K1,K2, . . ., the switch distri-

bution puts positive prior probability on switch sequences s such that
qs(xn) = pω(xn), where qs is as in (2.6). Let

S = {((t1, k1), . . . (tm+1, km+1)) ∈ S | (tj, k j) = (t′j, k′j)

for 1 ≤ j ≤ m, tm+1 = n + 1}

denote a convenient subset of these sequences, in which the last switch
(at switch-point tm+1) occurs immediately after the n-th outcome. As

psw(xn) = ∑
s∈S

qs(xn)π(s) ≥ ∑
s∈S

qs(xn)π(s) = pω(xn)π(S),

our plan is to find a uniform lower bound c on π(S), which does not
depend on p∗ or xn, and then apply Proposition 2.1 to obtain the desired
result. Using that π is of the form (2.10), we see that

π(S) = ∑
km+1

µ(m + 1)

 m

∏
j=1

κtj(k j)τ(Z = tj+1 | Z > tj)

 λtm+1(km+1)

= µ(m + 1)

 m

∏
j=1

κtj(k j)τ(Z = tj+1 | Z > tj)


≥ µ(m + 1)

 m

∏
j=1

κtj(k j)τ(Z = tj+1)

 .

Hence

− log π(S) ≤ Lm(m(n) + 1) + m(n)
(

Lk(n) + Lt(n + 1)) =: − log c,

and the lemma follows by Proposition 2.1.

2.9.2 Proof of Theorem 2.1

Proof. Let 1 = t1 < t2 < . . . be a sequence of switch-points. We will con-
struct an oracle ω′ (relative to K1,K2, . . .) that switches only at t2, t3, . . .
and is such that

Rm(pω′ , n) � Rm(pω, n) · lim sup
j→∞

dj

dj−1
, (2.26)
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where dj = tj+1 − tj. This construction will work for any choice of
switch-points. In particular, by choosing the switch-points such that

dj =
⌈

exp
(

j1/(1+α)
)⌉

, we obtain

lim sup
j→∞

dj

dj−1
= lim sup

j→∞
exp

(
j

jα/(1+α) −
j− 1

(j− 1)α/(1+α)

)

≤ lim sup
j→∞

exp

(
1

jα/(1+α)

)
= 1.

Let m(n) denote the maximum number of different prediction strategies
used by ω′ before time n, as defined in (2.25). We must have tm(n) > n.

Hence m(n) ≤ k for the smallest k such that dk =
⌈

exp
(

k1/(1+α)
)⌉

>

n. Solving for k, we obtain m(n) ≤ (log n)1+α, which by the Oracle
Approximation Lemma implies that

Rm(psw, n) = Rm(pω′ , n) + O((log n)2+α).

Together with (2.26) and the assumption that (log n)2+α/Rm(pω, n) →
0, the conclusion of the theorem follows.

It remains to exhibit the oracle ω′ that satisfies (2.26). To this end we
first construct an intermediate oracle ω′′ (relative to K1,K2, . . .) whose
risk is nonincreasing and never exceeds the risk of ω. Let s(p∗, n) =
arg min1≤s≤n r(p∗, pω, s) denote the sample size at which ω achieved
minimal risk before sample size n (ties may be broken arbitrarily). Then
for any p∗, n and data xn−1, ω′′ is defined as

ω′′(p∗, xn−1) = ω(p∗, xs(p∗,n)−1) ◦ s(p∗, n),

where xs(p∗,n)−1 is the prefix of xn−1 of length s(p∗, n)− 1. Thus, at sam-
ple size n, ω′′ copies the prediction made by ω at sample size s(p∗, n),
which is possible because that prediction strategy is still available as
a frozen strategy. Because p∗ is i.i.d. by assumption, the construction
guarantees that r(p∗, pω′′ , n) = r(p∗, pω, s(p∗, n)), such that the risk of
ω′′ is nonincreasing and never exceeds the risk of ω.

We proceed to construct the oracle ω′ satisfying (2.26). It is defined
by copying the predictions of ω′′ at the last switch-point. That is, if
i is such that tj ≤ i < tj+1, then ω′(p∗, xi−1) = ω′′(p∗, xtj−1). As the
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predictions of ω′ do not change between switch-points, its risk does
not change either, and r(p∗, pω′ , i) = r(p∗, pω′′ , tj) for any p∗ ∈ M∗.

Let c = lim supj→∞ dj/dj−1 and let ε > 0 be arbitrary. Then there
exists a j∗ such that supj≥j∗ dj/dj−1 ≤ c + ε. Now for any n, let mn be
such that tmn ≤ n < tmn+1. Because the risk of ω′′ is nonincreasing, we
can underestimate its cumulative risk by

t(j∗−1)

∑
i=1

r(p∗, pω′′ , i) ≥
j∗−1

∑
j=1

dj−1rj,

n

∑
i=t(j∗−1)+1

r(p∗, pω′′ , i) ≥
tmn

∑
i=t(j∗−1)+1

r(p∗, pω′′ , i) ≥
mn

∑
j=j∗

dj−1rj,

where rj = r(p∗, pω′′ , tj) and we define d0 = 1. We can overestimate the
cumulative risk of the derived oracle ω′ by a similar bound:

tj∗−1

∑
i=1

r(p∗, pω′ , i) =
j∗−1

∑
j=1

djrj,

n

∑
i=tj∗

r(p∗, pω′ , i) ≤
t(mn+1)−1

∑
i=tj∗

r(p∗, pω′ , i) =
mn

∑
j=j∗

djrj.

If Rm(pω, n) = ∞ from some n onwards, then the theorem is triv-
ially true, so assume without loss of generality that Rm(pω, n) < ∞ for
all n, which implies that supp∗ ∑

t(j∗−1)
i=1 r(p∗, pω′′ , i) = Rm(pω′′ , t(j∗−1)) ≤

Rm(pω, t(j∗−1)) < ∞. It follows that

sup
p∗

tj∗−1

∑
i=1

r(p∗, pω′ , i) ≤
(

max
j≤j∗

dj

dj−1

)
sup

p∗

t(j∗−1)

∑
i=1

r(p∗, pω′′ , i) < ∞,

and similarly

lim sup
n→∞

supp∗ ∑n
i=tj∗

r(p∗, pω′ , i)

supp∗ ∑n
i=t(j∗−1)+1 r(p∗, pω′′ , i)

≤ lim sup
n→∞

sup
p∗

∑n
i=tj∗

r(p∗, pω′ , i)

∑n
i=t(j∗−1)+1 r(p∗, pω′′ , i)

≤ sup
j≥j∗

dj

dj−1
≤ c + ε.
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Consequently, using that (log n)2+α/Rm(pω, n) → 0 implies that
Rm(pω, n)→ ∞, we find that

lim sup
n→∞

Rm(pω′ , n)
Rm(pω, n)

≤ lim sup
n→∞

supp∗ ∑
tj∗−1
i=1 r(p∗, pω′ , i)

Rm(pω, n)

+ lim sup
n→∞

supp∗ ∑n
i=tj∗

r(p∗, pω′ , i)

supp∗ ∑n
i=t(j∗−1)+1 r(p∗, pω′′ , i)

≤ 0 + (c + ε),

and (2.26) follows by letting ε tend to 0.

2.9.3 Propositions 2.2 and 2.3

Both Proposition 2.2 and Proposition 2.3 follow from the following
more general proposition.

Proposition 2.4. Suppose thatM∗ is standard IID and p is an estimator such
that Rm(p, n) � c3 Rmm(n) for some constant c3. Define the time average (or
Cesàro average)

p̄(Xn = x | xn−1) =
1
n

n

∑
i=1

p(Xi = x | xi−1).

Then

rmm(n) ≤ rm( p̄, n) � c3 n−1Rmm(n) ≤ c3 n−1
n

∑
i=1

rmm(i).

Furthermore, if M∗ satisfies Condition 2.2 with c1, c2, γ and h0 as in (2.21),
and rmm(n) < ∞ for all n, then also

c3 n−1
n

∑
i=1

rmm(i) � c2

c1

c3

1− γ
rmm(n).

To obtain Proposition 2.3, let p be psw. To prove Proposition 2.2,
note that by definition for every ε > 0 there exists an estimator p
that achieves the minimax cumulative rate up to a factor (1 + ε), i.e.
Rm(p, n) � (1 + ε)Rmm(n). The proposition follows from Proposi-
tion 2.4 by letting ε tend to 0, such that c3 tends to 1.

The proof of Proposition 2.4 requires the following lemma:
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Lemma 2.2. Let g, h : Z+ → R∪{∞} be nonnegative functions such that
∑n

i=1 h(i)→ ∞ as n grows, and g(i) < ∞ for all i. Then g(i) � h(i) implies
∑n

i=1 g(i) � ∑n
i=1 h(i).

Proof. Let ε > 0 be arbitrary. Then there exists an nε such that g(i) ≤
(1 + ε)h(i) for all i ≥ nε. Hence

lim sup
n→∞

∑n
i=1 g(i)

∑n
i=1 h(i)

= lim sup
n→∞

∑nε−1
i=1 g(i)

∑n
i=1 h(i)

+ lim sup
n→∞

∑n
i=nε

g(i)
∑n

i=1 h(i)
≤ 0 + (1 + ε).

The lemma follows by letting ε tend to 0.

Proof of Proposition 2.4. We show this by extending an argument from
[Yang and Barron, 1999, p. 1582]. By applying Jensen’s inequality as
in Proposition 15.2 of [Grünwald, 2007] (or the corresponding results in
[Yang, 2000] or [Yang and Barron, 1999]) it follows that, for all p∗ ∈ M∗,
r(p∗, p̄, n) ≤ 1

n R(p∗, p, n), so that also

rm( p̄, n) ≤ 1
n

Rm(p, n).

This implies that

nrmm(n) ≤ n rm( p̄, n) ≤ Rm(p, n) � c3 Rmm(n) ≤ c3

n

∑
i=1

rmm(i).

IfM∗ satisfies Condition 2.2, we further have:

n

∑
i=1

rmm(i) � c2

n

∑
i=1

i−γh0(i) ≤ c2 h0(n)
n

∑
i=1

i−γ

(a)
≤ c2

1
1− γ

h0(n)n1−γ � c2

c1

1
1− γ

n rmm(n),

where the first step uses Lemma 2.2 and (a) follows by approximating
the sum by an integral. The result follows.

2.9.4 Proof of Theorem 2.2

The proof of Theorem 2.2 is based on the following lemma.
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Lemma 2.3 (Fast Switching Lemma). LetM∗ be standard IID and assume
Condition 2.2 holds, with c1n−γh0(n) � rmm(n) � c2n−γh0(n), as in (2.21).
Suppose there exists an oracle ω relative to L1,L2, . . ., with rm(pω, n) < ∞
for all n, that achieves the minimax risk up to some nondecreasing function
f : Z+ → [1, ∞), i.e. rm(pω, n) � f (n) rmm(n). Let t = t1, t2, . . . be the
freezing times used to define K1,K2, . . . Then there exists an oracle ω′ relative
to K1,K2, . . . that switches only at times t and satisfies

Rm(pω′ , n) � c f (n) Rmm(n),

where c is as in (2.22).

The proof of Lemma 2.3 requires the following lemma:

Lemma 2.4. IfM∗ is a standard IID model class that satisfies Condition 2.2,
then ∑n

i=1 rmm(i) → ∞ and for any sequence 1 = t1 < t2 < · · · also
∑m

j=1 djrmm(tj)→ ∞ (as a function of m), where dj = tj+1 − tj.

Proof. Let c1 > 0 and 0 ≤ γ < 1 be constants and h0 a nondecreasing,
strictly positive function that satisfy Condition 2.2. Then by assumption
there exists an n∗ such that rmm(i) ≥ 1

2 c1i−γh0(i) for all i ≥ n∗. Hence

n

∑
i=1

rmm(i) ≥
n

∑
i=n∗

rmm(i) ≥
n

∑
i=n∗

c1h0(i)i−γ ≥ c1h0(1)
n

∑
i=n∗

i−γ → ∞,

as required. Similarly, let j∗ be sufficiently large that tj∗ ≥ n∗. Then

m

∑
j=1

djrmm(tj) ≥
m

∑
j=j∗

djrmm(tj) ≥ c1h0(1)
m

∑
j=j∗

djt
−γ
j . (2.27)

As t−γ
j is decreasing in tj,

m

∑
j=j∗

djt
−γ
j ≥

tm+1−1

∑
i=tj∗

i−γ → ∞.

Combining with (2.27) completes the proof.

Proof of Lemma 2.3. Let s(n) denote the last freezing time preceding n,
i.e. s(n) = tk for k such that tk ≤ n < tk+1. Then for any p∗, n and xn−1,
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ω′ is defined such that it copies the prediction made by ω at time s(n).
That is,

ω′(p∗, xn−1) = ω(p∗, xts(n)−1) ◦ s(n).

Thus, at any freezing time tj, the predictions of ω and ω′ coincide and
r(p∗, pω′ , tj) = r(p∗, pω, tj).

Let us consider the blocks of indices between subsequent freezing
times. For brevity, let ej = min{n, tj+1 − 1} be the last index in block
j and let dj = ej − tj + 1 be the length of block j. For m(n) such that
tm(n) ≤ n < tm(n)+1, we then have

Rm(pω′ , n) = sup
p∗∈M∗

n

∑
i=1

r(p∗, pω′ , i) ≤
n

∑
i=1

rm(pω′ , i)

=
m(n)

∑
j=1

djrm(pω′ , tj) =
m(n)

∑
j=1

djrm(pω, tj).

As f (tj) ≥ 1, Lemma 2.4 implies that ∑m
j=1 dj f (tj)rmm(tj) → ∞. There-

fore by Lemma 2.2

m(n)

∑
j=1

djrm(pω, tj) �
m(n)

∑
j=1

dj f (tj)rmm(tj) ≤ f (n)
m(n)

∑
j=1

djrmm(tj).

If Rmm(n) is infinite from some n onwards, then the lemma is triv-
ially true. So assume that Rmm(n) < ∞ for all n, which implies that
rmm(tj) ≤ Rmm(tj) < ∞ for all tj. Hence, again by Lemma 2.2 and
using that h0 is nondecreasing,

m(n)

∑
j=1

djrmm(tj) � c2

m(n)

∑
j=1

djt
−γ
j h0(tj) ≤ c2

m(n)

∑
j=1

ej

∑
i=tj

(
i
tj

)γ

i−γh0(i)

≤ c2 sup
j≥1


(

tj+1 − 1
tj

)γ
 n

∑
i=1

i−γh0(i).

By Lemma 2.4, ∑n
i=1 rmm(i)→ ∞. Therefore by Lemma 2.2

n

∑
i=1

i−γh0(i) � 1
c1

n

∑
i=1

rmm(i).
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Finally, by Proposition 2.2

n

∑
i=1

rmm(i) � c2

c1

1
1− γ

Rmm(n).

The result is obtained by combining all the bounds above.

Proof of Theorem 2.2. By Lemma 2.3 there exists an oracle ω′ relative to
K1,K2, . . . that switches only at times t and is such that

Rm(pω′ , n) � c f (n)Rmm(n). (2.28)

Let m(n) denote the maximum number of different prediction strategies
ω′ uses before the n-th outcome, as in (2.25). Then the choice of t
ensures that m(n) = O(log n), such that by the Oracle Approximation
Lemma (Lemma 2.1) and Condition 2.1

Rm(psw, n) = Rm(pω′ , n) + O
(
(log n)2

)
. (2.29)

Finally, Proposition 2.2 and Condition 2.2 together imply that Rmm(n) �
nrmm(n) � c1h0(1)n1−γ, so that (log n)2/Rmm(n) → 0. Combining this
with (2.28) and (2.29), the result follows.

2.10 Consistency Proof

This section gives the proof of Theorem 2.3 from Section 2.6.

2.10.1 Proof of Theorem 2.3

Proof. It is sufficient to show that

lim
n→∞

psw(Kn+1 6= k∗ | Xn) = 0 (pk∗-a.s.), (2.30)

which is equivalent to (2.24) except that pθ∗-probability has been re-
placed by pk∗-probability. To see this, suppose the theorem is false.
Then there exists a set of parameters Φ ⊆ Θk∗ with wk∗(Φ) > 0 such
that (2.24) does not hold for any θ∗ ∈ Φ. But then by definition of pk∗ ,
which is a mixture of pθ with weights w(θ), we have a contradiction
with (2.30).
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For any n, let Un = {s ∈ S | Kn+1(s) 6= k∗} denote the set of
“bad” parameters that select an incorrect model. Let n′ be the smallest
n ≥ nk∗ such that |support(λn+1)| > 1. (Note that n′ > nk∗ only in the
degenerate case that λn(k∗) = 1 for all n ≤ n′.) The assumption that
∑s∈Bk∗

nk∗
π(s)qs(Xnk∗ ) > 0 (pk∗-a.s.) implies that

psw(Xn′) ≥ ∑
s∈Bk∗

nk∗

π(s)qs(Xnk∗ )pk∗(Xn′
nk∗+1 | Xnk∗ ) > 0 (pk∗-a.s.),

where Xb
a = Xa, . . . , Xb. Hence the posterior distribution

π(s | Xn′) =
π(s)qs(Xn′)

psw(Xn′)

is defined (pk∗-a.s.), and by substituting definitions we find that (2.30)
is equivalent to

lim
n→∞

psw(Xn′) ∑s∈Un
π(s | Xn′)qs(Xn

n′+1 | Xn′)
psw(Xn)

= 0 (pk∗-a.s.). (2.31)

There are two reasons why a parameter s = ((t1, k1), . . . , (tm, km))
may be in Un: either tm(s) ≤ n + 1 and km 6= k∗ or tm > n + 1 and
Kn+1(s) 6= k∗. Note that the second case may occur even when the
final prediction strategy km equals k∗. We would like to get rid of such
parameters and replace Un by the set

A = {s =
(
(t1, k1), . . . , (tm, km)

)
∈ S | km 6= k∗, π(s) > 0},

which does not depend on n. To this end, fix any k′ 6= k∗ with
λn′+1(k′) > 0. We define an alternative distribution π′(s | Xn′), which
is equal to π(s | Xn′), except that it puts all probability mass from any
parameter such that km = k∗ on a corresponding parameter, which is
identical except that km = k′. That is,

π′
(
((t1, k1), . . . , (tm, km)) | Xn′

)

=


0 if km = k∗;

∑k∈{k∗,k′} π
(
((t1, k1), . . . , (tm, k)) | Xn′

)
if km = k′;

π
(
((t1, k1), . . . , (tm, km)) | Xn′

)
otherwise.
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Suppose s = ((t1, k1), . . . , (tm, k∗)) is a parameter with km = k∗ and
s′ = ((t1, k1), . . . , (tm, k′)) is the corresponding parameter with km = k′.
Then if tm > n + 1, we have that qs(Xn

n′+1 | Xn′) = qs′(Xn
n′+1 | Xn′); and

if tm ≤ n + 1, then s 6∈ Un. It follows that

∑
s∈Un

π(s | Xn′)qs(Xn
n′+1 | Xn′) ≤ ∑

s∈A
π′(s | Xn′)qs(Xn

n′+1 | Xn′),

which gives a bound on the numerator of (2.31). We may also bound
the denominator by

psw(Xn) ≥
(

∑
s∈Bk∗

nk∗

π(s)qs(Xnk∗ )
)

pk∗(Xn′
nk∗+1 | Xnk∗ )pk∗(Xn

n′+1 | Xn′).

As
(

∑s∈Bk∗
nk∗

π(s)qs(Xnk∗ )
)

pk∗(Xn′
nk∗+1 | Xnk∗ ) is positive (pk∗-a.s.), it is

therefore sufficient to show that

lim
n→∞

r(Xn
n′+1 | Xn′)

pk∗(Xn
n′+1 | Xn′)

= 0 (pk∗-a.s.), (2.32)

where r(Xn
n′+1 | Xn′) = ∑s∈A π′(s | Xn′)qs(Xn

n′+1 | Xn′) is a countable
mixture of prediction strategies qs that eventually switch to a prediction
strategy pkm that is mutually singular with pk∗ by assumption.

Suppose first that n′ = 0. Then suppose s = ((t1, k1), . . . , (tm, km)) ∈
A. (Note that this implies that λtm(km) > 0.) It can be shown that
mutual singularity of pkm(X∞

tm
| Xtm−1) and pk∗(X∞

tm
| Xtm−1) (pk∗-

a.s.), which we have assumed, implies mutual singularity of qs(X∞)
and pk∗(X∞) (pk∗-a.s.) To see this for countable X , let EXtm−1 ⊆
Xtm × Xtm+1 × · · · be an event such that pkm(EXtm−1 | Xtm−1) = 1 and
pk∗(EXtm−1 | Xtm−1) = 0. Then, for E = {X∞ ∈ X∞ | X∞

tm
∈ EXtm }, we

have that qs(E) = 1 and pk∗(E) = 0. In the uncountable case, however,
the set E may not be measurable. In that case, mutual singularity fol-
lows by Corollary 2.3 proved below, which only relies on the fact that
X ⊆ Rd is a separable metric space.

As r(X∞) is a countable mixture of distributions that are mutu-
ally singular with pk∗(X∞), it is itself mutually singular with pk∗(X∞).
This implies (2.32), because the density ratio r(Xn)/pk∗(Xn) tends
to r(X∞)/pk∗(X∞) with pk∗-probability 1 (e.g. by Lévy’s theorem
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[Shiryaev, 1996]), which is zero with probability 1 by mutual singu-
larity of r(X∞) and pk∗(X∞).

It remains to show (2.32) when n′ > 0. In this case it is seen that all
properties that were required for the case n′ = 0 continue to hold with
pk∗-probability 1 when all distributions are conditioned on Xn′ . This
completes the proof.

2.10.2 Mutual Singularity as Used in the Proof of Theorem 2.3

Let Y2 = (Y1, Y2) be random variables that take values in separable
metric spaces Ω1 and Ω2, respectively. We will assume all spaces to be
equipped with Borel σ-algebras generated by the open sets. Let p and
q be prediction strategies for Y2.

Lemma 2.5. If p(Y2 | Y1) and q(Y2 | Y1) are mutually singular (p-a.s.), then
p(Y2) and q(Y2) are mutually singular.

The proof is given below the following corollary, which is what we
are really interested in. Let X∞ = X1, X2, . . . be random variables that
take values in the separable metric space X . Then what we need in the
proof of Theorem 2.3 is the following corollary of Lemma 2.5:

Corollary 2.3. Suppose p and q are prediction strategies for X∞ and let n be
any positive integer. If p(X∞ | Xn) and q(X∞ | Xn) are mutually singular
(p-a.s.), then p(X∞) and q(X∞) are mutually singular.

Proof. The product spaces X1 × · · · × Xn and Xn+1 × Xn+2 × · · · are
separable metric spaces [Parthasarathy, 1967, pp. 5,6]. Now apply
Lemma 2.5 with Ω1 = X1 × · · · × Xn and Ω2 = Xn+1 ×Xn+2 × · · · .

Proof of Lemma 2.5. Let Γ ⊆ Ω1 be a measurable set such that p(Γ) = 1
and p(Y2 | ω1) and q(Y2 | ω1) are mutually singular for all ω1 ∈ Γ.
Then for each ω1 ∈ Γ there exists a measurable set Cω1 ⊆ Ω2 such that
p(Cω1 | ω1) = 1 and q(Cω1 | ω1) = 0. As Ω2 is a metric space, it follows
from [Parthasarathy, 1967, Theorems 1.1 and 1.2 in Chapter II] that for
any ε > 0 there exists an open set Uε

ω1
⊇ Cω1 such that

p(Uε
ω1
| ω1) = 1 and q(Uε

ω1
| ω1) < ε. (2.33)

As Ω2 is a separable metric space, there also exists a countable
sequence {Bi}i≥1 of open sets such that every open subset of Ω2
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(Uε
ω1

in particular) can be expressed as the union of sets from {Bi}
[Parthasarathy, 1967, Theorem 1.8 in Chapter I].

Let {B′i}i≥1 denote a subsequence of {Bi} such that Uε
ω1

=
⋃

i B′i .
Suppose {B′i} is a finite sequence. Then let Vε

ω1
= Uε

ω1
. Suppose it is

not. Then 1 = p(Uε
ω1
| ω1) = p(

⋃∞
i=1 B′i | ω1) = limn→∞ p(

⋃n
i=1 B′i | ω1),

because
⋃n

i=1 B′i as a function of n is an increasing sequence of sets.
Consequently, there exists an N such that p(

⋃N
i=1 B′i | ω1) > 1− ε and

we let Vε
ω1

=
⋃N

i=1 B′i . Thus in any case there exists a set Vε
ω1
⊆ Uε

ω1
that

is a union of a finite number of elements in {Bi} such that

p(Vε
ω1
| ω1) > 1− ε and q(Vε

ω1
| ω1) < ε. (2.34)

Let {D}i≥1 denote an enumeration of all possible unions of a finite
number of elements in {Bi} and define the disjoint sequence of sets
{Aε

i }i≥1 by

Aε
i = {ω1 ∈ Γ : p(Di | ω1) > 1− ε, q(Di | ω1) < ε} \

⋃i−1

j=1
Aε

j (2.35)

for i = 1, 2, . . . Note that, by the reasoning above, for each ω1 ∈ Γ
there exists an i such that ω1 ∈ Aε

i , which implies that {Aε
i } forms a

partition of Γ. Now, as all elements of {Aε
i } and {Di} are measurable,

so is the set Fε =
⋃∞

i=1 Aε
i × Di ⊆ Ω1 × Ω2, for which we have that

p(Fε) = ∑∞
i=1 p(Aε

i × Di) > (1 − ε) ∑∞
i=1 p(Aε

i ) = 1 − ε and likewise
q(Fε) < ε.

Finally, let G =
⋂∞

n=1
⋃∞

k=n F2−k
. Then

p(G) = lim
n→∞

p(
⋃∞

k=n
F2−k

) ≥ lim
n→∞

1− 2−n = 1

and

q(G) = lim
n→∞

q(
⋃

k=n
F2−k

) ≤ lim
n→∞

∞

∑
k=n

2−k = lim
n→∞

2−n+1 = 0, (2.36)

which proves the lemma.





From Prediction Strategies to Experts

The next two chapters provide a further study of switching between
prediction strategies. They consider extensions and variations of the
Fixed-share algorithm, which is also generalised by the switch distri-
bution as discussed on page 60. We will adopt the notation and conven-
tions of the related literature on prediction with expert advice, in which
prediction strategies are replaced by the more general notion of experts.
To relate the results to the previous chapter, one may think of an ex-
pert as a “meta” prediction strategy relative to some parametric model,
as described in Section 2.3.1. The main change in notation is that n
denotes the number of experts in Chapter 3, instead of the sample size.

The setup of prediction with expert advice is online: prediction pro-
ceeds in rounds 1, 2, . . . and no fixed sample size is assumed to be
known in advance. Instead, guarantees about cumulative prediction
error need to hold simultaneously for any number of outcomes T (al-
though the guarantees will typically depend on T).

The main difference with the previous chapter is that instead of
comparing predictive performance to an assumed true distribution p∗

in expectation under p∗, we will now compare ourselves to the best
expert for the data on the worst-case data. The guarantees we obtain
therefore do not depend on any probabilistic assumptions, not even that
the data are i.i.d. They do depend on the quality of the best expert’s
predictions however: our bounds are only useful if the best expert ac-
tually manages to predict the data well.
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Overview The Fixed-share algorithm takes a parameter called the
switching rate, which determines how much prior weight it assigns to
switching between prediction strategies. In Chapter 3 a fully online
algorithm is presented that learns the optimal switching rate, and its
running time and predictive performance are compared to previous
approaches to learning the switching rate.

In Chapter 4 the influence of switches on the experts’ predictions is
considered. One may distinguish between two cases:

1. Firstly, the reason to switch between experts may be that the (rel-
ative) quality of the experts’ predictions changes over time, al-
though the nature of the data stays the same. The experts are
assumed not to care about the timing of switches. This may be
the case, for example, if the data are generated by an i.i.d. pro-
cess and the experts are based on estimators that predict better
the more data they have seen, like in Chapter 2.

2. Alternatively, it may the case that the nature of the data does
change over time. For example, one may think of weather data
that depend on the season. Then the reason to switch between ex-
perts may be that different experts are good for different periods
(e.g. seasons). In this case the experts themselves should also care
about the timing of the switches, because learning from data from
the wrong period (season) will throw off their predictions.

The switch distribution has been designed for case 1, and this is
also the case for which the Fixed-Share algorithm is appropriate. Para-
doxically, however, the Fixed-Share algorithm has been designed with
case 2 in mind. In Chapter 4 we therefore consider how to modify
Fixed-Share for case 2. It is shown that if the expert predictions have
internal structure that can be represented by so-called expert hidden
Markov models, then the modified Fixed-share algorithm can automat-
ically and efficiently feed them only data from the appropriate period
to learn from.



Chapter 3

Learning the Switching Rate by
Discretising Bernoulli Sources Online

The expert tracking algorithm Fixed-share depends on a parameter
α, called the switching rate. The switching rate can be learned online
with regret 1

2 log T + O(1) bits. The current fastest method to achieve
this is based on optimal discretisation of the Bernoulli distributions into
O(
√

T) bins and runs in O(T
√

T) time. However, the exact locations of
these bins have to be determined algorithmically, and the final number
of outcomes T must be known in advance.

This chapter introduces a new discretisation scheme with the same
regret bound for known T, that specifies the number and positions of
the discretisation points explicitly. The scheme is especially useful,
however, when T is not known in advance: a new fully online algo-
rithm is presented, which runs in O(T

√
T log T) time and achieves a

regret of 1
2 log 3 log T + O(log log T) bits.

3.1 Introduction

We will attempt to sequentially predict the outcomes X1, X2, . . . from
an unknown process, where each outcome takes values in a countable
set X . At each time t ∈ Z+ = {1, 2, . . .} we have to issue a proba-
bility distribution P(Xt | xt−1) on X , which is allowed to depend on
past observations xt−1 = x1,. . . , xt−1. Then xt is revealed and we suffer
logarithmic loss − ln P(Xt = xt | xt−1). (For simplicity we consider only
logarithmic loss, but results for other loss functions can be obtained us-
ing methods described in e.g. [Vovk, 1999].) Suppose our understand-
ing of the process is very limited, but luckily we do have access to n
experts. Each expert ξ ∈ Ξ = {1, . . . , n} provides us with her prediction
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Pξ(Xt | xt−1), on which we may base our own forecast P(Xt | xt−1). We
make no assumptions about the nature of the experts, so one may think
of human experts, but also of computer algorithms. This is the problem
of prediction with expert advice (for log loss) [Cesa-Bianchi and Lugosi,
2006].

For any T, one may view the predictions P(Xt | Xt−1) as condition-
als of the joint distribution P(XT) = ∏T

t=1 P(Xt | Xt−1). (We regard
the empty sequence x0 as a certain event, which occurs with proba-
bility one.) In its most basic setup the goal of prediction with expert
advice is to minimise the excess loss compared to the best expert on
any sequence of outcomes xT:

− ln P(xT)−min
ξ

[− ln Pξ(xT)].

This is called the regret on xT. A more ambitious goal is to compare to
the performance that can be obtained by optimally dividing the data
into m segments and, within each segment, using the best expert for
that segment. This is prudent in case the experts themselves may im-
prove (study hard) or deteriorate (take to drinking), but also when their
performance depends on the predictive context (some experts may be
good during spring, others during winter). In this case, if the optimal
segments start at times t1, . . ., tm for a given sequence xT, the goal is to
minimise

− ln P(xT)−
m

∑
i=1

min
ξ
− ln Pξ(xti+1−1

ti
| xti−1), (3.1)

where xb
a = xa, . . . , xb, and tm+1 = T + 1. This is the approach taken by

Herbster and Warmuth [1998]; see also [Vovk, 1999, Cesa-Bianchi and
Lugosi, 2006].

Let H(p) = −p ln p − (1 − p) ln(1 − p) and D(p‖q) = p ln p/q +
(1− p) ln(1− p)/(1− q) denote the entropy and Kullback-Leibler di-
vergence for a binary space, respectively; in this chapter, we use ln to
denote the natural logarithm and log for base two. The regret of Herb-
ster and Warmuth’s Fixed-share algorithm is bounded from above by

(T − 1)
(

H(α∗) + D(α∗‖α)
)

+ (m− 1) ln(n− 1) + ln n

nats (see Theorem 4.1 in Chapter 4), where α∗ := (m− 1)/(T− 1) and α
is the switching rate, a parameter of the algorithm that can be interpreted
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as the probability of switching between experts. In Figure 2.2 from
Chapter 2 this parameter α was called τt = τ(Z = t + 1 | Z > t). The
best regret bound is obtained when α equals α∗.

One clear advantage of Fixed-share is its computational efficiency:
its running time, which is n ·O(T), is as low as that of the standard
Bayesian mixture. The one real disadvantage is having to specify the
switching rate. It is this problem that we address in this chapter. Our
contribution should be placed in the context of three earlier approaches
to avoid a priori specification of the switching rate:

Decreasing Switching Rate One option is to let the switching rate de-
crease with time as 1/t. This corresponds to using τ(t) = 1/(t(t− 1)),
for which τ(Z = t | Z > t− 1) = 1/t (see also [Koolen and de Rooij,
2008a]). For this approach, the regret compared to the best segmen-
tation in m parts is within ln T + O(m log m) nats from the bound for
Fixed-share with optimally tuned α. This is fine if the number of
switches in the sequence is not too large (say, m = O(log T)), but if
switches can occur more frequently, it may not be the best choice.

Bayes with Undiscretised Switching Rate A second option is to use
a Bayesian mixture over α. Such an algorithm was described very early
in the source coding literature [Volf and Willems, 1998]. This algorithm,
called the Switching Method (not to be confused with the switch distri-
bution!), achieves a regret bounded by 1

2 ln T + O(1) nats compared to
the best Fixed-share parameter. Note that this bound does not de-
pend on the number of switches. The drawback of this approach is
that its running time is n ·O(T2), which is significantly slower than the
previous algorithms and may be prohibitive in some applications.

Bayes with Discretised Switching Rate A third approach to get rid
of α also uses a Bayesian mixture, but rather than putting a prior on the
whole range [0, 1] of possible values of α, a prior is defined on a dis-
cretised set of parameters α1, α2, . . . , αj. Monteleoni and Jaakkola [2003]
argue that O(

√
T) levels of discretisation suffice to achieve a regret with

respect to Fixed-share of at most 1
2 ln T + O(1) nats, like the Switch-

ing Method. Their algorithm Learn-α has running time n ·O(T
√

T), a
significant improvement over the Switching Method. However, while
Learn-α does not require a priori knowledge of α, unlike the other
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start // S1
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��
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��

// . . .

X1 X2|X1 X3|X2 X4|X3

Figure 3.1: Bayesian network for an expert algorithm

approaches it does require a priori knowledge of the final number of
outcomes T. The algorithm is therefore almost, but not completely, on-
line. In Section 3.3.3 we discuss why the so-called doubling trick is not
the best way to eliminate this dependence.

Refine-Online Here we take the Learn-α algorithm as a starting point
to develop a fourth, fully online algorithm called Refine-Online. It
has running time n ·O(T

√
T log T), which makes it only slightly slower

than Learn-α. Its regret is bounded by 1
2 log 3 ln T + log 3 ln ln(T + 1) +

O(1), which is worse than the bounds in the two Bayesian approaches,
but would still seem an acceptable price to pay to get a fast algorithm
that is completely online.

Outline In Section 3.2 we show how probabilistic algorithms for pre-
diction with expert advice can be described using Hidden Markov mod-
els (HMMs), and we give basic tools to prove loss bounds for such al-
gorithms. We then state our main results. Section 3.3 exhibits a new,
very simple discretisation scheme that grants full control over the ex-
act number and placement of discretisation points, in contrast to the
discretisation used by Learn-α, which can only be determined algo-
rithmically. Moreover, we show how this discretisation can be refined
online, so that the final number of outcomes T does not have to be
known.

3.2 Expert Algorithms as HMMs

Many algorithms for prediction with expert advice can be described as
a hidden Markov model (HMM) P, where the hidden state St at any time
t identifies an expert ξt to predict outcome Xt [Koolen and de Rooij,
2008a]. Figure 3.1 depicts the corresponding Bayesian network, where
we write Xt|Xt−1 to emphasize that the expert may base her prediction
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of Xt on all previous outcomes Xt−1. Each St takes values in a set
of hidden states S = {〈ξ, t, . . .〉 | ξ ∈ Ξ, t ∈ Z+}, where t denotes a
time index and states with the wrong time index get probability zero:
P(St =

〈
ξ, t′, . . .

〉
) = 0 if t′ 6= t. Depending on the specifics of the

algorithm the hidden states can contain more information, represented
here by dots. Given a state 〈ξ, t, . . .〉 ∈ S and previous outcomes xt−1

the probability of Xt is determined by the prediction of expert ξ:

P(Xt | 〈ξ, t, . . .〉 , xt−1) = Pξ(Xt | xt−1).

The advantage of casting these algorithms as HMMs is that the stan-
dard algorithms for HMMs can be applied. Specifically, the forward
algorithm can compute the predictions P(X1), . . ., P(XT | xT−1) in time
proportional to the number of transitions in the HMM [Rabiner, 1989,
Koolen and de Rooij, 2008a].

Bayes We first consider the standard Bayesian prediction strategy that
puts a prior w on experts Ξ. This corresponds to the HMM H with hid-
den states {〈ξ, t〉 | ξ ∈ Ξ, t ∈ Z+}. Initially all experts get probability
according to the prior, H(〈ξ1, 1〉) = w(ξ1), but afterwards no more
switches between experts are allowed: H(〈ξt+1, t + 1〉 | 〈ξt, t〉) is 1 if
ξt+1 = ξt, and 0 otherwise.

Fixed-share There is also an HMM Fα that corresponds to the
Fixed-share algorithm [Koolen and de Rooij, 2008a]. As in [Herb-
ster and Warmuth, 1998], all experts are initially given equal weight,
Fα(〈ξ1, 1〉) = 1/n, which gives the best worst-case bound. After each
outcome, Fα allows switches between experts to occur with probability
α ∈ [0, 1], which is called the switching rate:

Fα(〈ξt+1, t + 1〉 | 〈ξt, t〉) =

{
1− α if ξt+1 = ξt,
α/(n− 1) otherwise.

Note that F0 = H (using a uniform prior w). Naive application of the
forward algorithm to Fα gives O(n2) transitions per time step, adding
up to a total running time of n2 ·O(T). This is reduced to O(n) tran-
sitions by introducing an intermediate pool state that first collects all
probability mass for switches between experts and then redistributes it
(see Figure 2.2 or [Koolen and de Rooij, 2008a] for details). The running
time then becomes n ·O(T) as in [Herbster and Warmuth, 1998].
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3.2.1 Tracking HMMs and Bernoulli HMMs

The Fixed-share algorithm has a fixed switching rate α. This may be
generalised to a tracking HMM S with hidden states {〈ξ, t, α〉 | ξ ∈ Ξ, t ∈
Z+, α ∈ At}. The initial states have weights given by S(〈ξ1, 1, α1〉) =
B(〈α1, 1〉) · 1

n , and the transition probabilities are

S(〈ξt+1, t + 1, αt+1〉 | 〈ξt, t, αt〉)
= B(〈αt+1, t + 1〉 | 〈αt, t〉) ·Fαt(〈ξt+1, t + 1〉 | 〈ξt, t〉),

where B, called a Bernoulli HMM, describes the evolution of α. The
original Fixed-share method Fα can be recovered by using At = {α}
and B = Bα

fixed, where

Bα
fixed(〈αt+1, t + 1〉 | 〈αt, t〉) = Bα

fixed(〈αt+1, 1〉) = 1.

We consider various other options for the Bernoulli HMM B as well. In
general let Sb

a denote the tracking HMM S defined with respect to the
Bernoulli HMM Bb

a. Thus Sα
fixed = Fα.

It is essential now to distinguish between two levels: Fixed-share
and the tracking HMM S, which aim to predict outcomes X1, X2, . . .,
operate on the upper level. On the lower level there is the Bernoulli
HMM B. Although B is used as a building block in the construction
of S, it is convenient to also interpret B as an algorithm for predic-
tion with expert advice in itself. In this view, let Y1, Y2, . . . be binary
outcomes, which B has to predict, and let Pα denote the Bernoulli dis-
tribution with Pα(Y = 1) = α, extended to sequences by taking product
distributions. In a Bernoulli HMM the experts are instantiated to such
Bernoulli sources, and are indexed by α ∈ At. Thus B has hidden states
{〈α, t〉 | α ∈ At, t ∈ Z+} and B(Yt | 〈α, t〉) = Pα(Yt).

The total running time of the forward algorithm applied to a track-
ing HMM may be computed by summing up the number of transitions
for each time step. This is the number of transitions of Fixed-share,
which is O(n), times the number of transitions of the corresponding
Bernoulli HMM. Thus the forward algorithm for a tracking HMM
runs in O(n) times the running time of the forward algorithm for its
Bernoulli HMM.

All approaches to learning the switching rate that were discussed
in the introduction, including the new Refine-Online method, can
be implemented using tracking HMMs with different choices for the



3.2. Expert Algorithms as HMMs 119

Bernoulli HMM B. We will illustrate this for Learn-α. In Section 3.3.3
we do the same for Bro, which defines the Refine-Online algorithm.
From the description of the Switching Method in [Koolen and de Rooij,
2008a] it is not hard to see how it can be cast as a Bernoulli HMM as
well, but for brevity we do not discuss the details here.

Example: Learn-α Given the final number of outcomes, T, the algo-
rithm Learn-α [Monteleoni and Jaakkola, 2003] applies Bayes at a meta-
level to learn the switching rate α of the Fixed-share algorithm: it puts
a uniform prior (which gives the best worst-case bound) on a discre-
tised set AT of switching rates, where the discretisation depends on T.
It turns out that this approach corresponds exactly to a tracking HMM
SBayes. The corresponding Bernoulli HMM BBayes has At = AT for all t,
initial weights BBayes(〈α1, 1〉) = 1/|AT| and transition probabilities

BBayes(〈αt+1, t + 1〉 | 〈αt, t〉) = 1{αt}(αt+1), (3.2)

where 1A(z) denotes the indicator function, which is 1 if z ∈ A and 0
otherwise. Note that BBayes is exactly the Bayesian HMM H with a
uniform prior on AT, where the experts Ξ have been identified with
Bernoulli parameters AT. In Section 3.3 we will choose AT differently
from [Monteleoni and Jaakkola, 2003] based on our new discretisation
scheme.

3.2.2 Regret Bounds

The following lemma will be our main tool to show regret bounds.
It bounds the likelihood ratio between any two tracking HMMs in
terms of the worst-case likelihood ratio of their corresponding Bernoulli
HMMs. In other words, the lemma allows us to lift any uniform per-
formance guarantees we may prove for Bernoulli HMMs to the level of
tracking HMMs.

Lemma 3.1 (Lifting Lemma for Tracking). Suppose Ba and Bb are
Bernoulli HMMs, and Bb(yT−1) > 0 for all binary sequences yT−1. Then
for any xT

Sa(xT) ≤ Sb(xT) max
yT−1

Ba(yT−1)
Bb(yT−1)

.
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By invoking this lemma with Sa = Fα̂(xT), where α̂(xT) is the best
possible switching rate, we can obtain a bound on the regret for any
tracking HMM with respect to the Fixed-share algorithm with opti-
mally tuned parameter. This is the idea behind our main results, which
appear as Theorem 3.1 below. The proof of the lemma uses the follow-
ing more general lemma.

Lemma 3.2. Let P and Q be distributions on countable space Z × Ψ such
that for all outcomes

〈
z, ψ
〉

we have P(z | ψ) = Q(z | ψ) and Q(ψ) > 0.
Then, for z ∈ Z ,

P(z) ≤ Q(z) ·max
ψ∈Ψ

P(ψ)
Q(ψ)

.

Proof.

P(z) = ∑
ψ

P(ψ)P(z | ψ)

≤ max
ψ

P(ψ)
Q(ψ) ∑

ψ

Q(ψ)P(z | ψ) = Q(z) max
ψ

P(ψ)
Q(ψ)

.

Proof of Lemma 3.1. Let Yt = 1 − 1{ξt}(ξt+1) for t = 1, . . . , T indicate
whether or not a switch occurs. Now let Z = X T and Ψ = {0, 1}T−1,
and notice that for any

〈
xT, yT−1

〉
∈ Z ×Ψ we have

Sa(xT, yT−1) = F(xT | yT−1)Ba(yT−1)

Sb(xT, yT−1) = F(xT | yT−1)Bb(yT−1),

where F(xT | yT−1) ≡ Fα(xT | yT−1) denotes a conditional probabil-
ity in the Fixed-share HMM that does not depend on α. Lemma 3.2
completes the proof.

The lifting lemma is tight in the following sense. Consider two
experts, whose predictions for all xt−1 are simply P1(Xt = 1 | xt−1) = 1
and P2(Xt = 0 | xt−1) = 1, respectively. Then any tracking HMM S

with corresponding Bernoulli HMM B has S(xT) = B(yT−1), where
yt = 1− 1{xt}(xt+1) identifies whether the t-th and (t + 1)-th outcomes
are the same or not. Hence the regret is maximised for xT such that the
corresponding yT−1 maximises Ba(yT−1)/Bb(yT−1).

Section 3.3 introduces two new Bernoulli HMMs. We already men-
tioned the first one, BBayes, in the example above. In Section 3.3.2 we
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provide a uniform bound on its regret compared to any Bernoulli dis-
tribution. Then in Section 3.3.3 we define Bro, which does not require
T to be known in advance, and extend the results from Section 3.3.2 to
bound the regret of Bro. The Refine-Online algorithm is defined using
this second Bernoulli HMM. Combining these results with Lemma 3.1
and the observation that Bα

fixed(yT) = Pα(yT) for all yT, we directly
obtain the main results of this chapter:

Theorem 3.1 (Learning the Switching Rate). Let BBayes be as in Defini-
tion 3.2 below. Then for any α ∈ [0, 1] and any data xT such that T > 1, the
regret of SBayes compared to Fα is bounded by

ln
Fα(xT)

SBayes(xT)
≤ 1

2
ln(T − 1) + 2.8,

and the regret of Sro is bounded by

ln
Fα(xT)
Sro(xT)

≤ log 3
(

1
2

ln(T − 1) + ln ln(T)
)

+ 23.1.

(For T = 1, SBayes(x) = Sro(x) = Fα(x) for any x.)

While this theorem yields a bound for SBayes comparable to that given
in [Monteleoni and Jaakkola, 2003], the analysis is different: in the end
it is based on Lemma 3.1, which can only be usefully applied when
good uniform bounds on the prior probability of the expert sequence,
as established in Section 3.3.2, are available. In contrast, the analysis
in [Monteleoni and Jaakkola, 2003] only requires a good bound on the
Kullback-Leibler divergence D(α̂‖α̈) between the optimal switching rate
α̂ and the best discretised parameter α̈ ∈ AT. In other words, the only
region where the discretisation precision actually matters is close to α̂.
But their analysis does not readily generalise to other Bernoulli HMMs
such as Bro.

3.3 Discretisation of Bernoulli Sources

In this section we define two Bernoulli HMMs, BBayes and Bro, and de-
rive bounds on their worst-case regret. The first is based on a fixed
discretisation of the set of Bernoulli distributions, where the optimal
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number of discretisation levels depends on the total number of out-
comes T, which therefore has to be known. The resulting tracking
HMM, SBayes, is similar to Learn-α, but with the added advantage that
the exact number and locations of the discretisation points are explicitly
specified. Moreover, we obtain an explicit constant.

The analysis of BBayes is also an essential stepping stone to the spec-
ification of the second Bernoulli HMM Bro, whose discretisation of the
set of Bernoulli distributions is not fixed; instead the discretisation is re-
fined every time the number of outcomes gets large enough that it pays
to do so.

Preliminaries As before, let Pα denote the Bernoulli distribution with
Pα(Y = 1) = α. For any binary sequence yT, the maximum likelihood
parameter is α̂(yT) = T−1 ∑T

t=1 yt. When the data sequence is clear from
context, we usually abbreviate α̂ ≡ α̂(yT). The maximum likelihood is a
sufficient statistic: for any α and T, the probability Pα(yT) is completely
determined by α̂. We therefore define Pα(α̂) := αα̂(1− α)1−α̂, allowing
any α̂ ∈ [0, 1], not just rational values. Note that T ln Pα(α̂) = ln Pα(yT).

3.3.1 Discretisation

The analysis below is based on a different parametrisation of the
Bernoulli distributions. For α ∈ [0, 1] and φ ∈ [0, π/2], let φ(α) =
arcsin

√
α and α(φ) = sin2 φ. It is convenient to think of φ-parameters

as points in the first quadrant of the unit circle. The parametrisation has
many elegant properties; for example the Fisher information is con-
stant. Similar arcsine transformations are well-known in the statistical
literature [Anscombe, 1948, Freeman and Tukey, 1950]. In the follow-
ing we will use Pα(α̂) and Pφ(φ̂) interchangeably, where the intended
parametrisation should be clear from the parameter name and the con-
text.

We now describe an explicit discretisation scheme for the φ-
parameter of Bernoulli distributions that is especially easy to refine
incrementally in online settings.

Definition 3.1 (k-Discretisation). For k ∈ {1, 2, . . .} define the k-
discretisation as the set Dk := {δk, 2δk, 3δk, . . . , (2k − 1)δk} ∪ { 1

2 δk, π/2−
1
2 δk} of 2k + 1 discretisation points, where δk = π2−k−1.
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This is a uniform discretisation made slightly denser at the bound-
aries. The (k + 1)-discretisation adds a new point midway between any
two points in the k-discretisation, except at the boundaries, which re-
quire special care. Thus Dk ⊂ Dk+1, which will turn out to facilitate
incremental refinement in the online setting.

Given k-discretisation Dk, any point ψ ∈ [0, π/2] has a set Nk(ψ) of
neighbours in Dk, which is defined as

Nk(ψ) =


{φ1} if ψ > π/2− δk/2,
{φ2} if ψ < δk/2,
{φ1, φ2} otherwise,

where φ1 = max{φ ∈ Dk | φ ≤ ψ} and φ2 = min{φ ∈ Dk | φ ≥ ψ}.
(Note that φ1 = φ2 if ψ ∈ Dk.)

3.3.2 The Offline Bernoulli HMM BBayes

In the example above, we defined the offline Bernoulli HMM BBayes
using an unspecified set AT of discretisation points. We now complete
the definition.

Definition 3.2. BBayes is the Bernoulli HMM as introduced in (3.2),
defined with respect to AT = {α(φ) | φ ∈ Dk(T)}, where k(T) =⌈

1
2 log(Tπ2(2−

√
2))
⌉

.

As the number of transitions per time step equals |AT| for this
Bernoulli HMM, the forward algorithm for BBayes runs in O(T

√
T) time.

We proceed to analyse the regret of BBayes in the worst case over all
possible binary sequences yT ∈ {0, 1}T. The following lemma is at the
basis for all of the following results. Its proof, and the proofs of the
other results in this section, are deferred to Section 3.5.

Lemma 3.3 (Generalised Divergence Bound). Suppose φ1, φ2 and φ3 all
lie in [0, π/4] and φ2 > 0. Then

ln
Pφ1(φ3)
Pφ2(φ3)

= D(φ3‖φ2)− D(φ3‖φ1)

≤


4(φ2 − φ1)(φ2 − φ3) if φ3 ≤ φ2,

4(φ2 − φ1)(φ2 − φ3)
φ3

φ2
otherwise.

(3.3)
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Note that by symmetry in π/4 the lemma can also be applied to φ′i =
π/2− φi for i = 1, 2, 3. Although it provides a bound on the Kullback-
Leibler divergence, which is an expected quantity, we use it to prove
results on individual sequence regret. In particular, Lemma 3.3 will
typically be applied with φ3 set to the maximum likelihood φ̂ for some
binary sequence. As a notational reminder, φ3 will be called φ̂ in the
remainder.

The following consequence of Lemma 3.3 is an important interme-
diate result. It expresses that the regret per outcome of using the best
discretisation point rather than the maximum likelihood is O(δ2

k ), which
means that O(

√
T) uniformly spaced discretisation points suffice to

achieve an O(1) overall worst-case regret. Using the φ-parametrisation
is crucial; in the α-parametrisation the discretisation points must be
packed extra densely near the boundaries of the parameter space.

Lemma 3.4 (Discretisation Lemma). For any φ̂ ∈ [0, π/2] and φ ∈ (0, π/2)
it holds that

min
φ∈Nk(φ̂)

ln
Pφ̂(φ̂)

Pφ(φ̂)
≤ (8− 4

√
2)δ2

k ≤ 2.4 δ2
k .

Specifically, for BBayes we obtain the following worst-case regret
bound.

Theorem 3.2 (Offline Discretisation). For any binary sequence yT ∈ {0, 1}T

and any α ∈ [0, 1]

ln
Pα(yT)

BBayes(yT)
≤ 1

2
ln T + 2.8.

3.3.3 The Online Bernoulli HMM Bro

We shall now define the remaining properties of the Refine-Online
Bernoulli HMM, Bro, using Dk as before. But since we do not know
T, rather than choosing a fixed k as a function of T, we let k increase by
one every time the precision threatens to become insufficient, roughly
doubling the number of discretisation points. The critical step in the
definition of Bro will describe how to patch things up whenever k in-
creases.

Our approach is more subtle than the doubling trick, which is of-
ten used to deal with unknown T [Cesa-Bianchi and Lugosi, 2006].
Naive doubling can be done in two ways. The simplest is to restart
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Figure 3.2: Refinement from D2 to D3.

the algorithm completely each time the precision needs to be increased.
But then the Bernoulli parameter has to be relearned in each segment,
which results in a significantly worse loss bound of order O((ln T)2).
Alternatively, one might revisit previous data and continue by setting
the algorithm’s weights as if the increased precision had been used from
the start. But this requires the algorithm to store all data indefinitely;
moreover, we have not been able to improve our loss bound using this
approach. In the following we therefore suggest a more advanced way
of doubling, which redistributes the weights of the algorithm without
looking at old data whenever the precision is increased.

We first define Bk
ro with respect to a function k : Z+ → Z+, called

the discretisation function. It identifies the discretisation set Dk(t) to be
used at time t, and should have the property that k(t + 1) = k(t) or
k(t + 1) = k(t) + 1 for all t. Thus At = {α(φ) | φ ∈ Dk(t)}. The
discretisation function for Refine-Online is

κ(t) =
⌊

1
2

log t + log log(t + 1)
⌋

+ 1,

and we simply write Bro for Bκ
ro.

The initial weights of the states are Bk
ro(〈α1, 1〉) = 1/|Dk(1)|. It re-

mains to define the transition probabilities between states. For consec-
utive times t and t + 1 when the discretisation does not change, i.e.
k(t) = k(t + 1), these transitions are similar to those for the Bayesian
Bernoulli HMM in (3.2); for times when the discretisation does change,
the probabilities are given by a refinement function dk : Dk × Dk+1 →
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[0, 1]. Thus,

Bk
ro(〈αt+1, t + 1〉 | 〈αt, t〉)

=

{
1{αt}(αt+1) if k(t) = k(t + 1),
dk(t)(φ(αt), φ(αt+1)) otherwise.

The refinement function dk, which determines our patch-up strategy, is
chosen such that φt+1 gets some mass from each of its neighbours in
Nk(t)(φt+1):

dk(φt, φt+1) = 1Nk(φt+1)(φt) ·
{

1
2 if φt ≤ δk or φt ≥ 1

2 π − δk,
1
3 otherwise.

The refinement function is illustrated by Figure 3.2 for k = 2, but
note that as k(t) gets larger, the case that dk(φt, φt+1) = 1/3 becomes
most important. Also note there are at most three transitions for each
discretisation point per time step. The forward algorithm therefore runs
in time proportional to ∑T

t=1 |Dk(t)| ≤ T |Dk(T)|. In particular for Bro

(k = κ) its running time is O(T
√

T log T).
While it may seem redundant to allow for converging paths in the

HMM, we do need such a structure for the proof of the lemma be-
low, which bounds the weights of the newly introduced discretisation
points. The idea is to compare the weight that is accumulated in any
state 〈αt, t〉 after observing yt, to Pαt(yt). Let t(k) = min{t ∈ Z+ |
k(t) = k} be the first time at which the k-discretisation is used. If the
discretisation function k were strictly increasing, this would be its in-
verse.

Lemma 3.5 (Refinement Lemma). For any yt ∈ {0, 1}t, any φ ∈ Dk(t) it
holds that

ln
Pφ(yt)

Bk
ro(yt,

〈
α(φ), t

〉
)
≤ ln |Dk(1)|+

k(t)

∑
k=k(1)+1

ln 3 + (4− 2
√

2)π2 t(k)− 1
4k .

(3.4)
In particular for the discretisation function κ we get

ln
Pφ(yt)

Bro(yt,
〈
α(φ), t

〉
)
≤ log 3

(
1
2

ln t + ln ln(t + 1)
)

+ 20.7.
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Using this lemma it is not hard to provide a worst-case regret bound
for Bro.

Theorem 3.3 (Online Discretisation). For any binary sequence yt ∈ {0, 1}t

and any α ∈ [0, 1]

ln
Pα(yt)

Bro(yt)
≤ log 3

(
1
2

ln t + ln ln(t + 1)
)

+ 23.1.

Here the constant is the sum of the constants appearing in Lemmas 3.4
and 3.5. The proof of this theorem is based on the regret of the discreti-
sation point φ̈(yt) ∈ Dk(t) that is closest to the unconstrained maximum
likelihood φ̂(yt). There are O(log t) discretisation points sufficiently
close to φ̂(yt). Taking this into account would result in an improved
constant in front of the ln ln(t + 1) term, but the term would not vanish
and the proof would become more complex.

3.4 Conclusion

We have presented a new discretisation scheme for Bernoulli sources
that achieves a regret bound of 1

2 ln T + 2.8 nats if the final number of
outcomes, T, is known in advance, but unlike the approach in [Mon-
teleoni and Jaakkola, 2003] specifies the exact number and positions of
the discretisation points explicitly. This scheme is most useful, however,
when T is not known in advance: in Section 3.3.3 the HMM Bro was
presented that achieves a regret of 1

2 log 3 ln T + log 3 ln ln(T + 1) + 23.1
nats without knowing T in advance. The predictions of Bro can be com-
puted in O(T

√
T log T) time using the standard forward algorithm for

HMMs.
Our interest in Bernoulli sources stems from Lemma 3.1, which

shows that these bounds directly translate into regret bounds for learn-
ing the switching rate for the Fixed-share algorithm. As discussed in
Section 3.2.1, running times also carry over. We call the new algorithm
for the case where T is not known Refine-Online.

Analogues to Lemma 3.1 may easily be proved for any expert algo-
rithm that involves a repeated binary choice with fixed probability, like
elementwise mixtures [Koolen and de Rooij, 2008a].
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Future Research The worst-case regret for Bernoulli sources is
1
2 log T + O(1) [Cesa-Bianchi and Lugosi, 2006, Thm 9.2]. This provides
a lower bound on the worst-case regret for tracking HMMs, because
Lemma 3.1 is tight. The lower bound is achieved by SBayes, but for Sro
a log 3 factor appears. This factor can be explained as follows. When
the discretisation is refined, each new point gets mass from two neigh-
bours, but our analysis in Lemma 3.4 only takes the best neighbour into
account. It is an interesting open question whether the optimal bound
could be achieved, at least up to O(log log T), by improving either the
refinement function or the analysis.

3.5 Proofs

Generalised Divergence Bound (Lemma 3.3) The equality follows by
rewriting definitions. The inequality is proved as follows. For any
concave function f with derivative f ′, and any x and y, it holds that

(x− y) f ′(x) ≤ f (x)− f (y) ≤ (x− y) f ′(y). (3.5)

In particular for ln Pφ(φ3) as a function of φ:

ln
Pφ1(φ3)
Pφ2(φ3)

≤ (φ1 − φ2)

(
2α3

cos φ2

sin φ2
− 2(1− α3)

sin φ2

cos φ2

)

= 2(φ1 − φ2)
cos2 φ2 − cos2 φ3

sin φ2 cos φ2
. (3.6)

Since cos2 φ is a concave function of φ as well, we can use (3.5) once
more to find

− 2(φ2 − φ3) sin φ2 cos φ2 ≤ cos2 φ2 − cos2 φ3

≤ −2(φ2 − φ3) sin φ3 cos φ3. (3.7)

If φ2 − φ3 ≥ 0, then plugging the left-hand side into (3.6) gives the first
case of (3.3). For φ2 − φ3 < 0 we first combine the inequality on the
right hand side of (3.7) with (3.6) to find

ln
Pφ1(φ3)
Pφ2(φ3)

≤ 4(φ1 − φ2)(φ3 − φ2)
sin φ3 cos φ3

sin φ2 cos φ2
. (3.8)
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As sin x cos x = sin 2x and sin x is concave on [0, π/2], we also get
by (3.5) that

sin φ3 cos φ3

sin φ2 cos φ2
≤ 1 +

2(φ3 − φ2)
tan(2φ2)

≤ φ3

φ2
,

where the second inequality follows by tan x ≥ x for x ∈ [0, π/2]. With
(3.8) this completes the proof.

Discretisation Lemma (Lemma 3.4) We first show that for any 0 <
φ1 ≤ φ̂ ≤ φ2 ≤ π/4 it holds that

min
φ∈{φ1,φ2}

ln
Pφ̂(φ̂)

Pφ(φ̂)
≤ 4(φ2 −

√
φ1φ2)2. (3.9)

This follows by relaxing Lemma 3.3 to get

ln
Pφ̂(φ̂)

Pφ1(φ̂)
≤ 4(φ1 − φ̂)2(φ̂/φ1)2,

which is strictly increasing in φ̂, and

ln
Pφ̂(φ̂)

Pφ2(φ̂)
≤ 4(φ2 − φ̂)2,

which is strictly decreasing. At the maximising φ̂ =
√

φ1φ2 the bounds
are equal. Substitution completes the proof of (3.9).

To prove Lemma 3.4, assume without loss of generality that φ̂ ≤
π/4; the other case is symmetric. Then φ ≤ π/4 for all φ ∈ Nk(φ̂).
If Nk(φ̂) = {φ̂}, the lemma is trivially true. If Nk(φ̂) = {δk/2}, then
φ̂ ≤ δk/2 and from Lemma 3.3 we get

ln
Pφ̂(φ̂)

Pδk/2(φ̂)
≤ 4(

1
2

δk − φ̂)2 ≤ δ2
k .

If Nk(φ̂) = { 1
2 δk, δk} we similarly obtain a bound of δ2

k . Finally, suppose
that Nk(φ̂) = {iδk, (i + 1)δk} for some integer i ≥ 1. Then application of
(3.9) yields

min
φ∈{iδk ,(i+1)δk}

ln
Pφ̂(φ̂)

Pφ(φ̂)
≤ 4

(
(i + 1)−

√
i(i + 1)

)
δ2

k ,

which is maximised by i = 1.
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Offline Discretisation (Theorem 3.2) Let φ̂ denote the maximum like-
lihood and φ̈ = arg maxφ∈Dk

Pφ(yT) denote the maximum likelihood in
Dk. The theorem follows by − ln BBayes(yT) ≤ − ln Pφ̈(yT) − ln w(φ̈)
and Lemma 3.4.

Lemma 3.6. Suppose that 0 < φ1 ≤ φ2 ≤ π/4 and define ψ = 1
2 (φ1 + φ2).

Then for any φ̂ ∈ [0, π/2],

min
φ∈{φ1,φ2}

ln
Pψ(φ̂)
Pφ(φ̂)

≤ 2(φ2 − φ1)(φ2 −
√

φ1φ2). (3.10)

Proof. As ln Pφ(φ̂) is a concave function of φ achieving its maximum at
φ = φ̂, we have for φ̂ < φ1 or φ̂ > φ2 that minφ∈{φ1,φ2} ln Pψ(φ̂)/Pφ(φ̂) ≤
0, such that (3.10) is satisfied. Therefore assume without loss of general-
ity that φ1 ≤ φ̂ ≤ φ2. At the worst-case φ̂, the bounds from Lemma 3.3
must be equal; solving yields φ̂ =

√
φ1φ2. Substitution in one of the

bounds completes the proof.

Lemma 3.7. For all ψ ∈ Dk+1 and any φ̂ ∈ [0, π/2],

min
φ∈Nk(ψ)

ln
Pψ(φ̂)
Pφ(φ̂)

≤ (4− 2
√

2)δ2
k =

(4− 2
√

2)π2

4k+1 . (3.11)

Proof. Assume without loss of generality that ψ < π/4. Then φ ≤ π/4
for all φ ∈ Nk(ψ). If ψ ∈ Dk, then the lemma is trivially true. If
ψ = δk+1/2, then Nk(ψ) = {δk/2}, and as ln Pφ(φ̂) is concave in φ
and achieves its maximum at φ = φ̂, (3.11) is satisfied if φ̂ > δk/2. If
φ̂ ≤ δk/2 it follows by Lemma 3.3 that

ln
Pδk+1/2(φ̂)
Pδk/2(φ̂)

≤ 4(δk+1/2)(δk/2− φ̂(yt)) ≤ 1
2

δ2
k .

If neither of these cases apply, we must have Nk(ψ) = {φ1, φ2} with
φ1 = iδk and φ2 = (i + 1)δk for some integer i ≥ 1, and ψ = (φ1 + φ2)/2.
In that case we apply Lemma 3.6 to find

min
φ∈Nk(ψ)

ln
Pψ(φ̂)
Pφ(φ̂)

≤ 2δ2
k (i + 1−

√
i(i + 1)),

which is maximised by i = 1.
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Refinement Lemma (Lemma 3.5) Abbreviate
〈
α(φ), t

〉
to
〈
φ, t
〉

and let
b(t) denote the right-hand side of (3.4). The proof of the first part of the
lemma is by induction on t. The case t = 1, for which b(t) = ln |Dk(1)|,
is verified by noting that Bro(y1,

〈
φ, 1
〉
) = Pφ(y1)/|Dk(1)|. Suppose the

bound is valid for some t. To show that it is also valid for t + 1, using
that

ln
Pφt+1(yt+1)

Bro(yt+1,
〈
φt+1, t + 1

〉
)
− ln

Pφt+1(yt)
Bro(yt,

〈
φt, t

〉
)

≤ min
φt∈Dk(t)

ln
Pφt+1(yt+1)

Bro(yt+1,
〈
φt+1, t + 1

〉
| yt,

〈
φt, t

〉
)

= min
φt∈Dk(t)

− ln Bro(
〈
φt+1, t + 1

〉
|
〈
φt, t

〉
).

In case k(t + 1) = k(t) the bound does not change (i.e. b(t + 1) = b(t)),
because for φt = φt+1 ∈ Dk(t) it holds that Bro(

〈
φt+1, t + 1

〉
|
〈
φt, t

〉
) =

1, and by induction ln Pφt(yt)− ln Bro(yt,
〈
φt, t

〉
) ≤ b(t). Now suppose

that k(t + 1) = k(t) + 1. Then

min
φt∈Dk(t)

− ln Bro(
〈
φt+1, t+1

〉
|
〈
φt, t

〉
) + ln

Pφt+1(yt)
Bro(yt,

〈
φt, t

〉
)

= min
φt∈Nk(t)(φt+1)

− ln dk(t)(φt, φt+1) + ln
Pφt+1(yt)

Bro(yt,
〈
φt, t

〉
)

≤ ln 3 + min
φt∈Nk(t)(φt+1)

ln
Pφt+1(yt)
Pφt(yt)

+ b(t)

≤ ln 3 + (4− 2
√

2)π2 t
4k(t)+1

+ b(t) = b(t + 1),

where the first inequality holds by induction and the last inequality
follows from Lemma 3.7.

For the second part of the lemma we bound t(k) using√
t(k) log(t(k) + 1) ≤ 2k ≤ 2

√
t(k) log(t(k) + 1). (3.12)

From the left-hand side of (3.12) we get√
t(k) ≤ 2k

log(t(k) + 1)
≤ 2k

1
2 log t(k) + log log(t(k) + 1)

.
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(We omit the tedious proof of the last inequality.) Together with the
right-hand side of (3.12) it follows that

√
t(k) ≤ 2k(k − 1)−1, which

implies t(k) ≤ 4k(k − 1)−2 ≤ (4k + 1)(k − 1)−2. The result follows by
plugging this bound into (3.4).

Online Discretisation (Theorem 3.3) Fix an arbitrary sequence yt,
and define the global maximum likelihood φ̂ = φ̂(yt) and the nearest
discretisation point φ̈ = arg maxφ∈Dk(t)

Pφ(yt). Then

ln
Pφ̂(yt)

Bro(yt)
≤ t ln

Pφ̂(φ̂)

Pφ̈(φ̂)
+ ln

Pφ̈(yt)
Bro(yt, 〈α(φ̈), t〉) .

The latter two terms can be bounded using Lemmas 3.4 and 3.5, respec-
tively.



Chapter 4

Switching between Hidden Markov
Models using Fixed-share

In prediction with expert advice the goal is to design online prediction
algorithms that achieve small regret (additional loss on the whole data)
compared to a reference scheme. In the simplest such scheme one com-
pares to the loss of the best expert in hindsight. A more ambitious goal
is to split the data into segments and compare to the best expert on each
segment. This is appropriate if the nature of the data changes between
segments. The standard Fixed-share algorithm is fast and achieves
small regret compared to this scheme.

Fixed-share treats the experts as black boxes: there are no assump-
tions about how they generate their predictions. But if the experts are
learning, the following question arises: should the experts learn from
all data or only from data in their own segment? The original algo-
rithm naturally addresses the first case. Here we consider the second
option, which is more appropriate exactly when the nature of the data
changes between segments. In general extending Fixed-share to this
second case will slow it down by a factor of T on T outcomes. We show,
however, that no such slowdown is necessary if the experts are hidden
Markov models.

4.1 Introduction

In prediction with expert advice [Cesa-Bianchi and Lugosi, 2006] a se-
quence of outcomes x1, x2, . . . needs to be predicted, one outcome at
a time. Thus, prediction proceeds in rounds: in each round we first
consult a set of experts, who give us their predictions. (We use the
word expert for any source of predictions that is available to us as in-
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put.) Then we make our own prediction and incur some loss based on
the discrepancy between our prediction and the actual outcome. Pre-
dictions may for example be in the form of a probability distribution
on outcomes. Loss may be logarithmic loss, i.e. the negative logarithm
of the probability assigned to the outcome that actually occurs. The
goal is to minimise our regret, which is the difference between our own
cumulative loss on the whole data and the cumulative loss of a reference
scheme, which typically involves tuned parameter settings unknown to
us when we make our predictions. For the reference scheme there are
several options; we may, for example, compare ourselves to the cumu-
lative loss of the best expert in hindsight (after observing the data). A
more ambitious scheme, called tracking the best expert, is addressed by
the Fixed-share algorithm of Herbster and Warmuth [1998].

4.1.1 Tracking the Best Expert

In tracking the best expert (TBE), the goal is to achieve small regret
compared to the following reference scheme:

(a) Split the data into segments.

(b) Select an expert for each segment.

(c) Sum the loss of the selected experts on their segments.

This reference scheme is appropriate if the nature of the data changes
between segments. It is harder than comparing to the single best expert
in hindsight, because now there are more unknowns: both the segmen-
tation (step a) and the reference experts (step b) are unknown when we
make our predictions. In particular the reference experts may be the
best experts in hindsight for their assigned segments.

The Fixed-share algorithm is efficient and achieves small regret
(see Theorem 4.1 below) compared to the TBE reference scheme. Given
the predictions of the experts, the algorithm’s running time is linear in
the number of outcomes and linear in the number of experts. Problem
solved. Or is it?

4.1.2 Learning Experts

In this chapter we take another look at the TBE reference scheme for
learning experts and ask: if an expert is selected for some segment, then
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should the expert learn from all data or only from the data in that
segment?

We may assume that the experts do not know the segmentation
chosen in step a of the reference scheme. (Otherwise, why not just ask
them?) Hence if we treat the experts as black boxes and only ask for
their prediction at each time step as in [Herbster and Warmuth, 1998],
it is natural that they learn from all data. We call this the standard
interpretation of the TBE reference scheme (S-TBE).

However, as the following example will illustrate, it may be benefi-
cial if experts learn only from the segment for which they are selected,
because they may get confused by data in other segments that follow a
different pattern. We call this the local learners interpretation of track-
ing the best expert (LL-TBE). As a slight complication, it will turn out
that in LL-TBE we have a further choice: whether to tell a learning
expert the timing of its segment or not, which generally makes a dif-
ference. When segment timing is preserved, we call the resulting refer-
ence scheme sleeping LL-TBE; when segment timing is not preserved we
call the reference scheme freezing LL-TBE. The next example illustrates
that S-TBE and the two variants of LL-TBE are very different reference
schemes indeed.

Example: Drifting Mean In applications one would usually build
up complicated prediction strategies from simpler ones in a hierar-
chical fashion. For example, let us first define simple static experts,
parametrised by µ ∈ R, which predict according to a standard normal
distribution with mean µ in each round. Now define a learning expert
DM[θ] that has a stochastic model for the (unobservable) drift of µ over
time. This drifting mean learning expert predicts according to a hidden
Markov model in which the hidden state at time t is µt and the pro-
duction probability of an outcome given µt is determined by the simple
expert with parameter µt. Initially, µ1 = 0 with probability one. Then
µt+1 = µt + 1 with probability θ and µt+1 = µt with probability 1− θ
for some fixed parameter θ. (See Figure 4.1.)

The expert DM[θ] may be said to be learning, because its poste-
rior distribution of µt given outcomes x1, . . . , xt−1 indicates how much
credibility the expert assigns to each value of µt: high weight on, say,
µt = 3 indicates that DM[θ] considers it likely for µt = 3 to give the best
prediction for xt.
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Figure 4.1: State transitions for learning expert DM[θ], which learns a
drifting mean
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(b) Suitable freezing LL-TBE data
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(c) Cumul. loss on data (a)
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(d) Cumul. loss on data (b)

Figure 4.2: The difference between S-TBE and the two LL-TBE reference
schemes. Note the logarithmic scale of the y-axis in (c) and (d)!
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Figures 4.2a and 4.2b plot two artificial data sets. For Figure 4.2a
sleeping LL-TBE is appropriate, for Figure 4.2b freezing LL-TBE is more
suitable. The data consist of 10 segments of 100 outcomes. In each
segment the outcomes are increasing deterministically at a rate of either
0.1 or 0.3 per outcome. Note that for the freezing data all segments start
from 0, whereas for sleeping any segment looks like the proces that
generated it started at 0 at time 1, but went unobserved for a while.

Figures 4.2c and 4.2d show the cumulative log(arithmic) loss for
all three TBE reference schemes. Note that the difference between the
schemes is so large that their losses had to be plotted on a logarithmic
scale. In each case we consider two experts: DM[0.1] and DM[0.3] and
use the expert DM[θ] for any segment with rate θ. The difference be-
tween the three schemes lies in which data is used by DM[θ] to learn
from. In the S-TBE scheme DM[θ] is shown all the data, even those out-
side the segment it has to predict. In the two LL-TBE schemes, on the
other hand, a fresh copy of DM[θ] only sees the data in the segment for
which it is selected: for freezing LL-TBE, DM[θ] predicts as if the cur-
rent segment is the only data; for sleeping LL-TBE, DM[θ] knows the
timing of the segment it is predicting, and treats all samples preced-
ing that segment as unobserved. Thus in sleeping LL-TBE the original
timing of the segments is preserved, while in freezing LL-TBE it is lost.

We see that for the sleeping data the sleeping LL-TBE reference
scheme has much smaller loss than the other two schemes. And for
the freezing data the freezing LL-TBE scheme has the smallest loss by
far. (Mind the logarithmic scale of the y-axis, which puts the loss of
sleeping LL-TBE deceptively close to the loss of freezing LL-TBE in Fig-
ure 4.2d: a constant offset indicates a fixed multiplicative overhead.)
In both cases the reason for the large differences between the reference
schemes is that DM[θ] gets confused if it learns from the wrong data.

4.1.3 Expert Hidden Markov Models

The learning expert DM[θ] in the example above is a hidden Markov
model in which the production probabilities (of outcomes given the
state) depend on lower-level base experts. In general such prediction
strategies are called expert hidden Markov models (EHMMs). The use of
EHMMs is not restricted to describing learning experts. For example,
many algorithms for prediction with expert advice, including FS itself,
can be represented as EHMMs (see Koolen and De Rooij [2008a] and
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its references, and Monteleoni and Jaakkola [2003]). In addition any
ordinary HMM is trivially an EHMM: just introduce lower-level base
experts for its production probabilities. Not every algorithm can be rep-
resented as an EHMM, however. The Follow-the-perturbed-leader
algorithm by Hannan [1957] and Variable-share by Herbster and War-
muth [1998], for instance, are exceptions.

4.1.4 Fixed-share for Learning Experts

LL-TBE Requires More Information The example above shows that
there is a large difference between S-TBE and the sleeping or freezing
LL-TBE reference schemes. One may therefore wonder whether there
exists an algorithm that achieves small regret compared to LL-TBE. Un-
fortunately, no algorithm will be able to do the job without additional
knowledge about the learning experts. To see this, note that the refer-
ence scheme may split the data into segments in any way it sees fit. But
black-box experts are not telling us what their predictions would be for
any possible segmentation; they only give us a single prediction each
round. Therefore, even if we knew the segmentation and the selected
expert for each segment, we still would have insufficient information to
achieve the reference scheme. The only way to address this problem is
to get more information about the learning experts. This information
should have an efficient representation and should somehow tell us
what the learning experts would predict for any possible segmentation.

Copying Experts is Less Efficient The straight-forward approach
would be to introduce a fresh copy of each expert for each possible
start of a new segment and run the original Fixed-share algorithm on
the resulting enriched set of experts. But then the number of experts
would grow linearly with the number of rounds, and consequently the
total running time would go up from linear to quadratic in the number
of outcomes. As this makes the difference between an online algorithm
that can run forever and an algorithm that effectively comes to a stop
after, say, 105 outcomes, it is worth seeing whether such an increase in
running time is really unavoidable.

EHMMs: the Efficient Special Case As we will show, it turns out
there is a special class of learning experts for which no increase in
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running time is necessary. These are the learning experts that can be
described in EHMM form. Although this excludes learning experts
that for example implement Follow-the-perturbed-leader, the class
of EHMMs is still rich enough to be of interest, if only because it in-
cludes all ordinary HMMs. In the interpretation of the two LL-TBE
reference schemes for learning experts in EHMM form, we do need to
be careful if the base experts in the EHMMs are learning themselves:
because we make no assumptions about the base experts, they always
learn from all the data.

Main Result: Achieving LL-TBE Efficiently We present two new al-
gorithms: FSsl for sleeping LL-TBE and FSfr for freezing LL-TBE, which
both generalise FS. We show that these algorithms achieve the same
regret bound compared to their respective LL-TBE reference schemes
as FS achieves compared to the S-TBE reference scheme. In addition,
FSsl runs equally fast as the original Fixed-share algorithm; for FSfr no
slowdown occurs either if the EHMMs for the learning experts have a
finite number of hidden states, otherwise it is typically still faster than
just copying the experts.

Like Fixed-share, our new algorithms can be represented as
EHMMs. In fact, we will build up both algorithms by describing how
to combine the EHMMs for the learning experts, which the algorithms
get as inputs, into a single larger EHMM. Apart from introducing
the LL-TBE reference scheme, this construction is our main result: re-
gret bounds follow from the EHMM representations using methods de-
scribed in [Koolen and De Rooij, 2008a], and the algorithms are simply
instances of the forward algorithm for EHMMs.

4.1.5 Overview

In the next section we introduce the notation for prediction with expert
advice that is used in this chapter. Then Section 4.3 reviews EHMMs,
including the representation of FS as an EHMM. It is shown how the
standard regret bound for FS by Herbster and Warmuth [1998] can be
proved using this representation. In Section 4.4 we formally define the
freezing and sleeping LL-TBE reference schemes and present our new
algorithms. Then we prove their regret bounds and state their running
times. Up to Section 4.4 we derive our results only for logarithmic loss,
which allows us to use familiar concepts and results from probability
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theory, like for example HMMs. In Section 4.5 we conclude by proving
that any algorithm that satisfies certain weak conditions, in particular
our generalisations of FS, directly generalises to an algorithm for arbi-
trary mixable losses with the appropriate regret bounds.

4.2 Notation: Prediction With Expert Advice

In this chapter we need do more extensive manipulation of segments
of data, and corresponding predictions by EHMMs. This requires more
elaborate notation than in the previous chapter, which we will proceed
to introduce. Recall that the online learning setting of prediction with
expert advice proceeds in rounds. In each round t, we first receive
advice from a countable number of experts, which are indexed by e ∈
E ⊆ N. This advice comes in the form of an action ae

t ∈ A. Then we
distill our own action at ∈ A from the expert advice. Finally, the actual
outcome xt ∈ X is observed, and everybody suffers loss as specified
by a fixed loss function ` : A × X → [0, ∞]. Thus, the performance
of a sequence of actions a1:T = a1, . . . , aT on data x1:T = x1, . . . , xT is
measured by the cumulative loss `(a1:T, x1:T) = ∑T

t=1 `(at, xt).

Log Loss We will initially present our results for log(arithmic) loss only,
before generalising to a larger class of loss function in Section 4.5. For
log loss the actions A are probability mass (or density) functions on X
and `(p, x) = − log p(x) for any p ∈ A, where log denotes the natural
logarithm. Notice that minimising log loss is equivalent to maximising
the predicted probability of outcome x. We write pe

t for the prediction
of expert e at time t and denote the predictions for all experts jointly
by pEt . Another important property of the log loss is the chain rule:
interpreting any prediction pt(xt) as the conditional density p(xt|x<t)
of outcome xt given all past outcomes x<t = x1, . . . , xt−1, we see that
the cumulative log loss of a sequence of predictions

T

∑
t=1
− log pt(xt) = − log

T

∏
t=1

p(xt|x<t) = − log p(x1:T) (4.1)

equals the negative logarithm of the joint density p(x1:T) =
∏T

t=1 p(xt|x<t) of all data x1:T. Thus any lower bound on p(x1:T) di-
rectly implies an upper bound on the cumulative loss of predictions
p1, . . . , pT on data x1:T.



4.3. Expert Hidden Markov Models 141

p◦ // Q1
p� //

p���

Q2
p� //

p���

Q3
p� //

p���

Q4
p� //

p���

· · ·

E1

pE1��

E2

pE2��

E3

pE3��

E4

pE4��

· · ·

X1 X2 X3 X4 · · ·

Figure 4.3: Bayesian network specification of an EHMM

Segments For m ≤ n, we abbreviate the segment {m, . . . , n} to m:n.
For any sequence y1, y2, . . . and any segment C = m:n we write yC
for the subsequence ym, . . . , yn. For example, xm:n = xm, . . . , xn and
pE1:T = pE1 , . . . , pET. If all segments in a family C = {C1, C2, . . .} are
pairwise disjoint and together cover 1:T, then we call C a segmentation
of 1:T. We denote by 〈eC ∈ E〉C∈C the labelling that assigns expert eC to
segment C.

4.3 Expert Hidden Markov Models

EHMMs were introduced by Koolen and De Rooij [2008a] as a graphi-
cal and computational language to specify strategies for prediction with
expert advice. EHMM diagrams directly represent the internal struc-
ture of the prediction strategy, facilitating the derivation of loss bounds.
Moreover, there is a standard algorithm for sequential prediction, the
forward algorithm, which greatly simplifies derivation of running time
bounds.

In this chapter, we use EHMMs in two ways. On the input side,
we use them to represent the learning experts whose predictions we
want to combine. On the output side, we specify our own prediction
strategies based on expert advice as EHMMs.

An EHMM H is a probability distribution that is constructed ac-
cording to the Bayesian network in Figure 4.3. It is used to sequentially
predict outcomes X1, X2, . . ., which take values in outcome space X ,
using advice from a set of experts E . At each time t, the distribution of
Xt depends on a hidden state Qt, which determines mixing weights for
the experts’ predictions. Formally, the production function p� determines
the interpretation of a state: it maps any state qt ∈ E to a distribution
pqt

� on the identity Et of the expert that should be used to predict Xt.
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Then given Et = e, the distribution of Xt is expert e’s prediction pe
t .

It remains to define the distribution of the hidden states. The starting
state Q1 has initial distribution p◦, and the state evolves according to the
transition function p�, which maps any state qt to a distribution pqt

� on
its successor states.

An EHMM H defines a prediction strategy as follows: after observ-
ing x<t, predict the next outcome Xt using the marginal H(Xt|x<t),
which is a mixture of the experts’ predictions pEt .

We present four example EHMMs. The first three examples are suit-
able as input learning experts, which might be combined in the sleeping
or freezing LL-TBE reference scheme. The fourth example represents FS
as an EHMM, which will later be helpful when we compare it to our
new generalisations.

Example 4.1 (Figure 4.1: Expert that Learns a Drifting Mean). Here we
formally define the EHMM DM[θ] from the example in the introduc-
tion. Recall that the base experts predict according to standard normal
distributions with fixed mean µ, which only takes integer values. Thus

pµ
t (x) :=

1√
2π

e−(x−µ)2/2

for all µ ∈ E := N = {0, 1, 2, . . .}. In this EHMM it is sufficient to have
a one-to-one correspondence between hidden states and experts, such
that Qt = Et. This is expressed by E := E and p� := I, where I denotes
the identity operator. The definition of DM[θ] is completed by letting
the initial distribution p◦ be a point-mass on µ = 0, and defining the
transition function p� as in Figure 4.1: for any two states µ, µ′ ∈ E

pµ
�(µ′) :=


θ if µ′ = µ + 1,
1− θ if µ′ = µ,
0 otherwise.

Example 4.2 (Bayes on base experts). Consider the Bayesian mixture
(also known as the exponentially weighted average predictor) of base
experts E with prior w. We identify this prediction strategy with the
following EHMM B[w], which makes the same predictions. As in the
previous example, let E := E and p� := I, so that Qt = Et. This time,
however, let p◦ := w and p� := I. Despite its deceptive simplicity,
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this EHMM learns: its marginal distribution of Xt+1 given previous out-
comes x1:t is a mixture of the base expert’s predictions according to the
Bayesian posterior.

Example 4.3 (Bayes on EHMMs). Let H = {H1, . . . , Hn} be EHMMs
with base experts E1, . . . , En, and let w be a prior on H. Then, instead
of treating H1, . . . , Hn as black box predictors as in the previous exam-
ple, their Bayesian mixture can also be expressed as a single EHMM
B[w,H] on the union of their base experts E :=

⋃n
i=1 E i: assume with-

out loss of generality that H1, . . . , Hn have disjoint state spaces E1, . . . , En

and let E :=
⋃n

i=1 E i. For any state q ∈ E i, let pq
� equal pq,i

� , where pi
� is

the production function of Hi, so that all states keep their original in-
terpretation. In addition let p◦(q) := w(i) pi

◦(q), where pi
◦ denotes the

initial distribution of Hi. Finally, let pq
�(q′) equal pq,i

� (q′), the transition
probability from q to q′ for Hi if q, q′ ∈ E i and let pq

�(q′) := 0 other-
wise. Again, this EHMM learns which of the EHMMs in H is the best
predictor.

Example 4.4 (Fixed-share). The Fixed-share algorithm take a param-
eter α, called the switching rate. Fixed-share with prior distribution
w on experts E and switching rate α can be represented as an EHMM
FS[α, w] as follows. As in the Bayesian mixture on base experts, let
E := E and p� := I, so that Qt = Et, and let p◦ := w. Instead of the
identity operator, however, use the transition function

p� := (1− α)I + αw1T,

where 1T denotes the operator that sums the probability masses of all
the hidden states. This transition function may be interpreted as fol-
lows: behave like the Bayesian mixture with probability 1− α, but with
probability α take all the probability mass and redistribute it according
to the prior w. (See also Figure 2.2 and the description of Fixed-share
in Chapter 2.) Observe that for any probability distribution λ on states
E , we can compute p� λ = (1− α)λ + αw in constant time per state. We
also note that in [Herbster and Warmuth, 1998] the prior w is always
taken to be the uniform distribution, which gives the best worst-case
regret bound.



144 Chapter 4. Switching between Hidden Markov Models

4.3.1 Standard Fixed-share Loss Bound

To demonstrate the graphical derivation of loss bounds for EHMMs we
now prove a regret bound for FS using its representation as an EHMM.
The general technique is to give lower bounds on the transition function
and the initial distribution. For simplicity the bound we show is slightly
weaker than the standard regret bound [Herbster and Warmuth, 1998,
Corollary 1]. (One could get the exact same bound by taking into ac-
count the remark in footnote 3 of [Koolen and De Rooij, 2008a], but this
unnecessarily complicates the proof.)

Theorem 4.1. Fix a prior w on experts E and a switching rate α. Then for any
data x1:T, expert predictions pE1:T, reference segmentation C and assignment of
experts to segments 〈eC ∈ E〉C∈C

`
(
FS[α, w], x1:T

)
≤

∑
C∈C

`(eC , xC)︸ ︷︷ ︸
S-TBE ref. scheme

+ (T − 1)H(α∗, α)︸ ︷︷ ︸
Switching

+ ∑
C∈C

− log w(eC)︸ ︷︷ ︸
Expert selection

,

where H(α, β) = −α log β− (1− α) log(1− β) and α∗ = |C|−1
T−1 .

Note that if w is the uniform distribution then − log w(eC) = log |E | for
all eC . Then the difference with the standard bound in [Herbster and
Warmuth, 1998] is (|C| − 1)(log |E | − log(|E | − 1)), which is negligible.

Proof. Recall that FS ≡ FS[α, w] has transition function p� = (1− α)I +
αw1T. Therefore for any reference segmentation C the joint probabil-
ity FS(x1:T) of any data sequence x1:T can be bounded from below by
replacing transitions in FS between segments by αw1T, and those within
the same segment by (1 − α)I. The EHMM then degenerates into a
sequence of independent Bayesian mixture EHMMs B[w] (see Exam-
ple 4.2), one for each segment. Therefore

FS(x1:T) ≥ α|C|−1(1− α)T−|C| ∏
C∈C

B[w](xC).

Similarly we can lower-bound the initial distribution of B[w] by a func-
tion that assigns weight w(eC) to the expert eC selected for C in the
reference segmentation and is 0 otherwise. It follows that B[w](xC) =
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∑e w(e)pe
C(xC) ≥ w(eC)peC

C (xC), where pe
C(xC) denotes the joint proba-

bility of outcomes xC according to the predictions of expert e. Hence by
(4.1) we can conclude that

`
(
FS, x1:T

)
= − log FS(x1:T)

≤ − log α|C|−1(1− α)T−|C| + ∑
C∈C

− log peC
C (xC)− log w(eC)

= (T − 1)H(α∗, α) + ∑
C∈C

`(eC , xC) + ∑
C∈C

− log w(eC),

which completes the proof.

4.4 Fixed-share for Learning Experts

In this section we define the freezing and sleeping LL-TBE reference
schemes for learning experts. Then, for each scheme, we provide our
prediction strategy FSfr and FSsl and we prove that it achieves as small
regret as FS.

4.4.1 LL-TBE and the Loss of an EHMM on a Segment

In order to state the loss of the freezing and sleeping LL-TBE reference
schemes, we first define the loss of a single learning expert on a single
segment. Then we define the loss of a whole segmentation.

Let H be the EHMM for a learning expert with arbitrary base experts
E . Then the freezing and sleeping probability distributions Hfr

i:j and Hsl
i:j

on segment xi:j are specified by the Bayesian networks of Figure 4.4.
For freezing, the state at time i is simply initialised according to H’s
initial distribution p◦. For sleeping, we forward the initial distribution
to time i by repeatedly applying the transition function p�. Thus, the
cumulative freezing and sleeping losses of H on segment xi:j are given
by `(Hfr

i:j, xi:j) := − log Hfr
i:j(xi:j) and `(Hsl

i:j, xi:j) := − log Hsl
i:j(xi:j). Note

that we treat the base experts E as black boxes, so they may learn from
the whole data.

Definition 4.1 (LL-TBE reference loss). Fix data x1:T and a set of
EHMMs H. Let C be a segmentation of 1:T and let 〈HC ∈ H〉C∈C be
an assignment of experts to segments. Then the losses of the freez-
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(b) Sleeping: EHMM Hsl
3:5

Figure 4.4: Freezing and Sleeping EHMM H on example segment x3:5

ing and sleeping LL-TBE reference schemes are ∑C∈C `(Hfr
C , xC) and

∑C∈C `(Hsl
C , xC).

Note that selecting a learning expert on consecutive segments differs
from selecting that expert on their union, since experts are reset be-
tween segments.

4.4.2 Main Result: Construction of the Freezing and
Sleeping EHMMs

We now present the construction of EHMMs for the freezing and sleep-
ing algorithms FSfr and FSsl. Let H be a set of learning experts, each
expert H ∈ H presented as an EHMM on basic experts E . Let w be a
prior onH, and let α be a switching rate. We proceed in two steps. First
construct the Bayesian EHMM B = B[w,H] as in Example 4.3. Recall
that B learns which of the EHMMs in H predicts best. Second, con-
struct the freezing EHMM FSfr[α, B] or the sleeping EHMM1 FSsl[α, B]
as shown in Figure 4.5. Note how, on a switch, both EHMMs reset the

1Strictly speaking, the Bayesian network in Figure 4.5b is not an EHMM, since
the transition function depends on the time. Nevertheless, this time-dependency can
be removed without any computational overhead using a process called unfolding,
see [Koolen and De Rooij, 2008b].
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entire state of B, which includes the states of experts in H. In contrast,
FS only resets its weighting on H, but does not touch the internal state
of the experts in H.

4.4.3 Prediction Algorithms

To sequentially predict data using our prediction strategies FSfr and
FSsl, one needs to run the forward algorithm on their respective
EHMMs. An explicit rendering of this process is included in Algo-
rithm 4.1.

Algorithm 4.1 Explicit Forward Algorithm on FSv for both Freezing
and Sleeping (v ∈ {fr, sl})

1 Construct B = B[w,H] with E , p◦,p� and p� as in Example 4.3.
2 Initialisation: λ← p◦
3 for t = 1, . . . do . Invariant: λ(q) = FSv[α, B](Qt = q|x<t)
4 Receive expert advice pEt .
5 Predict Xt using

λ(Xt) = ∑
e∈E ,q∈E

λ(q) pq
�(e)pe

t(Xt).

6 Observe Xt = xt. Suffer loss `
(

λ(Xt), xt

)
.

7 Loss update: λ(q)← λ(q, xt)/λ(xt), where

λ(q, xt) = ∑
e∈E

λ(q) pq
�(e)pe

t(xt).

8 State evolution:

λ←
{

(1− α) p� λ + α p◦ (Freezing)
(1− α) p� λ + α(p�)t p◦ (Sleeping)

9 end for

At any time t, the algorithm for FSsl only maintains non-zero weights on
hidden states of the input learning experts that are reachable in exactly
t steps from the starting states, just like the original FS algorithm. It
therefore has the same running time. The algorithm for FSfr, however,
has to keep track of all states reachable in at most t steps. Consequently,
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Figure 4.5: EHMMs for tracking the EHMM B with switching rate α
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in the worst case (over input EHMMs) it may be as slow as restarting
expert copies (see Section 4.1.4). But if the input EHMMs have a finite
number of hidden states, then its running time is of the same order as
that of FS. And if the states (of the input EHMMs) that are reachable
in exactly t steps are the same ones as the states reachable in at most
t steps, which holds e.g. for the drifting-mean expert DM[θ] from the
introduction, then we also recover the efficiency of FS.

4.4.4 Loss Bound

Theorem 4.1 bounds the regret of FS compared to the S-TBE reference
scheme by a “switching” and an “expert selection” term. We bound the
regret of FSfr and FSsl compared to their LL-TBE reference scheme by
the same two terms.

Theorem 4.2. Fix a set of EHMMs H on basic experts E , a prior w on H, a
switching rate α and v ∈ {fr, sl}. Let B = B[w,H]. Then for any data x1:T,
expert predictions pE1:T, reference segmentation C and assignment of experts to
segments 〈HC ∈ H〉C∈C

`
(
FSv[α, B], x1:T

)
≤

∑
C∈C

`(Hv
C , xC)︸ ︷︷ ︸

LL-TBE ref. scheme

+ (T − 1)H(α∗, α)︸ ︷︷ ︸
Switching

+ ∑
C∈C

− log w(HC)︸ ︷︷ ︸
Expert selection

,

where H(α∗, α) and α∗ = |C|−1
T−1 are as in Theorem 4.1.

Proof. The proof proceeds like that of Theorem 4.1. Bounding
transitions between segments from below by α pB

◦ 1T (freezing) or
α(pB

�)t pB
◦ 1T (sleeping), and transitions within each segment by (1−

α) pB
� , we get

FSv[α, B] ≥ α|C|−1(1− α)T−|C| ∏
C∈C

Bv
C(xC), (4.2)

where Bv
C denotes the result of freezing or sleeping B on segment C ∈

C as in Figure 4.4. Observe that freezing and sleeping distribute over
taking the Bayesian mixture: Bv

C = B[w,Hv
C ], where Hv

C := {Hv
C | H ∈

H}. As B[w,Hv
C ](xC) = ∑H w(H)Hv

C(xC) ≥ w(HC)Hv
C(xC), the theorem

follows from (4.1), like in the proof of Theorem 4.1.
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4.5 Other Loss Functions

We will now show how (our generalisations of) the Fixed-share algo-
rithm for logarithmic loss can be directly translated into an algorithm
with corresponding loss bound for any other mixable loss function.
The same construction works for any logarithmic loss algorithm that
predicts each outcome according to a mixture of the experts’ predic-
tions and whose predictions only depend on the experts’ past losses on
outcomes that actually occurred.

Mixability A loss function ` : A× X → [0, ∞] is called η-mixable for
η > 0 if any distribution p on experts E can be mapped to a single
action Pred(p) ∈ A in a way that guarantees that

`
(

Pred(p), x
)
≤ − 1

η log Ee∼p

[
exp

(
−η`(ae, x)

)]
(4.3)

for all outcomes x ∈ X and expert predictions aE . It is called mixable if it
is η-mixable for some η > 0 [Cesa-Bianchi and Lugosi, 2006]. Mixability
ensures that expert predictions for `-loss can be mixed in essentially the
same way as for log loss.

For example, logarithmic loss itself is 1-mixable. For A = [0, 1]
and X = {0, 1} the square loss `(a, x) := (a− x)2 is 2-mixable and the
Hellinger loss `(a, x) := ((

√
1− x −

√
1− a)2 + (

√
x −
√

a))/2 is
√

2-
mixable. A standard loss function that is not mixable is the zero-one loss
forA = X = {0, 1}, which is 0 if a = x and 1 otherwise. Approaches for
zero-one loss typically analyse expected loss under randomized actions,
for which it can be approximated by mixable loss functions. [Haussler
et al., 1998, Cesa-Bianchi and Lugosi, 2006]

The Benefits of Lying Given data x1:t and expert predictions aE1:t, let
`e

1:t := `(ae
1, x1), . . . , `(ae

t , xt) denote the sequence of losses of expert e,
and let `E1:t denote these losses jointly for all experts. From this point
on we will write `` instead of ` for the logarithmic loss.

Suppose alg is an algorithm for log loss that predicts each outcome
xt by mixing the experts’ predictions pEt according to the distribution
palg

t [x<t, ``E<t] on experts. The square-bracket expression indicates that
palg

t may depend on the past outcomes x<t ≡ x1:t−1 and the losses ``E<t
of the experts on these outcomes, but not on the experts’ past or current
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predictions in any other way. Following this convention, the algorithm
predicts xt using:

palg
t [x<t, ``E<t](xt) := ∑

e
palg

t [x<t, ``E<t](e)pe
t(xt).

Now for any game with η-mixable loss ` and an equally large set of
experts E , we can derive from alg an algorithm alg

η
` that predicts xt

according to

aalg
η
`

t := Pred
(

palg
t [x<t, η · `E<t]

)
.

Note that alg
η
` is lying to alg: while alg thinks it is playing a game for log

loss in which experts have incurred log losses η · `E<t, in reality alg
η
` is

playing a game for loss ` and is feeding alg fake inputs and redirecting
alg’s outputs. Let us now analyse the loss of the derived algorithm alg

η
` .

Theorem 4.3 (Other Loss Functions). Suppose alg is an algorithm for log-
arithmic loss that predicts according to palg

t [x<t, ``E<t] at each time t, ` is an
η-mixable loss function, and f (x1:T, `E1:T) is an arbitrary function that maps
outcomes and expert losses to real numbers. Then any log loss bound for alg of
the form

``(alg, x1:T) ≤ f (x1:T, ``E1:T) for all pE1:T, (4.4)

directly implies a bound on the `-loss of alg
η
` :

`(algη
` , x1:T) ≤ 1

η f (x1:T, η · `E1:T) for all aE1:T.

Proof. Construct a log loss game in which at any time t each expert e
predicts according to a distribution pe

t such that pe
t(xt) = exp(−η`e

t) for
the actual outcome xt and pe

t is arbitrary on other outcomes such that
∑xt

pe
t(xt) = 1. By η-mixability (4.3) of ` we can relate the `-loss of alg

η
`

to the log loss of alg:

`(aalg
η
`

1:T , x1:T) = ∑
t∈1:T

`

(
Pred

(
palg

t [x<t, η`E<t]
)

, xt

)
≤ 1

η ∑
t∈1:T
− log palg

t [x<t, η`E<t](xt)

= 1
η ``(alg, x1:T).

Combining with (4.4) completes the proof.
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Algorithms that satisfy the requirements of the theorem include
Follow-the-leader, the Mixing past posteriors algorithm by Bous-
quet and Warmuth [2002] and any algorithm that can be represented
as an EHMM, including Fixed-share and our generalisations, and the
Bayesian mixture (Example 4.2). An algorithm that does not satisfy
them is the Last-step minimax algorithm by Takimoto and Warmuth
[2000], because it takes into account the experts’ predictions on out-
comes that do not occur.

In the literature it is common to construct algorithms for arbitrary
mixable losses and point out their probabilistic interpretation for the
special case of log loss [Haussler et al., 1998, Herbster and Warmuth,
1998, Bousquet and Warmuth, 2002]. Instead, we have proceeded the
other way around: first we derived results for log loss and then we
showed that they generalise to other losses. This allowed us to draw on
concepts and results from probability theory like conditional probabil-
ities, HMMs and the forward algorithm, without reproving them in a
more general setting.

Theorem 4.3 generalises results by Vovk [1999], who shows that the
most important loss bounds for Bayes with logarithmic loss can actually
also be derived for arbitrary mixable losses. Our algorithm alg plays a
role similar to his APA algorithm.

4.6 Conclusion

We revisited the tracking the best expert reference scheme (TBE), which
asks for a strategy for prediction with expert advice that suffers small
additional loss compared to the best expert per segment. This goal is
natural when the characteristics of the data, and hence the best expert,
are different between segments.

For learning experts, the standard interpretation of experts as black
boxes implies training the experts on all data. We proposed a variation,
adapted to learning experts, in which experts are only trained on the
segment on which they are evaluated. Our scheme is able to exploit
patterns in the data per segment, leading to smaller loss.

Although in general extending the standard Fixed-share algorithm
to our setting will slow it down by a factor of T on T outcomes, we
showed that no such slowdown is necessary if the learning experts can
be represented as expert hidden Markov models (EHMMs). For arbi-
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trary mixable losses we proved the loss bounds one would expect based
on the loss bound for the original Fixed-share algorithm.

4.6.1 Discussion and Future Work

Learning the Switching Rate Like Fixed-share, our algorithms de-
pend on a switching rate parameter α, which has to be fixed. Instead,
one may want to tune α automatically based on the data. For FS this
can be done efficiently, as described in the previous chapter. The same
methods transfer directly to FSfr and FSsl.

S-TBE vs LL-TBE We have discussed experts that learn only on their
assigned segment. Perhaps surprisingly, this does not always increase
performance. For example, we may have homogeneous data and ex-
perts that learn its global pattern at different rates. In such cases we
clearly want to train each expert on all observations and, by switching
at the right times, select the expert that has learned most until then.
This scenario is analysed by Van Erven et al. [2008b], where experts
are parameter estimators for a series of statistical models of increasing
complexity.

Partitions instead of Segmentations Rather than split the data into
segments as in the TBE reference scheme, one may wish to partition it
arbitrarily into cells such that observations in the same cell need not be
consecutive. Like Fixed-share, the corresponding algorithm [Bousquet
and Warmuth, 2002] can be generalised to the LL-TBE setting without
increasing its running time. In this case naively introducing copies of
the experts for all possible partitions is infeasible: it would slow down
the algorithm by an exponential factor 2T on T outcomes.
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Chapter 5

MDL Convergence

In this chapter we investigate the scaling of the density code lengths
that is required by Theorem 1.4 from Chapter 1. This scaling is equiv-
alent to using the standard MDL estimator with density code lengths
that satisfy a light-tails condition. It is found that if the scaling is sim-
ply removed, then MDL need not convergence at all. However, it is
also shown that the light-tails condition can be weakened, and con-
vergence also occurs for certain density code lengths that have heavy
tails instead. The investigations in this chapter are preliminary, in the
sense that the results that are obtained raise several natural follow-up
questions which could not be addressed before finishing this thesis.

5.1 Introduction

In this chapter we return to the statistical terminology and notation
of Chapter 1. Recall that, given a countable set of densities M =
{p1, p2, . . .}, the MDL estimator maps any data xn ∈ X n to a density
p̈n ∈ M that achieves

min
p∈M

Ln(p)− log p(xn), (5.1)

where Ln(p) = − log πn(p) is the density code length of p, and πn(p) is
a (possibly incomplete) probability distribution onM. As discussed in
Chapter 1, the convention is to call πn a prior even though it does not
necessarily represent any prior beliefs. One may either take the density
code lengths or the prior as primitive, as the other is easily derived.
Throughout the chapter all logarithms will be natural logarithms, with
base e.

157
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Compression vs Convergence In Chapter 1, Theorem 1.4, it was
shown that the MDL estimator converges to the true density at a rate
determined by its description length of the data, but the result only
holds if we scale the density code lengths Ln(p) by a factor λ > 1,
resulting in the λ-MDL estimator, which minimizes

λLn(p)− log p(xn). (5.2)

Although from a frequentist point of view convergence may be all that
is required, this result is very unsatisfying from a coding perspective,
because there exists a code (with description lengths (5.1)) that allows
for strictly better compression of the data. This is especially worrying
in light of attempts to take the data compression interpretation as fun-
damental [Rissanen, 2007, Grünwald, 2007], which appeal for their clear
operational interpretation that holds without probabilistic assumptions.
The issue should also concern practitioners using Bayesian methods. As
only standard MDL (with λ = 1) minimizes the Bayesian probability of
error (see Chapter 1), being forced to take λ > 1 would mean acknowl-
edging a fundamental problem with Bayesian methods as well. In fact,
Zhang [2006] encounters exactly the same issue in analysing the conver-
gence of the Bayesian posterior distribution and proposes to resolve it
by modifying the standard Bayesian methods by introducing a similar
λ > 1 parameter.

Light-Tails Condition In our presentation of the λ-MDL estimator,
we have followed Zhang [2006] and Grünwald [2007]. It is well-known,
however, that taking λ > 1 may equivalently be interpreted as using the
standard MDL estimator with a condition on the density code lengths,
which is called the light-tails condition [Barron and Cover, 1991]. To see
this, consider alternative density code lengths

L′n(p) = λLn(p)− c, (5.3)

where c is a finite constant that does not depend on p or n. Clearly, us-
ing the standard MDL estimator with density code lengths L′n is equiva-
lent to using the λ-MDL estimator with density code lengths Ln. Taking
for example c = 0, we see that the alternative density code lengths L′n
satisfy Kraft’s inequality

∑
p

e−L′n(p) ≤ 1



5.1. Introduction 159

(see Theorem 1.1), and are therefore well-defined. Thus, the λ-MDL
estimator can always be interpreted as the standard MDL estimator
with alternative density code lengths. The light-tails condition comes
in when we try to reverse the construction.

Suppose we use the standard MDL estimator with density code
lengths L′n. When do density code lengths Ln exist such that (5.3) is
satisfied? Such Ln need to satisfy Kraft’s inequality, which in terms of
L′n becomes:

∑
p

e−L′n(p)/λ ≤ ec/λ.

The condition simplifies when we express it in terms of the prior
π′n(p) = e−L′n(p) and introduce b = ec/λ:

∑
p

π′n(p)1/λ ≤ b for all n. (5.4)

For given λ > 1, we say that the density code lengths L′n(p) =
− log π′n(p) satisfy the light-tails condition if (5.4) holds for some fi-
nite constant b, which does not depend on n. By (5.3), using standard
MDL under the light-tails condition is equivalent to using λ-MDL (with
different density code lengths), which is known to converge.

Gap with Consistency Theorem By Theorem 1.3, the standard MDL
estimator is consistent for any choice of density code lengths that is
independent of n, although the theorem says nothing about the rate at
which it converges to the true density. For density code lengths that
do not satisfy the light-tails condition, this behaviour is not explained
by the convergence rate result Theorem 1.4. Thus, reexpressing scaling
of the density code lengths as the light-tails condition, reveals a gap in
current understanding of the behaviour of the MDL estimator.

Barron and Cover’s Theorem In light of the previous discussion, it is
worthwhile to investigate further. As a starting point for our investiga-
tions, we will take the convergence result that introduced the light-tails
condition, by Barron and Cover [1991]. Let us describe the setting,
which is similar to that of Theorem 1.4.

Suppose the data X1, . . . , Xn are independent random variables,
which are all distributed according to the same unknown density q,
which need not be a member of the model M. Barron and Cover



160 Chapter 5. MDL Convergence

prove convergence of the MDL estimator in (squared) Hellinger distance
Hel2(q, p) =

∫
(√q −√p)2 dµ at a rate determined by the index of re-

solvability

Rn(q) = min
p∈M

{
1
n

Ln(p) + D(q‖p)
}

.

As discussed above, the light-tails condition implies that a factor λ is
absorbed into the density code lengths. Taking this into account shows
that the index of resolvability equals the right-hand side of (1.12) in
Chapter 1.

Rather than in expectation, convergence is shown in probability. For
any sequence of nonnegative random variables Yn, convergence at pos-
itive rate Rn is denoted by Yn . Rn in probability. This means that the
ratio Yn/Rn is bounded in probability, i.e. for every ε > 0, there is a
c > 0, such that Q(Yn/Rn > c) ≤ ε for all large n.

It is further assumed that the density code lengths satisfy the non-
degeneracy condition, which requires that there exists a constant l > 0
such that

Ln(p) ≥ l for all p ∈ M and all n.

This condition is typically satisfied. For example, if the density code
lengths are finite integers and M contains at least two densities, then
we may take l = 1.

Theorem 5.1 ([Barron and Cover, 1991]). Assume the density code lengths
satisfy the light-tails condition and the nondegeneracy condition. If Rn(q) →
0, then the standard MDL estimator converges to q in (squared) Hellinger
distance, with rate bounded by the resolvability Rn(q). That is,

Hel2(q, p̈n) . Rn(q) in probability. (5.5)

Theorem 5.1 has historically been important as a precursor to The-
orem 1.4 and because it introduced the light-tails condition. Although
convergence in probability is a rather weak mode of convergence, it is
sufficient for our present investigations, since we are interested primar-
ily in characterizing the conditions under which MDL converges. As
will be seen below, the light-tails condition is not the weakest possible
condition.

Outline We will first check whether the light-tails condition cannot
just be dropped entirely. Unfortunately, by adapting an example from



5.2. MDL Inconsistency Examples 161

[Zhang, 2006] it is found in Section 5.2 that MDL may not converge at
all if no conditions on the density code lengths are imposed.

Then in Section 5.3 we investigate conditions that ensure conver-
gence. We will be able to narrow down the set of problematic densities
to a subset of the model with particular characteristics, which are ex-
pressed in terms of Rényi divergence. As the main result of this chapter,
it will be shown that MDL still converges if this set has sufficiently small
probability under the prior. It will be seen that for this to be the case,
the light-tails condition is sufficient but not necessary. In particular, it
is also sufficient if all density code lengths are equal (i.e., the prior is
uniform), which is rather a heavy-tails condition. Sections 5.4 and 5.5
provide a technical discussion.

Our main result does not close the gap with the consistency theo-
rem. We discuss this issue in Section 5.6. It is found that also under the
conditions of the consistency theorem, the prior probability of the set
of problematic densities goes to zero, albeit at an arbitrarily slow rate.

Section 5.7 provides some further discussion of the findings in this
chapter. These findings raise multiple follow-up questions, which could
not be addressed within the time available before finishing this thesis.
In particular, it has not been tried to strengthen the results to stronger
modes of convergence and connections to the large body of work on
convergence of the Bayesian posterior distribution are not explored. In
this sense, the present chapter is a preliminary study. Section 5.8 briefly
reviews some of the remaining issues.

5.2 MDL Inconsistency Examples

We now present two examples in which with positive probability MDL
selects a density p̈n that is very different from the true density q. In both
examples MDL is inconsistent and does not converge. The examples
show that the convergence rate results like Theorem 1.4 from Chapter 1
and our new result (Theorem 5.1) below, do not hold for standard MDL
without imposing any further conditions.

5.2.1 Inconsistency for Arbitrary Partitions

For simplicity, let X be a countable sample space. Let Q denote the true
distribution on X n and let P = {Ai}i=1,2,... be an arbitrary partition of
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X n such that Q(Ai) > 0 for all i. Now let M = {Q, P1, P2, . . .}, where
Pi(xn) = Q(xn | Ai). Thus, the elements ofM are all very similar to Q,
except that they restrict attention to a specific element of the partition
P . Now let πn(Q) = 1/3 and for any Pi let πn(Pi) = 2

3 Q(Ai). Let
Ln(P) = − log πn(P). Now we have for any sequence xn ∈ X n that

Ln(Q)− log Q(xn) = log 3− log Q(xn),

whereas for Pi such that xn ∈ Ai

Ln(Pi)− log Pi(xn) = − log
(

2
3 Q(Ai)

)
− log Q(xn | Ai)

= log 3
2 − log Q(xn).

Thus on all data sequences (and therefore with probability one) MDL
selects some Pi rather than the true distribution Q.

This example clearly illustrates that, although any individual Pi may
be quite different from Q, the mixture of all Pi is very similar to Q:

∑
i

πn(Pi)Pi =
2
3

Q.

This explains how densities with small prior probability, which by
themselves are unlikely to be selected, can together still mislead the
MDL estimator.

5.2.2 Inconsistency for Sample Size Dependent Prior

The construction of the previous example depends on the sample size n
and the data are not independent and identically distributed (i.i.d.) un-
der the distributions Pi ∈ M. This raises the question of whether MDL
can still be inconsistent whenM contains only i.i.d. distributions. The
present example shows that this is the case by embedding an example
for the multinomial model from [Zhang, 2006] in a continuous setting.
We have to modify Zhang’s example, because in his version the sample
space and the distributions in the model all depend on n. In our version
the only dependence on n is through the prior. This last dependence
cannot be removed, because otherwise the MDL estimator would be
consistent by Theorem 1.3.

Let X = [0, 1] be the unit interval and let Xn = X1, . . . , Xn be i.i.d.
random variables, taking values in X according to the uniform density
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q. LetM′ = {pk
i | k = 2, 4, 6, . . . , i = 1, . . . , ( k

k/2)} denote all histograms
on X with an even number of bins k of equal width that put density 2
on exactly half of the bins and density 0 on the other bins. Let M =
M′ ∪{q}. All densities are extended to n outcomes by taking products:
p(xn) = ∏n

i=1 p(xi).
For any sample size n, let m � n be sufficiently large that (m −

n)n/mn ≥ 1
2 . Then define Ln(p) = − log πn(p) and the sample size

dependent prior πn as

πn(q) =
1
4

,

πn(pk
i ) =

{
1
4 w(pk

i ) + 2−n−1 if k = 2m and i ≤ 2n,
1
4 w(pk

i ) otherwise,

where w is an arbitrary positive prior on the submodel M′ that does
not depend on n. It is necessary to have πn depend on n in order
to make the example work. Otherwise, by Theorem 1.3, MDL would
almost surely select q for all sufficiently large n. Note however that
Ln(p)/n→ 0 for all p ∈ M.

If p2m
i (xn) > 0 for i ≤ 2n, then

Ln(p2m
i )− log p2m

i (xn) ≤ − log 2−n−1 − log 2n = log 2,

whereas
Ln(q)− log q(xn) = log 4 > log 2,

and consequently MDL prefers p2m
i over q. It follows that

Q( p̈n 6= q) ≥ 1−Q
(
∀i ≤ 2n : p2m

i (Xn) = 0
)

.

Now consider the set {p2m
i | i = 1, . . . , (2m

m )} of all histograms with 2m
bins. By symmetry it does not matter how we order the elements of
this set, which determines which elements receive the extra prior mass
2−n−1. Consequently, we could equally well have sampled the elements
with extra prior randomly without replacement after sampling the data.
But then the probability of the event An = {∀i ≤ 2n : p2m

i (Xn) = 0}
would increase if we would sample with replacement. Let Pr(An | Xn)
denote the conditional probability of An given Xn when the elements
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with extra prior mass are sampled uniformly with replacement. Then,
like in Zhang’s example,

Q
(
∀i ≤ 2n : p2m

i (Xn) = 0
)
≤ EXn Pr

(
∀i ≤ 2n : p2m

i (Xn) = 0 | Xn
)

= EXn Pr
(

p2m
1 (Xn) = 0 | Xn

)2n

= EXn

1−
(2m−|Xn|

m−|Xn| )

(2m
m )

2n

= EXn

1−
|Xn|−1

∏
i=0

m− i
2m− i

2n

≤
(

1−
(

m− n
2m

)n
)2n

≤ e−1/2,

where |Xn| ≤ n denotes the number of different bins (out of 2m bins)
that contain at least one outcome from X1, . . . , Xn, and the last inequal-
ity follows by (m− n)n/mn ≥ 1

2 and 1 + t ≤ et for all t.
Like in Zhang’s original example, all elements of the submodel

M′ have the same, strictly positive divergence from q in all the usual
divergence measures, like Rényi divergence, Kullback-Leibler diver-
gence and Hellinger distance. Thus, for all n, with probability at least
1− e−1/2 the density selected by MDL is at a fixed distance (indepen-
dent of n) from q. It follows that the MDL estimates do not converge.

5.3 Weakening the Light-Tails Condition

In the previous section we have seen how the MDL estimator may be
inconsistent if the model, the prior and the sample size are chosen
adversarially. Let us try to characterize the conditions under which
this may happen. Our characterization involves the Rényi divergence
Dα(p1‖p2) = 1

α−1 log
∫

pα
1 p1−α

2 dµ of order α 6= 1 of p1 from p2 (see
Chapter 6), which is nondecreasing in α. As long as it is finite, Rényi
divergence is also continuous in α and tends to the Kullback-Leibler
divergence D(p1‖p2) =

∫
p1 log(p1/p2) dµ as α tends to 1, which is

therefore how it is defined for α = 1.
Let the data be sampled i.i.d. according to q, which does not have to

be an element of M, and let q̃n ∈ M realize the index of resolvability,
i.e.

1
n

Ln(q̃n) + D(q‖q̃n) = Rn(q).
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We find that if MDL selects a bad density at all, then this density has to
be a member of the set

An =
{

p ∈ M
∣∣∣∣ c1Dα(p‖q̃n) <

Ln(p)− Ln(q̃n)
n

< c2Dβ(p‖q̃n)
}

(5.6)

for orders 0 < α < 1 < β and constants 0 < c1 < 1 < c2 which
will be discussed below. Inconsistency is avoided, however, if the prior
probability of the elements of An decreases exponentially with their
divergence from q̃n, as in the following condition:

Condition 5.1. There exist constants b ≥ 0 and k > 0 such that for all
n, whatever the identity of q̃n ∈ M is,

πn(E ∩ An) ≤ be−knε for all ε > 0, (5.7)

where E = {p ∈ M | Dα(p‖q̃n) ≥ ε}, and An is as in (5.6) with some
choices of 0 < α < 1 < β and 0 < c1 < 1 < c2.

Note that since q̃n depends on the true density q, which is unknown,
the condition requires that we check (5.7) for all possibilities.

We will show that Condition 5.1 is weaker than the light-tails con-
dition. Nevertheless, MDL still converges at a rate determined by the
index of resolvability if the light-tails condition is replaced by Condi-
tion 5.1:

Theorem 5.2. Assume the density code lengths satisfy Condition 5.1 and the
nondegeneracy condition. If Rn(q) → 0, then the standard MDL estimator
converges to q in (squared) Hellinger distance, with rate bounded by the re-
solvability Rn(q). That is,

Hel2(q, p̈n) . Rn(q) in probability. (5.8)

We note that any fixed choice of α, β, c1 and c2 in Condition 5.1 is suf-
ficient for the theorem to hold, but as any of these goes to 1, the im-
plicit constants of the theorem deteriorate until it becomes vacuous (see
Lemma 5.2 below). The proof of the theorem is given in Section 5.5. In
future work we would hope to strengthen this result to convergence
in expectation for finite samples, like in Theorem 1.4. This has not yet
been attempted.
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5.3.1 Satisfying Condition 5.1

Although at first sight Condition 5.1 might appear complicated, there
are at least two important cases in which it is easy to verify. The first
arises when all density code lengths Ln(p) are equal, because then non-
negativity of Rényi divergence implies that An is empty. Note that
this corresponds to a uniform prior πn, which is important for its data
compression properties, as discussed in Section 1.3.5. In fact, the same
reasoning still applies if the prior varies sufficiently slowly relative to
Rényi divergence:

Proposition 5.1 (Uniformish Prior). If

Ln(p)− Ln(p′) ≤ c1nDα(p‖p′)

for all p, p′ ∈ M, then An = ∅ for any β and c2, and Condition 5.1 is
satisfied with b = 0.

This proposition generalises the following observation, which could
already be made based on previous results: if all density code lengths
are exactly equal, then the λ-MDL estimator and the ordinary MDL
estimator coincide. Hence in this special case convergence of λ-MDL
implies convergence of the ordinary MDL estimator at the same rate.
However, this ad-hoc observation breaks down as soon as one allows
minor variations in the density code lengths, and one may wonder what
happens to ordinary MDL in such cases. Proposition 5.1 then shows
that it continues to converge.

There is a second case in which Condition 5.1 is easy to verify. This
is when the light-tails condition is satisfied:

Lemma 5.1. Suppose, for 0 < α < 1, there exists a constant b < ∞ such that

∑
p

πn(p)1−α ≤ b, for all n. (5.9)

Then Condition 5.1 is satisfied with the same constant b and k = αc1.
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Proof.

πn(E ∩ An) = ∑
p∈E ∩ An

πn(p) ≤ ∑
p∈E ∩ An

πn(p)1−αe−α(Ln(p)−Ln(q̃n))

≤ ∑
p∈E ∩ An

πn(p)1−αe−αc1nDα(p‖q̃n)

≤ ∑
p∈E ∩ An

πn(p)1−αe−αc1nε ≤ be−αc1nε.

Thus, the light-tails condition implies Condition 5.1. The other
way around, however, this is not the case. Consider, for example, the
Bernoulli example (Example 1.4) from Chapter 1, in which m ≈

√
n

densities were all assigned the same code length log m. This satisfies
Condition 5.1 (by Proposition 5.1), but the light-tails condition does not
hold:

∑
p

(
1
m

)1−α

= m
(

1
m

)1−α

≈ n1/2n−(1−α)/2 = nα/2 → ∞.

This shows that the light-tails condition is strictly stronger than
Condition 5.1. Note that, surprisingly, to satisfy the uniformity require-
ments of Proposition 5.1, the prior must have heavy tails, instead of
light tails.

Remark 5.1. It is shown in Chapter 6 that

Hel2(p1, p2) ≤ D1/2(p1‖p2) ≤ D2(p1‖p2) ≤ χ2(p1, p2),

where χ2(p1, p2) =
∫

(p1 − p2)2/p2 dµ denotes the χ2-distance. For
α = 1/2 and β = 2, Condition 5.1 is therefore implied if An is replaced
by the larger set

A′n =
{

p ∈ M
∣∣∣∣ c1 Hel2(p, q̃n) <

Ln(p)− Ln(q̃n)
n

< c2χ2(p, q̃n)
}

.

This, however, is a significantly stronger condition. For example, if p
and q̃n are mutually singular, then D1/2(p‖q̃n) = ∞, but Hel2(p, q̃n) = 2,
so that for a large range of density code lengths

Hel2(p, q̃n) <
Ln(p)− Ln(q̃n)

n
≤ D1/2(p‖q̃n).
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5.4 Chernoff Bound

The results by Barron and Cover [1991] all depend on an inequality that
is essentially Chernoff’s bound [Cover and Thomas, 1991]

Q̃n(Z ≥ a) ≤ e−γa EQ̃n
[eγZ] (γ ≥ 0),

applied to the random variable Z = log p(Xn)/q̃n(Xn) with a = Ln(p)−
Ln(q̃n). The bound leaves open the choice of γ, which ideally should be
tuned to make the bound as tight as possible. When Barron and Cover
apply the Chernoff bound, they use the same choice of γ for all p and
q̃n. In particular, if their light-tails condition is satisfied with α = 1/2,
they take γ = 1/2. The proof of the following lemma, which is the key
to proving Theorem 5.2, refines this approach by letting γ depend on p
and q̃n. The choice of γ is discussed after the proof.

Lemma 5.2. Let q̃n ∈ M and ε > 0. Then for any orders 0 < α < 1 < β
and any constants 0 < c1 < 1 < c2

Q̃n

(
p̈n ∈ E

)
≤ ∑

p∈E\An

πn(p)
πn(q̃n)

e−c′nDα(p‖q̃n) +
πn(E ∩ An)

πn(q̃n)
, (5.10)

where E = {p ∈ M | Dα(p‖q̃n) ≥ ε} and An are as in Condition 5.1, and
c′ = min{(1− c1)(1− α), (c2 − 1)(β− 1)}.
Proof. The event p̈n ∈ E only occurs if there exists some p ∈ E such that

Ln(p)− log p(Xn) ≤ Ln(q̃n)− log q̃n(Xn). (5.11)

For arbitrary p ∈ E , let Bp denote the event (5.11). Then Chernoff’s
bound, applied as discussed above, implies that for any γ ≥ 0

Q̃n(Bp) ≤
(

πn(p)
πn(q̃n)

)γ

EQ̃n

(
p(Xn)
q̃n(Xn)

)γ

≤ πn(p)
πn(q̃n)

e(γ−1)(nDγ(p‖q̃n)−(Ln(p)−Ln(q̃n))),

where the last inequality follows from additivity of Rényi divergence
and holds with equality unless γ ≥ 1 and P 6� Q̃n, in which case
Dγ(p‖q̃n) = ∞. The lemma now follows by the union bound,

Q̃n

(
p̈n ∈ E

)
≤ ∑

p∈E
Q̃n(Bp),
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and the following choices for γ: for p ∈ An, take γ = 1 to get

Q̃n(Bp) ≤
πn(p)
πn(q̃n)

;

for p such that Ln(p)− Ln(q̃n) ≤ c1nDα(p‖q̃n), take γ = α to get

Q̃n(Bp) ≤
πn(p)
πn(q̃n)

e−(1−α)(1−c1)nDα(p‖q̃n);

and for p such that Ln(p)− Ln(q̃n) ≥ c2nDβ(p‖q̃n), take γ = β to get

Q̃n(Bp) ≤
πn(p)
πn(q̃n)

e−(β−1)(c2−1)nDβ(p‖q̃n) ≤ πn(p)
πn(q̃n)

e−(β−1)(c2−1)nDα(p‖q̃n),

where the second inequality follows from the fact that Rényi divergence
is nondecreasing in its order.

The preceding proof applies Chernoff’s bound with different
choices of γ, depending on p and q̃n. These choices can be motivated as
follows. (See also Section 6.6.1 in the next chapter, which provides a re-
lated discussion.) Under regularity conditions, Grünwald [2007, p. 648]
shows that (1− γ)Dγ(p‖q̃n) is strictly concave in γ and

d
dγ

(1− γ)Dγ(p‖q̃n) = D(pγ‖p)− D(pγ‖q̃n),

where pγ = pγq̃1−γ
n /

∫
pγq̃1−γ

n dµ. (Note that p0 = q̃n and p1 = p.) The
exponent we get from Chernoff’s bound,

(γ− 1)
(

nDγ(p‖q̃n)− (Ln(p)− Ln(q̃n))
)

, (5.12)

is therefore strictly convex in γ and minimal at γ∗ such that

n
(

D(pγ∗‖q̃n)− D(pγ∗‖p)
)

= Ln(p)− Ln(q̃n).

Suppose

D(p‖q̃n) ≈
Ln(p)− Ln(q̃n)

n
.

Then γ∗ ≈ 1 and the exponent in (5.12) is approximately 0. As Rényi
divergence is nondecreasing and, if finite, also continuous in its order,



170 Chapter 5. MDL Convergence

this is the case for densities in An (assuming that the parameters α and
β in the definition of An are close to 1). Densities not in An we split into
two categories: those for which γ∗ < 1 and those for which γ∗ > 1. In
the first case we apply Chernoff’s bound with γ = α, and in the second
case with γ = β. Although this argument shows that we could get an
even better bound for p 6∈ An by tweaking γ even further, these are
not the p that prevent MDL from converging, so this optimization is
unnecessary for our present purposes. Only p ∈ An lead to problems,
and for these we already use (almost) the optimal γ, so there is no
further room for improvement using Chernoff’s bound.

5.5 Proof of Theorem 5.2

Our proof of Theorem 5.2 closely parallels the proof of Theorem 5.1
by Barron and Cover [1991], except that their application of Chernoff’s
bound is replaced by the following lemma:

Lemma 5.3. Suppose Condition 5.1 is satisfied with constants b, k and
α, β, c1, c2. Then for any q̃n ∈ M and ε > 0

Q̃n

(
Dα( p̈n‖q̃n) ≥ ε

)
≤ (1 + b)e−anε+Ln(q̃n), (5.13)

where a = min{k, (1− c1)(1− α), (c2 − 1)(β− 1)}.

Proof. By Lemma 5.2

Q̃n

(
Dα( p̈n‖q̃n) ≥ ε

)
≤ ∑

p∈E\An

πn(p)
πn(q̃n)

e−c′nDα(p‖q̃n) +
πn(E ∩ An)

πn(q̃n)
.

As Dα(p‖q̃n) ≥ ε for all p ∈ E , the first term on the right-hand side may
be bounded by

∑
p∈E\An

πn(p)
πn(q̃n)

e−c′nDα(p‖q̃n) ≤ ∑
p∈E\An

πn(p)
πn(q̃n)

e−anε

= e−anε+Ln(q̃n)πn
(
E \ An

)
≤ e−anε+Ln(q̃n).

The lemma follows by combining these bounds with the bound from
Condition 5.1.
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Note that Lemma 5.3 is where Condition 5.1 comes in: it ensures
that the sum over Rényi divergences in Lemma 5.2 dominates the prior
term, which gives an exponentially small probability in ε that the MDL
estimator diverges more than ε from q̃n.

To deal with densities q outside ofM, we use the following lemma
by Barron and Cover, which allows us to change measures from q to q̃n.

Lemma 5.4 ([Barron and Cover, 1991]). Let q and q̃n be densities on X and
let Xn = X1, . . . , Xn be independent random variables with density q or q̃n.
Then

Q(Xn ∈ B) ≤ Q̃n(Xn ∈ B)enr +
D(q‖q̃n)

r
+

1
enr

for any measurable event B ⊆ X n and r > 0.

The remainder of the proof of Theorem 5.2 is very similar to the
proof of Barron and Cover.

Proof of Theorem 5.2. Let b, k, α, β, c1 and c2 be constants that satisfy Con-
dition 5.1, and let 0 < a′ < 1 be a new constant to be specified later. For
c > 1/a′ > 1, let

Bn =
{

Hel2(q, p̈n) > 4cRn(q)
}

.

For arbitrary ε > 0, we show that Q(Bn) ≤ ε for all n if c is sufficiently
large. To this end, we apply Lemma 5.4 with r = (a′c− 1)Rn(q)/2, and
use that Rn(q) ≥ D(q‖q̃n) and nRn(q) ≥ Ln(q̃n) ≥ l (by the nondegen-
eracy assumption), which yields

Q(Bn) ≤ Q̃n(Bn)e(a′c−1)nRn(q)/2 +
2 + 2/(el)

a′c− 1
. (5.14)

We proceed to bound Q̃n(Bn). Using the triangle inequality

Hel(q, p̈n) ≤ Hel(q, q̃n) + Hel(q̃n, p̈n)

and the bound Hel2(q, q̃n) ≤ D1/2(q‖q̃n) ≤ D(q‖q̃n) ≤ Rn(q), we find
that on Bn

Hel(q̃n, p̈n) ≥ Hel(q, p̈n)−Hel(q, q̃n)

> (2
√

c− 1)
√

Rn(q) >
√

cRn(q).
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Consequently, by Theorem 6.17 in Chapter 6 and symmetry of Hellinger
distance,

mDα( p̈n‖q̃n) ≥ D1/2( p̈n‖q̃n)

≥ Hel2( p̈n, q̃n) = Hel2(q̃n, p̈n) > cRn(q)

on Bn, for m = max{1, (1− α)/α}. It follows that Bn is a subset of the
event

B̃n =
{

Dα( p̈n‖q̃n) > cRn(q)/m
}

,

and therefore that Q̃n(Bn) ≤ Q̃n(B̃n). Hence by Lemma 5.3

Q̃n(Bn) ≤ Q̃n(B̃n) ≤ (1 + b)e−a′cnRn(q)+Ln(q̃) ≤ b′e−(a′c−1)nRn(q),

where b′ = 1 + b and we now specify that a′ = a/m. Plugging this into
(5.14) gives

Q(Bn) ≤ b′e−(a′c−1)nRn(q)/2 +
2 + 2/(el)

a′c− 1

≤ b′e−(a′c−1)l/2 +
2 + 2/(el)

a′c− 1
,

which does not exceed ε for sufficiently large c, as required.

5.6 The Gap with Consistency

We have seen that the MDL estimator converges at a rate determined
by the index of resolvability if the density code lengths satisfy Con-
dition 5.1, which comes in to ensure that the prior probability of An
converges to zero at a sufficiently fast rate. What happens if, instead
of Condition 5.1, we impose the conditions of the consistency theorem
(Theorem 1.3)?

The two conditions of the consistency theorem are that q ∈ M and
that the density code lengths do not vary with n. Consistency then
implies that

Hel2(q, p̈n) = 0 for all large n.

Hence, if An adequately characterizes the set of problematic densities,
we would expect to find that its prior probability goes to zero, which
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indeed turns out to be the case. To see this, observe that q̃n = q for all
large n, and that for any p ∈ M there exists an np such that

c1Dα(p‖q) ≥ L(p)− L(q)
n

for all n ≥ np.

As a consequence, π(An) → 0. Note however, that the prior proba-
bility of An may go to zero arbitrarily slowly, so from the consistency
conditions we do not get any rate of convergence.

5.7 Discussion

The main result of this chapter, Theorem 5.2, may be considered in
its own right, as a convergence result for the MDL estimator. Instead
of the light-tails condition, which has previously been suggested, it
shows that the standard MDL estimator converges at a rate determined
by the index of resolvability if the prior probability of the set An is
sufficiently small. In the previous section it was also found that the
prior probability of An goes to zero under conditions under which MDL
is known to be consistent.

To study convergence properties of the MDL estimator, the next
step would be to investigate whether Theorem 5.2 can be strengthened
to convergence in expectation, preferably for finite samples like in The-
orem 1.4. However, our motivation in Chapter 1 was much more ambi-
tious: our goal was to gain insight into whether data compression can
be made a fundamental notion, which gives a robust interpretation to
statistical inference that does not break down when standard, but hard
to verify, assumptions fail. What do our findings say about this?

We have seen that the standard MDL estimator may be inconsistent
if no conditions are imposed on the density code lengths. This is wor-
rying, because it suggests that good data compression may still lead to
bad statistical inference. However, we have already seen in Chapter 2
that standard MDL methods do not necessarily achieve the best com-
pression. We will now present an informal data compression argument
which suggests that suboptimal compression may be the problem in the
inconsistency examples from this chapter as well.

Let us assume that the MDL estimator is applied to a finite set of
densities M̈ = {p1, . . . , pm} which together cover a larger model M,
as in Section 1.3.5 of Chapter 1. To achieve the best compression, this
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set should be as small as possible, so that each density in M̈ covers a
different neighbourhood ofM.

The MDL estimator bases its decision on the two-part code with
code lengths

L2-p(xn) = min
p∈M̈

Ln(p)− log p(xn),

which explicitly encodes both the data and the density p̈n ∈ M̈ that is
selected by MDL. However, if p̈n provides an accurate summary of xn,
then all information about p̈n should also be information about xn, and ex-
plicitly encoding p̈n together with the data should not cost significantly
more bits than just encoding the data.

Given the density code lengths used by MDL, a natural way to en-
code just the data, without encoding p̈n, is to use the Bayesian universal
code with the prior πn such that Ln(p) = − log πn(p). The correspond-
ing code length is

LB(xn) = − log ∑
p∈M̈

πn(p)p(xn).

As the two-part code explicitly encodes an element from M̈ and the
Bayesian universal code does not, it is not surprising that L2-p(xn) ≥
LB(xn) for all data xn, as was shown in Chapter 1. But based on the
reasoning above, we now also impose the requirement that L2-p(xn)
should not be much larger than LB(xn); that is, we require that

L2-p(xn) ≈ LB(xn).

Rewriting this expression in terms of the corresponding densities as

max
p∈M̈

πn(p)p(xn)
∑p πn(p)p(xn)

≈ 1,

we get a different interpretation: it turns out that we can reinterpret it
as saying that the Bayesian posterior distribution should converge on
a single density in M̈. This line of reasoning suggests that the MDL
estimator achieves suboptimal compression unless the corresponding
posterior distribution converges. Indeed, in the inconsistency examples
from Section 5.2 it is seen that the posterior does not converge, because
the posterior probability of the true density does not go to zero as n
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grows. Hence we conjecture that convergence of the Bayesian posterior
distribution is necessary for consistency of the MDL estimator.

If this is really the case, then the results of this chapter have an
interesting implication: they would show that Condition 5.1 would be
sufficient, not just for convergence of the MDL estimator, but also for
convergence of the Bayesian posterior distribution. Verifying this would
be an interesting direction for future work.

5.8 Future Work

Much is known about convergence of the Bayesian posterior distri-
bution. For example, Barron, Schervish, and Wasserman [1999] and
Ghosal, Ghosh and Van der Vaart [2000] prove concentration of the
posterior on Hellinger neighbourhoods of the true density. Their re-
sults require that the prior puts non-negligible probability mass on a
neighbourhood of the true density, and that (except for a set of negligi-
ble prior probability) the model can be covered by a sufficiently small
number of ε-balls as ε→ 0. The analysis by Barron et al. depends on an
application of the Chernoff bound with a fixed choice of γ = 1/2. One
would therefore expect that it would benefit from a varying choice of
γ, as in the proof of Lemma 5.2. This might lead to weaker conditions
for posterior concentration that only require the prior probability of An
to be sufficiently small.

Convergence of the posterior has also been studied by Zhang [2006],
who obtains rates of convergence under a single requirement, which is
essentially the light-tails condition. The light-tails condition (with λ =
2) is also encountered by Walker [2004], who provides some additional
discussion. As we have found that for MDL convergence the light-tails
condition could be relaxed to conditions on the prior probability of
An, these results provide another indication that it might be possible
to obtain convergence of the posterior if the prior probability of An is
sufficiently small.

Zhang further analyses convergence of the MDL estimator. His tech-
niques might form a starting point to strengthen the convergence in
probability shown by Theorem 5.2 to convergence in expectation.

Finally, there may be an interesting connection to an inconsistency
result for MDL model selection by Csiszár and Shields [2000], who
show that using MDL to determine the order of a Markov chain will
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select unboundedly large orders if the data are generated uniformly
at random, even though the true distribution of the data can be rep-
resented as a first order Markov chain. Although Csiszár and Shields
only analyse Bayesian and NML universal codes, it seems plausible that
their result would extend to two-part universal codes. In that case the
results from this chapter apply, and an analysis of the prior probability
of An might give more insight into why MDL selects overly complex
models.



Chapter 6

Rényi Divergence

Rényi divergence is related to Rényi entropy much like information di-
vergence (also called Kullback-Leibler divergence or relative entropy) is
related to Shannon’s entropy, and comes up in many settings. It was
introduced by Rényi as a measure of information that satisfies almost
the same axioms as information divergence. We review the most im-
portant properties of Rényi divergence. While some of our results are
already known for finite spaces or follow easily from existing results
about f -divergences, our contribution here is (a) to extend all results to
the continuous case; and (b) to provide a unified overview of all rel-
evant properties, with direct proofs that rely only on general results
from measure theory.

6.1 Introduction

The Shannon entropy and the information divergence (also known as
relative entropy or Kullback-Leibler divergence) are perhaps the two
most fundamental quantities in information theory and its applications.
Because of their success, there have been many attempts to general-
ize these concepts, and in the literature one will find numerous en-
tropy and divergence measures. Most of these quantities have never
found any applications, and almost none of them have found an inter-
pretation in terms of coding. The most important exceptions are the
Rényi entropy and Rényi divergence [Rényi, 1961]: Harremoës [2006]
and Grünwald [2007, p. 649] provide an operational characterization
of Rényi divergence as the number of bits by which a mixture of two
codes can be compressed; and Csiszár [1995] gives an operational char-
acterization of Rényi divergence as the cut-off rate in block coding and

177
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hypothesis testing. Rényi divergence appears as a crucial tool in proofs
of convergence of minimum description length and Bayesian estima-
tors, both in parametric and nonparametric models (see the previous
chapter and [Zhang, 2006, Haussler and Opper, 1997]). It is also closely
related to Hellinger distance, which is commonly used in the analysis
of nonparametric density estimation [Le Cam, 1973, Birgé, 1986, Van de
Geer, 1993].

Rényi entropy is well studied [Aczél and Daróczy, 1975, Ben-Bassat
and Raviv, 1978], but although Rényi divergence appears in many com-
putations, it has hitherto not been studied systematically. This chapter
is intended as a reference document, which treats the basic properties
of Rényi divergence in detail.

Rényi’s Information Measures For finite alphabets, the Rényi diver-
gence of positive order α 6= 1 of a probability distribution P = (p1, . . . , pn)
from another distribution Q = (q1, . . . , qn) is

Dα(P‖Q) =
1

α− 1
log

n

∑
i=1

pα
i q1−α

i , (6.1)

where, for α > 1, we read pα
i q1−α

i as pα
i /q(α−1)

i and adopt the convention
that 0/0 = 0 and x/0 = ∞ for x > 0. The Rényi entropy

Hα(P) =
1

1− α
log

n

∑
i=1

pα
i

can be expressed in terms of the Rényi divergence of P from the uni-
form distribution U = (1/n, . . . , 1/n):

Hα(P) = Hα(U)− Dα(P‖U) = log n− Dα(P‖U).

As α tends to 1, the Rényi entropy tends to the Shannon entropy and the
Rényi divergence tends to the information divergence, so we recover a
well-known relation.

There is another way of relating Rényi entropy and Rényi diver-
gence, in which entropy is considered as self-information. Let X de-
note a discrete random variable with distribution P, and let Pdiag be the
distribution of (X, X). Then

Hα(P) = D2−α

(
Pdiag‖P× P

)
.
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For α tending to 1 the right-hand side tends to the mutual information
between X and itself, and again a well-known formula is recovered.

Special Orders Although one can define the Rényi divergence of any
order, certain values have wider application than others. Of particu-
lar interest are the values 0, 1/2, 1, 2, and ∞. The values 0, 1, and ∞
are extended orders in the sense that Rényi divergence of these orders
cannot be calculated by plugging into (6.1). Instead their definitions
are determined by continuity in α. This leads to defining Rényi diver-
gence of order 1 as the information divergence. For order 0 it becomes
− log Q({i | pi > 0}), which is closely related to absolute continuity
and mutual singularity of the distributions P and Q (see Section 6.5.7).
And for order ∞, Rényi divergence is defined as log maxi pi/qi, which
is related to the separation distance, used by Aldous and Diaconis [1987]
to bound the rate of convergence to the stationary distribution for cer-
tain Markov chains. Only for α = 1/2 is Rényi divergence symmetric
in its arguments. Although not itself a metric, it is a function of the
square of the Hellinger distance Hel2(P, Q) = ∑n

i=1(
√

pi −
√

qi)2 [Gibbs
and Su, 2002]:

D1/2
(

P‖Q
)

= −2 log

(
1− Hel2(P, Q)

2

)
. (6.2)

Similarly, for α = 2 it satisfies

D2(P‖Q) = log
(

1 + χ2(P, Q)
)

, (6.3)

where χ2(P, Q) = ∑n
i=1

(pi−qi)2

qi
denotes the χ2-distance [Gibbs and Su,

2002]. It will be shown that Rényi divergence is nondecreasing in its
order. Therefore, by log t ≤ t− 1, (6.2) and (6.3) imply that

Hel2(P, Q) ≤ D1/2(P‖Q) ≤ D1(P‖Q) ≤ D2(P‖Q) ≤ χ2(P, Q).

Outline The rest of the chapter is organized as follows. In Section 6.2
we extend the definition of Rényi divergence from the formula (6.1)
to continuous spaces. One can either define Rényi divergence via an
integral or via discretisations. We demonstrate that these definitions are
equivalent. In Section 6.3 some basic properties are established, which
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are required in the rest of the chapter. For continuous spaces, Rényi
divergence extends to the extended orders 0, 1 and ∞ in the same way as
for finite spaces. This is shown in Section 6.4, where we analyse Rényi
divergence as a function of its order α. In Section 6.5 we study Rényi
divergence as function of the two probability distributions P and Q for
fixed α. Finally, Section 6.6 reviews applications of Rényi divergence
and provides further references. It includes a connection to hypothesis
testing, to which most applications of Rényi divergence are related.

For fixed α, Rényi divergence is related to various forms of power
divergences, which are in the well-studied class of f -divergences [Liese
and Vajda, 2006]. Consequently, several of the results we are presenting
for fixed α in Sections 6.3 and 6.5 are equivalent to known results about
power divergences. To make this presentation self-contained we avoid
the use of such connections and only use general results from measure
theory.

6.2 Definition of Rényi divergence

Let us introduce the notation used throughout the chapter. We con-
sider (probability) measures on a measurable space (X ,F ). Any such
measure P is called absolutely continuous with respect to another mea-
sure Q if P(A) = 0 whenever Q(A) = 0 for all events A ∈ F . We
will write P � Q if P is absolutely continuous with respect to Q and
P 6� Q otherwise. Alternatively, P and Q may be mutually singular,
denoted P ⊥ Q, which means that there exists an event A ∈ F such
that P(A) = 0 and Q(X \ A) = 0. We will assume that all (probability)
measures are absolutely continuous with respect to a common σ-finite
measure µ, which is arbitrary in the sense that none of our definitions
or results depend on the choice of µ. As we only consider (mixtures
of) a countable number of distributions, such a measure µ exists in all
cases, so this does not restrict our treatment. For measures denoted by
capital letters (e.g. P or Q), we will use the corresponding lower-case
letters (e.g. p, q) to refer to their densities with respect to µ. Finally, for
any event A ∈ F , 1A denotes its indicator function, which is 1 on A
and 0 otherwise, and log denotes the natural logarithm.

We will often need to distinguish between the orders for which
Rényi divergence can be defined by a generalisation of the formula
(6.1) to an integral over densities, and the other orders. This motivates
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the following definitions.

Definition 6.1. We call a (finite) real number α a simple order if α > 0
and α 6= 1. The values 0, 1, ∞ are called extended orders.

6.2.1 Definition by Formula

The formula in (6.1), which defines Rényi divergence for simple orders
on finite sample spaces, generalises to arbitrary spaces as follows:

Definition 6.2 (Simple Orders). For any simple order α, the Rényi diver-
gence of order α of a probability distribution P from another distribution
Q is defined as

Dα(P‖Q) =
1

α− 1
log

∫
pαq1−α dµ, (6.4)

where, for α > 1, we read pαq1−α as pα/q(α−1) and adopt the conven-
tions that 0/0 = 0 and x/0 = ∞ for x > 0.

As a consequence of Theorem 6.2 below, this definition does not
depend on the choice of µ. In addition, its interpretation of pαq1−α

is such that the Hellinger integral
∫

pαq1−α dµ is an f -divergence [Liese
and Vajda, 2006], which ensures that the relations to squared Hellinger
distance and χ2-distance from the introduction (Equations 6.2 and 6.3)
hold in general, not just for finite sample spaces. For simple orders, we
may always change to integration with respect to P:

∫
pαq1−α dµ =

∫ ( q
p

)1−α

dP,

and in most cases it is also equivalent to integrate with respect to Q:

∫
pαq1−α dµ =

∫ ( p
q

)α

dQ (0 < α < 1 or P� Q).

However, if α > 1 and P 6� Q, then Dα(P‖Q) = ∞, whereas the integral
with respect to Q may be finite.
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6.2.2 Definition via Discretisation

For any measure λ on (X ,F ), let λ|G denote its restriction to the σ-
subalgebra G ⊆ F . We shall repeatedly use the following result, which
is a direct consequence of the Radon-Nikodým theorem [Shiryaev, 1996]:

Proposition 6.1. Suppose λ � µ is a probability distribution, or any count-
ably additive measure such that λ(X ) ≤ 1. Then for any σ-subalgebra G ⊆ F

dλ|G
dµ|G

= E

 dλ

dµ

∣∣∣∣∣ G
 (µ-a.s.)

Proof. The function E
[

dλ
dµ

∣∣∣ G] is G-measurable and satisfies

λ(A) =
∫

A
E

 dλ

dµ

∣∣∣∣∣ G
dµ, A ∈ G.

As the Radon-Nikodým theorem asserts that these requirements are
only satisfied by functions that are equal to dλ|G/dµ|G except on sets of
µ-measure zero, the proposition follows.

6.2.2.1 Data Processing

Until Section 6.5, let P and Q be fixed distributions on (X ,F ). It
has been argued that grouping observations together (by considering
a coarser σ-algebra), should not increase our ability to distinguish be-
tween P and Q under any measure of divergence [Ali and Silvey, 1966].
This is expressed by the data processing inequality, which Rényi diver-
gence satisfies:

Theorem 6.1 (Data Processing Inequality). For any simple order α and any
σ-subalgebra G ⊆ F

Dα(P|G‖Q|G) ≤ Dα(P‖Q).

Proof. Let P̃ denote the absolutely continuous component of P with
respect to Q. Then by Proposition 6.1 and Jensen’s inequality for con-
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ditional expectations

1
α− 1

log
∫ ( dP̃|G

dQ|G

)α

dQ =
1

α− 1
log

∫ E

 dP̃
dQ

∣∣∣∣∣ G



α

dQ

≤ 1
α− 1

log
∫

E

( dP̃
dQ

)α
∣∣∣∣∣∣ G
dQ

=
1

α− 1
log

∫ ( dP̃
dQ

)α

dQ. (6.5)

If 0 < α < 1, then pαq1−α = 0 if q = 0, so the restriction of P to P̃ does
not change the Rényi divergence, and hence the theorem is proved.
Alternatively, suppose α > 1. If P � Q, then P̃ = P and the theorem
again follows from (6.5). If P 6� Q, then Dα(P‖Q) = ∞ and the theorem
holds as well.

6.2.2.2 Approximation by Finite Partitions

For any finite or countable partition P = {A1, A2, . . .} of X , let P|P ≡
P|σ(P) and Q|P ≡ Q|σ(P) denote the restrictions of P and Q to the σ-
algebra generated by P .

Theorem 6.2. For any simple order α

Dα(P‖Q) = sup
P

Dα(P|P‖Q|P ), (6.6)

where the supremum is over all finite partitions P ⊆ F .

This shows that it would be equivalent to first define Rényi diver-
gence for finite sample spaces and then extend the definition to ar-
bitrary sample spaces using (6.6). As for finite sample spaces Rényi
divergence does not depend on the choice of dominating measure µ,
Theorem 6.2 implies that it does not depend on the choice of µ in gen-
eral.

Proof of Theorem 6.2. By the data processing inequality

sup
P

Dα(P|P‖Q|P ) ≤ Dα(P‖Q).
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To show the converse inequality, consider for any ε > 0 a discretisation
of the densities p and q into a countable number of bins

Bε
m,n = {x ∈ X | emε ≤ p(x) < e(m+1)ε, enε ≤ q(x) < e(n+1)ε},

where n, m ∈ {−∞, . . . ,−1, 0, 1, . . .}. Let Qε = {Bε
m,n} and F ε =

σ(Qε) ⊆ F be the corresponding partition and σ-algebra, and let pε =
dP|Qε /dµ and qε = dQ|Qε /dµ be the densities of P and Q restricted to
F ε. Then by Proposition 6.1

qε

pε
=

E[q | Bε]
E[p | Bε]

≤ q
p

e2ε (P-a.s.)

It follows that

1
α− 1

log
∫ ( qε

pε

)1−α

dP ≥ 1
α− 1

log
∫ ( q

p

)1−α

dP− 2ε,

and hence the supremum over all countable partitions is large enough:

sup
countable Q
σ(Q)⊆F

Dα(P|Q‖Q|Q) ≥ sup
ε>0

Dα(P|Qε‖Q|Qε) ≥ Dα(P‖Q).

It remains to show that the supremum over finite partitions is at least as
large. To this end, suppose Q = {B1, B2, . . .} is any countable partition
and let Pn = {B1, . . . , Bn−1,

⋃
i≥n Bi}. Then by

P
( ⋃

i≥n

Bi

)α

Q
( ⋃

i≥n

Bi

)1−α

≥ 0 (α > 1),

lim
n→∞

P
( ⋃

i≥n

Bi

)α

Q
( ⋃

i≥n

Bi

)1−α

= 0 (0 < α < 1),

we find that

lim
n→∞

Dα(P|Pn‖Q|Pn) = lim
n→∞

1
α− 1

log ∑
B∈Pn

P(B)αQ(B)1−α

≥ lim
n→∞

1
α− 1

log
n−1

∑
i=1

P(Bi)αQ(Bi)1−α = Dα(P|Q‖Q|Q),

which completes the proof.
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Figure 6.1: Rényi divergence as a function of P = (p, 1− p) for Q =
(1/3, 2/3)

Figure 6.2: Level curves of D1/2(P‖Q) for fixed Q as P ranges over the
simplex of distributions on a three-element set
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Figure 6.3: Rényi divergence as a function of its order for fixed distri-
butions

6.3 Basic Properties for Simple Orders

Consider Figures 6.1, 6.2 and 6.3. They show Dα(P‖Q) as a function of
P for sample spaces containing two or three elements, and as a function
of α for fixed P and Q. The figures suggest some basic properties. In
particular, for α > 0 the plotted divergences are nonnegative and zero
only when P equals Q. They are also increasing and continuous in α.
Let us verify that, under suitable conditions, these properties always
hold for simple orders. Proofs for the extended orders are given later.

Theorem 6.3 (Positivity). For any simple order α

Dα(P‖Q) ≥ 0.

Equality holds (i.e. Dα(P‖Q) = 0) if and only if P = Q.

Proof. By Jensen’s inequality

1
α− 1

log
∫

pαq1−α dµ =
1

α− 1
log

∫ ( q
p

)1−α

dP

≥ 1− α

α− 1
log

∫ q
p

dP ≥ 0.

Equality holds if and only if q/p is constant P-a.s. (first inequality) and
Q� P (second inequality), which together is equivalent to P = Q.
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Theorem 6.4 (Increasing in the Order). For simple orders α, the Rényi
divergence Dα(P‖Q) is nondecreasing in α. On

A = {simple orders α | 0 < α < 1 or Dα(P‖Q) < ∞}

it is constant if and only if q/p is constant P-a.s.

Proof. Let α < β be simple orders. Then for x ≥ 0 the function x 7→
x(α−1)/(β−1) is strictly convex if α < 1 and strictly concave if α > 1.
Therefore by Jensen’s inequality

1
α− 1

log
∫

pαq1−α dµ =
1

α− 1
log

∫ ( q
p

)(1−β) α−1
β−1

dP

≤ 1
β− 1

log
∫ ( q

p

)(1−β)

dP.

On A,
∫ (

q/p
)(1−β) dP is finite, so that Jensen’s inequality holds with

equality if and only if (q/p)1−β is constant P-a.s., which is equivalent
to the claim of the theorem.

Theorem 6.5 (Continuous in the Order). The Rényi divergence Dα(P‖Q)
is continuous in α on

A = {simple orders α | 0 < α < 1 or Dα(P‖Q) < ∞}.

The theorem follows from the following lemma, applied with β ∈ A:

Lemma 6.1. For any sequence α1, α2, . . . ∈ A such that αn → β ∈ A∪{0, 1}

lim
n→∞

∫
pαn q1−αn dµ =

∫
lim
n→∞

pαn q1−αn dµ. (6.7)

The proof extends a proof by Shiryaev [1996, pp. 366–367].

Proof. We will verify the conditions for the dominated convergence the-
orem, from which (6.7) follows. First suppose 0 ≤ β < 1. Then
0 < αn < 1 for all sufficiently large n. In this case pαn q1−αn , which
is never negative, does not exceed αn p + (1 − αn)q ≤ p + q, and the
dominated convergence theorem applies because

∫
(p + q) dµ = 2 < ∞.

Secondly, suppose β ≥ 1 and assume without loss of generality that
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αn > 0. Then there exists a γ ≥ β such that γ ∈ A ∪ {1} and αn ≤ γ
for all sufficiently large n. If γ = 1, then αn < 1 and we are done by
the same argument as above. So suppose γ > 1. Then convexity of
pαn q1−αn in αn implies that for αn ≤ γ

pαn q1−αn ≤ (1− αn

γ
)p0q1 +

αn

γ
pγq1−γ ≤ q + pγq1−γ.

Since
∫

q dµ = 1, it remains to show that
∫

pγq1−γ dµ < ∞, which is
implied by γ > 1 and Dγ(P‖Q) < ∞.

6.4 Extended Orders: Varying the Order

As for finite alphabets, continuity considerations lead to the following
extensions of Rényi divergence to orders for which it cannot be defined
using (6.4).

Definition 6.3 (Extended Orders). The Rényi divergences of orders 0 and
1 are defined as

D0(P‖Q) = lim
α↓0

Dα(P‖Q) = − log Q(p > 0),

D1(P‖Q) = lim
α↑1

Dα(P‖Q) = D(P‖Q),

and of order ∞ as

D∞(P‖Q) = lim
α↑∞

Dα(P‖Q) = log sup
A∈F

P(A)
Q(A)

,

with the convention that 0/0 = 0.

Here D(P‖Q) denotes the information divergence of a probability dis-
tribution P from another distribution Q, which is defined as

D(P‖Q) =
∫

p log
p
q

dµ,

with the conventions that 0 log(0/q) = 0 and p log(p/0) = ∞ if p > 0.
Consequently, D(P‖Q) = ∞ if P 6� Q. Our definition of D0 follows
Csiszár [1995]. It differs from Rényi’s original definition, which equals
(6.4) with α = 0 plugged in [Rényi, 1961] and is therefore always zero.
As illustrated by Section 6.5.7, the present definition is more interesting.
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Let us verify that the properties for simple orders from the previous
section also hold for the extended orders, and that the limits in Defi-
nition 6.3 equal their corresponding closed forms as claimed. Taking
the limits in Definition 6.3 as our basic definitions, we directly find the
following:

Theorem 6.6 (Increasing in the Order). For 0 ≤ α ≤ ∞ the Rényi diver-
gence Dα(P‖Q) is nondecreasing in α. On

A = {0 ≤ α ≤ ∞ | 0 ≤ α ≤ 1 or Dα(P‖Q) < ∞}

it is constant if and only if q/p is constant P-a.s.

Proof. From the simple orders (Theorem 6.4), the result extends to the
extended orders by the following observations:

D0(P‖Q) = inf
0<α<1

Dα(P‖Q),

D1(P‖Q) = sup
0<α<1

Dα(P‖Q) ≤ inf
α>1

Dα(P‖Q),

D∞(P‖Q) = sup
α>1

Dα(P‖Q).

And the limits equal their corresponding closed form expressions:

Theorem 6.7 (α = 0).

lim
α↓0

Dα(P‖Q) = − log Q(p > 0).

Proof. By Lemma 6.1 and the fact that limα↓0 pαq1−α = 1{p>0}q.

Theorem 6.8 (α = 1).

lim
α↑1

Dα(P‖Q) = D(P‖Q). (6.8)

Moreover, if D(P‖Q) = ∞ or there exists a β > 1 such that Dβ(P‖Q) < ∞,
then also

lim
α↓1

Dα(P‖Q) = D(P‖Q). (6.9)

It is possible however that Dα(P‖Q) = ∞ for all α > 1, but D(P‖Q) <
∞, such that (6.9) does not hold. This situation occurs, for example, if
P is doubly exponential on X = R with density p(x) = e−2|x| and Q
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is standard normal with density q(x) = e−x2/2/
√

2π. (Liese and Vajda
[2006] have previously used these distributions in a similar example.)
In this case there is no way to make Rényi divergence continuous in α
at α = 1, and we opt to define D1 as the limit from below, such that it
always equals the information divergence.

The proof of Theorem 6.8 requires an intermediate lemma:

Lemma 6.2. For any x > 1/2

(x− 1)
(

1 +
1− x

2

)
≤ log x ≤ x− 1.

Proof. By Taylor’s theorem with Cauchy’s remainder term we have for
any positive x that log x = x − 1 − (x−e)(x−1)

2e2 = (x − 1)(1 + e−x
2e2 ) for

some e between x and 1. As e−x
2e2 is increasing in e for x > 1/2, the

lemma follows.

Proof of Theorem 6.8. Suppose P 6� Q. Then

D(P‖Q) = Dβ(P‖Q) = ∞

for all β > 1, so (6.9) holds. And (6.8) follows by

lim
α↑1

1
α− 1

log
∫

pαq1−α dµ ≥ lim
α↑1

1
α− 1

log
∫

(1{q>0}p)α dµ

≥ lim
α↑1

α

α− 1
log P(q > 0) = ∞ = D(P‖Q),

where the second inequality is Jensen’s.
Alternatively, suppose P � Q and let xα =

∫
pαq1−α dµ. Then

limα↑1 xα = 1 by Lemma 6.1. Therefore Lemma 6.2 implies that

lim
α↑1

Dα(P‖Q) = lim
α↑1

1
α− 1

log xα

= lim
α↑1

xα − 1
α− 1

= lim
α↑1

∫
p,q>0

p− pαq1−α

1− α
dµ, (6.10)

where the restriction of the domain of integration is allowed because
q = 0 implies p = 0 (µ-a.s.) by P � Q. Convexity of pαq1−α in α
implies that its derivative, pαq1−α log p

q , is nondecreasing and therefore
for p, q > 0

p− pαq1−α

1− α
=

1
1− α

∫ 1

α
pzq1−z log

p
q

dz
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is nondecreasing in α, and

p− pαq1−α

1− α
≥ p− p0q1−0

1− 0
= p− q.

As
∫

p,q>0(p − q) dµ > −∞, it follows by the monotone convergence
theorem that

lim
α↑1

∫
p,q>0

p− pαq1−α

1− α
dµ =

∫
p,q>0

lim
α↑1

p− pαq1−α

1− α
dµ

=
∫

p,q>0
p log

p
q

dµ = D(P‖Q),

which together with (6.10) proves (6.8).
If D(P‖Q) = ∞, then Dβ(P‖Q) ≥ D(P‖Q) = ∞ for all β > 1 and

(6.9) holds. It remains to prove (6.9) if there exists a β > 1 such that
Dβ(P‖Q) < ∞. In this case, arguments similar to the ones above imply
that

lim
α↓1

Dα(P‖Q) = lim
α↓1

∫
p,q>0

pαq1−α − p
α− 1

dµ (6.11)

and pαq1−α−p
α−1 is increasing in α. Therefore

pαq1−α − p
α− 1

≤ pβq1−β − p
β− 1

≤ pβq1−β

β− 1

and, as
∫

p,q>0
pβq1−β

β−1 dµ < ∞ is implied by Dβ(P‖Q) < ∞, it follows by
the monotone convergence theorem that

lim
α↓1

∫
p,q>0

pαq1−α − p
α− 1

dµ =
∫

p,q>0
lim
α↓1

pαq1−α − p
α− 1

dµ

=
∫

p,q>0
p log

p
q

dµ = D(P‖Q),

which together with (6.11) completes the proof.

Theorem 6.9 (α = ∞).

lim
α↑∞

Dα(P‖Q) = log sup
A∈F

P(A)
Q(A)

,

with the convention that 0/0 = 0.
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Proof. For finite X

D∞(P‖Q) = lim
α↑∞

1
α− 1

log
|X |

∑
i=1

pα
i q1−α

i

= log max
i

pi

qi
= log max

A⊆X

P(A)
Q(A)

.

This extends to arbitrary spaces by Theorem 6.2:

D∞(P‖Q) = sup
α<∞

sup
P

Dα(P|P‖Q|P ) = sup
P

sup
α<∞

Dα(P|P‖Q|P )

= sup
P

log max
A∈P

P(A)
Q(A)

= log sup
A∈F

P(A)
Q(A)

,

where P ranges over all finite partitions in F .

Theorem 6.10 (Continuous in the Order). The Rényi divergence Dα(P‖Q)
is continuous in α on

A = {0 ≤ α ≤ ∞ | 0 ≤ α ≤ 1 or Dα(P‖Q) < ∞}.

Proof. Theorems 6.7, 6.8 and 6.9 extend Theorem 6.5 to the extended
orders.

6.5 Extended Orders: Fixed Order

In this section we fix the order α and study properties of Rényi di-
vergence as P and Q are varied. We first extend the data processing
inequality and nonnegativity to the extended orders, and then consider
convexity and continuity properties.

6.5.1 Data Processing and Positivity

Theorem 6.11 (Data Processing Inequality). For any order 0 ≤ α ≤ ∞
and any σ-subalgebra G ⊆ F

Dα(P|G‖Q|G) ≤ Dα(P‖Q). (6.12)

Proof. By Theorem 6.1, (6.12) holds for the simple orders. Let β be
any extended order and let αn → β be an arbitrary sequence of simple
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orders that converges to β, from above if β = 0 and from below if
β ∈ {1, ∞}. Then

Dβ(P|G‖Q|G) = lim
n→∞

Dαn(P|G‖Q|G) ≤ lim
n→∞

Dαn(P‖Q) = Dβ(P‖Q).

Theorem 6.12 (Positivity). For any order 0 ≤ α ≤ ∞

Dα(P‖Q) ≥ 0.

For α > 0, Dα(P‖Q) = 0 if and only if P = Q. For α = 0, Dα(P‖Q) = 0 if
and only if Q� P.

Proof. Theorem 6.3 shows that the theorem holds for all simple orders.
This extends to β ∈ {1, ∞} by Dβ(P‖Q) = supα<β Dα(P‖Q). For α = 0
it can be verified directly that − log Q(p > 0) ≥ 0, with equality if and
only if Q� P.

6.5.2 Convexity

Figures 6.1 and 6.2 suggest that Rényi divergence is convex in its first
argument for small α, but not for large α. This is in agreement with the
well-known fact that it is jointly convex in the pair (P, Q) for α = 1.
It turns out that joint convexity extends to α < 1, but not to α > 1, as
noted by Csiszár [1995]. Our proof generalises the proof for α = 1 by
Cover and Thomas [1991].

Theorem 6.13. For any order 0 ≤ α ≤ 1 Rényi divergence is jointly convex in
its arguments. That is, for any two pairs of probability distributions (P0, Q0)
and (P1, Q1), and any 0 < λ < 1

Dα

(
(1− λ)P0 + λP1‖(1− λ)Q0 + λQ1

)
≤ (1− λ)Dα(P0‖Q0) + λDα(P1‖Q1). (6.13)

Equality holds if and only if

α = 0: D0(P0‖Q0) = D0(P1‖Q1),
p0 = 0⇒ p1 = 0 (Q0-a.s.) and p1 = 0⇒ p0 = 0 (Q1-a.s.);

0 < α < 1: Dα(P0‖Q0) = Dα(P1‖Q1) and p0q1 = p1q0 (µ-a.s.);
α = 1: p0q1 = p1q0 (µ-a.s.)
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Proof. Let Pλ = (1− λ)P0 + λP1 and Qλ = (1− λ)Q0 + λQ1 and first
suppose that α = 0. Then

(1− λ) log Q0(p0 > 0) + λ log Q1(p1 > 0)
≤ log

(
(1− λ)Q0(p0 > 0) + λQ1(p1 > 0)

)
≤ log Qλ(p0 > 0 or p1 > 0) = log Qλ(pλ > 0).

Equality holds if and only if, for the first inequality, Q0(p0 > 0) =
Q1(p1 > 0) and, for the second inequality, p1 > 0 ⇒ p0 > 0 (Q0-a.s.)
and p0 > 0 ⇒ p1 > 0 (Q1-a.s.) These conditions are equivalent to the
equality conditions of the theorem.

Alternatively, suppose α > 0. We will show that pointwise

(1− λ)pα
0q1−α

0 + λpα
1q1−α

1 ≤ pα
λq1−α

λ (0 < α < 1);

(1− λ)p0 log
p0

q0
+ λp1 log

p1

q1
≥ pλ log

pλ

qλ
(α = 1),

(6.14)

where pλ = (1 − λ)p0 + λp1 and qλ = (1 − λ)q0 + λq1. For α = 1
(6.13) then follows directly; for 0 < α < 1 (6.13) follows from (6.14) by
Jensen’s inequality:

(1− λ) log
∫

pα
0q1−α

0 dµ + λ log
∫

pα
1q1−α

1 dµ

≤ log
(

(1− λ)
∫

pα
0q1−α

0 dµ + λ
∫

pα
1q1−α

1 dµ

)
. (6.15)

If one of p0, p1, q0 and q1 is zero, then (6.14) can be verified directly.
So assume that they are all positive. Then for 0 < α < 1 let f (x) = −xα

and for α = 1 let f (x) = x log x, such that (6.14) can be written as

(1− λ)q0

qλ
f

(
p0

q0

)
+

λq1

qλ
f

(
p1

q1

)
≥ f

(
pλ

qλ

)
.

Equation 6.14 is established by recognising this as an application of
Jensen’s inequality to the strictly convex function f .

Regardless of whether any of p0, p1, q0 and q1 is zero, equality holds
in (6.14) if and only if p0q1 = p1q0. Equality holds in (6.15) if and
only if

∫
pα

0q1−α
0 dµ =

∫
pα

1q1−α
1 dµ, which is equivalent to Dα(P0‖Q0) =

Dα(P1‖Q1).
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Joint convexity in P and Q breaks down for α > 1. To construct
a counterexample, let P0 = (p0, 1 − p0), P1 = (p1, 1 − p1) and Q0 =
Q1 = (q, 1− q), with 0 < p0 < p1 < 1. Then, for any α > 1, (6.13) is
violated for all sufficiently small q > 0. Instead of joint convexity in
both arguments, however, convexity in the second argument does hold
for all α [Csiszár, 1995]:

Theorem 6.14. For any order 0 ≤ α ≤ ∞ Rényi divergence is convex in its
second argument. That is, for any probability distributions P, Q0 and Q1

Dα(P‖(1− λ)Q0 + λQ1) ≤ (1− λ)Dα(P‖Q0) + λDα(P‖Q1) (6.16)

for any 0 < λ < 1. For finite α, equality holds if and only if

α = 0: D0(P0‖Q0) = D0(P1‖Q1);
0 < α < ∞: q0 = q1 (P-a.s.)

Proof. For 0 ≤ α ≤ 1 this follows from the previous theorem. (For
P0 = P1 the equality conditions reduce to the ones given here.)

For 1 < α < ∞, let Qλ = (1− λ)Q0 + λQ1 and define f (x, Qλ) =
(p(x)/qλ(x))α−1. It is sufficient to show that

log EX∼P[ f (X, Qλ)]
≤ (1− λ) log EX∼P[ f (X, Q0)] + λ log EX∼P[ f (X, Q1)].

Noting that, for every x ∈ X , f (x, Q) is log-convex in Q, this is
a consequence of the general fact that an expectation over log-convex
functions is itself log-convex, which can be shown using Hölder’s in-
equality:

EP[ f (X, Qλ)] ≤ EP[ f (X, Q0)1−λ f (X, Q1)λ]

≤ EP[ f (X, Q0)]1−λ EP[ f (X, Q1)]λ.

Taking logarithms completes the proof of (6.16). Equality holds in the
first inequality if and only if q0 = q1 (P-a.s.), which is also sufficient for
equality in the second inequality. Finally, (6.16) extends to α = ∞ by
letting α tend to ∞.
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6.5.3 No Pythagorean Inequality

An important result in statistical applications of information theory is
the Pythagorean inequality for information divergence (see [Cover and
Thomas, 1991, Csiszár, 1975, Topsøe, 2007]). It states that, if P is a
convex set of distributions, Q is any distribution not in P , and Dmin =
infP∈P D(P‖Q), then there exists a distribution P∗ such that

D(P‖Q) ≥ D(P‖P∗) + Dmin for all P ∈ P .

The main use of the Pythagorean inequality lies in its implication that if
P1, P2, . . . is a sequence of distributions in P such that D(Pn‖Q)→ Dmin,
then Pn converges to P∗ in the strong sense that D(Pn‖P∗)→ 0.

Unfortunately, for α 6= 1 Rényi divergence does not satisfy the Py-
thagorean inequality, as demonstrated by the counterexamples below.
We should point to results by Sundaresan [2002], however, who argues
that, under regularity conditions, for finite sample spaces a generalisa-
tion of Rényi divergence (see [Sundaresan, 2006]) does satisfy a modi-
fied Pythagorean inequality, in which every distribution R ∈ {P, Q} is
replaced by its tilted counterpart

R′(x) =
R(x)α

∑y R(y)α
.

To construct the counterexamples for the ordinary Pythagorean in-
equality, first consider 0 ≤ α < 1. Let Q = (1/3, 1/3, 1/3) be uni-
form on three points and let P = {(p1, p2, p3) | p1 = 1/4} be the
convex set of distributions with first component fixed at 1/4. Then
infP∈P Dα(P‖Q) is achieved by P∗ = (1/4, 3/8, 3/8) and the Pythago-
rean inequality

Dα(P‖Q) ≥ Dα(P‖P∗) + Dα(P∗‖Q) (6.17)

is violated for P = (1/4, 0, 3/4): if α > 0, then (6.17) is equivalent to

1 + 3α ≤
(

1
4

+
3
8

2α

)(
1 + 2

(
3
2

)α
)

(1− 21−α)(23α − 32α) ≤ 0,

which is false. If α = 0, then Dα(P‖Q) = − log 2/3, Dα(P‖P∗) =
− log 5/8 and Dα(P∗‖Q) = 0, and the inequality does not hold either.
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Secondly, for 1 < α ≤ ∞ take Q = (1/3, 1/3, 1/3) and P =
{(p1, p2, p3) | p1 = 2/3}. Then infP∈P Dα(P‖Q) is achieved by
P∗ = (2/3, 1/6, 1/6) and the Pythagorean inequality is violated for
P = (2/3, 0, 1/3): if α < ∞, then (6.17) is equivalent to

6(1 + 2α) ≥ (4 + 2α)(21−α + 2α)
(2α − 2)(4α − 4) ≤ 0,

which is false. If α = ∞, then Dα(P‖Q) = Dα(P‖P∗) = Dα(P∗‖Q) =
log 2 and the inequality does not hold either.

6.5.4 Continuity

In this section we study continuity properties of the Rényi divergence
Dα(P‖Q) of different orders in the pair of probability distributions
(P, Q). It turns out that continuity depends on the order α and the
topology on the set of all probability distributions.

If the set of probability distributions on (X ,F ) is equipped with the
τ-topology, then convergence of a sequence of probability distributions
P1, P2, . . . to a probability distribution Q means that Pn(A) → Q(A) for
any A ∈ F . Alternatively, one might consider the topology defined by
the total variation distance

V(P, Q) = 2 sup
A∈F
|P(A)−Q(A)| =

∫
|p− q|dµ,

in which Pn → Q means that V(Pn, Q) → 0. The total variation topol-
ogy is stronger than the τ-topology in the sense that convergence in
total variation distance implies convergence on any A ∈ F . The two
topologies coincide if the sample space X is countable. If X is a metric
or topological space one may also consider the weak topology, which is
a weaker topology than τ, but this topology will not be discussed here.

In general, Rényi divergence is lower semi-continuous for positive
orders:

Theorem 6.15. For any order 0 < α ≤ ∞, Dα(P‖Q) is a lower semi-
continuous function of the pair (P, Q) in the τ-topology.

Proof. Suppose X = {a1, . . . , ak} is finite. Then for any simple order α

Dα(P‖Q) =
1

α− 1
log

k

∑
i=1

pα
i q1−α

i ,
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where pi = P(ai) and qi = Q(ai). If 0 < α < 1, then pα
i q1−α

i is continu-
ous in (P, Q). For 1 < α < ∞, it is only discontinuous at pi = qi = 0,
but there pα

i q1−α
i = 0 = min(P,Q) pα

i q1−α
i , so then pα

i q1−α
i is still lower

semi-continuous. These properties carry over to ∑k
i=1 pα

i q1−α
i and thus

Dα(P‖Q) is continuous for 0 < α < 1 and lower semi-continuous for
α > 1.

A supremum over nonnegative (lower semi-)continuous functions
is itself lower semi-continuous. Therefore, for simple orders α, Theo-
rem 6.2 implies that Dα(P‖Q) is lower semi-continuous for arbitrary X .
This property extends to the extended orders 1 and ∞ by Dβ(P‖Q) =
supα<β Dα(P‖Q) for β ∈ {1, ∞}.

Moreover, if 0 < α < 1 and the stronger of the two topologies is as-
sumed, then Rényi divergence is uniformly continuous (which implies
that it is continuous).

Theorem 6.16. For 0 < α < 1, the Rényi divergence Dα(P‖Q) is a uniformly
continuous function of (P, Q) in the total variation topology.

Lemma 6.3. Let 0 < α < 1. Then for all x, y ≥ 0 and ε > 0

|xα − yα| ≤ εα + εα−1|x− y|.

Proof. If x, y ≤ ε or x = y the inequality |xα − yα| ≤ εα is obvious. So
assume that x > y and x ≥ ε. Then

|xα − yα|
|x− y| ≤

|xα − 0α|
|x− 0| = xα−1 ≤ εα−1.

Proof of Theorem 6.16. First note that Rényi divergence is a function of

the power divergence dα(P, Q) =
∫ (

1−
(

dP
dQ

)α
)

dQ:

Dα(P‖Q) =
1

α− 1
log
(
1− dα(P, Q)

)
.

Since x 7→ 1
α−1 log(1 − x) is uniformly continuous, it is sufficient to

prove that dα(P, Q) is a uniformly continuous function of (P, Q).



6.5. Extended Orders: Fixed Order 199

For any ε > 0 and distributions P1, P2 and Q, Lemma 6.3 implies
that

∣∣dα(P1, Q)− dα(P2, Q)
∣∣ ≤ ∫ ∣∣∣∣∣

(
dP1

dQ

)α

−
(

dP2

dQ

)α
∣∣∣∣∣dQ

≤
∫ (

εα + εα−1
∣∣∣∣dP1

dQ
− dP2

dQ

∣∣∣∣
)

dQ

= εα + εα−1
∫ ∣∣∣∣dP1

dQ
− dP2

dQ

∣∣∣∣dQ

= εα + εα−1V(P1, P2).

As dα(P, Q) = d1−α(Q, P), it also follows that∣∣dα(P, Q1)− dα(P, Q2)
∣∣ ≤ ε1−α + ε−αV(Q1, Q2)

for any Q1, Q2 and P. Therefore

|dα(P1, Q1)− dα(P2, Q2)|
≤
∣∣dα(P1, Q1)− dα(P2, Q1)

∣∣+ ∣∣dα(P2, Q1)− dα(P2, Q2)
∣∣

≤ εα + εα−1V(P1, P2) + ε1−α + ε−αV(Q1, Q2),

from which the theorem follows.

In general the Rényi divergence of order 0 < α < 1 is not contin-
uous in the τ-topology. To construct a counterexample, let Pn denote
the probability distribution on [0, 2π] with density 1+sin(nx)

2π and let Qn

denote the probability distribution on [0, 2π] with density 1−sin(nx)
2π for

n = 1, 2, . . . Then Dα

(
Pn‖Qn

)
does not depend on n, and both Pn and

Qn converge to the uniform distribution U on [0, 2π] in the τ-topology.
Consequently, limn→∞ Dα

(
Pn‖Qn

)
6= 0 = Dα

(
U‖U

)
, so in general Dα

is not continuous in the τ-topology.
It remains to consider α = 0. In this case:

Corollary 6.1. The Rényi divergence D0(P‖Q) is an upper semi-continuous
function of (P, Q) in the total variation topology.

Proof. This follows from Theorem 6.16 because D0(P‖Q) is the infimum
of the continuous functions (P, Q) 7→ Dα(P‖Q) for 0 < α < 1.
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Finally, the topologies induced by Rényi divergence of any order
0 < α < 1 are equivalent:

Theorem 6.17. For any 0 < α < 1

bD1/2(P‖Q) ≤ Dα(P‖Q) ≤ cD1/2(P‖Q),

where b = min{α/(1− α), 1} and c = max{α/(1− α), 1}.

This follows from the following symmetry-like property, which may
be verified directly.

Proposition 6.2 (Skew Symmetry). For any 0 < α < 1

Dα(P‖Q) =
α

1− α
D1−α(Q‖P).

Note that, in particular, Rényi divergence is symmetric for α = 1/2,
but that skew symmetry does not hold for α = 0 and α = 1.

Proof of Theorem 6.17. Suppose α ≤ 1/2. Then skew symmetry, together
with monotonicity in α, implies that

D1/2(P‖Q) ≥ Dα(P‖Q) =
α

1− α
D1−α(Q‖P)

≥ α

1− α
D1/2(Q‖P) =

α

1− α
D1/2(P‖Q).

Similarly for α ≥ 1/2

D1/2(P‖Q) ≤ Dα(P‖Q) ≤ α

1− α
D1/2(P‖Q).

Together these two cases prove the theorem.

6.5.5 Limit of σ-Algebras

Let P and Q be distributions on (X ,F ). As shown by Theorem 6.2,
there exists a sequence of finite partitions P1,P2, . . . such that

Dα(P|Pn‖Q|Pn) ↑ Dα(P‖Q). (6.18)

Theorem 6.18 below elaborates on this result. It implies that (6.18) holds
for any increasing sequence of partitions P1 ⊆ P2 ⊆ · · · that generate
σ-algebras converging to F , in the sense that F = σ (

⋃∞
n=1 Pn). A

corresponding result holds for infinite sequences of increasingly coarse
partitions, as shown by Theorem 6.19.
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Theorem 6.18 (Increasing). Let F1 ⊆ F2 ⊆ · · · ⊆ F be a nondecreasing
family of σ-algebras, and let F∞ = σ (

⋃∞
n=1 Fn) be the smallest σ-algebra

containing them. Then for any order 0 < α ≤ ∞

lim
n→∞

Dα(P|Fn‖Q|Fn) = Dα(P|F∞
‖Q|F∞

). (6.19)

For α = 0, (6.19) does not hold. A counterexample is given after
Example 6.1 below.

Lemma 6.4. Let F1 ⊆ F2 ⊆ · · · ⊆ F be a nondecreasing family of σ-
algebras, and let P and µ be probability distributions on (X ,F ) such that
P� µ. Let p be the density of P with respect to µ. Then the family of random
variables {Xn}n≥1 with members Xn = E

[
p
∣∣Fn

]
is uniformly integrable

(with respect to µ).

The proof of this lemma is a special case of part of the proof of
Lévy’s theorem in [Shiryaev, 1996]. We repeat it here for completeness.

Proof. For any constants b, c > 0∫
Xn>b

Xn dµ =
∫

Xn>b
p dµ

≤
∫

Xn>b,p≤c
p dµ +

∫
Xn>b,p>c

p dµ

≤ c · µ (Xn > b) +
∫

p>c
p dµ

(∗)
≤ c

b
E[Xn] +

∫
p>c

p dµ =
c
b

+
∫

p>c
p dµ,

in which the inequality marked by (∗) is Markov’s. Consequently

lim
b→∞

sup
n

∫
Xn>b
|Xn|dµ = lim

c→∞
lim
b→∞

sup
n

∫
Xn>b
|Xn|dµ

≤ lim
c→∞

lim
b→∞

c
b

+ lim
c→∞

∫
p>c

p dµ = 0,

which proves the lemma.

Proof of Theorem 6.18. The data processing inequality implies that
Dα(P|Fn‖Q|Fn) ≤ Dα(P‖Q) for all n. We therefore only need to show
that limn→∞ Dα(P|Fn‖Q|Fn) ≥ Dα(P|F∞

‖Q|F∞
).
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To this end, assume without loss of generality that F = F∞ and that
µ is a probability distribution (i.e. µ = (P + Q)/2). Let Xn = E

[
p
∣∣Fn

]
and Yn = E

[
q
∣∣Fn

]
, and define the distributions P̃n and Q̃n on (X ,F )

by

P̃n(A) =
∫

A
Xn dµ, Q̃n(A) =

∫
A

Yn dµ (A ∈ F ),

such that, by the Radon-Nikodým theorem and Proposition 6.1, dP̃n
dµ =

Xn = dP|Fn
dµ|Fn

and dQ̃n
dµ = Yn = dQ|Fn

dµ|Fn
(µ-a.s.) It follows that

Dα(P̃n‖Q̃n) = Dα(P|Fn‖Q|Fn)

for 0 < α < ∞ and therefore by continuity also for α = ∞. We will pro-
ceed to show that (P̃n, Q̃n) → (P, Q) in the τ-topology. By lower semi-
continuity of Rényi divergence this implies that limn→∞ Dα(P̃n‖Q̃n) ≥
Dα(P‖Q), from which the theorem follows.

By Lévy’s theorem [Shiryaev, 1996], limn→∞ Xn = p (µ-a.s.) Hence
uniform integrability of the family {Xn} (by Lemma 6.4) implies that
for any A ∈ F

lim
n→∞

P̃n(A) = lim
n→∞

∫
A

Xn dµ =
∫

A
p dµ = P(A)

[Shiryaev, 1996, Thm. 5, p. 189]. Similarly limn→∞ Q̃n(A) = Q(A), so
we find that (P̃n, Q̃n)→ (P, Q), which completes the proof.

Theorem 6.19 (Decreasing). Let F ⊇ F1 ⊇ F2 ⊇ · · · be a nonincreasing
family of σ-algebras, and let F∞ =

⋂∞
n=1 Fn be the largest σ-algebra contained

in all of them. Let 0 ≤ α < ∞. If 0 ≤ α < 1 or there exists an m such that
Dα(P|Fm‖Q|Fm) < ∞, then

lim
n→∞

Dα(P|Fn‖Q|Fn) = Dα(P|F∞
‖Q|F∞

).

Lemma 6.5. Let F ⊇ F1 ⊇ F2 ⊇ · · · be a nonincreasing family of σ-
algebras. Let 0 < α < ∞, pn = dP|Fn

dµ|Fn
, qn = dQ|Fn

dµ|Fn
and Xn = f

(
pn
qn

)
, where

f (x) = xα if α 6= 1 and f (x) = x log x + e−1 if α = 1. If 0 < α < 1, or
EQ[X1] < ∞ and P � Q, then the family {Xn}n≥1 is uniformly integrable
(with respect to Q).



6.5. Extended Orders: Fixed Order 203

Proof. Suppose first that 0 < α < 1. Then for any b > 0∫
Xn>b

Xn dQ ≤
∫

Xn>b
Xn

(
Xn

b

)(1−α)/α

dQ

≤ b−(1−α)/α
∫

X1/α
n dQ ≤ b−(1−α)/α,

and, as Xn ≥ 0, limb→∞ supn

∫
|Xn|>b|Xn|dQ = 0, which was to be

shown.
Alternatively, suppose that 1 ≤ α < ∞ and assume without loss

of generality that F = F1. Then pn
qn

= dP|Fn
dQ|Fn

(Q-a.s.) and hence by
Proposition 6.1 and Jensen’s inequality for conditional expectations

Xn = f

E

[
dP
dQ

∣∣∣∣Fn

] ≤ E

[
f
(

dP
dQ

)∣∣∣∣Fn

]
= E [X1| Fn] (Q-a.s.)

As minx x log x = −e−1, it follows that Xn ≥ 0 and for any b, c > 0∫
|Xn|>b

|Xn|dQ =
∫

Xn>b
Xn dQ

≤
∫

Xn>b
E [X1| Fn] dQ =

∫
Xn>b

X1 dQ

=
∫

Xn>b,X1≤c
X1 dQ +

∫
Xn>b,X1>c

X1 dQ

≤ c ·Q(Xn > b) +
∫

X1>c
X1 dQ

≤ c
b

EQ[Xn] +
∫

X1>c
X1 dQ

≤ c
b

EQ[X1] +
∫

X1>c
X1 dQ,

where EQ[Xn] ≤ EQ[X1] in the last inequality follows from the data
processing inequality. Consequently,

lim
b→∞

sup
n

∫
|Xn|>b

|Xn|dQ = lim
c→∞

lim
b→∞

sup
n

∫
|Xn|>b

|Xn|dQ

≤ lim
c→∞

lim
b→∞

c
b

EQ[X1] + lim
c→∞

∫
X1>c

X1 dQ = 0,

and the lemma follows.



204 Chapter 6. Rényi Divergence

Proof of Theorem 6.19. First suppose that α > 0. For n = 1, 2, . . . , ∞,

let pn = dP|Fn
dµ|Fn

, qn = dQ|Fn
dµ|Fn

and Xn = f
(

pn
qn

)
with f (x) = xα if α 6= 1

and f (x) = x log x + e−1 if α = 1, as in Lemma 6.5. If α ≥ 1, then
assume without loss of generality that F = F1 and m = 1, such that
Dα(P|Fm‖Q|Fm) < ∞ implies P� Q. Now, for any α > 0, it is sufficient
to show that

EQ[Xn]→ EQ[X∞]. (6.20)

By Proposition 6.1, pn = Eµ

[
p
∣∣Fn

]
and qn = Eµ

[
q
∣∣Fn

]
. Therefore

by a version of Lévy’s theorem for decreasing sequences of σ-algebras
[Kallenberg, 1997, Theorem 6.23],

pn = Eµ

[
p
∣∣Fn

]
→ Eµ

[
p
∣∣F∞

]
= p∞,

qn = Eµ

[
q
∣∣Fn

]
→ Eµ

[
q
∣∣F∞

]
= q∞,

(µ-a.s.)

and hence Xn → X∞ (µ-a.s. and therefore Q-a.s.)
If 0 < α < 1, then

EQ[Xn] = Eµ

[
pα

nq1−α
n

]
≤ Eµ

[
αpn + (1− α)qn

]
= 1 < ∞.

And if α ≥ 1, then from the data processing inequality we get that
Dα(P|Fn‖Q|Fn) < ∞ for all n, which implies that also in this case
EQ[Xn] < ∞. Hence uniform integrability (by Lemma 6.5) of the family
of nonnegative random variables {Xn} implies (6.20) [Shiryaev, 1996,
Thm. 5, p. 189], and the theorem follows for α > 0. The remaining case,
α = 0, is proved by

lim
n→∞

D0(P|Fn‖Q|Fn) = inf
n

inf
α>0

Dα(P|Fn‖Q|Fn)

= inf
α>0

inf
n

Dα(P|Fn‖Q|Fn) = inf
α>0

Dα(P|F∞
‖Q|F∞

)

= D0(P|F∞
‖Q|F∞

).

6.5.6 Distributions on Sequences

Suppose (X∞,F∞) is the direct product of an infinite sequence of mea-
surable spaces (X1,F1), (X2,F2), . . . That is, X∞ = X1 × X2 × · · · and
F∞ is the smallest σ-algebra containing all the cylinder sets

Sn(A) = {x∞ ∈ X∞ | x1, . . . , xn ∈ A}, A ∈ F n,
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for n = 1, 2, . . ., where F n = F1 ⊗ · · · ⊗ Fn. Then a sequence of prob-
ability distributions P1, P2, . . ., where Pn is a distribution on X n =
X1 × · · · × Xn, is called consistent if

Pn+1(A×Xn+1) = Pn(A), A ∈ F n.

For any such consistent sequence there exists a distribution P∞ on
(X∞,F∞) such that its marginal distribution on X n is Pn, in the sense
that

P∞(Sn(A)) = Pn(A), A ∈ F n.

If P1, P2, . . . and Q1, Q2, . . . are two consistent sequences of probability
distributions, then it is natural to ask whether the Rényi divergence
Dα(Pn‖Qn) converges to Dα(P∞‖Q∞). The following theorem shows
that it does for α > 0.

Theorem 6.20. Let P1, P2, . . . and Q1, Q2, . . . be consistent sequences of prob-
ability distributions on (X 1,F 1), (X 2,F 2), . . ., where, for n = 1, . . . , ∞,
(X n,F n) is the direct product of the first n measurable spaces in the infinite
sequence (X1,F1), (X2,F2), . . . Then for any 0 < α ≤ ∞

Dα(Pn|Qn)→ Dα(P∞|Q∞)

as n→ ∞.

Proof. Let Gn = {Sn(A) | A ∈ F n}. Then

Dα(Pn|Qn) = Dα(P∞
|Gn‖Q∞

|Gn)→ Dα(P∞‖Q∞)

by Theorem 6.18.

As a special case, we find that finite additivity of Rényi divergence,
which is easy to verify, extends to countable additivity:

Theorem 6.21 (Additivity). For n = 1, 2, . . ., let (Pn, Qn) be pairs of proba-
bility distributions on measurable spaces (Xn,Fn). Then for any 0 ≤ α ≤ ∞
and any N ∈ {1, 2, . . .}

N

∑
n=1

Dα(Pn‖Qn) = Dα(P1 × · · · × PN‖Q1 × · · · ×QN), (6.21)

and, except for α = 0, also
∞

∑
n=1

Dα(Pn‖Qn) = Dα(P1 × P2 × · · · ‖Q1 ×Q2 × · · · ). (6.22)
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Countable additivity as in (6.22) does not hold for α = 0. A coun-
terexample is given following Example 6.1 below.

Proof. For simple orders α, (6.21) follows from independence of Pn and
Qn between different n, which implies that

N

∏
n=1

∫ (dQn

dPn

)1−α

dPn =
∫ (d ∏N

n=1 Qn

d ∏N
n=1 Pn

)1−α

d
N

∏
n=1

Pn.

As N is finite, this extends to the extended orders by continuity in α. Fi-
nally, (6.22) follows from Theorem 6.20 by observing that the sequences
PN = P1 × · · · × PN and QN = Q1 × · · · × QN , for N = 1, 2, . . ., are
consistent.

6.5.7 Absolute Continuity and Mutual Singularity

Shiryaev [1996, pp. 366,370] relates Hellinger integrals to absolute con-
tinuity and mutual singularity of probability distributions. His results
may also be expressed in terms of Rényi divergence. They then follow
from the observations that D0(P‖Q) = 0 if and only if Q is absolutely
continuous with respect to P and that D0(P‖Q) = ∞ if and only if P
and Q are mutually singular, together with right-continuity of Dα(P‖Q)
in α at α = 0.

Theorem 6.22 ([Shiryaev, 1996, Theorem 2, p. 366]). The following condi-
tions are equivalent:

(a) Q� P,

(b) Q(p > 0) = 1,

(c) D0(P‖Q) = 0,

(d) limα↓0 Dα(P‖Q) = 0.

Proof. Clearly (b) is equivalent to Q(p = 0) = 0, which is equivalent to
(a). The other cases follow by

lim
α↓0

Dα(P‖Q) = D0(P‖Q) = − log Q(p > 0).

Theorem 6.23 ([Shiryaev, 1996, Theorem 3, p. 366]). The following condi-
tions are equivalent:
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(a) Q ⊥ P,

(b) Q(p > 0) = 0,

(c) Dα(P‖Q) = ∞ for some 0 ≤ α < 1,

(d) Dα(P‖Q) = ∞ for all α ≥ 0.

Proof. Equivalence of (a),(b) and D0(P‖Q) = ∞ follows from defini-
tions. Equivalence of D0(P‖Q) = ∞ and (d) follows from the fact the
Rényi divergence is continuous on [0, 1] and nondecreasing in α. Fi-
nally, (c) for some 0 < α < 1 is equivalent to∫

pαq1−α dµ = 0,

which holds if and only if pq = 0 (µ-a.s.). It follows that in this case (c)
is equivalent to (a).

These properties give a convenient mathematical tool to prove abso-
lute continuity or mutual singularity of infinite product distributions,
as illustrated by the following proof by Shiryaev [1996] of the Gaussian
dichotomy [Feldman, 1958, Hájek, 1958, Thelen, 1989].

Example 6.1 (Gaussian Dichotomy). Let P = P1 × P2 × · · · and Q =
Q1×Q2× · · · , where Pn and Qn are Gaussian distributions with densi-
ties

pn(x) =
1√
2π

e−
1
2 (x−µn)2

, qn(x) =
1√
2π

e−
1
2 (x−νn)2

.

Then for simple orders α

Dα(Pn‖Qn) =
1
2

α(µn − νn)2,

and by additivity

Dα(P‖Q) =
1
2

α
∞

∑
n=1

(µn − νn)2.

Consequently, by Theorems 6.22 and 6.23:

Q� P ⇔ P� Q ⇔
∞

∑
n=1

(µn − νn)2 < ∞,

Q ⊥ P ⇔
∞

∑
n=1

(µn − νn)2 = ∞.
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The observation that P and Q are either equivalent (both P � Q and
Q� P) or mutually singular is called the Gaussian dichotomy.

Example 6.1 shows that countable additivity does not hold for α =
0: if ∑∞

n=1(µn − νn)2 = ∞, then ∑N
n=1 D0(Pn‖Qn) = 0 for all N, while

D0(P‖Q) = ∞. In light of the proof of Theorem 6.21 this also provides
a counterexample to (6.19) for α = 0.

The Gaussian dichotomy raises the question of whether the same
dichotomy holds for other product distributions. Let P ∼ Q denote that
P and Q are equivalent (both P � Q and Q � P). Suppose that P =
P1 × P2 × · · · and Q = Q1 × Q2 × · · · , where Pn and Qn are arbitrary
distributions on arbitrary measurable spaces. Then if Pn 6∼ Qn for some
n, P and Q are not equivalent either. The question is therefore answered
by the following theorem:

Theorem 6.24 (Kakutani’s Dichotomy). Let 0 < α < 1 and let P = P1 ×
P2 × · · · and Q = Q1 × Q2 × · · · , where Pn and Qn are distributions on
arbitrary measurable spaces such that Pn ∼ Qn. Then

Q ∼ P ⇔
∞

∑
n=1

Dα(Pn‖Qn) < ∞,

Q ⊥ P ⇔
∞

∑
n=1

Dα(Pn‖Qn) = ∞.

Proof. If ∑∞
n=1 Dα(Pn‖Qn) = ∞, then Dα(P‖Q) = ∞ and Q ⊥ P follows

by Theorem 6.23. On the other hand, if ∑∞
n=1 Dα(Pn‖Qn) < ∞, then for

every ε > 0 there exists an N such that

∞

∑
n=N+1

Dα(Pn‖Qn) ≤ ε,

and consequently by additivity and monotonicity in α:

D0(P‖Q) = lim
α↓0

Dα(P‖Q)

≤ lim
α↓0

Dα(P1 × · · · × PN‖Q1 × · · · ×QN) + ε = ε.

As this holds for any ε > 0, D0(P‖Q) must equal 0, and, by Theo-
rem 6.22, Q� P. As Q� P implies Q 6⊥ P, Theorem 6.23 implies that
Dα(Q‖P) < ∞, and by repeating the argument with the roles of P and
Q reversed we find that also P� Q, which completes the proof.
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Theorem 6.24 (with α = 1/2) is equivalent to a classical result by
Kakutani [1948], which was stated in terms of Hellinger integrals rather
than Rényi divergence, and according to Gibbs and Su [2002] might be
responsible for popularising Hellinger integrals. Kakutani’s result is
related to the amount of information that a sequence of observations
contains about the parameter of a statistical model [Rényi, 1967]. Our
simple proof in terms of Rényi divergence illustrates that whether P ∼
Q or P ⊥ Q really depends on whether Dα(PN+1× PN+2× · · · ‖QN+1×
QN+2 × · · · )→ 0 as N → ∞.

6.6 Applications and Further References

Rényi divergence comes up in many settings, most of which are related
to hypothesis testing. We give a unified overview and references for
further reading.

6.6.1 Hypothesis Testing

Rényi divergence appears in bounds on the error probabilities when
testing a probabilistic hypothesis Q against an alternative P [Nemetz,
1974, Rached et al., 2001] and in classification problems [Ben-Bassat
and Raviv, 1978]. Csiszár [1995] provides the following explanation: let
Zi = log P(Xi)/Q(Xi), where X1, X2, . . . are discrete random variables
that are distributed independently and identically (i.i.d.) according to a
Q. Since large deviation theory involves the moment generating function
M(α) = EQ[eαZi ] (see [Chernoff, 1952]), the observation that

(1− α)Dα(P‖Q) = − log M(α) for simple orders α (6.23)

as long as 0 < α < 1 or P � Q, explains the appearance of Rényi
divergence in hypothesis testing. Using the connection (6.23) and well-
known properties of log M(α), Grünwald [2007, Section 19.6] finds that,
under regularity conditions, (1− α)Dα(P‖Q) is strictly concave in α if
P 6= Q. The same connection is exploited in the proof of Lemma 5.2
from the previous chapter. The analysis there takes the hypothesis code
lengths (or priors) into account, which is necessary to deal with an
infinite number of hypotheses.

To obtain asymptotically tight bounds, Chernoff uses the supremum
of − log M(α) over α ∈ (0, 1), which is called the Chernoff information.
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The following theorem relates this quantity to an information diver-
gence involving the distribution Pα with density

pα =
pαq1−α∫

pαq1−α dµ
, (6.24)

which is well defined if and only if 0 <
∫

pαq1−α dµ < ∞.

Theorem 6.25. Let P and Q be distributions, and let Pα denote the distribu-
tion with density (6.24). If there exists a simple order α∗ such that Pα∗ is well
defined, D(Pα∗‖P) = D(Pα∗‖Q) and either 0 < α∗ < 1 or D(Pα∗‖P) < ∞,
then

sup
α

(1− α)Dα(P‖Q) = D(Pα∗‖P),

where the supremum is over simple orders α.

The same connection between Chernoff information and D(Pα∗‖P)
is discussed by Cover and Thomas [1991, Section 12.9], but our proof is
different. As an intermediate step we use the following lemma, which
is interesting in itself, because it gives an interpretation of Rényi diver-
gence as a trade-off between two information divergences:

Lemma 6.6. Let P and Q be probability distributions and let α be a simple
order. Then

(1− α)Dα(P‖Q) = inf
R

{
αD(R‖P) + (1− α)D(R‖Q)

}
, (6.25)

with the convention that αD(R‖P) + (1− α)D(R‖Q) = ∞ if it would oth-
erwise be undefined. Moreover, if the distribution Pα with density (6.24) is
well defined and 0 < α < 1 or D(Pα‖P) < ∞, then the infimum is uniquely
achieved by R = Pα.

Proof. First suppose that Pα is well defined or, equivalently, that
Dα(P‖Q) < ∞. Then for 0 < α < 1 or D(R‖P) < ∞, we have

αD(R‖P) + (1− α)D(R‖Q) = D(R‖Pα)− log
∫

pαq1−α dµ.

Hence, if 0 < α < 1 or D(Pα‖P) < ∞, the infimum over R is uniquely
achieved by R = Pα, for which it equals (1− α)Dα(P‖Q) as required.
If, on the other hand, α > 1 and D(Pα‖P) = ∞, then we still have

inf
R

{
αD(R‖P) + (1− α)D(R‖Q)

}
≥ (1− α)Dα(P‖Q). (6.26)



6.6. Applications and Further References 211

Secondly, suppose 0 < α < 1 and Dα(P‖Q) = ∞. Then P ⊥ Q, and
consequently either D(R‖P) = ∞ or D(R‖Q) = ∞ for all R, so that
(6.25) holds.

Next, consider the case that α > 1 and P 6� Q. Then Dα(P‖Q) = ∞
and the infimum over R is achieved by R = P, for which it equals −∞,
so that (6.25) holds.

Finally, we prove (6.25) for the remaining cases: α > 1, P � Q and
either: (1) Dα(P‖Q) < ∞, but D(Pα‖P) = ∞; or (2) Dα(P‖Q) = ∞.
To this end, let Pc = P(· | p ≤ cq) for all c that are sufficiently large
that P(p ≤ cq) > 0. The reader may verify that Dα(Pc‖Q) < ∞ and
D(S‖Pc) < ∞ for s = pα

c q1−α/
∫

pα
c q1−α dµ, so that we have already

proved that (6.25) holds if P is replaced by Pc. Hence, observing that
for all R

D(R‖Pc) =

{
∞ if R 6� Pc,
D(R‖P) + log P(p ≤ pc) otherwise,

we find that

inf
R

{
αD(R‖P) + (1− α)D(R‖Q)

}
≤ lim sup

c→∞

(
−α log P(p ≤ cq) + inf

R

{
αD(R‖Pc) + (1− α)D(R‖Q)

})
≤ lim sup

c→∞
(1− α)Dα(Pc‖Q) ≤ (1− α)Dα(P‖Q),

where the last inequality follows by lower semi-continuity of Dα (The-
orem 6.15). In Case 2, (6.25) follows immediately. In Case 1, (6.25)
follows by combining this inequality with its converse (6.26).

Theorem 6.25 follows almost immediately from Lemma 6.6:

Proof of Theorem 6.25. Let

f (α, R) = αD(R‖P) + (1− α)D(R‖Q).

By Lemma 6.6

sup
α

(1− α)Dα(P‖Q) = sup
α

inf
R

f (α, R)

and f has a saddle-point at α = α∗ and R = Pα∗ . This implies that

sup
α

inf
R

f (α, R) = f (α∗, Pα∗)
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(see for example [Rockafellar, 1970, Lemma 36.2]), from which the the-
orem follows.

6.6.2 Further References

We discuss some remaining properties of Rényi divergence that are not
directly related to hypothesis testing.

Multiple Source Adaptation Source adaptation is a statistical learning
problem in which test data are assumed to come from a related, but
slightly different source than training data, such that their distribu-
tion is slightly different. Mansour et al. [2009] study source adaptation
problems with multiple training sources, each having their own distri-
bution. The starting point of their analysis is a lemma showing that
the expectation of a bounded random variable cannot increase much if
its distribution is replaced by another distribution that is close in Rényi
divergence. They essentially prove the following:

Lemma 6.7. Let P and Q be distributions on the same sample space, and let
X ≤ b be a random variable. Then for any α > 1

log EX∼P[X] ≤ α− 1
α

log EX∼Q[X] +
α− 1

α
Dα(P‖Q) +

1
α

log b.

They also prove a property that is similar to the triangle inequality,
except for an increase in α:

Lemma 6.8. For any distributions P, Q and R and any α > 1

Dα(P‖R) ≤ D2α(P‖Q) + D2α−1(Q‖R).

Guessing Rényi’s entropy and divergence are also related to the mo-
ments of guessing functions, which determine an order for guessing the
values of a random variable in sequential decoding, and thereby the
computational complexity of the corresponding decoder [Arikan, 1996,
Van Erven and Harremoes, 2010].

Taylor Approximation for Parametric Models Suppose M = {Pθ |
θ ∈ Θ ⊆ R} is a parametric statistical model. Then it is well known
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that, for sufficiently regular parametrisations, a second order Taylor
approximation of D(Pθ‖Pθ′) in θ′ at θ in the interior of Θ yields

lim
θ′→θ

1
(θ − θ′)2 D(Pθ‖Pθ′) =

1
2

J(θ),

where J(θ) = E( d
dθ log pθ)2 denotes the Fisher information at θ (see e.g.

[Cover and Thomas, 1991, Problem 12.7]). Haussler and Opper [1997]
argue that this property generalises to

lim
θ′→θ

1
(θ − θ′)2 Dα(Pθ‖Pθ′) =

α

2
J(θ)

for any 0 < α < ∞.

Ranking Images Hero et al. [2003] use estimated Rényi divergence on
densities of feature vectors to rank images in a database by their Rényi
divergence from a fixed reference image.

6.7 Conclusion

We have extended the definition of Rényi divergence from discrete to
continuous spaces, and confirmed (by Theorem 6.2) that this is the ap-
propriate generalisation. The most important properties of Rényi diver-
gence were reviewed, and connections to absolute continuity of distri-
butions and hypothesis testing were elaborated on.
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J. Hájek. On a property of normal distributions of any stochastic pro-
cess. Czechoslovak Mathematical Journal, 8(4):610–618, 1958. In Russian
with English summary.

J. Hannan. Approximation to Bayes risk in repeated play. Contributions
to the Theory of Games, 3:97–139, 1957.

M. Hansen and B. Yu. Model selection and the principle of minimum
description length. Journal of the American Statistical Association, 96
(454):746–774, 2001.

M. Hansen and B. Yu. Minimum description length model selection cri-
teria for generalized linear models. In Science and Statistics: Festschrift
for Terry Speed, volume 40 of IMS Lecture Notes – Monograph Series.
Institute for Mathematical Statistics, Hayward, CA, 2002.



220 Bibliography
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Vitányi, 2004].
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tions and model selection. IEEE Transactions on Information Theory, 50
(12):3265–3290, 2004.
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Summary

According to the minimum description length (MDL) principle, data
compression should be taken as the main goal of statistical inference.
From this perspective probability distributions and models are viewed
as strategies for data compression, which stands in sharp contrast to
making assumptions about an underlying “true” distribution generat-
ing the data, as is standard in the traditional frequentist approach to
statistics. Strategies are either good or bad, and certainly one should
not expect bad models to magically lead to good inference. But, un-
like assumptions, strategies can never be true or false. Therefore, if the
MDL premise of making data compression a fundamental notion can
hold its ground, it promises a robust kind of statistics, which does not
break down when standard, but hard to verify, assumptions are not
completely satisfied.

This makes it worthwhile to put data compression to the test, and
see whether it really makes sense as a foundation for statistics. A nat-
ural starting point are cases where standard MDL methods show sub-
optimal performance in a traditional frequentist analysis. This thesis
analyses two such cases. The first case, studied in Part I of the thesis,
deals with switching between prediction strategies. The second case,
described in Part II, deals with a modification of the standard MDL
estimator proposed in the literature, which goes against its data com-
pression motivation.

Part I In Chapter 2 of Part I we investigate cases in which the stan-
dard MDL method for model selection leads to suboptimal predictions
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of future data. It is found that this may be explained by the fact that
there exist shorter descriptions of the data than the descriptions used
by standard MDL. Based on this insight, we modify the MDL estima-
tor such that it can use these shorter descriptions and show that this
resolves the problem. Thus the standard MDL method fails, but data
compression still makes sense and actually leads to the solution of the
problem. As a by-product, our investigations shed new light on an
old discussion in statistics about whether one should use an AIC-type
method or a BIC-type method for model selection.

The shorter descriptions found in Chapter 2 are based on combina-
tions of the models that use a different model for different parts of the
data. In Chapter 3 a new method is introduced that automatically de-
termines the optimal bias towards splitting the data into more parts. In
Chapter 4 we discuss whether the parts should be modelled indepen-
dently, or as part of the rest of the data. A new method is introduced to
deal with the first case, which is appropriate, for example, for certain
time series data.

Part II In Part II we also study the quality of predictions based on the
MDL estimator, and investigate under which conditions they converge
to the best possible predictions. In order to prove a very general conver-
gence result, previous authors have proposed to modify the standard
estimator in a way that, contrary to the data compression philosophy,
increases the description length of the data. Chapter 5 provides a pre-
liminary discussion of whether this modification is really necessary.
Examples are provided showing that no general convergence result can
be obtained if the modification is simply omitted, but then it is also
shown that in certain common settings no modification is necessary.
Although in this case no final verdict is reached on the appropriateness
of data compression as a fundamental principle, a technical refinement
of existing methods is introduced and the results suggest interesting
directions for future study.

The cases identified in Chapter 5 which do not require any modifica-
tion of the standard MDL estimator, are characterized using a measure
of dissimilarity between probability distributions called Rényi diver-
gence. Although Rényi divergence has been around for almost fifty
years and appears in many proofs, there exists no overview of its tech-
nical properties. Chapter 6 remedies this situation by formally proving
the basic properties of Rényi divergence.



Samenvatting

Het minimum description length (MDL) principe schrijft voor dat een
dataset het best wordt samengevat door zijn kortst-mogelijke beschrij-
ving. Dit leidt tot een interpretatie van kansverdelingen en statisti-
sche modellen als strategieën om experimentele data zo kort mogelijk
te beschrijven, en is een radicaal andere insteek dan de traditionele
frequentistische benadering van de statistiek, waarin het gebruikelijk
is om aannames te doen over een “ware” kansverdeling volgens wel-
ke de data gegenereerd zouden worden. Strategieën kunnen slim of
dom zijn, en men kan zeker niet verwachten dat slechte modellen op
magische wijze tot goede statistische inzichten zullen leiden. Maar in
tegenstelling tot aannames, zijn strategieën nooit waar of onwaar. De
MDL-insteek, waarin het zo kort mogelijk beschrijven van de data tot
het hoofddoel van de statistische analyse wordt verheven, belooft daar-
om een robuust soort statistiek, die niet direct faalt wanneer standaard,
maar moeilijk te controleren, aannames niet volledig opgaan.

Dit maakt het de moeite waard om de kwaliteit van korte beschrij-
vingen van de data onder de loep te nemen, en te onderzoeken of ze een
zinnig fundament voor de statistiek kunnen vormen. Een voor de hand
liggend uitgangspunt daarvoor vormen gevallen waarin de standaard
MDL-methodes suboptimaal presteren onder een traditionele frequen-
tistische analyse. In dit proefschrift worden twee van dat soort gevallen
onderzocht. Het eerste geval, bestudeerd in Deel I, betreft het wisselen
tussen voorspelstrategieën. Het tweede geval, dat beschreven wordt in
Deel II, gaat over een in de literatuur voorgestelde aanpassing van de
standaard MDL-schatter die tegen het MDL-principe indruist.
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Deel I In Hoofdstuk 2 van Deel I onderzoeken we gevallen waarin
de standaard MDL-methode voor modelselectie tot suboptimale voor-
spellingen van toekomstige data leidt. Een verklaring wordt gevonden
in het feit dat er kortere beschrijvingen van de data mogelijk zijn dan
de beschrijvingen die standaard MDL gebruikt. Gebruikmakend van
dit inzicht kunnen we de MDL-methode zodanig aanpassen dat hij de
kortere beschrijvingen kan gebruiken, en we laten zien dat dit het pro-
bleem oplost. Ook al werkt de standaard MDL-methode niet optimaal,
toch blijkt het zoeken naar zo kort mogelijke beschrijvingen dus te wer-
ken, en leidt het in dit geval zelfs naar de oplossing van het probleem.
Een bijproduct van onze analyse is dat hij nieuw inzicht oplevert in een
reeds lang lopende discussie in de statistiek over de vraag of men het
beste methodes van het AIC- of van het BIC-type kan gebruiken voor
modelselectie.

De kortere beschrijvingen uit Hoofdstuk 2 zijn gebaseerd op com-
binaties van modellen, waarin verschillende modellen worden gebruikt
om verschillende delen van de data te beschrijven. In Hoofdstuk 3
wordt een nieuwe methode geı̈ntroduceerd die automatisch bepaalt in
hoeveel delen de data het best verdeeld kunnen worden. In Hoofd-
stuk 4 bespreken we of de verschillende delen het best onafhankelijk
van elkaar of juist als onderdeel van de rest van de data beschreven
kunnen worden. Er wordt een nieuwe methode geı̈ntroduceerd die ge-
schikt is voor bijvoorbeeld bepaalde tijdsafhankelijke data.

Deel II Net als in Deel I, bestuderen we ook in Deel II hoe goed stan-
daard MDL voorspelt. In dit deel onderzoeken we onder welke voor-
waarden de MDL-voorspellingen convergeren naar de best-mogelijke
voorspellingen. Om een zeer algemene convergentiestelling te kun-
nen bewijzen, hebben eerdere auteurs voorgesteld om de standaard
MDL-schatter aan te passen, op een manier die leidt tot een langere
beschrijving van de data en daarmee tegen het MDL-principe ingaat.
Hoofdstuk 5 bevat een voorlopige behandeling van de vraag of deze
aanpassing werkelijk nodig is. Er worden twee voorbeelden gegeven
die laten zien dat een algemene convergentiestelling niet opgaat als de
aanpassing van de MDL-schatter achterwege wordt gelaten. Echter,
daarna wordt aangetoond dat deze aanpassing in enkele typische ge-
vallen toch niet nodig is. Hoewel er geen eindoordeel wordt geveld over
de vraag of het zo kort mogelijk beschrijven van de data altijd tot goede
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antwoorden leidt, wordt er wel een technische verfijning van bestaande
methodes geı̈ntroduceerd en de gepresenteerde resultaten suggereren
interessante richtingen voor nader onderzoek.

De gevallen in Hoofdstuk 5, waarin een aanpassing van de MDL-
schatter niet nodig is, worden gekarakteriseerd in termen van een maat
voor het verschil tussen kansverdelingen die Rényi-divergentie heet.
Hoewel Rényi-divergentie al in de jaren zestig van de vorige eeuw ge-
definieerd werd en regelmatig voorkomt in wiskundige bewijzen, be-
staat er geen overzicht van zijn technische eigenschappen. Dit gemis
wordt aangepakt in Hoofdstuk 6, door op een formele manier alle ele-
mentaire eigenschappen van Rényi-divergentie op een rij te zetten.
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