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Chapter 1

Introduction

1.1 Factoring large numbers

In 1977 Rivest, Shamir, and Adleman introduced the RSA public-key cryptosystem
[44]. The safety of this cryptosystem is closely related to the difficulty of factoring
large integers. It has not been proved that breaking RSA is equivalent with factor-
ing, but it is getting close: see, for instance, the work of Aggarwal and Maurer [1].
Nowadays RSA is widely used, so factoring large integers is not merely an academic
exercise, but has important practical implications.

The searches for large primes and for the prime factors of composite numbers
have a long history. Euclid (± 300 B.C.) was one of the first persons to write about
compositeness of numbers, followed by Eratosthenes (276–194 B.C.), who came up
with an algorithm that finds all primes up to a certain bound, the so-called Sieve of
Eratosthenes. For an excellent overview of the history of factorization methods, we
refer to the thesis of Elkenbracht-Huizing ([18], Ch. 2).

Over the years, people came up with faster factorization methods, when the fac-
tors to be found are large. Based on ideas of Kraitchik, and Morrison and Brillhart,
Schroeppel introduced the linear sieve (1976/1977). With a small modification by
Pomerance this became the quadratic sieve; albeit a very basic version. Improvements
are due to Davis and Holdridge, and Montgomery (cf. [15], [39], [45]). Factoring al-
gorithms based on sieving are much faster than earlier algorithms, as the expensive
divisions are replaced by additions. The expected running time of the quadratic sieve,
based on heuristic assumptions, is

L(N) = exp((1 + o(1))(log N)1/2(log log N)1/2), as N → ∞,

where N is the number to be factored and the logarithms are natural [14]. An
improvement of the quadratic sieve is the multiple polynomial quadratic sieve.

The same idea of sieving is used in the number field sieve, based on ideas of
Pollard (pp. 4–10 of [27]) and further developed by H.W. Lenstra, among others.
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The heuristic expected running time of the number field sieve is given by (cf. [27])

L(N) = exp(((64/9)1/3 + o(1))(log N)1/3(log log N)2/3), as N → ∞.

Asymptotically, the number field sieve is the fastest known general method for factor-
ing large integers, and in practice for numbers of about 90 and more decimal digits.
We will go into the details of the multiple polynomial quadratic sieve and the number
field sieve in the next two sections, as we use them for experiments in this thesis.
Sections 1.4, 1.5, and 1.6 contain an overview of the thesis.

1.2 Multiple polynomial quadratic sieve

The multiple polynomial quadratic sieve (MPQS) is based on the quadratic sieve, so
we start with a short description of the basic quadratic sieve (QS). Take N as the
(odd) composite number (not a perfect power) to be factored. Then QS searches for
integers x and y that satisfy the equation

x2 ≡ y2 mod N.

If this holds, and x 6≡ y mod N and x 6≡ −y mod N , then gcd(x− y,N) is a proper
factor of N .

The algorithm starts with the polynomial f(t) = t2 − N , t ∈ Z. For every prime
factor p of f(t) the congruence t2 ≡ N mod p must hold. For odd primes p this can
be expressed as the condition (N

p ) = 1 (Legendre symbol).
A number is called F -smooth if all its prime factors are below some given bound

F . These numbers are collected in the sieving step of the algorithm. The factorbase
FB is defined as the set of −1 (for practical reasons), 2, and all the odd primes p
up to a bound F for which (N

p ) = 1. Now we evaluate f(t) for all integer values

t ∈ [
√

N − M,
√

N + M ], where M is subexponential in N , and keep only those for
which |f(t)| is F -smooth. We can write this as

t2 ≡
∏

p∈FB

pep(t) mod N, (1.1)

where ep(t) ≥ 0 and we call expression (1.1) a relation.
The left-hand side is a square. Hence the product of such expressions is also a

square. If we generate relations until we have more distinct relations than primes in
the factorbase, there is a non-empty subset of this set of relations such that multipli-
cation of the relations in this subset gives a square on the right-hand side. To find
a correct combination of relations, we use linear algebra to find dependencies in a
matrix with the exponents ep(t) mod 2 (one relation per row). Possible algorithms
for finding such a dependency include Gaussian elimination, block Lanczos, and block
Wiedemann; the running time of Gaussian elimination is O(n3) and the running time
of block Lanczos and block Wiedemann is O(nW ), where n is the dimension of the
matrix and W the weight of the matrix ([12], [13], [33], [49]).
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Once we have a dependency of k relations for t = t1, t2, . . . , tk, we set x = t1t2 . . . tk
mod N and

y =
∏

p∈FB

p
ep(t1)+···+ep(tk)

2 mod N.

Then x2 ≡ y2 (mod N). Now we compute gcd(x−y,N) and hopefully we have found
a proper factor. If not, we continue with the next dependency. As the probability of
finding a factor is at least 1/2 for each dependency (as N has at least two distinct
prime factors), we are in practice almost certain to have found the prime factors after
having computed a small number of gcd’s as above.

To make clear where the term ‘sieving’ from the title comes from, we take a closer
look at the polynomial f(t). If we know that 2 is a divisor of f(3), then 2 is a di-
visor of f(3 + 2k), for all k ∈ Z; more generally, once we have located a t-value for
which a given prime p divides f(t), we know a residue class modulo p of t-values
for which p divides f(t). This can be exploited as follows. Initialize an array a as
log(|f(t)|) for all integers t ∈ [

√
N − M,

√
N + M ], so we have a[i] = log(|f(i)|)

for i ∈ [
√

N − M,
√

N + M ] for some appropriate M . Then for all primes p in the
factorbase locate the positions i where p divides f(i) and subtract log(p) from the
numbers on these positions in the array (if a prime power divides a certain position,
subtract the corresponding multiple of log(p)). After the sieving we only pick out
those positions in the array that are zero, as these represent the F -smooth values.
Note that this is an idealized situation: in practice rounding will take place and has
to be taken care of.

The polynomial values increase quadratically with the length of the sieving inter-
val. To handle this problem, Davis and Holdridge came with the following approach
[15]. Choose a so-called special prime q0 > F with ( N

q0
) = 1, and choose r0 with

r2
0 ≡ N (mod q0). If t ranges along the arithmetic progression t = uq0 + r0, then

t2 − N = (uq0 + r0)
2 − N,

where the right-hand side as a polynomial in u has coefficients divisible by q0. Thus
we have to add q0 to the factorbase. This method of choosing special primes is some-
times referred to as special q method.

Montgomery came up with an improvement of this method, and this improvement
has become known as the multiple polynomial quadratic sieve (cf. [45]). The polyno-
mials are of the form f(t) = At2 +Bt+C ∈ Z(t) with B2 −4AC = N . If we multiply
f(t) with 4A, we get the polynomial

4Af(t) = (2At + B)2 − (B2 − 4AC) = (2At + B)2 − N,

and this is a square mod N . If A is not smooth and not a square either, then we
include A in the factorbase. By keeping only the F -smooth polynomial values, we are
in the same situation as in the quadratic sieve. The only difference is that we switch
to the next polynomial, when the polynomial values become too large. The downside
of switching polynomials is that we have to compute the roots of each polynomial
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modulo the primes of the factorbase. To overcome this, the self initializing quadratic
sieve (SIQS) provides a fast way to switch polynomials. The main difference is that
A is the product of a set of primes in the factorbase, q1 . . . qs. This leads to 2s−1

different polynomials and once the initialization of the first polynomial is done, the
rest follows easily. For more details on QS, MPQS and SIQS, see, e.g., [32], [14], [43],
[2] and [10].

An extra variation we should mention, as we use it a lot in this thesis, is the use
of so-called large primes in both QS and MPQS. Besides the bound F , we choose
an additional bound L, L > F . Instead of saving only polynomial values that are
F -smooth, we also keep values that additionally have one or two primes between F
and L, the so-called large primes [28]. Sometimes even three large primes are allowed
[30]. If we have two relations, each with only one, and the same, large prime, we
combine these two relations into one F -smooth relation (the large prime occurs twice,
and forms a square). To reduce relations with two large primes to F -smooth relations,
it might be necessary to combine several relations. This can be expressed as finding
cycles in a graph, where the vertices represent large primes and the edges between
two vertices relations which contain both the corresponding primes. To be able to
represent relations with only one large prime as an edge, the number 1 is taken as a
vertex too [28].

On the one hand, allowing large primes in the relations leads to more relations to
process, which will take more time. On the other hand, we combine these relations
into F -smooth relations, so we stop the sieving sooner. Overall, MPQS with two large
primes becomes much faster than MPQS with one large prime: Lenstra and Manasse
report a speed-up factor of 2 to 2.5 for N having more than 90 decimal digits [28].
Leyland et al. report that for their implementation and for integers of about 135
decimal digits using three primes is almost twice as effective as using only two [30].
However, for integers of this size the number field sieve will be much faster.

1.3 Number field sieve

The number field sieve (NFS) is also based on the idea of sieving and finding de-
pendencies between the relations. However, the polynomials are quite different from
the polynomials in MPQS. We describe all four steps of the number field sieve. First
we select two irreducible polynomials f1(x) and f2(x), f1, f2 ∈ Z[x], and an integer
0 ≤ m < N , such that

f1(m) ≡ f2(m) ≡ 0 (mod N).

Polynomials with ‘small’ integer coefficients are preferred, because the values of these
polynomials are smaller on average and therefore more likely to be smooth than the
values of polynomials with large integer coefficients. There are more criteria for find-
ing good polynomials, such as the number of roots modulo small primes. We refer to
the thesis of Murphy for the details [35]. Usually f1(x) is a (monic) linear polynomial
and f2(x) a higher degree polynomial, referred to as rational side and algebraic side,
respectively. The choice of a linear polynomial leaves more freedom for choosing a
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suitable non-linear polynomial, but the (maximum) norms of the two polynomials are
unbalanced. Kleinjung has developed a method for choosing non-monic linear polyno-
mials, which usually leads to a better polynomial pair [23]. Montgomery has proposed
a method to select two quadratic polynomials (cf. Section 4.5 of [18]), but it is an
open problem to quickly construct two (or more) polynomials of higher degrees with
a common root and relatively small coefficients. If N is of a special form (e.g., cn ±1,
denoted by c, n±) then we can use this to get a polynomial f2(x) with very small
coefficients and f1(x) will be a linear polynomial (with the same root). In that case
one speaks of the special number field sieve (SNFS), otherwise of the general number
field sieve (GNFS). By α1 and α2 we denote roots of f1(x) and f2(x), respectively.

The second step is to collect relations. We choose a factorbase FB of all primes
below the bound F , and a large primes bound L; for ease of exposition we take the
same bounds on both the rational side and the algebraic side. Then we search for
pairs (a, b) such that gcd(a, b) = 1, and that both F1(a, b) := bdeg(f1)f1(a/b) and
F2(a, b) := bdeg(f2)f2(a/b) have all their prime factors below F except for at most two
prime factors, each between F and L, the so-called large primes. These pairs (a, b)
are referred to below as relations. There are many options for collecting the relations,
at present the fastest and most practical of which are based on sieving, for N in the
range of 100–220 digits. Two sieving methods are widely used, viz. line sieving and
lattice sieving. For line sieving we select a rectangular sieving area of points (a, b)
and the sieving is done per horizontal line. For lattice sieving we select an interval
of so-called special primes and for each special prime we only sieve those pairs (a, b)
for which this special prime divides F2(a, b); for each special prime these pairs form a
lattice in the sieving area, except when f2 has multiple roots mod q. In case of SNFS
the special primes are chosen on the rational side.

The third step uses linear algebra to construct squares on both the rational side
and the algebraic side. As F1(a, b) is the norm of the algebraic number a − bα1,
multiplied by the leading coefficient of f1(x), we first concentrate on the norm of the
homogeneous polynomial to form a square. Theoretically, we know that the principal
ideal (a − bα1) factors into the product of prime ideals in the number field Q(α1).
Only a few different prime ideals can appear in these factorizations, as all prime ideals
appearing in these factorizations have norms at most L. Now use linear algebra to
construct a set S of indices i such that the product

∏

i∈S(ai − biα1) is a square of
products of prime ideals. If f1 is a linear polynomial, we work with primes instead of
prime ideals. The situation is similar for f2. However, both sides have to be squares
at the same time, so we look for a set S′ of indices i such that the principal ideal
products

∏

i∈S′(ai − biα1) and
∏

i∈S′(ai − biα2) are squares of products of prime
ideals.

The last step is the square root step, of which we only give the main idea.
We determine algebraic numbers α′

1 ∈ Q(α1) and α′
2 ∈ Q(α2) such that (α′

1)
2 =

∏

i∈S′(ai − biα1) and (α′
2)

2 =
∏

i∈S′(ai − biα2). Then we use the ring homomor-
phisms φα1

: Z[α1] → Z/NZ and φα2
: Z[α2] → Z/NZ with φα1

(α1) = φα2
(α2) = m

mod N to get φα1
(α′

1)
2 = φα1

(

(α′
1)

2
)

= φα1

(
∏

i∈S′(ai − biα1)
)

≡
∏

i∈S′((ai−bim) ≡
φα2

(α′
2)

2(mod N). Now we compute gcd(φα1
(α′

1)− φα2
(α′

2), N) to obtain a factor of



6 Introduction

N . If this gives a trivial factor (1 or N), then we proceed with another set of indices
as above, otherwise we have found a nontrivial factorization of N . For more details
on the NFS, see e.g., [18], [27], or [32].

1.4 Smooth and semismooth numbers

Smooth and semismooth numbers play an important role in factoring algorithms,
such as MPQS and NFS. We let n = n1n2 · · · with the prime factors n1, n2, . . . of n in
nonincreasing order. Given a positive real number F , n is called F -smooth if n1 ≤ F .
By Ψ(x, F ) we denote the number of positive integers ≤ x that are F -smooth, i.e.,

Ψ(x, F ) = #{n ≤ x : n1 ≤ F}.

Given positive real numbers F and L, a number n is said to be k-semismooth with
respect to F and L if n has exactly k prime factors between F and L, and all other
prime factors ≤ F . In factoring algorithms, F is much larger than log2 x. This implies
that asymptotic approximating formulas for Ψ(x, F ) in the literature can be expressed
in the so-called Dickman’s ρ function, as in the works of de Bruijn and Ramaswami
[8, 40, 41].

In Chapter 2 we derive a general asymptotic approximation for the number of
smooth and k-semismooth numbers (k = 1 and k = 2 are treated separately). These
approximations generalize the existing approximations of, e.g., Bach and Peralta,
Cavallar, Knuth and Trabb Pardo, and Lambert [4, 9, 24, 25]. Our approximations
consist of a main term, a second order term and an error term. The most general
approximation, for k-semismooth numbers with (possibly) a different upper bound
for each large prime is given in Theorem 7. In [47], Tenenbaum has given a general
asymptotic expansion for the number of k-semismooth numbers with even higher
(than second) order terms, in which the coefficients are given in an implicit way.
Our theorems give explicit expressions for the coefficients in terms of integrals over
functions depending on the Dickman ρ function.

As the results of Chapter 2 are asymptotic, it is not clear how good the main term
is, compared with the number of (semi)smooth numbers found during the factorization
of a given number. By comparing theoretical and practical results in Chapter 3, we
study how good the theoretical predictions are and if they can be used to minimize the
sieving time. Additionally, we look at the influence of the second order term. It turns
out that there is often a considerable discrepancy between the theoretical estimates
and the practical number of found (semi)smooth numbers, and that the second order
term has a significant influence of about 10% for numbers of approximately 100
decimal digits. Another aspect we look at is the use of different upper bounds for the
large primes, instead of using equal bounds. We study how different choices of the
upper bounds for the large primes affect the final result, when we keep the product
of the bounds constant.
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1.5 Simulating the sieving

The asymptotic formula L(N) for the running time of the number field sieve (cf.
Section 1.1) is not useful in practice to predict the sieving time. If somebody is expe-
rienced with factoring numbers with NFS, (s)he could use this experience, but still the
prediction can easily be 10% off. This is due to the growth behavior of the number of
relations after singleton removal, where the difficulty is the unpredictable matching
behavior of the primes in the relations, as the primes of a newly found relation may
or may not match with the primes of earlier found relations.

In Chapter 4 we propose a method for predicting the number of necessary rela-
tions for factoring a given N with NFS with given parameters, and the corresponding
sieving time. The basic idea is to do a small but representative amount of sieving
and analyze the relations in this sample. We randomly generate pairs of rational
and algebraic large primes combinations according to the relevant distributions as
observed in the sample, and hope that the matching behavior of these cheaply gener-
ated simulated relations corresponds to the matching behavior of the actual relations.
Thus, during the simulation we regularly count the number of simulated relations
after singleton removal and assume that the point where the number of simulated
relations would generate an oversquare matrix is a good estimate for the number of
actual relations that will be required. Experiments show that our predictions of the
number of necessary relations are within 2% of the number of relations needed in the
real factorization (cf. Section 4.4).

In Section 4.2 we give the details of simulating relations for Case I and Case II;
if F and L are relatively close we consider it as Case I, else we consider it as Case
II. The simulation is valid for both line sieving and lattice sieving. In Section 4.3 we
go into the details of the stop criterion. After giving the results of our experiments
in Section 4.4, we present in Section 4.5 a way to determine in advance if Case I or
Case II applies.

We conclude the chapter with additional experiments on certain details of our
prediction method. We found experimentally that a sieving test of about 0.1% of the
relations already gives good results. By using Chebyshev’s inequality, we are able to
compute the appropriate size (or percentage of sieving points) of the sieving test (cf.
Subsection 4.6.1). Related to determining the size of the sieving test is the determi-
nation of the total sieving area as this influences the amount of possible relations and
the sieving time. We explain in Subsection 4.6.2 how to get a fitting sieving area and
a good estimate of the total sieving time. In Subsection 4.6.3 we concentrate on the
growth behavior of the relations after singleton removal. It is described as explosive
by Dodson and Lenstra [17], but a more gradual growth does also occur. This seems
to depend on the sieving bounds that are chosen. In Subsection 4.6.4 we study the
effect of the number of (simulated) relations on the size of the resulting matrix.

1.6 Conclusion

In Chapter 5 we summarize the results as given in this thesis. Furthermore, we give
suggestions for further research, related to the subject.





Chapter 2

Smooth and Semismooth

Numbers

2.1 Introduction

Smooth numbers are positive integers without large prime factors. They have been
studied extensively and the results play an important role in several number theo-
retical topics, e.g., large gaps between primes [42] and the number field sieve [27].
These numbers are also used in numerical problems, such as the Cooley-Tukey FFT
algorithm [11]. The first results go back to the 1920’s, when Vinogradov reported on
a bound for the least nth power non-residue [48].

In the present chapter we give an approximating function for k-semismooth num-
bers with (possibly) a different upper bound for each large prime. This approximating
function consists of a main term, a second order term and an error term, where all
terms are given explicitly (see Theorem 7). For use in Chapter 3 we explicitly state the
results for 1- and 2-semismooth numbers as well. Our main motivation for looking
at theoretical approximations of the number of (semi)smooth numbers is that fac-
toring algorithms such as MPQS and NFS search for (semi)smooth numbers during
the sieving step. By using good asymptotic approximation expansions with a second
order term, we may be able to improve upon the overall running time of factoring
algorithms in practice. In Chapter 3 we compare the theoretical approximations of
smooth, 1-semismooth, and 2-semismooth numbers with the number of (semi)smooth
numbers found during the sieving step of MPQS and NFS.

Recall that a y-smooth number is a positive integer with no prime factors larger
than y. We write n = n1n2 · · · with ni prime and n1 ≥ n2 ≥ . . ., and y = xα, where
0 < α < 1. Then the number of positive integers ≤ x that are y-smooth can be
written as

Ψ(x, xα) = #{n ≤ x : n1 ≤ xα}.
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To compute this number, one could use a sieve procedure to find which numbers are
y-smooth. This is a lot of work when x is large. However, in many situations it
suffices to have a good estimate. Approximating functions of the Ψ-function have
been found with the help of asymptotic expansions. Ramaswami in 1948 [40, 41] and
De Bruijn in 1951 [8] gave approximations of the Ψ-function, which we display in the
next sections.

In 1970 Norton [36] and in 1993 Hildebrand and Tenenbaum [22] wrote overviews
of what was known at that time. More recent work on the Ψ-function by Parsell and
Sorensen concentrates on finding rigorous upper and lower bounds for this function
[38]. Bernstein worked as well on finding tight bounds on the distribution of smooth
integers [5]. Furthermore Suzuki [46] has given a fast algorithm for approximating
Ψ(x, y), based on an algorithm of Hildebrand and Tenenbaum.

As most numbers kept during the sieving step of factoring algorithms are semi-
smooth, we need to study the corresponding Ψ-functions. To be more specific, a
1-semismooth number is a smooth number with all its prime factors at most xα, with
the exception of one prime factor > xα, which does not exceed a larger bound xβ ,
with 0 < α < β < 1. The analogue of the Ψ-function for 1-semismooth numbers is
defined as

Ψ1(x, xβ , xα) = #{n ≤ x : n2 ≤ xα < n1 ≤ xβ}.
A 2-semismooth number has two prime factors exceeding a bound xα, but not

exceeding a bound xβ . These prime factors are often referred to as large primes. For
the upper bound on the two large primes we have two choices: an equal bound for
both primes or non-equal bounds. As far as we know, choosing different upper bounds
for the large primes is a new aspect in the analysis of semismooth numbers. If we
choose the same bound xβ for both large primes, the definition of the corresponding
Ψ-function is

Ψ2(x, xβ , xα) = #{n ≤ x : n3 ≤ xα < n2 ≤ n1 ≤ xβ}.

If we choose different upper bounds for the two large primes, the definition of the
corresponding Ψ-function is

Ψ2(x, xβ1 , xβ2 , xα) = #{n ≤ x : n3 ≤ xα < n2 ≤ n1 ≤ xβ1 , n2 ≤ xβ2},

with 0 < α < β2 ≤ β1 < 1. If β2 = β1, we have again the same upper bound for both
large primes.

This generalizes to k-semismooth numbers. A k-semismooth number is a number
with all its prime factors below a certain bound xα, except for k prime factors between
xα and xβ , with α < β < 1. The definition for k-semismooth numbers with the same
upper bound for the large primes can be written as

Ψk(x, xβ , xα) = #{n ≤ x : nk+1 ≤ xα < nk, n1 ≤ xβ}.

We consider different bounds for the large prime factors as well. Let α and β1, . . . , βk

be numbers with 0 < α < βk ≤ . . . ≤ β1 < 1. We put
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Ψk(x, xβ1 , . . . , xβk , xα) =

#{n ≤ x : nk+1 ≤ xα, xα < nk ≤ xβk , nk ≤ nk−1 ≤ xβk−1 , . . . , n2 ≤ n1 ≤ xβ1}.

In Section 2.2 we give some tools that we frequently use in the proofs. In Sections
2.3 and 2.4 we give known and new approximating functions for the different Ψi-
functions. These asymptotic expansions consist of a main term, zero or more higher
order terms, and an error term. We denote asymptotic expansions with only a main
term and an error term by Type 1 and those with a main term, higher order terms
and an error term by Type 2. In Section 2.3 we give the asymptotic expansions of
Type 1 for smooth and semismooth numbers, and the Type 2 expansions are put
together in Section 2.4. In Section 2.5 we give the proof of Theorem 6, which is an
improvement of a result of Ramaswami. Finally, in Section 2.6 we give the proof of
Theorem 7, which is our Type 2 asymptotic expansions for k-semismooth numbers
with a different upper bound for each large prime.

2.2 Basic tools

Let π(x) denote the number of primes ≤ x. In this paper we will often use the Prime
Number Theorem, which says that

π(x) = li(x) + ǫ(x), (2.1)

with li(x) =
∫ x

0
dt/ log t and ǫ(x) = o(x/ log x) for x → ∞. De la Vallée Poussin

proved that one may take ǫ(x) = O(xe−C
√

log x), where C is a positive constant. It
follows that ǫ(x) = O(x/ logc x) for any c > 1. Using Stieltjes integration and (2.1)
leads to

∑

p prime, p<x

1

p
= log log x + O(1), as x → ∞, (2.2)

and
∑

p prime, p<x

1

p log p
= O(1), as x → ∞; (2.3)

see for more details, e.g., [20]. We shall often tacitly assume that x → ∞ when we
use the O- and o-term notations.

2.3 Type 1 expansions

We give here asymptotic expansions that consist only of a main term and an error
term. To keep an overview of the historical developments the results on smooth num-
bers are given in Subsection 2.3.1, on 1-semismooth numbers in Subsection 2.3.2, on
2-semismooth numbers in Subsection 2.3.3 and on k-semismooth numbers for general
k in Subsection 2.3.4.
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2.3.1 Smooth numbers

The main result on smooth numbers goes back to a result of Dickman, who improved
Vinogradov’s estimate for Ψ(x, xα). Recall that we write the number of positive
integers ≤ x that are y-smooth as Ψ(x, xα) = #{n ≤ x : n1 ≤ xα}. Dickman
showed that Ψ(x, xα) ∼ xρ(1/α) (x → ∞) for each fixed α > 0. The ρ function
is the so-called Dickman ρ function, which is the unique continuous solution of the
differential-difference equation

{

ρ(x) = 1 0 ≤ x ≤ 1
ρ′(x) = −ρ(x − 1)/x x > 1.

De Bruijn improved the result by giving a range of α for which the approximation of
Dickman is valid uniformly in α. Hildebrand [21, 22] provided De Bruijn’s asymptotic
value for Ψ(x, xα) [8] with a uniform error term, i.e. the dependence on the used
parameter α is explicitly given. The result is given in the following theorem.

Theorem 1 (Hildebrand) For any fixed ǫ > 0 the relation

Ψ(x, xα) = xρ

(

1

α

) (

1 + O

(

log(1/α)

α log x

))

, as x → ∞,

holds uniformly in the range xα ≥ 2, 1 ≤ 1
α ≤ exp

(

(α log x)3/5−ǫ
)

.

We illustrate the range, as given in Theorem 1, in Figure 2.1 for ǫ = 0, where the area
marked with diagonal lines is the range mentioned in the theorem. We use X = log x
and Y = α log x as X- and Y -axis, respectively.

2.3.2 1-semismooth numbers

One of the first approximations of Ψ1(x, xβ , xα) is due to Bach and Peralta [4]. We
state their result as follows.

Theorem 2 (Bach and Peralta) If 0 < α < β < 1 and xα ≥ 2, then

Ψ1(x, xβ , xα) = x

∫ β

α

ρ

(

1 − λ

α

)

dλ

λ
+ O

(

log(1/α)

α(1 − β)

x

log x

)

.

Compared with Theorem 3.1 in [4], where only the condition 0 < α < β < 1 is
stated, we have added the condition xα ≥ 2. However, this extra condition should
be imposed in Theorem 3.1 of Bach and Peralta as well. It is a consequence of the
necessary addition of the condition tγ ≥ 2 in Formula 2.7 of [4].

Lemma 1 (cf. [4], (2.7)) Results of De Bruijn imply that if 0 < γ < 1 and tγ ≥ 2,
we have

Ψ(t, tγ) = tρ(1/γ) + O(
t

γ log t
).
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Y=X                     
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Figure 2.1: Range of X = log x and Y = α log x for which Theorem 1 holds

To prove this, combine (5.3) and (5.4) of [8], instead of (1.4) and (5.3). With the latter
combination one can prove Lemma 1 as well, but only subject to extra conditions.
Bach and Peralta apply Lemma 1 for t = x

p and γ = α
1−log p/ log x with xα < p ≤ xβ .

Thus tγ ≥ 2 leads to xα ≥ 2.
The main term and O-term in Formula 3.8 of [4] remain the same, as we know

that α ≤ α
1−log p/ log x . Two minor corrections in the proof concern the O-term in the

third displayed equation on page 1705 of [4] and the fifth displayed equation on the

same page. The O-term should be O
(

1
α log x

)

and in the fifth equation there should

be an x in front of the integral.
More details of the proof of Theorem 2 can be found in [4]. A more precise error

term will be given in Corollary 2 for k = 1.

2.3.3 2-semismooth numbers

For semismooth numbers with two large primes with the same upper bound, Lambert
([25], Ch. 4) used the result of Bach and Peralta to obtain
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Ψ2(x, xβ , xα) =
x

2

∫ β

α

∫ β

α

ρ

(

1 − λ1 − λ2

α

)

dλ1

λ1

dλ2

λ2
+

O

(

log(β/α)x

α log x

(

log

(

β(1 − 2α)

α(1 − 2β)

)

+ 1

))

, x → ∞. (2.4)

The factor 1
2 in front of the integral is to correct for the integration area, which is

α < λ1 < β and α < λ2 < β. However, we impose λ2 ≤ λ1, hence a factor 1
2 (as the

integrand is symmetric in λ1 and λ2).
We now give the result for 2-semismooth numbers with different upper bounds on

the large primes.

Theorem 3 Let ǫ > 0 be fixed. If 0 < α < β2 < β1, α + β2 + β1 ≤ 1, xα ≥ 2, and
1−2α

α ≤ exp(( α
1−2α log x)3/5−ǫ), then we have for x → ∞,

Ψ2(x, xβ1 , xβ2 , xα) =

x

∫ β2

α

∫ β1

λ2

ρ

(

1 − λ1 − λ2

α

)

dλ1

λ1

dλ2

λ2

(

1 + O

(

log( 1
α )

α log x

))

.

The proof is based on Theorem 1, and the structure of the proof is similar to the
proof in Section 2.6. As a corollary we give the result for equal upper bounds on the
large primes. The result is a refinement of Lambert’s result. The main difference is
the error term, which now includes the ρ function, which decreases exponentially fast.

Corollary 1 Let ǫ > 0 be fixed. If 0 < α < β, α + 2β ≤ 1, xα ≥ 2, and 1−2α
α ≤

exp(( α
1−2α log x)3/5−ǫ), then, for x → ∞,

Ψ2(x, xβ , xα) =
x

2

∫ β

α

∫ β

α

ρ

(

1 − λ1 − λ2

α

)

dλ1

λ1

dλ2

λ2

(

1 + O

(

log( 1
α )

α log x

))

.

2.3.4 k-semismooth numbers

One of the known results for k-semismooth numbers with equal bounds on the large
primes can be found in the thesis of Cavallar [9]. The result is based on the results
of Bach and Peralta and of Lambert. Cavallar’s result is the following. Note that all
integrals have bounds α and β. This is compensated by a factor 1/k!.

For a positive integer k, 0 < α < β < 1/k and log x > 1
α max(log 2, 1−kα

α , 1
log((kα)−1) )

we have

Ψk(x, xβ , xα) =
x

k!

∫ β

α

· · ·
∫ β

α

ρ

(

1 − (λ1 + · · ·λk)

α

)

dλ1

λ1
· · · dλk

λk
+

O

(

logk((kα)−1)

α(1 − kβ)

x

log x

)

.
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The error bound is uniform in k, α and β.

Our result for k-semismooth numbers with different upper bounds on the large
prime factors is the following theorem.

Theorem 4 Let ǫ > 0 be fixed. If 0 < α < βk ≤ . . . ≤ β1, α + βk + . . . + β1 ≤ 1,
xα ≥ 2, and 1−kα

α ≤ exp(( α
1−kα log x)3/5−ǫ), then we have for x → ∞,

Ψk(x, xβ1 , . . . , xβk , xα) =

x

∫ βk

α

∫ βk−1

λk

· · ·
∫ β1

λ2

ρ

(

1 − (λ1 + . . . + λk)

α

)

dλ1

λ1
· · · dλk

λk

(

1 + O

(

log( 1
α )

α log x

))

.

The proof is based on Theorem 1 as well and consists of the same basic ideas as the
proof in Section 2.6. In case of equal bounds on the large prime factors, we have the
following corollary.

Corollary 2 For any fixed ǫ > 0, k ≥ 1 (k ∈ Z+), if 0 < α < β, xα ≥ 2, α+kβ ≤ 1,
and 1−kα

α ≤ exp(( α
1−kα log x)3/5−ǫ), then we have for x → ∞,

Ψk(x, xβ , xα) =

x

k!

∫ β

α

· · ·
∫ β

α

ρ

(

1 − (λ1 + λ2 + . . . + λk)

α

)

dλ1

λ1
· · · dλk

λk

(

1 + O

(

log( 1
α )

α log x

))

.

The most important difference with Cavallar’s result is that our O-term involves the
ρ function, which decreases exponentially fast.

2.4 Type 2 expansions

In this section we give asymptotic expansions that consist of a main term, a second
order term and an error term. We start with results on smooth numbers in Subsection
2.4.1, and continue with results on k-semismooth numbers in Subsection 2.4.2. We
also give our results for k = 1 and k = 2 as corollaries of Theorem 7.

2.4.1 Smooth numbers

Ramaswami [41] gave an approximation of the Ψ-function by adding a second order
term as in the following theorem. See also Norton [36], p. 12.

Theorem 5 (Ramaswami) For x > 1, 0 < α < 1, and xα > 2 we have

Ψ(x, xα) = xρ

(

1

α

)

+ (1 − γ)
x

log x
ρ

(

1 − α

α

)

+ Oα(∆(x, xα)), as x → ∞,

where

∆(x, xα) =











x
(log x)3/2 for 0 < α < 1/2,

xα

log x + x
log2 x

for 1/2 ≤ α < 1.
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In this theorem γ is Euler’s constant. We now improve the error term and make the
dependence on α explicit. Knuth and Trabb Pardo [24] proved that

Ψk(x, xα) = xρk(
1

α
) +

x

log x
σk(

1

α
) + Oα

(

x

log2 x

)

,

as x → ∞, for all fixed 0 < α < 1. Here, Ψk(x, xα) stands for the number of positive
integers up to x with their kth largest prime factor below xα, and σk( 1

α ) is defined
as (1 − γ)(ρk( 1

α − 1) − ρk−1(
1
α − 1)), where

ρk(
1

α
) = 1 −

∫ 1
α

1

(ρk(t − 1) − ρk−1(t − 1))
dt

t
, for 0 < α < 1, k ≥ 1,

ρk(
1

α
) = 1 for α ≥ 1, k ≥ 1, and

ρk(
1

α
) = 0 for α < 0 or k = 0.

Using their approach we improve the error term of Theorem 5 as follows.

Theorem 6 For 0 < α < 1 and xα > 2 we have

Ψ(x, xα) = xρ

(

1

α

)

+ (1 − γ)
x

log x
ρ

(

1 − α

α

)

+ O

(

x

α3 log2 x

)

, as x → ∞.

In order to keep the overview on the various results on (semi)smooth numbers, we
give the proof of Theorem 6 in Section 2.5. In the sequel of this section we extend
the Ψ-function for smooth numbers to semismooth numbers and generalize Theorem
6 to such numbers.

2.4.2 k-semismooth numbers

For k-semismooth numbers there exist some results in case of equal bounds on the
large primes. We start with the result of Zhang [50], who made use of recursively
defined functions. To be precise, Zhang states that for k (> 0) large primes between
xα and xβ , and 0 < α < β < 1

Ψk(x, xβ , xα) = xGk(α, β) +
x

log x
λk(α, β) + Oα

(

x

log2 x

)

, (2.5)

where

Gk(α, β) = F (α) +

∫ β

α

Gk−1

(

α

1 − t
,

t

1 − t

)

dt

t
,

with F (α) = G0(α, β) = ρ(1/α) and

λk(α, β) = (1 − γ)F

(

α

1 − α

)

+

∫ β

α

λk−1

(

α

1 − t
,

t

1 − t

)

dt

t(1 − t)
,
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with λ0(α, β) = (1 − γ)F (α/(1 − α)).
Another result on k-semismooth numbers is due to Tenenbaum [47]. Tenenbaum

defines m1,m2, ...,mk as the decreasing sequence of distinct prime factors of a positive
integer m. (Note that Tenenbaum does not take multiplicities of the prime factors
into account.) Then it is possible to provide an asymptotic expansion for the distri-
bution function Fn( ~αk) := νn{m : mj > nαj (1 ≤ j ≤ k)}, which is valid uniformly in
a large range for ~αk := (α1, . . . , αk). The main theorem of [47] consists of four items;
for our purpose the third item is the most interesting:

Let k be a positive integer. There exists a sequence of real functions {φh}∞h=0 defined
on [0, 1]k, an increasing sequence of integers {Rh}∞h=0 with R0 = 0, and a sequence
of affine linear forms {∆r( ~αk)}∞r=1 having the following property:
For arbitrary but fixed H ≥ 0 and ε ∈ (0, 1/3), we have

Fn( ~αk) =
∑

0≤h≤H

φh( ~αk)

(log n)h
+ OH,ε

(

1

(αk log n)H+1

)

,

uniformly in the range
{

~αk ∈ [0, 1]k, αk > κ(ε, n),

min1≤r≤Rh,∆r( ~αk)>0 ∆r( ~αk) > KH
log2 n
log n ,

where KH is a suitable constant depending only on H.

This result contains even higher order terms, but the terms do not display any ex-
plicit dependency on the bounds of the large primes. By using the law of inclusion
and exclusion the result can be transformed into a formula of the form (2.5).

We introduce an explicit second order term and error term on k-semismooth num-
bers with different bounds on the large primes in the following theorem.

Theorem 7 If 0 < α < βk ≤ . . . ≤ β1, α + βk + . . . + β1 ≤ 1, and xα ≥ 2, then we
have for x → ∞

Ψk(x, xβ1 , . . . , xβk , xα) =

x

∫ βk

α

∫ βk−1

λk

· · ·
∫ β1

λ2

ρ

(

1 − (λ1 + . . . + λk)

α

)

dλ1

λ1
· · · dλk

λk
+

(1 − γ)
x

log x

∫ βk

α

∫ βk−1

λk

· · ·
∫ β1

λ2

ρ

(

1 − (λ1 + . . . + λk) − α

α

)

×

1

1 − (λ1 + . . . + λk)

dλ1

λ1
· · · dλk

λk
+ O

(

log(β1/α) . . . log(βk/α)

α3(1 − (β1 + · · · + βk))2
x

log2 x

)

.

We give the proof of this theorem in Section 2.6. In case of equal bounds on the
large primes, we have the following corollary. This is comparable with Zhang’s result
(2.5), but the coefficients of the x- and x/ log x-terms and of the error term are more
explicit than in (2.5).
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Corollary 3 If 0 < α < β, α + kβ < 1, and xα ≥ 2, then we have for x → ∞

Ψk(x, xβ , xα) =
x

k!

∫ β

α

∫ β

α

· · ·
∫ β

α

ρ

(

1 − (λ1 + . . . + λk)

α

)

dλ1

λ1
· · · dλk

λk
+

1 − γ

k!

x

log x

∫ β

α

∫ β

α

· · ·
∫ β

α

ρ

(

1 − (λ1 + . . . + λk) − α

α

)

×

1

1 − (λ1 + . . . + λk)

dλ1

λ1
· · · dλk

λk
+ O

(

logk(β/α)

α3(1 − kβ)2
x

log2 x

)

.

In Chapter 3 we compare our theoretical results on (semi)smooth numbers with the
amount of (semi)smooth numbers found during the sieving step of factoring algo-
rithms. This concerns only 1- and 2- semismooth numbers, so we explicitly state
Theorem 7 for k = 1, 2 in the following two corollaries.

Corollary 4 If 0 < α < β < 1, α + β ≤ 1, and xα ≥ 2, then

Ψ1(x, xβ , xα) = x

∫ β

α

ρ

(

1 − λ

α

)

dλ

λ
+

(1 − γ)
x

log x

∫ β

α

ρ

(

1 − λ − α

α

)

dλ

λ(1 − λ)
+ O

(

log(β/α)

α3(1 − β)2
x

log2 x

)

for x → ∞.

Besides being a consequence of Theorem 7, this result can be seen as a generalization
of the results of Ramaswami and of Bach and Peralta. For 2-semismooth numbers we
only give the result on using different bounds on the two large primes. In factoring
algorithms it might be useful to have different bounds for the large primes, as it might
be used to improve the overall running time of the factoring algorithm.

Corollary 5 If 0 < α < β2 < β1, α + β2 + β1 ≤ 1, and xα ≥ 2, then we have for
x → ∞

Ψ2(x, xβ1 , xβ2 , xα) = x

∫ β2

α

∫ β1

λ2

ρ

(

1 − λ1 − λ2

α

)

dλ1

λ1

dλ2

λ2
+

(1 − γ)
x

log x

∫ β2

α

∫ β1

λ2

ρ

(

1 − λ1 − λ2 − α

α

)

1

1 − λ1 − λ2

dλ1

λ1

dλ2

λ2
+

O

(

log(β1/α) log(β2/α)

α3(1 − β1 − β2)2
x

log2 x

)

.

2.5 Proof of Theorem 6

In this section we give the proof of Theorem 6, which is the following.
For 0 < α < 1 and xα > 2 we have

Ψ(x, xα) = xρ

(

1

α

)

+ (1 − γ)
x

log x
ρ

(

1 − α

α

)

+ O

(

x

α3 log2 x

)

, as x → ∞.
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Proof. We define S(x, y) as the set of y-smooth numbers at most x, thus we have
Ψ(x, y) = |S(x, y)|. Furthermore, in summations we let p range over primes and n
over positive integers.

We start the proof by expressing the difference between x and Ψ(x, xα) in terms
of the Ψ-function as

⌊x⌋ − Ψ(x, xα) =
∑

xα<p≤x

#{n ≤ x : n1 = p}

=
∑

xα<p≤x

#

{

m ≤ x

p
: m1 ≤ p

}

=
∑

xα<p≤x

Ψ

(

x

p
, p

)

. (2.6)

The next step consists of replacing the sum by an integral. We have

V :=
∑

xα<p≤x

Ψ

(

x

p
, p

)

−
∫ x

xα

Ψ

(

x

y
, y

)

dy

log y
=

=
∑

xα<p≤x

∑

m∈S(x/p,p)

1 −
∫ x

xα





∑

m∈S(x/y,y)

1





dy

log y
.

Now use the definition of S(x, y). If m ∈ S(x/y, y), then m ≤ x/y and m1 ≤ y.
Combining this with the boundary condition of the integral and the combination of
the two summations over m, we get

V =
∑

1≤m≤x1−α

m1≤x/m









∑

m1≤p≤x/m
xα<p

1 −
∫ x/m

max(m1,xα)

dy

log y









=
∑

1≤m≤x1−α

m1≤x/m

(

π
( x

m

)

− π(max(m1, x
α)) + O(1) − li

( x

m

)

+ li(max(m1, x
α))

)

.

By using De la Vallée Poussin’s error term formula from Section 2.2, we obtain

V =
∑

1≤m≤x1−α

m1≤x/m

O
( x

m
e−C

√
log(x/m)

)

=
∑

1≤m≤x1−α

m1≤x/m

O
( x

m
e−C

√
α log x

)

.

Using
∑

m≤x1−α 1/m = log x1−α + γ + O(1/x1−α), where γ is Euler’s constant, leads
to

V = O
(

x log x e−C
√

α log x
)

. (2.7)
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The O-term of (2.7) is O
(

x log x
(α log x)r

)

for any positive number r, as e−
√

log x < 1
(log x)r

for x → ∞, for any positive number r. We will use r = 3. Combining (2.6) and (2.7)
gives us

Ψ(x, xα) = x −
∫ x

xα

Ψ

(

x

y
, y

)

dy

log y
+ O

(

x

α3 log2 x

)

. (2.8)

We will continue with (2.8) to prove Theorem 6 by induction on ⌈1/α⌉. The first case
is 1/2 ≤ α < 1 and this gives

Ψ(x, xα) = x −
∫ x

xα

Ψ

(

x

y
, y

)

dy

log y
+ O

(

x

α3 log2 x

)

= x −
∫ x

xα

(

x

y
−

{

x

y

})

dy

log y
+ O

(

x

α3 log2 x

)

= x − x

∫ x

xα

dy

y log y
+ x

∫ x

xα

{

x

y

}

dy

log y
+ O

(

x

α3 log2 x

)

,

where {x/y} denotes the fractional part of x/y. We continue with substituting u =
x/y and this leads to

Ψ(x, xα) = x − x[log(log y)]xxα +

∫ x1−α

1

{u} x

u2

du

log(x/u)
+ O

(

x

α3 log2 x

)

= x + x log α + x

∫ x1−α

1

{u} du

u2 log(x/u)
+ O

(

x

α3 log2 x

)

= xρ(1/α) +
x

log x

∫ x1−α

1

({u}
u2

+
{u} log u

u2 log(x/u)

)

du + O

(

x

α3 log2 x

)

.

We recognize that the integral comes close to

∫ ∞

1

{u}
u2

du =
∑

n≥1

∫ n+1

n

(u − n)du

u2
=

∑

n≥1

((

log
n + 1

n

)

− 1

n + 1

)

= lim
n→∞

((log n) − (Hn − 1)) = 1 − γ,

where Hn stands for the nth harmonic number. In order to take advantage of this
knowledge, we use the following bounds:

x

log x

∫ ∞

x1−α

{u}
u2

du ≤ x

log x

∫ ∞

x1−α

du

u2
=

xα

log x
, and
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x

log x

∫ x1−α

1

{u} log u

u2 log(x/u)
du ≤ x

log x

1

α log x

∫ x1−α

1

log u

u2
du

=
x

α log2 x

[− log u

u
− 1

u

]x1−α

1

= O

(

xα

α log x

)

+ O

(

x

α log2 x

)

= O

(

x

α3 log2 x

)

.

By inserting these bounds, and using ρ(y) = 1 for 0 ≤ y ≤ 1, we have proved that

Ψ(x, xα) = xρ

(

1

α

)

+ (1 − γ)
x

log x
ρ

(

1 − α

α

)

+ O

(

x

α3 log2 x

)

(2.9)

for 1/2 ≤ α < 1.
Now assume (2.9) is true for 1/m ≤ α < 1, with m an integer > 2, and let

1/(m+1) ≤ α < 1/m. We start again with (2.8) and substitute y = x1/t, which gives

Ψ(x, xα) = x −
∫ x

xα

Ψ

(

x

y
, y

)

dy

log y
+ O

(

x

α3 log2 x

)

= x −
∫ 1/α

1

Ψ(x(t−1)/t, x1/t)x1/t dt

t
+ O

(

x

α3 log2 x

)

= x−
∫ 2

1

⌊

x(t−1)/t
⌋

x1/t dt

t
−

∫ 1/α

2

Ψ(x(t−1)/t, x1/t)x1/t dt

t
+ O

(

x

α3 log2 x

)

. (2.10)

Observe that we could write the Ψ-function as

Ψ(x(t−1)/t, x1/t) = Ψ(v, v1/(t−1)),

with v = x(t−1)/t. We apply the induction hypothesis (2.9) and this gives

∫ 1/α

2

Ψ(x(t−1)/t, x1/t)x1/t dt

t
=

∫ 1/α

2

(

xρ(t − 1) + (1 − γ)
x

log(x(t−1)/t)
ρ(t − 2) + O

(

x(t − 1)3

log2(x(t−1)/t)

))

dt

t

= x

∫ 1/α

2

(

ρ(t − 1) +
(1 − γ)ρ(t − 2)

log(x(t−1)/t)
+ O

(

(t − 1)t2

log2 x

))

dt

t
.

Since

x

∫ 1/α

2

O

(

(t − 1)t2

log2 x

)

dt

t
= O

(

x

log2 x

∫ 1/α

2

(t2 − t)dt

)

= O

(

x

α3 log2 x

)

,
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we get
∫ 1/α

2

Ψ(x(t−1)/t, x1/t)x1/t dt

t
=

x

∫ 1/α

2

ρ(t − 1)
dt

t
+ (1 − γ)

x

log x

∫ 1/α−1

1

ρ(t − 1)
dt

t
+ O

(

x

α3 log2 x

)

. (2.11)

By using ρ(y) = 1 for 0 ≤ y ≤ 1 and substituting u = x(t−1)/t, we obtain

x −
∫ 2

1

⌊

x(t−1)/t
⌋

x1/t dt

t
= x − x

∫ 2

1

ρ(t − 1)
dt

t
+

∫ 2

1

{

x(t−1)/t
}

x1/t dt

t

= x − x

∫ 2

1

ρ(t − 1)
dt

t
+ x

∫ x1/2

1

{u}du

u2 log(x/u)

= x − x

∫ 2

1

ρ(t − 1)
dt

t
+ (1 − γ)

x

log x
+ O

(

x

α3 log2 x

)

, (2.12)

as before. Thus, by substituting (2.11) and (2.12) into (2.10), we have

Ψ(x, xα) =

x− x

∫ 1/α

1

ρ(t − 1)
dt

t
+ (1 − γ)

x

log x
− (1 − γ)x

log x

∫ 1/α−1

1

ρ(t − 1)
dt

t
+ O

(

x

α3 log2 x

)

= xρ

(

1

α

)

+ (1 − γ)
x

log x
+

(1 − γ)x

log x

∫ 1/α−1

1

ρ′(t)dt + O

(

x

α3 log2 x

)

= xρ

(

1

α

)

+ (1 − γ)
x

log x
ρ

(

1 − α

α

)

+ O

(

x

α3 log2 x

)

.

We conclude that our induction hypothesis is correct for all α and that we have proved
Theorem 6. ¤

2.6 Proof of Theorem 7

We begin the proof with rewriting the Ψ-function of a k-semismooth number as

Ψk(x, xβ1 , . . . , xβk , xα) =
∑

xα<pk≤xβk

∑

pk≤pk−1≤xβk−1

· · ·
∑

p2≤p1≤xβ1

#

{

m ≤ x

p1 · · · pk
: m1 ≤

(

x

p1 · · · pk

)
α

1−
log(p1···pk)

log x

}

.
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This means that we are looking for numbers m ∈ Z such that m ≤ x
p1···pk

and m is

y-smooth with y = xα = (x/(p1 · · · pk))
α

1−log(p1···pk)/ log x . Thus we can apply Theorem
6 and this gives (we omit the conditions under the summation sign)

Ψk(x, xβ1 , . . . , xβk , xα) =

∑

pk

∑

pk−1

· · ·
∑

p1

x

p1 · · · pk
ρ

(

1 − log(p1···pk)
log x

α

)

+

(1 − γ)
∑

pk

∑

pk−1

· · ·
∑

p1

x
p1···pk

log( x
p1···pk

)
ρ

(

1 − log(p1···pk)
log x − α

α

)

+

∑

pk

∑

pk−1

· · ·
∑

p1

O







x
p1···pk

(

α
1−(log p1··· log pk)/ log x

)3

log2
(

x
p1···pk

)






. (2.13)

We will denote the first term on the right-hand side of (2.13) with T1. Applying
Stieltjes integration gives

T1 = x

∫ xβk

tk=xα

∫ xβk−1

tk−1=tk

· · ·
∫ xβ1

t1=t2

ρ

(

1 − log(t1···tk)
log x

α

)

dπ(t1)

t1
· · · dπ(tk)

tk
.

We apply induction on the number of integrals i. In the proof we will use the Prime
Number Theorem in the form π(x) = li(x) + ǫ(x). For i = 1 we have

∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dπ(t1)

t1
=

∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dt1
t1 log t1

+

∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dǫ(t1)

t1
. (2.14)

Applying partial integration to the last term on the right-hand side of (2.14) gives

[

ρ

(

1 − log(t1···tk)
log x

α

)

ǫ(t1)

t1

]xβ1

t2

−
∫ xβ1

t2

ǫ(t1)
d

dt1

(

1

t1
ρ

(

1 − log(t1···tk)
log x

α

))

dt1.

To show that these two terms are small compared to the first term on the right-hand
side of (2.14), we use ρ(x) ≤ 1 for x ≥ 0, ǫ(t) = O(t/ logc t) with c = 3 and c = 4,
respectively, and xα < t2 ≤ xβ2 . So we obtain

∣

∣

∣

∣

∣

∣

∣

[

ρ

(

1 − log(t1···tk)
log x

α

)

ǫ(t1)

t1

]xβ1

t2

∣

∣

∣

∣

∣

∣

∣

≤ |ǫ(xβ1)|
xβ1

+
|ǫ(xα)|

xα
= O

(

1

α3 log3 x

)

, and
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∫ xβ1

t2

ǫ(t1)
d

dt1

(

1

t1
ρ

(

1 − log(t1···tk)
log x

α

))

dt1 =

O

(

∫ xβ1

t2

t1

log4 t1

1

t21
ρ

(

1 − log(t1···tk)
log x

α

)

dt1

)

+

O

(

t1

log3 t1

1

t1
ρ′

(

1 − log(t1···tk)
log x

α

)

1

αt1 log x
dt1

)

.

We know that xρ′(x) + ρ(x − 1) = 0 for x ≥ 1, and we have 1−log t/ log x
α > 0 for

xα ≤ t ≤ xβ . It follows that the absolute values of the ρ factor and the ρ′ factor on
the right-hand side are at most 1. This leads to an upper bound

O

(

∫ xβ1

t2

1

t1 log4 t1
dt

)

+ O

(

1

α log x

∫ xβ1

t2

1

t1 log3 t1
dt1

)

= O

(

1

α3 log3 x

)

.

Thus we have for i = 1

∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dπ(t1)

t1
=

∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dt1
t1 log t1

+ O

(

1

α3 log3 x

)

.

Let i0 < k − 1. Assume the following formula for all i ≤ i0:

∫ x
βi0

ti0+1

∫ x
βi0−1

ti0

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dπ(t1)

t1
· · · dπ(ti0)

ti0
=

∫ x
βi0

ti0+1

∫ x
βi0−1

ti0

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dt1
t1 log t1

· · · dti0
ti0 log ti0

+

O

(

log(βi0−1/α) · · · log(β1/α)

α3 log3 x

)

. (2.15)

Then

∫ x
βi0+1

ti0+2

∫ x
βi0

ti0+1

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dπ(t1)

t1
· · · dπ(ti0+1)

ti0+1
=

∫ x
βi0+1

ti0+2

(

∫ x
βi0

ti0+1

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dt1
t1 log t1

· · · dti0
ti0 log ti0

+

O

(

log(βi0−1/α) · · · log(β1/α)

α3 log3 x

))

dπ(ti0+1)

ti0+1
.

We denote the right-hand side with Ti0+1 and with the help of π(ti0+1) = li(ti0+1) +



2.6 Proof of Theorem 7 25

ǫ(ti0+1) we get

Ti0+1 =

∫ x
βi0+1

ti0+2

∫ x
βi0

ti0+1

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dt1
t1 log t1

· · · dti0+1

ti0+1 log ti0+1

+

∫ x
βi0+1

ti0+2

∫ x
βi0

ti0+1

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dt1
t1 log t1

· · · dti0
ti0 log ti0

dǫ(ti0+1)

ti0+1
+

O

(

log(βi0−1/α) · · · log(β1/α)

α3 log3 x

)∫ x
βi0+1

ti0+2

dπ(ti0+1)

ti0+1
. (2.16)

For the second term on the right-hand side of (2.16) we use ρ(x) ≤ 1 for x ≥ 0,

∫ xβj

tj+1

dtj
tj log tj

= O(log(βj/α)), (j = 1, . . . , i0),

and by applying partial integration as in the proof for i = 1 we obtain

∫ x
βi0+1

ti0+2

dǫ(ti0+1)

ti0+1
= O

(

1

α3 log3 x

)

.

This yields that the second term on the right-hand side of (2.16) is

O

(

log(βi0/α) · · · log(β1/α)

α3 log3 x

)

.

For the third term on the right-hand side of (2.16) we use

∫ x
βi0+1

ti0+2

dπ(ti0+1)

ti0+1
= O

(

∫ x
βi0+1

ti0+2

dti0+1

ti0+1 log ti0+1

)

=

O(log(βi0+1/α)) = O(log(βi0/α))

and this yields the same error term for the third term as we had for the second term.
We conclude that (2.15) holds for all i0 < k.

With (2.15) proven, we return to the expression T1, and we apply (2.15) with
i0 = k − 1 to it.

T1/x =

∫ xβk

xα

(

∫ xβk−1

tk

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dt1
t1 log t1

· · · dtk−1

tk−1 log tk−1
+

O

(

log(βk−2/α) · · · log(β1/α)

α3 log3 x

))

dπ(tk)

tk
.



26 Smooth and Semismooth Numbers

We apply similar steps as in the proof of (2.15) and conclude that

T1/x =

∫ xβk

xα

∫ xβk−1

tk

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x

α

)

dt1
t1 log t1

· · · dtk
tk log tk

+

O

(

log(βk−1/α) · · · log(β1/α)

α3 log3 x

)

.

For the second term on the right-hand side of (2.13), denoted by T2, we proceed
in the same way. We start with Stieltjes integration, which yields

T2 = (1 − γ)x×
∫ xβk

xα

∫ βk−1

tk

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x − α

α

)

1

log( x
t1···tk

)

dπ(t1)

t1
· · · dπ(tk)

tk
. (2.17)

Here we want to use a proof based on induction as well, so we fix k and denote the
number of integrals with i, with i < k. As the idea is the same as for T1, we will only
give the induction hypothesis for all i ≤ i0 < k − 1:

∫ x
βi0

ti0+1

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x − α

α

)

1

log( x
t1···tk

)

dπ(t1)

t1
· · · dπ(ti0)

ti0
=

∫ x
βi0

ti0+1

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x − α

α

)

1

log( x
t1···tk

)

dt1
t1 log t1

· · · dti0
ti0 log ti0

+O

(

log(βi0−1/α) · · · log(β1/α)

α3 log3 x

)

. (2.18)

Substituting (2.18) with i0 = k − 1 into (2.17) yields

T2/((1 − γ)x) =

∫ xβk

xα

(

∫ xβk−1

tk

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x − α

α

)

1

log( x
t1···tk

)
×

dt1
t1 log t1

· · · dtk−1

tk−1 log tk−1
+ O

(

log(βi0−1/α) · · · log(β1/α)

α3 log3 x

))

dπ(tk)

tk
.

Now apply the same steps as in the proof of (2.15). This gives

T2 = (1 − γ)x×
∫ xβk

xα

· · ·
∫ xβ1

t2

ρ

(

1 − log(t1···tk)
log x − α

α

)

1

log( x
t1···tk

)

dt1
t1 log t1

· · · dtk
tk log tk

+O

(

log(βk−1/α) · · · log(β1/α)

α3 log3 x

)

.

This completes the second term of (2.13), and it remains to estimate the error term.
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We will prove this without using induction. By Theorem 6 we have (we omit the
conditions under the summation sign)

∑

pk

∑

pk−1

· · ·
∑

p1

O







x
p1···pk

(

α
1−(log p1··· log pk)/ log x

)3

log2
(

x
p1···pk

)






=

O

(

x
∑

pk

1

pk
· · ·

∑

p2

1

p2

∑

p1

1

p1

1

α3(1 − (β1 + · · · + βk))2 log2 x

)

=

O

(

log(β1/α) · · · log(βk/α)

α3(1 − (β1 + · · · + βk))2
x

log2 x

)

.

The final step of the proof consists of substituting ti = xλi for 1 ≤ i ≤ k. ¤





Chapter 3

From Theory to Practice

3.1 Introduction

In this chapter we compare some of the estimates on (semi)smooth numbers from
the previous chapter with data obtained by executing algorithms for factoring large
numbers in order to see how useful the asymptotic estimates are for practical purposes
and how large the influence of the second order term is. To do so, we need to compute
the various approximations in an efficient way. The key is to have an efficient way of
computing the values of the Dickman ρ function. Recall that the Dickman ρ function
is the unique continuous solution of the differential-difference equation

{

ρ(x) = 1 0 ≤ x ≤ 1
ρ′(x) = −ρ(x − 1)/x x > 1.

The ρ function is piecewise analytic, and cannot be computed directly. It can be
written as a Taylor series on each interval (k−1, k], with k a positive integer. Patterson
and Rumsey introduced the following method for calculating the values on (k − 1, k].

Let 0 ≤ ξ ≤ 1 and define coefficients c
(k)
i by

ρk(k − ξ) =

∞
∑

i=0

c
(k)
i ξi.

Then put

c
(1)
0 = 1, c

(1)
i = 0 for i ≥ 1

and for k > 1

c
(k)
0 =

1

k − 1

∞
∑

j=1

c
(k)
j

j + 1
, c

(k)
i =

1

i

i−1
∑

j=0

c
(k−1)
j

ki−j
for i ≥ 1.

In particular

c
(2)
0 = 1 − log 2, c

(2)
i = 1/(i2i) for i ≥ 1.
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Bach and Peralta [4] used this approach to give an efficient method for comput-
ing approximating functions for smooth and 1-semismooth numbers as given in the
previous chapter. They found that 55 coefficients are enough to compute ρ(x) in the
range 0 ≤ x ≤ 20 with a relative error of about 10−17.

Lambert [25] extended the work of Bach and Peralta to 2-semismooth numbers
and made a Maple [31] routine to compute the density of smooth and semismooth
numbers. However, there is an error in his derivation. In §4.4 of [25] the expression
for G2(α, β) (page 97) is given as

G2(α, β) = 2

∫ α+β

2α

∫ µ1−2α

−(µ1−2α)

ρ

(

1 − µ1

α

)

1

(µ1 − µ2)(µ2 + µ1)
dµ2dµ1

+2

∫ 2β

α+β

∫ 2β−µ1

−(2β−µ1)

ρ

(

1 − µ1

α

)

1

(µ1 − µ2)(µ2 + µ1)
dµ2dµ1.

The factor 2 in front of the two integrals should be removed. This also carries over
to the subsequent derivation in §4.4 of [25].

By the theory developed in the previous chapter it is possible to calculate the
second order term of the densities of 1- and 2-semismooth numbers and to calculate
the density of 2-semismooth numbers with distinct upper bounds on the large primes.
In Section 3.2, we show in case of Corollary 5 on 2-semismooth numbers with distinct
upper bounds how to derive a numerical approximation for x−1Ψ2(x, xβ1 , xβ2 , xα)
that is efficiently computable. The same ideas apply to the other theorems with a
second order term.

In Section 3.3 we compare densities (computed with our program using Maple)
with data from numbers factored with the multiple polynomial quadratic sieve. This
will show how useful the approximations are for estimating the number of relations
and how large the influence of the second order term is. Further, we give numerical
evidence that using different upper bounds on the large primes can be beneficial over
equal bounds. In Section 3.4 we compare our results with data obtained using the
number field sieve.

3.2 Computing the approximating Ψ-function of

Corollary 5

In this section we show how to derive a numerical approximation for Corollary 5 of
the previous chapter. We have implemented this in Maple. Corollary 5 states for
2-semismooth numbers that if 0 < α < β2 < β1, α + β2 + β1 ≤ 1, and xα ≥ 2, then
for x → ∞ we have

Ψ2(x, xβ1 , xβ2 , xα) = x

∫ β2

α

∫ β1

λ2

ρ

(

1 − λ1 − λ2

α

)

dλ1

λ1

dλ2

λ2

+(1 − γ)
x

log x

∫ β2

α

∫ β1

λ2

ρ

(

1 − λ1 − λ2 − α

α

)

1

1 − λ1 − λ2

dλ1

λ1

dλ2

λ2
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+O

(

log(β1/α) log(β2/α)

α3(1 − β1 − β2)2
x

log2 x

)

.

We start with the main term in Subsection 3.2.1, and treat the second order term in
Subsection 3.2.2. We (have to) disregard the error term, the size of which is expected
to be, roughly spoken, 1

log x times the size of the previous term.

3.2.1 Main term of Ψ2(x, xβ1 , xβ2 , xα)

The main term of Ψ2(x, xβ1 , xβ2 , xα) is Mx, where

M :=

∫ β2

α

∫ β1

λ2

ρ

(

1 − λ1 − λ2

α

)

dλ1

λ1

dλ2

λ2
.

We simplify M by rotating the area over 45◦ by the following substitution:

{

µ1 = λ1 + λ2

µ2 = λ2 − λ1.

We distinguish the cases: 2β2 ≤ α + β1 and 2β2 > α + β1. See Figures 3.1–3.3.

λ2

β2

α

α β1 λ1

Figure 3.1: Region of integration before substitution



32 From Theory to Practice

µ2

µ1

2α 2β2α + β1 β2 + β1

1

2
3β2 − β1

α − β1

Figure 3.2: Region of integration after substitution if 2β2 ≤ α + β1

µ2

1 2 3

2α α + β1 2β2 β2 + β1

µ1

β2 − β1

α − β1

Figure 3.3: Region of integration after substitution if 2β2 > α + β1

In the former case, where we have 2β2 ≤ α + β1, the substitution leads to

M = M1 = 2

∫ 2β2

2α

∫ 0

2α−µ1

ρ

(

1 − µ1

α

)

1

µ2
1 − µ2

2

dµ2dµ1

+2

∫ α+β1

2β2

∫ 2β2−µ1

2α−µ1

ρ

(

1 − µ1

α

)

1

µ2
1 − µ2

2

dµ2dµ1

+2

∫ β2+β1

α+β1

∫ 2β2−µ1

µ1−2β1

ρ

(

1 − µ1

α

)

1

µ2
1 − µ2

2

dµ2dµ1

=: M1,1 + M1,2 + M1,3 ,



Computing the approximating Ψ-function of Corollary 5 33

(cf. Figure 3.2). In the latter case (2β2 > α + β1) only the boundaries of the areas,
numbered 1, 2, and 3, change. We have

M = M2 = 2

∫ α+β1

2α

∫ 0

2α−µ1

ρ

(

1 − µ1

α

)

1

µ2
1 − µ2

2

dµ2dµ1

+2

∫ 2β2

α+β1

∫ 0

µ1−2β1

ρ

(

1 − µ1

α

)

1

µ2
1 − µ2

2

dµ2dµ1

+2

∫ β2+β1

2β2

∫ 2β2−µ1

µ1−2β1

ρ

(

1 − µ1

α

)

1

µ2
1 − µ2

2

dµ2dµ1

=: M2,1 + M2,2 + M2,3 ,

(cf. Figure 3.3).
We proceed in the same way as Lambert by splitting the interval of µ1 into smaller

intervals, so that we can use the approximating Taylor series of the Dickman ρ func-
tion. Let k = ⌈(1 − µ1)/α⌉ and define ξ(µ1) = k − (1 − µ1)/α as the deviation. For
the complete µ1-interval of, e.g., M1,1 (µ1 ∈ [2α, 2β2]) we sum over all values of k
with ⌈(1− 2α)/α⌉ ≤ k ≤ ⌈(1− 2β2)/α⌉. After deriving an approximation that can be
computed with, e.g., Maple, we estimate the error made when truncating the infinite
sum in this derivation. For an interval [η, θ] of µ1 for which k is constant, the first
term (M1,1) of M1 becomes the sum of integrals

2

∫ θ

η

∫ 0

2α−µ1

ρ(k − ξ(µ1))
1

µ2
1 − µ2

2

dµ2dµ1

= 2
∞
∑

i=0

c
(k)
i

∫ θ

η

∫ 0

2α−µ1

ξ(µ1)
i 1

µ2
1 − µ2

2

dµ2dµ1

= 2

∞
∑

i=0

c
(k)
i

∫ θ

η

∫ 0

2α−µ1

(

k − 1 − µ1

α

)i
1

µ2
1 − µ2

2

dµ2dµ1

= 2

∞
∑

i=0

c
(k)
i

αi

∫ θ

η

((kα − 1) + µ1)
i log(µ1 − α) − log(α)

2µ1
dµ1

=
∞
∑

i=0

c
(k)
i

αi

∫ θ

η

i
∑

j=0

(

i

j

)

(kα − 1)i−jµj−1
1 (log(µ1 − α) − log(α)) dµ1.

Using dilog(x) =
∫ x

t=1
log(t)
1−t dt, we obtain

∞
∑

i=0

c
(k)
i

αi

(

(kα − 1)i
[

dilog
(µ1

α

)

+ log(µ1 − α) log
(µ1

α

)

− log(α) log(µ1)
]µ1=θ

µ1=η

+

i
∑

j=1

(

i

j

)

(kα − 1)i−j

∫ θ

η

µj−1
1

(

log(µ1 − α) − log(α)
)

dµ1

)

.
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In the remaining integral we substitute ν1 = µ1 − α and this gives

∫ θ

η

µj−1
1 (log(µ1 − α) − log(α)) dµ1 =

∫ θ−α

η−α

(ν1 + α)j−1
(

log(ν1) − log(α)
)

dν1

=

j−1
∑

l=0

(

j − 1

l

)

αj−1−l

∫ θ−α

η−α

νl
1

(

log(ν1) − log(α)
)

dν1 (3.1)

=

j−1
∑

l=0

(

j − 1

l

)

αj−(l+1)

[

νl+1
1

(

(l + 1) log(ν1) − (l + 1) log(α) − 1
)

(l + 1)2

]ν1=θ−α

ν1=η−α

=

j
∑

l=1

(

j − 1

l − 1

)

αj−l

[

νl
1

(

l log(ν1) − l log(α) − 1
)

l2

]ν1=θ−α

ν1=η−α

.

Combining all terms gives

∞
∑

i=0

c
(k)
i

αi

(

(kα − 1)i
[

dilog
(x

α

)

+ log(x − α) log
(x

α

)

− log(α) log(x)
]x=θ

x=η

+

i
∑

j=1

(

i

j

)

(kα − 1)i−j

j
∑

l=1

(

j − 1

l − 1

)

αj−l

[

xl
(

l log(x) − l log(α) − 1
)

l2

]x=θ−α

x=η−α

)

.

The second part of M1 is treated in the same way. The only difference concerns
the boundary points of the interval of µ2. To simplify the presentation, we define

F (γ) :=

∞
∑

i=0

c
(k)
i

αi

(

(kα − 1)i

[

dilog
(x

γ

)

+ log(x − γ) log
(x

γ

)

− log(γ) log(x)

]x=θ

x=η

+

i
∑

j=1

(

i

j

)

(kα − 1)i−j

j
∑

l=1

(

j − 1

l − 1

)

γj−l

[

xl
(

l log(x) − l log(γ) − 1
)

l2

]x=θ−γ

x=η−γ

)

.

We have for a part of M1,2 with k constant

2

∫ θ

η

∫ 2β2−µ1

2α−µ1

ρ(k − ξ(µ1))
1

µ2
1 − µ2

2

dµ2dµ1

=

∞
∑

i=0

c
(k)
i

αi

∫ θ

η

((kα − 1) + µ1)
i log(µ1 − α) − log(α) − log(µ1 − β2) + log(β2)

µ1
dµ1

=
∞
∑

i=0

c
(k)
i

αi

(

(kα − 1)i

[

dilog
(µ1

α

)

+ log(µ1 − α) log
(µ1

α

)

− log(α) log(µ1)
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−
(

dilog
(µ1

β2

)

+ log(µ1 − β2) log
(µ1

β2

)

− log(β2) log(µ1)

)]µ1=θ

µ1=η

+

i
∑

j=1

(

i

j

)

(kα − 1)i−j

∫ θ

η

µj−1
1

(

log

(

µ1 − α

α
) − log(

µ1 − β2

β2

))

dµ1

)

.

The remaining integral is split into two parts and we substitute ν1 = µ1 − α and
ν2 = µ1 − β2, respectively, which leads to

∫ θ

η

µj−1
1

(

log

(

µ1 − α

α
) − log(

µ1 − β2

β2

))

dµ1

=

∫ θ−α

η−α

(ν1 + α)j−1 log

(

ν1

α

)

dν1 −
∫ θ−β2

η−β2

(ν2 + β2)
j−1 log

(

ν2

β2

)

dν2

=

j
∑

l=1

(

j − 1

l − 1

)



αj−l

[

νl
1

(

l log(ν1) − l log(α) − 1
)

l2

]ν1=θ−α

ν1=η−α

−βj−l
2

[

νl
2

(

l log(ν2) − l log(β2) − 1
)

l2

]ν2=θ−β2

ν2=η−β2



 .

Combining the terms gives F (α) − F (β2). Without further explanation we rewrite a
part of M1,3 with k constant as

2

∫ θ

η

∫ 2β2−µ1

µ1−2β1

ρ

(

1 − µ1

α

)

1

µ2
1 − µ2

2

dµ2dµ1 = −F (β2) − F (β1).

For M2 we only consider a part with constant k of M2,2, as the cases M2,1 and M2,3

are similar to M1,1 and M1,3, respectively. Of course the interval for µ1 is different,
but this does not influence our treatment, as we divide the µ1 interval into smaller
pieces. Proceeding as above we find in case M2,2 the value −F (β1). This concludes
the treatment of the main term.

We estimate the error made by truncating the sum after the nth term. We show
what happens by taking a closer look at the following expression for a typical term
of M1,1

2

∞
∑

i=0

c
(k)
i

∫ θ

η

∫ 0

2α−µ1

ξ(µ1)
i 1

µ2
1 − µ2

2

dµ2dµ1. (3.2)

By using c
(k)
i ≤ (1/2)i for k ≥ 2 [4], and ξ ≤ 1, we get for the tail of (3.2)
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∣

∣

∣

∣

∣

2

∞
∑

i=n+1

c
(k)
i

∫ θ

η

∫ 0

2α−µ1

ξ(µ1)
i 1

µ2
1 − µ2

2

dµ2dµ1

∣

∣

∣

∣

∣

≤ 2

∞
∑

i=n+1

(1/2)i

∫ θ

η

∫ 0

2α−µ1

1

µ2
1 − µ2

2

dµ2dµ1

=
1

2n−1

∫ θ

η

log(µ1 − α) − log(α)

µ1
dµ1

=
1

2n−1

[

dilog
(x

α

)

+ log(x − α) log
(x

α

)

− log(α) log(x)
]x=θ

x=η
. (3.3)

As there are at most
(⌈

1 − 2α

α

⌉

−
⌈

1 − 2β2

α

⌉

+ 1

)

+

(⌈

1 − 2β2

α

⌉

−
⌈

1 − α − β1

α

⌉

+ 1

)

+

(⌈

1 − α − β1

α

⌉

−
⌈

1 − β2 − β1

α

⌉

+ 1

)

=

⌈

1

α

⌉

−
⌈

1 − β2 − β1

α

⌉

+ 1

≤ β2

α
+

β1

α
+ 2

subintervals, the total error is bounded by (β2/α + β1/α + 4) times (3.3) for the first
part. The same method applies to the other parts. In this way we find an expression
for M as a finite sum of n terms with an error term for which we have a lower and
upper bound.

3.2.2 Second order term of Ψ2(x, xβ1 , xβ2 , xα)

We use the same idea for computing the second order term (1 − γ) x
log xS as for com-

puting the main term, where we define

S :=

∫ β2

α

∫ β1

λ2

ρ

(

1 − λ1 − λ2 − α

α

)

1

1 − λ1 − λ2

dλ1

λ1

dλ2

λ2
.

We rotate the integration domain and substitute µ1 = λ1 + λ2 and µ2 = λ2 − λ1. If
2β2 ≤ α + β1, we get

S = S1 = 2

∫ 2β2

2α

∫ 0

2α−µ1

ρ

(

1 − µ1 − α

α

)

1

(µ2
1 − µ2

2)(1 − µ1)
dµ2dµ1

+2

∫ α+β1

2β2

∫ 2β2−µ1

2α−µ1

ρ

(

1 − µ1 − α

α

)

1

(µ2
1 − µ2

2)(1 − µ1)
dµ2dµ1

+2

∫ β2+β1

α+β1

∫ 2β2−µ1

µ1−2β1

ρ

(

1 − µ1 − α

α

)

1

(µ2
1 − µ2

2)(1 − µ1)
dµ2dµ1

=: S1,1 + S1,2 + S1,3.
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If we have 2β2 > α + β1, only the boundaries of the three different areas change and
this leads to

S = S2 = 2

∫ α+β1

2α

∫ 0

2α−µ1

ρ

(

1 − µ1 − α

α

)

1

(µ2
1 − µ2

2)(1 − µ1)
dµ2dµ1

+2

∫ 2β2

α+β1

∫ 0

µ1−2β1

ρ

(

1 − µ1 − α

α

)

1

(µ2
1 − µ2

2)(1 − µ1)
dµ2dµ1

+2

∫ β2+β1

2β2

∫ 2β2−µ1

µ1−2β1

ρ

(

1 − µ1 − α

α

)

1

(µ2
1 − µ2

2)(1 − µ1)
dµ2dµ1

=: S2,1 + S2,2 + S2,3.

We show for S1,1 how to proceed. For the other parts we only give the result. Put
l = ⌈ 1−µ1−α

α ⌉ and define the deviation as ξ(µ1) = l − 1−µ1−α
α . For an interval [η, θ]

of µ1 such that l is constant, we get

2

∫ θ

η

∫ 0

2α−µ1

ρ
(

l − ξ(µ1)
) 1

(µ2
1 − µ2

2)(1 − µ1)
dµ2dµ1

= 2

∞
∑

i=0

c
(l)
i

∫ θ

η

∫ 0

2α−µ1

ξ(µ1)
i 1

(µ2
1 − µ2

2)(1 − µ1)
dµ2dµ1

= 2

∞
∑

i=0

c
(l)
i

∫ θ

η

∫ 0

2α−µ1

(

l − 1 − µ1 − α

α

)i
1

(µ2
1 − µ2

2)(1 − µ1)
dµ2dµ1

= 2
∞
∑

i=0

c
(l)
i

αi

∫ θ

η

(

(αl − 1 + α) + µ1

)i 1

1 − µ1

log(µ1 − α) − log(α)

2µ1
dµ1

=

∞
∑

i=0

c
(l)
i

αi

∫ θ

η

i
∑

j=0

(

i

j

)

(αl − 1 + α)i−jµj−1
1

(

log(µ1 − α) − log(α)

1 − µ1

)

dµ1.

Now treat j = 0 separately to obtain

∞
∑

i=0

c
(l)
i

αi

(

(αl − 1 + α)i

[

dilog
(µ1

α

)

+ log(µ1 − α) log
(µ1

α

)

− log(α) log(µ1)

−
(

dilog
(µ1 − 1

α − 1

)

+ log(µ1 − α) log
(µ1 − 1

α − 1

)

− log(α) log(µ1 − 1)

)]µ1=θ

µ1=η

+

i
∑

j=1

(

i

j

)

(αl − 1 + α)i−j

∫ θ

η

µj−1
1

(

log(µ1 − α) − log(α)

1 − µ1

)

dµ1

)

.

In the remaining integral we substitute ν1 = µ1 − 1 and this gives
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∫ θ

η

µj−1
1

(

log(µ1 − α) − log(α)

1 − µ1

)

dµ1

= −
∫ θ−1

η−1

(ν1 + 1)j−1

(

log(ν1 + 1 − α) − log(α)

ν1

)

dν1

= −
j−1
∑

m=0

(

j − 1

m

)∫ θ−1

η−1

νm−1
1

(

log(ν1 + 1 − α) − log(α)
)

dν1.

As before, we split the summation and this leads to

−
([

dilog
( x

α − 1

)

+ log(x + 1 − α) log
( x

α − 1

)

− log(α) log(x)

]x=θ−1

x=η−1

+

j−1
∑

m=1

(

j − 1

m

)∫ θ−1

η−1

νm−1
1

(

log(ν1 + 1 − α) − log(α)
)

dν1

)

. (3.4)

In the integral of (3.4) we substitute ν2 = ν1 + 1 − α and this gives

∫ θ−α

η−α

(ν2 − 1 + α)m−1
(

log(ν2) − log(α)
)

dν2

=

m−1
∑

n=0

(

m − 1

n

)

(α − 1)m−1−n

∫ θ−α

η−α

νn
2

(
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)

dν2.

We already saw this last integral in formula (3.1). Using the expression computed
there we get that (3.4) equals

−
(

[

dilog
( x
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( x
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)
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)
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.

Combining the terms for the first part of S1 gives

∞
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j

)

(αl − 1 + α)i−j×
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([
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The other parts can be expressed with similar formulas, so we first define

G(γ) :=
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For a typical part of S1,2 we obtain similarly G(α)−G(β2) and a typical part of S1,3

is −G(β2) − G(β1).
For the second part of S2 a typical term is −G(β1). The first and third parts of

S2 are similar to those of S1.
Now we consider the tail of these expressions. As we did with the main term, we

use c
(l)
i ≤ (1/2)i for l ≥ 2 [4], and ξ ≤ 1. For S1,1, this leads to (where n in the

summation is an integer):
∣
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.

The total error is bounded by (β2/α + β1/α + 2) times the expression above for
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the first part of S1, and the same method applies for the other parts. Therefore
it suffices to take a finite sum of n terms for computing the second order term of
Ψ2(x, xβ1 , xβ2 , xα) in the required precision. In practice, we took n = 22, as Lambert
did in his computations. (Notice that all terms in the sums in S1 and S2 are positive.)
We verified the accuracy by varying n around n = 22, and found that at least 13
decimal digits are correct. In the next sections we compare results of computations
based on the formulas for the main term and second order term of Ψ2(x, xβ1 , xβ2 , xα)
given above with actual data from factoring algorithms.

3.3 Experimenting with MPQS

We show in Subsection 3.3.1 how well the computation of the theoretical densities
in Chapter 2 agrees with actual data sets. The data sets consist of the smooth, 1-
semismooth, and 2-semismooth relations that were generated while factoring numbers
with MPQS. We know how many points were sieved in total, so we can compute the
(practical) densities of the different types of relations. We explicate the influence of
the second order term in our computations (and neglect the O-term in the theorems).
Although during the sieving many (semi)smooth numbers are collected, we do not
expect that all (semi)smooth numbers are found. This is due to a practical aspect of
sieving: if a polynomial value takes too much time to factor, it is put aside. This aspect
is programmed as an early abort strategy. Another aspect is that a factorization
attempt of a polynomial value after sieving might fail. So in advance, we expect a
small discrepancy between theory and practice. Subsection 3.3.2 concerns the question
how the choice between equal or different upper bounds for 2-semismooth numbers
influences the number of polynomials needed for factoring the number. Subsection
3.3.3 concentrates on finding bounds which are optimal according to the theory and
shows how efficient these bounds are in practice. We start with explaining how we
apply the theoretical results.

As usual we have a number N to be factored, a factorbase bound F , and a large
prime bound L. In case of different upper bounds for the two large primes we call
the large prime bounds L1 and L2 with L1 > L2. We sieve the polynomial values on
the interval [−ls, ls], where ls is chosen appropriately. We let x in Ψ2(x, xβ1 , xβ2 , xα)
be the maximum polynomial value on the sieving interval. In our implementation we
have x ≈ ls

√

N/8, but we adjust the value of x for two reasons. The first reason
concerns the smoothness of the polynomial values. The second concerns the non-
linearity of the polynomial.

First, we have to take into account that we are dealing with polynomial values and
they do not behave like random numbers of that size. Boender ([6], Ch. 4.4) reports a
way to compare polynomial values (denoted by W (t)) with random values in the same
interval, which we describe here briefly. It is a slightly altered version of finding the
best multiplier for a given number N , as described in, e.g., [45]; the multiplier is chosen
such that we get many small primes in the factorbase. The method for finding the
multiplier has only small primes as input and computes the expected contribution of
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these primes given N and the multiplier. The multiplier with the highest contribution
gets selected. For computing the contribution of all primes in the factorbase, as these
are the only primes ≤ F that possibly divide W (t), we define np as the number of
roots in the interval [0, p − 1] of the congruence relation W (t) ≡ 0 (mod p), hence
np = (N

p ) + 1 (where (N
p ) denotes the Legendre symbol and for p = 2 the Kronecker

symbol). Using Hensel lifting, we have that any root modulo p corresponds for any
j > 1 to a unique root mod pj . Thus the expected factor contribution of p to W (t) is

p
np( 1

p + 1
p2 +··· )

= pnp/(p−1).

If p divides N (e.g., in case of a multiplier, which is squarefree), the expected con-
tribution is pnp/p. The logarithm of the total contribution of all the primes in the
factorbase is therefore

∑

p≤F,p∤N

np
log p

p − 1
+

∑

p≤F,p|N

log p

p
. (3.5)

For random values all primes ≤ F are possible divisors, and the corresponding ex-
pected contribution is

∑

p≤F

log p

p − 1
. (3.6)

Now we take the difference of the values, ((3.6)−(3.5)), and add this to log x (x is
the maximum polynomial value on the sieving interval), as this indicates how much
smoother the polynomial values are expected to be than random numbers of the same
size.

The second reason concerns the definition of the Ψ-function. In the used formulas
all values below x are taken into account. However, in MPQS we are dealing with
points on parabolae, and this influences the value distribution. To measure this
difference, we compute the average absolute value in case of a straight line and in
case of a parabola. In case of a straight line with values between −x and x we
have an average of x/2. In case of a parabola we consider, without loss of generality,
f(t) = t2−x with t such that −x ≤ f(t) ≤ x. The average absolute value is computed
as

1√
2x

(

∫

√
x

0

(x − t2)dt +

∫

√
2x

√
x

(t2 − x)dt

)

=

(

2
√

2

3
− 1

3

)

x ≈ 0.6095x.

We conclude that on average the values on the parabola are 0.6095/0.5 ≈ 1.219 times
higher than on a straight line, and therefore we multiply x by 1.219. We call this a
shape factor1.

1The author became aware of a different approach for computing the number of (semi)smooth
numbers in the final stage of writing the thesis, and this approach may give better results. The
approach is based on an article of Lenstra et al. about factoring estimates for a 1024-bit RSA
modulus [29]. Instead of computing one value x for the Ψ(x, . . .) functions, the authors compute each
polynomial value in the sieving area and the corresponding probability of (semi)smooth numbers. By
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Now we have described how we compute x and how we correct this for the extra
smoothness of the polynomial values and for the shape of the polynomial. For com-
puting the Ψ-function we require xα = F and xβ = L (c.q. xβi = Li with i = 1, 2).

The procedure for computing the expected number of semismooth numbers is as
follows. Start with computing x = ls

√

N/8 and make the corrections for the primes
in the factorbase and for the parabola shape. Continue with computing α and β, give
these two values to our routine and evaluate the functions that give the densities of
the (semi)smooth numbers. As we extended the Maple routine of Lambert, we also
took his truncation bound n = 22 for the coefficients of rho. Experiments showed
that at least 13 decimal digits are correct. For our purpose a precision of 6 digits is
already enough, so it sufficed to use Lambert’s bound.

Then compute 2× ls ×#polynomials× density, which gives the expected number
of (semi)smooth numbers. In the following experiments we will compare the resulting
numbers with data from actual factorizations.

We start with giving the numbers that we used in our experiments, using the non-
self-initializing version of Lenstra’s implementation of MPQS [26] with chosen large
prime bounds (overriding the packet’s default large prime bounds (log L1 = 1.27 log F ,
log L2 = 1.2 log F )). We use the notation Cm to indicate a number of m digits. These
numbers were generated by multiplying two primes of similar size. The numbers are:

• C80 := 4881523563 0968110358 9063350138 9141834760 5935453592
3573284277 7038109629 5522780973

• C91 := 1 4881443665 0321957176 2817556394 6548385260 9697242680
1378754699 2449766416 0616146110 8667749029

• C100:= 1013546883 2208255031 4768103994 6110653785 5269234453
5131324778 8905670232 8167582285 8488530234 3104491709

• C101 := 2 6342138102 4271344718 4607872438 8147563222 2644053886
6902044316 4108573101 5916851545 0000771213 1588359889

• C110 := 9252074289 8999430411 7493853880 4907942837 9538933763
7337245967 3109451808 2280847006 8920293730 1512851713 0726457659

3.3.1 Equal upper bounds

In Table 3.1 we give the different choices of the multiplier k, the number of elements
of the factorbase, the factorbase bound F , the large primes bound L, and the length

integrating these probabilities over the sieving interval they get an approximation of the number of
(semi)smooth numbers, which is about 10% above the actual number of (semi)smooth numbers for
the case they consider (Table 4 of [29]). In Section 3.4, where we compare the theoretical densities
with the practical densities of the smooth and semismooth polynomial values in the number field
sieve, we have included some experiments based on [29], namely, by a splitting of the sieving region in
eight subregions and by using different approximations for the densities in each of these subregions.
The results show an improvement over our initial approach (which uses one single approximation of
the density for the whole sieving region).
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of the sieve interval ls, in the case of equal bounds for the large primes. Below, cor-
rection presents the value of (3.6)−(3.5), which will be added to log x.

Table 3.1: Parameters used in MPQS

N k fbsize F L ls correction
C80 1 10 970 249 797 24 979 712 374 784 −0.2676
C91 1 12 956 300 007 30 000 690 450 048 −0.2529
C100 5 15 000 351 343 35 134 320 526 848 −0.8301
C101 1 20 000 482 231 48 223 067 723 456 −0.0425
C110 11 30 000 747 853 74 785 318 1 121 792 −1.2703

We started factoring these numbers with MPQS and after 100096 polynomials
we counted the number of partial relations (the corresponding polynomial values are
1-semismooth numbers) and partial-partial relations (the corresponding polynomial
values are 2-semismooth numbers), and compared this with what Corollary 4 and
Corollary 5 (adapted to equal upper bounds on the two large primes) of the previous
chapter would imply, respectively. To see the influence of the second order term, we
computed the expected number of relations according to the main term of Corollaries
4 and 5 (indicated with M in the tables below) and according to the main and second
order term of these corollaries (indicated with M + S in Tables 3.2 and 3.3). In
parentheses we give the deviation in percents relative to the experiments.

Table 3.2: Number of partial relations after 100096 polynomials

N experiment Cor. 4 (M) Cor. 4 (M + S)
C80 14 884 13 487 (−9.39%) 14 969 (0.57%)
C91 929 952 (2.48%) 1060 (14.10%)
C100 103 95 (−7.77%) 106 (2.91%)
C101 132 172 (30.30%) 191 (44.70%)
C110 43 40 (−6.98%) 44 (2.33%)

Table 3.3: Number of partial-partial relations after 100096 polynomials

N experiment Cor. 5 (M) Cor. 5 (M + S)
C80 93 556 87 189 (−6.81%) 96 053 (2.67%)
C91 6756 7311 (8.21%) 8086 (19.69%)
C100 854 824 (−3.51%) 914 (7.03%)
C101 1391 1421 (2.16%) 1572 (13.01%)
C110 356 348 (−2.25%) 385 (8.15%)
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Not every polynomial gives the same amount of relations, so we also executed the
computation for many more polynomials. This decreases the big deviations observed
when dealing with only few relations. In Table 3.4 and 3.5 we give similar information
as in Table 3.2 and 3.3, but now after complete factorization.

Table 3.4: Number of partial relations

N # pol. experiment Cor. 4 (M) Cor. 4 (M + S)
C80 207 528 30 936 27 963 (−9.61%) 31 037 (0.32%)
C91 3 613 361 33 335 34 366 (3.09%) 38 257 (14.77%)
C100 33 003 742 35 914 31 171 (−13.21%) 34 770 (−3.19%)
C101 29 482 219 48 283 50 686 (4.98%) 56 377 (16.76%)
C110 161 545 944 71 504 64 719(−9.91%) 71 905 (0.14%)

Table 3.5: Number of partial-partial relations

N # pol. experiment Cor. 5 (M) Cor. 5 (M + S)
C80 207 528 193 898 180 769 (−6.77%) 199 146 (2.71%)
C91 3 613 361 247 315 263 906 (6.71%) 291 899 (18.03%)
C100 33 003 742 302 400 271 543 (−10.20%) 301 164 (−0.41%)
C101 29 482 219 397 119 418 551 (5.40%) 462 917 (16.57%)
C110 161 545 944 600 478 561 923 (−6.42%) 621 129 (3.44%)

We see that the deviation stays roughly the same after completion of the sieving.
From these first experiments we conclude that the second order term for both 1-
semismooth and 2-semismooth numbers adds about 10% to the first order term.

We also notice that the experiments of C80, C100, and C110 agree with the
theoretical values, however the deviations of the experiments of C91 and C101 are
much larger.

In order to find out possible causes of the sometimes large deviations, we posed
the following questions:

1. How are the polynomials chosen, especially how are the coefficients computed?

2. How does the yield of the polynomials vary as a function of the sieving time?

3. Is there some influence of the rounding off of the sieving bound?

4. Is the size of the factorbase bound important?

5. How does the choice of the multiplier and hence the primes in the factorbase
influence the yield?

Below we describe our findings.
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1. Choosing the polynomials

We looked into the details of the polynomial generating code of [26]. The polyno-
mial generation is similar to the polynomial generation as explained in an article of
Silverman [45]. Here, a polynomial is defined as Q(x) = D2x2 + Bx + C with D a
probable prime and B2 − 4D2C = kN , where k is the multiplier. We have no reason
to believe that this way of generating polynomials leads to numbers of (semi)smooth
values which on average deviate significantly from what one may expect.

2. Yield of the polynomials

As a follow-up of question 1, we looked at the yield of polynomials over time. We took
the output of the factorizations of the C91 and the C100, grouped 102400 polynomials
together and compared the yield of these groups in terms of full (f), partial (p), and
partial-partial (pp) relations. In Table 3.6 we give some of the counts.

Table 3.6: Yield (C91 || C100 )

around # pol. f p pp around # pol. f p pp
1M 45 977 7077 10M 6 118 917
1M 46 940 7129 10M 8 107 947
1M 36 987 6982 10M 8 91 968
2M 46 962 7020 20M 5 89 928
2M 45 934 6948 20M 2 122 976
2M 43 981 6922 20M 2 123 892
3M 36 934 7003 30M 4 120 936
3M 47 941 6963 30M 6 134 939
3M 45 895 7045 30M 5 101 940

Note that the values of f, p and pp are of similar size. Thus to answer the second
question: there is no evidence that the average yield changes significantly during the
sieving.

3. Rounding off the sieving bound

The sieving is carried out in a process that crudely approximates the following ideal-
ized description. A floating point array a[x], x ∈ [−ls, ls], is initialized to zero. Then
for each x ∈ [−ls, ls], log(p) is added to those a[x] for which p divides Q(x), for each
prime p in the factorbase. Next, those Q(x)-values are accepted as (semi)smooth for
which the corresponding a[x]-values exceed the so-called sieving bound. The sieving
bound is computed by dividing the maximum value of the polynomial over the sieve
interval by L2. For technical reasons the sieving bound is rounded to the nearest
integer (see number between brackets). The implementation does not use the natural
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logarithm. The base b used for the logarithm is m1/100, where m is the maximal value
of the polynomial over the sieve interval. This implies that logb m = 100 so that base
b logarithms of all polynomial values comfortably fit in 7 bits. For the five numbers
mentioned above, the sieving bounds are given in Table 3.7.

Table 3.7: Sieving bound

N sieving bound
C80 65.295 (65)
C91 68.789 (69)
C100 71.371 (71)
C101 71.083 (71)
C110 73.094 (73)

The direction of the rounding does not seem to influence the deviations (notice
that the expected values for both the C91 and the C101 were too high while the
sieving bound for the C91 was rounded upwards and the sieving bound for the C101
downwards), but the rounding may influence the number of partial-partial relations
slightly.

4. Size of the factorbase bound

We now focus on the influence of the size of the factorbase by factoring two composites
of both 72 digits with different factorbase bounds.

• C721 := 23 8168522427 1132547762 3521738828 0784560731 4194384069
3344859052 0589460081

• C722 := 12 3456789012 3456789012 3456789012 3456789012 3456789012
3456798012 3456879823

We first give the parameters we used in these experiments and the parameters for
experiments with a different multiplier (Table 3.8), and continue with the results of
experiments with different factorbase sizes (Tables 3.9 and 3.10). The number in the
first column identifies the experiment. In all cases we completed the factorization and
give the numbers we had at the end of the factorization.
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Table 3.8: Parameters used in MPQS

# N k fbsize F L ls correction
1 C721 1 5 000 102 763 10 276 294 154 112 −1.1568
2 C721 1 10 000 222 437 22 243 694 333 824 −1.1579
3 C721 1 15 000 348 421 34 842 075 522 752 −1.1552
4 C722 7 5 000 105 361 10 536 104 158 208 −0.9975
5 C722 7 10 000 223 441 22 344 100 335 360 −1.0081
6 C722 7 15 000 348 433 34 843 284 522 752 −1.0105
7 C721 5 5 000 103 093 10 309 305 154 624 1.3074
8 C721 13 5 000 103 573 10 357 307 155 136 0.6836

Table 3.9: Number of partial relations at the end

# # pol. experiment Cor. 4 (M) Cor. 4 (M + S)
1 58 403 14 109 10 874 (−22.93%) 12 134 (−14.00%)
2 17 401 30 801 24 967 (−18.94%) 27 607 (−10.37%)
3 9 189 48 301 39 559 (−18.10%) 43 534 (−9.87%)
4 93 740 13 617 15 025 (10.34%) 16 768 (23.14%)
5 26 451 29 734 31 461 (5.81%) 34 800 (17.04%)
6 13 614 47 367 48 568 (2.54%) 53 469 (12.88%)

Table 3.10: Number of partial-partial relations at the end

# # pol. experiment Cor. 5 (M) Cor. 5 (M + S)
1 58 403 85 454 71 559 (−16.26%) 79 167 (−7.36%)
2 17 401 156 339 133 558 (−14.57%) 146 406 (−6.35%)
3 9 189 218 140 189 042 (−13.34%) 206 241 (−5.45%)
4 93 740 90 495 99 976 (10.48%) 110 630 (22.25%)
5 26 451 164 351 171 121 (4.12%) 187 670 (14.19%)
6 13 614 230 417 236 223 (2.52%) 257 841 (11.90%)

We see that the deviation becomes less when we increase the factorbase size and
this can be explained by the fact that we use an asymptotic function for x → ∞. If
the factorbase is made larger, then the sievelength increases and this increases the
polynomial values, which are substituted in the Ψ-function. Another consequence of
increasing the sievelength is that we find more relations per polynomial so that we
need fewer polynomials, even though we need more relations to cover all primes in
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the larger factorbase. Moreover, we can adjust the choice of the polynomials to the
sievelength so that the (absolute) polynomial values become smaller on average and
generate more (semi)smooth numbers.

5. Multiplier / Primes in the factorbase

To observe the influence of the multiplier and subsequently the primes in the factor-
base, we repeated experiment 1, but with multipliers 5 and 13. The results are in
Tables 3.11 and 3.12.

Table 3.11: Number of partial relations at the end

# # pol. experiment Cor. 4 (M) Cor. 4 (M + S)
1 58 403 14 109 10 874 (−22.93%) 12 134 (−14.00%)
7 182 537 13 008 13 898 (6.84%) 15 535 (19.43%)
8 142 104 13 366 11 410 (−14.63%) 12 752 (−4.59%)

Table 3.12: Number of partial-partial relations at the end

# # pol. experiment Cor. 5 (M) Cor. 5 (M + S)
1 58 403 85 454 71 559 (−16.26%) 79 167 (−7.36%)
7 182 537 92 114 98 221 (6.63%) 108 892 (18.21%)
8 142 104 90 778 80 275 (−11.57%) 88 982 (−1.98%)

We know that the multiplier influences which primes are in the factorbase and
this affects the correction we apply (cf. Table 3.8, last column). However, we do not
know how to predict the influence of the primes in the factorbase.

After looking at all these different aspects of sieving, we can only give a partial
explanation for the deviation between theoretical and practical results. It is closely
related with the set of primes that are in the factorbase, and although we apply a
correction for this, our approach of using one value to represent all polynomial values
seems to be too crude.

3.3.2 Different upper bounds

Compared with the first five experiments of Subsection 3.3.1, we only change the large
prime bound L to a bound L1 for the largest prime and a bound L2 for the second
largest prime in the case of 2-semismooth numbers. For 1-semismooth numbers we
take the bound L1. The correction factor does not change, as we keep the same
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factorbase bound. The large prime bounds used in the following experiments are
given in Table 3.13.

Table 3.13: Parameters used in MPQS

N F L2 L1 ls
C80 249 797 12 489 854 49 959 435 374 784
C91 300 007 15 000 354 60 001 434 450 048
C100 351 343 17 567 141 70 268 609 526 848
C101 482 231 24 111 564 96 446 162 723 456
C110 747 853 37 392 644 149 570 695 1 121 792

We compare the theoretical results with the sieving data of the experiments after
100096 polynomials (Tables 3.14 and 3.15) and after many more polynomials (Tables
3.16 and 3.17). A ∗ indicates that the factorization was complete; we expect small
changes in the percentages deviation when the number is not completely factored.

Table 3.14: Number of partial relations after 100096 polynomials

N experiment Cor. 4 (M) Cor. 4 (M + S)
C80 18 578 16 847 (−9.32,%) 18 694 (0.62%)
C91 1148 1190 (3.66%) 1324 (15.33%)
C100 144 118 (−18.06%) 132 (−8.33%)
C101 173 215 (24.28%) 239 (38.15%)
C110 62 50 (−19.35%) 56 (−9.68%)

Table 3.15: Number of partial-partial relations after 100096 polynomials

N experiment Cor. 5 (M) Cor. 5 (M + S)
C80 123 775 116 261 (−6.07%) 128 047 (3.45%)
C91 8973 9762 (8.79%) 10 795 (20.31%)
C100 1177 1102 (−6.37%) 1222 (3.82%)
C101 1863 1899 (1.93%) 2100 (12.72%)
C110 489 465 (−4.91%) 514 (5.11%)
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Table 3.16: Number of partial relations

N # pol. experiment Cor. 4 (M) Cor. 4 (M + S)
C80∗ 202 630 37 677 34 105 (−9.48%) 37 845 (0.45%)
C91 526 592 6031 6258 (3.76%) 6965 (15.49%)
C100 512 000 697 606 (−13.06%) 676(−3.01%)
C101 9 606 400 19 530 20 634 (5.65%) 22 947 (17.50%)
C110 36 312 576 20 252 18164 (−10.31%) 20180 (−0.36%)

Table 3.17: Number of partial-partial relations

N # pol. experiment Cor. 5 (M) Cor. 5 (M + S)
C80∗ 202 630 250 264 235 353 (−5.96%) 259 213 (3.58%)
C91 526 592 47 519 51 356 (8.07%) 56 792 (19.51%)
C100 512 000 6158 5639 (−8.43%) 6254(1.56%)
C101 9 606 400 172 217 182 237 (5.82%) 201 520 (17.02%)
C110 36 312 576 179 687 168784 (−6.07%) 186548 (3.82%)

Observe that we need fewer polynomials to factor the C80 when we choose different
upper bounds, and we expect that this is also true for other numbers. Nevertheless,
we see the same behavior in deviation as in the experiments of Subsection 3.3.1. This
is related to the factorbase and the sievelength, which remained the same in these
two sets of experiments. In the next subsection we will describe more experiments
with different upper bounds.

3.3.3 Optimal bounds

We would like to compute optimal bounds for the factorbase and the large primes,
in the sense of getting higher densities (Ψ(x, . . .)/x) for the three different types
of relations. Note that a higher density does not guarantee a shorter sieving time.
Increasing the factorbase bound (F ) and the large prime bounds (L1, L2) will increase
the densities, but we will need more relations to find a dependency. Additionally, the
sieving time per relation will change. A short sieving test can provide insight into the
sieving times.

To start with an easy case, we keep F and the product L1L2 constant and only
vary L1 and L2. If L2 becomes much smaller, then factoring the cofactor (the product
of two primes, which is left after sieving) will take less time. For now, we only
concentrate on the densities we get. In order to be able to compare theoretical and
practical results, we take the second experiment of Table 3.8 (a 72-digit number) as our
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starting point. We first give several combinations of L1 and L2 and the corresponding
densities for partial and partial-partial relations.

Table 3.18: Densities

L2 L1 density p density pp
22 243 694 22 243 694 2.37631 ×10−6 1.26019 ×10−5

13 979 427 35 393 616 2.74766 ×10−6 1.55948 ×10−5

8 785 603 56 317 416 3.15301 ×10−6 1.74530 ×10−5

5 521 458 89 610 830 3.59565 ×10−6 1.82767 ×10−5

3 470 052 142 586 459 4.07918 ×10−6 1.81449 ×10−5

2 180 812 226 879 923 4.60754 ×10−6 1.71180 ×10−5

1 370 568 361 005 526 5.18506 ×10−6 1.52387 ×10−5

As expected, the density of the partial relations increases as L1 increases; the
density of the partial-partial relations first increases and then decreases again (as L2

is getting closer to F ). In Table 3.19, we compare these theoretical densities with the
number of relations in an actual data set and keep track of the time it takes to find
all relations (including full relations).

Table 3.19: Number of relations and time

L2 L1 # pol # p # pp time(sec.)
22 243 694 22 243 694 17 401 30 801 156 339 965.05
16 682 765 29 657 528 17 213 33 317 178 161 941.65
11 121 843 44 487 403 17 017 37 227 200 652 936.20
5 520 883 89 610 997 16 963 45 196 218 746 938.73
2 780 463 177 949 470 17 188 55 302 215 497 943.62

The experiment with L2 ≈ 5.52M has the highest theoretical density and this
agrees with the actual data set as this set has the highest number of pp’s and the
least number of polynomials. Although these parameters gave the highest density,
the (actual) experiment with L2 ≈ 11.12M gave a slightly lower time. This is due to
performing fewer factorizations on the pp’s. Another aspect concerning time is the
implementation aspect of how the cofactor is factored, which becomes important if
L2 is much smaller than L1 and different methods for factoring the cofactor are used.

We computed for more combinations N , F , L1, and L2 the densities and compared
it with the sieving time. This showed the same pattern as described above.

In order to make a good prediction of the time, we first should be able to determine
how many relations we need to factor the number. Combined with the theoretical
densities we can determine the number of polynomials and this will give an estimate
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of the total time, as a short sieving test will tell how long a few polynomials take.
For the moment, choosing L1 and L2 when the density pp in Table 3.18 is maximal

seems a good choice once the factorbase and L1L2 are chosen. For choosing an optimal
factorbase bound we refer to [28] and Chapter 6 of [14]. For choosing L1L2 we can
compute some densities after the factorbase bound is fixed and use the product with
the optimal density.

3.4 Experimenting with NFS

We now compare the theoretical densities with the practical densities of the semi-
smooth numbers in the case of the number field sieve. This is more complicated than
the comparison for MPQS, as there are more aspects that we must take into account.
We start with a similar approach as in Subsection 3.3.1, but we give as well the better
approach (already mentioned in a footnote in Section 3.3) that takes more polynomial
values into account (as in [29]) by dividing the sieving region into subregions.

In NFS we work with two homogeneous polynomials F1(x, y) and F2(x, y), and
we search for pairs (a, b) with gcd(a, b) = 1 and b > 0 such that both |F1(a, b)| and
|F2(a, b)| are (semi)smooth. For both polynomials we are looking for the highest
polynomial value in the sieving region and if necessary we apply a correction for the
average value and the roots of Fi(a, b), for i = 1, 2, modulo primes in the factorbase
(similar to the correction we applied for the polynomials in MPQS). We assume that
the probability of F1(a, b) being semismooth is independent of the probability of
F2(a, b) being semismooth.

First we give our results for a number (19, 183−, C131) we factored with the
special number field sieve. The polynomials are

• F1(x, y) = 37589973457545958193355601x − y, and

• F2(x, y) = x6 + 19x3y3 + 361y6,

and the sieving bounds are F = 30M and L = 250M. The sieving region is described
by x ∈ [−1.75M, 1.75M] and y ∈ [1, 700 000]. To compute the correction for the shape
of the polynomial, we start with computing the average value of F2(x, y):

1

3.5M × 700 000

∫ 700 000

1

∫ 1.75M

−1.75M

∣

∣x6 + 19x3y3 + 361y6
∣

∣ dxdy ≈ 1.017 × 1037.

The maximum value occurs at the border of the sieving region with
F2(1.75M, 700 00) ≈ 1.0612 × 1038; the average value is 0.096 times the maximum
value. Compared with a straight line, we expect that on average the values of F2(x, y)
are 0.5

0.096 ≈ 5.217 times smaller; we call this a shape factor.
To take the root properties into account, we compute the following (see [35],Ch. 3):

for all primes p in the factorbase that do not divide the discriminant ∆ of F2(x, 1)

we add
(

1 − npp
p+1

)

log p
p−1 as correction, where np is the number of distinct roots of
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F2(x, 1) mod p. For primes that divide ∆ we computed with a numerical simulation
the average contribution of these primes for a sample of 106 values of F2(x, y). The
discriminant of F2(x, 1) factors as −39 1910. When we evaluate this polynomial for
0 ≤ x ≤ 999 and 1 ≤ y ≤ 999 we get on average 0.250 times a factor 3 in the
polynomial value. As correction for the prime 3 we take (1/2− 0.250) log(3). For the
prime 19 we computed a correction of (1/18− 0.099) log(19). The total correction for
primes in the factorbase, including primes that divide the discriminant is 0.601.

We compute the value x which will be substituted in the Ψ(x, ...)-function as
follows: log(x) = log(1.0612 × 1038) − log(5.217) + 0.601 ≈ 86.508. This leads to
α = log(30M)/ log(x) = 0.199 and β = log(250M)/ log(x) = 0.224 for F2(x, y). For
the linear polynomial F1(x, y) we compute the maximum value, which turns out to
be ≈ 6.578 × 1031. We do not need a correction for the shape of the polynomial nor
a correction for root properties, thus we get α = 0.235 and β = 0.264 for F1(x, y).

In order to compute the number of (semi)smooth numbers, we divide the relations
into different types, based on the number of large primes on each side. For i, j ∈
{0, 1, 2} we denote with riaj the set of relations with i large primes on the rational
side and j large primes on the algebraic side. Now we approximate #riaj by

6

π2
× 3.5M × 700 000 × Ψi(x, ...)

x
× Ψj(x, ...)

x
,

where we take the appropriate Ψ-function for each relation set, and include the second
order term of each Ψ-function in our computation. Note that the fraction 6/π2 comes
from the requirement gcd(a, b) = 1 as this fraction expresses the probability that this
is the case for two random numbers a and b.

Our theoretically expected numbers and the numbers of (semi)smooth numbers
of the actual data set are in Table 3.20. For the algebraic side we took into account
that the actual sieving used F 0.1L1.9 as upper bound for the product of the two large
primes in 2-semismooth numbers, so we use the square root of this number as bound
on each of the two large primes. This led to β = 0.222.

Table 3.20: Number of relations riaj

relation type theory actual
r0a0 1 447 297 2 040 867
r0a1 2 712 542 3 524 813
r0a2 1 550 396 2 027 945
r1a0 2 072 000 2 925 595
r1a1 3 882 206 5 067 356
r1a2 2 218 936 2 922 010
r2a0 912 503 1 280 620
r2a1 1 709 713 2 224 917
r2a2 977 213 1 286 313
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We see relatively big differences. However, the ratios of actual and theoretical
numbers as ordered in Table 3.21 show some regularities.

Table 3.21: Ratio of actual and computed numbers per set

r0 r1 r2

a0 1.410 1.412 1.403
a1 1.299 1.305 1.301
a2 1.308 1.317 1.316

The horizontal deviation is rather small. It seems that there is a systematic devi-
ation in our estimation of the value x on the algebraic side. With reverse computing
we found that if we had log(x) = 84.344, our theoretical number of relations would
be close to the actual number of relations.

However, as already mentioned in Subsection 3.3.1, the author became aware of
a different approach for computing the number of (semi)smooth numbers in the final
stage of writing the thesis. The approach is described in an article of Lenstra et al.
about factoring estimates for a 1024-bit RSA modulus [29]. We think that this ap-
proach will give better results, as all polynomial values are computed, instead of only
one value. To test this assumption, we start with dividing the integration region in
eight equal regions and apply to each region the same steps as we did for the complete
region. The regions are given in the following table.

Table 3.22: Boundaries of the eight regions

region x y
1 [-1 750 000 , -875 000] [350 000, 700 000]
2 [-875 000 , 0] [350 000, 700 000]
3 [0 , 875 000] [350 000, 700 000]
4 [875 000 , 1 750 000] [350 000, 700 000]
5 [-1 750 000 , -875 000] [1 , 350 000]
6 [-875 000 , 0] [1 , 350 000]
7 [0 , 875 000] [1 , 350 000]
8 [875 000 , 1 750 000] [1 , 350 000]

In the next table we give for each region the minimum and maximum value of
F2(x, y), the average value of F2(x, y), and the factor for the shape of the polynomial
compared with a straight line.
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Table 3.23: F2(x, y) characteristics per region

region min(F2(x, y)) max(F2(x, y)) average shape factor
1 5.667 × 1035 3.855 × 1037 3.672 × 1037 0.517
2 4.977 × 1035 4.247 × 1037 1.159 × 1037 1.810
3 6.636 × 1035 4.729 × 1037 1.262 × 1037 1.848
4 1.658 × 1036 1.061 × 1038 2.786 × 1037 1.875
5 3.366 × 1035 2.872 × 1037 7.726 × 1036 1.837
6 271 6.636 × 1035 1.248 × 1035 2.659
7 361 1.658 × 1036 1.930 × 1035 4.295
8 4.488 × 1035 3.375 × 1037 8.749 × 1036 1.903

For the linear polynomial we give the minimum and maximum for each region as
well.

Table 3.24: F1(x, y) characteristics per region

region min(F1(x, y)) max(F1(x, y))
1 3.289 × 1031 6.578 × 1031

2 350 000 3.289 × 1031

3 350 000 3.289 × 1031

4 3.289 × 1031 6.578 × 1031

5 3.289 × 1031 6.578 × 1031

6 1 3.289 × 1031

7 1 3.289 × 1031

8 3.289 × 1031 6.578 × 1031

When we use these values to compute the corresponding densities for each region
and add the theoretical number of (semi)smooth relations, we find for the total region
the following number of relations:
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Table 3.25: Number of relations riaj

relation type theory actual ratio
r0a0 1 843 020 2 040 867 1.107
r0a1 3 355 199 3 524 813 1.050
r0a2 1 848 677 2 027 945 1.097
r1a0 2 472 207 2 925 595 1.183
r1a1 4 501 569 5 067 356 1.126
r1a2 2 481 009 2 922 010 1.178
r2a0 1 020 612 1 280 620 1.255
r2a1 1 858 914 2 224 917 1.197
r2a2 1 024 899 1 286 313 1.255

This is already much better than our first approach (Table 3.20) with only value
for approximating the entire region. It remains to be seen how far we should go with
subdividing our regions into smaller regions to get an even better result. To see if
this behavior is consistent, we performed the computations for another factorization.
However, even after further subdividing we probably still have some difference, as in
practice less effort is spend on relations of type r2a1 and r2a2.

This time we factored 26, 142+, C124 with the general number field sieve. The
polynomials and sieving parameters are:

• F1(x, y) = x − 42102247697105939436588y

• F2(x, y) = 8848132902x5 − 10040121975867x4y−
18557337266133130x3y2 + 43845017657495787742x2y3+
384219666742699491428188xy4 + 321320915029372552455813365y5

• F = 30M

• L = 250M

• Sieving region: x ∈ [−200M, 200M] and y ∈ [1, 88000].

The maximum value of F2(x, y) is F2(200M, 88 000) ≈ 7.767 × 1051, and the average
value is

1

400M × 88 000

∫ 700 000

1

∫ 200M

−200M

|F2(x, y)| dxdy ≈ 8.852 × 1050.

We apply a correction of 0.5/0.114 ≈ 4.387 for the shape of this polynomial.
For the root properties we first look at the discriminant ∆, which factors as ∆ =

29 34 132 31 73C140. As we sieve with primes up to 30M, we used trial division up to
30M to ensure that the factors given are the only factors below 30M. For the primes
2, 3, 13, 31, and 73 we computed the average contribution of these primes. For the
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other primes p in the factorbase we used again
(

1 − npp
p+1

)

log p
p−1 as correction. For the

prime divisors of the leading coefficient of F2(x, y), 7, 17, and 44417, we increase np

with 1, as these primes divide the leading coefficient of F2, which leads to a projective
root. The total correction is

−3.019 + (1 − 2.332) log(2) +

(

1

2
− 1.875

)

log(3) +

(

1

12
− 0.232

)

log(13)

+

(

1

30
− 0.128

)

log(31) +

(

1

72
− 0.014

)

log(73) = −6.160.

Combining all corrections gives

log(x) = log(7.767 × 1051) − log(4.387) − 6.160 = 111.843,

and α = 0.154, and β = 0.173. For the linear polynomial we have log(x) = 63.479,
α = 0.271, and β = 0.305. We compute

riaj =
6

π2
× 400M × 88 000 × Ψi(x, ...)

x
× Ψj(x, ...)

x
,

and the results are given in Table 3.26. As with 19, 183−, we take the different upper
bound for 2-semismooth numbers into account, which gives β = 0.172.

Table 3.26: Number of relations riaj

relation type theory actual
r0a0 1 099 680 1 857 736
r0a1 3 073 751 4 729 263
r0a2 2 910 129 3 535 594
r1a0 1 241 976 2 144 878
r1a1 3 471 488 5 465 241
r1a2 3 286 693 4 059 856
r2a0 379 158 671 005
r2a1 1 059 798 1 713 980
r2a2 1 003 382 1 260 477

If we look at the ratio (Table 3.27), we get

Table 3.27: Ratio of actual and computed numbers per set

r0 r1 r2

a0 1.689 1.727 1.770
a1 1.539 1.574 1.617
a2 1.215 1.235 1.256
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Again the horizontal variation is rather small. Our attempt to find a better value
x with reverse computing, as we did with the previous example, indicates that log(x)
should be in the neighbourhood of 109.036.

Here we decided as well to divide the entire region in eight equal regions and
compute per region the theoretical number of relations. The regions are given in the
following table.

Table 3.28: Boundaries of the eight regions

region x y
1 [-200 000 000 , -100 000 000] [44 000, 88 000]
2 [-100 000 000 , 0] [44 000, 88 000]
3 [0 , 100 000 000] [44 000, 88 000]
4 [100 000 000 , 200 000 000] [44 000, 88 000]
5 [-200 000 000 , -100 000 000] [1 , 44 000]
6 [-100 000 000 , 0] [1 , 44 000]
7 [0 , 100 000 000] [1 , 44 000]
8 [100 000 000 , 200 000 000] [1 , 44 000]

In the next table we give for each region the minimum and maximum value of
F2(x, y), the average value of F2(x, y), and the factor for the shape of the polynomial
compared with a straight line.

Table 3.29: F2(x, y) characteristics per region

region min(F2(x, y)) max(F2(x, y)) average shape factor
1 1.504 × 1050 4.813 × 1051 1.482 × 1051 1.573
2 0 1.696 × 1051 2.336 × 1050 3.629
3 5.299 × 1049 4.155 × 1051 1.030 × 1051 1.991
4 2.427 × 1050 7.767 × 1051 2.426 × 1051 1.551
5 8.848 × 1049 3.336 × 1051 1.034 × 1051 1.571
6 0 1.504 × 1050 2.164 × 1049 3.474
7 3.213 × 1026 2.427 × 1050 3.368 × 1049 3.603
8 7.151 × 1049 2.831 × 1051 8.210 × 1050 1.681

For the linear polynomial F1 we give the minimum and maximum for each region
as well.
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Table 3.30: F1(x, y) characteristics per region

region min(F1(x, y)) max(F1(x, y))
1 1.853 × 1027 3.705 × 1027

2 1.853 × 1027 3.705 × 1027

3 1.853 × 1027 3.705 × 1027

4 1.853 × 1027 3.705 × 1027

5 4.210 × 1022 1.853 × 1027

6 4.210 × 1022 1.853 × 1027

7 4.210 × 1022 1.853 × 1027

8 4.210 × 1022 1.853 × 1027

When we use these values to compute the corresponding densities for each region
and add the theoretical number of (semi)smooth relations, we find for the total region
the following number of relations:

Table 3.31: Number of relations riaj

relation type theory actual ratio
r0a0 1 410 985 1 857 736 1.317
r0a1 3 868 632 4 729 263 1.122
r0a2 3 579 839 3 535 594 0.988
r1a0 1 574 800 2 144 878 1.362
r1a1 4 318 392 5 465 241 1.266
r1a2 3 996 721 4 059 856 1.016
r2a0 472 240 671 005 1.421
r2a1 1 295 250 1 713 980 1.323
r2a2 1 199 089 1 260 477 1.051

Again, this is already much better than our first approach with only value for
approximating the entire region. As the region around (x, y) = (0, 1) (regions 6 and
7) has smaller polynomial values, the chance of finding relations with at most one large
prime on the algebraic side will increase. It is likely that dividing these two regions
in smaller pieces will give better approximations, but further research is needed to
confirm this.





Chapter 4

Predicting the Sieving Effort

for the Number Field Sieve

4.1 Introduction

A popular method for factoring large numbers is the number field sieve [27], as this
is the fastest algorithm known for numbers of at least 90 digits. In order to estimate
the most time-consuming step of this method, namely the sieving step in which the
relations are generated, one compares with actual sieving times for numbers of com-
parable size. If these are not available, one may try to extrapolate actual sieving times
for smaller numbers, using the formula for the running time L(N) of this method,
where N is the number to be factored. We have

L(N) = exp(((64/9)1/3 + o(1))(log N)1/3(log log N)2/3), as N → ∞,

where the logarithms are natural [27]. These estimates (for computations we disre-
gard the o(1) and get a heuristic value) can be 10–30 % off from the real running
times.

After the sieving we continue with the linear algebra step. During this step we
have to find dependencies in a matrix, where each row corresponds with a relation
and each column with a rational prime ≤ L or an algebraic prime with norm ≤ L
such that all relations are represented by a row and all primes which occur in the
relations are represented as a column. If a prime occurs an odd number of times in
a relation, we put a one as entry of the corresponding row and column, and a zero
otherwise. After representing all relations in the matrix, we remove those relations
with a 1 that is the only 1 in the entire column, the so-called singletons. This may
generate new singletons, so this singleton removal step is repeated until all columns
contain at least two 1’s. In practice, the singleton removal is done before actually
building the matrix.

During the sieving step, the number of useful relations (those which remain after
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singleton removal) grows in a hard-to-predict way as a function of the number of
relations found, as the primes of newly found relations may or may not match with
the primes of earlier found relations. This growth behavior differs from number to
number, which makes it hard to predict the overall sieving time: for instance, even
factoring times of numbers of comparable size can easily vary by 10%. In this chap-
ter we present a method for predicting the number of relations needed for factoring a
given number in practice within 2% of the actual number of relations needed. With
‘in practice’ we mean: on a given computer, for a given implementation, and for a
given choice of the parameters in the NFS. This allows us to predict the actually
required sieving time within 2 %. Our method is based on a short sieving test and a
very cheap simulation of the relations needed for the factorization. By applying this
method for various choices of the parameters of the number field sieve, it is possible
to find good parameters, e.g., in terms of minimizing the sieving time or the size of
the resulting matrix.

Our method works as follows. After choosing polynomials, a factorbase bound F
and a large prime bound L (for ease of exposition we take the same bounds on both
the rational side and the algebraic side), and a sieve area, we perform a sieving test
for a relatively short period of time. E.g., for a 120-digit number one could sieve for
about ten minutes. Each relation consists of a pair of coprime integers (a, b) along
with the corresponding factorizations of the rational and the algebraic norms. To-
gether the rational factorizations found during the sieving test determine a certain
distribution of the large primes occurring in them and the same is the case for the
algebraic factorizations, though the distributions may be different. Since the number
of relations to be generated depends on the matching behavior of the large primes,
we randomly generate pairs of rational and algebraic large primes combinations ac-
cording to the relevant distributions as observed in the sample (obviously not paying
any attention to a pair (a, b), to which a pair of combinations would correspond, since
such a pair (a, b) will in general not exist), and hope that the matching behavior
of these cheaply generated simulated relations corresponds to the matching behavior
of the actual relations. Thus, during the simulation we regularly count the number
of simulated relations after singleton removal and assume that the point where the
number of simulated relations would start to generate an oversquare matrix is a good
estimate for the number of actual relations that will be required.

The details of this method are described in Section 4.2, where we pay special at-
tention to the difference between line sieving and lattice sieving, as lattice sieving uses
so-called special primes. However, we also notice similar behavior of the distribution
of the large primes in line and lattice sieving, if F and L are chosen equal. Here we
distinguish two cases; if F and L are relatively close we consider it as Case I, else
we consider it as Case II. This is also shown in Section 4.2. The line sieving data
sets were generated with the NFS software package of CWI. The lattice sieving data
sets were either given by Bruce Dodson and Thorsten Kleinjung or generated with
Kleinjung’s lattice siever.

Section 4.3 deals with the singleton removal and the estimate for the number of
relations needed to factor the given number. For lattice sieving, the number of dupli-
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cates has to be estimated as well. In Section 4.4 we compare results of the simulation
with original factorizations and in Section 4.5 we describe in detail how to distinguish
between Case I and Case II.

The sieving in NFS, combined with the simulation, has more interesting aspects,
of which some are treated in Section 4.6. In Subsection 4.6.1 we start with determin-
ing the size of the sample sieve test, based on Chebyshev’s inequality. In Subsection
4.6.2 we explain how to obtain an appropriate size of the sieving area and the corre-
sponding sieving time by using our method for simulating the sieving step.

Another aspect concerns the growth behavior of the number of useful relations as
a function of the total number of relations. Dodson and Lenstra describe the growth
of useful relations as explosive [17], but we show in Subsection 4.6.3 that a more
gradual growth is also possible. The final aspect we consider, in Subsection 4.6.4, is
the relation between the oversquareness of a set of relations and the resulting matrix
size.

4.2 Simulating relations

Before we start with the simulation, we run a short sieving test. In order to get a rep-
resentative selection of the actual relations, we ensure that the points we are sieving
in this test form a representative sample of the entire sieving area. The parameters
for the sieving are set in such a way that we have at most two large primes both on
the rational side and on the algebraic side. In the case of lattice sieving we have one
additional special prime on one of the sides. In this section we describe the process
of simulating relations both for line sieving and for lattice sieving. Note that we only
simulate the large primes; for the primes in the factorbase we use a correction as will
be explained in Section 4.3.

The first step after the sieving test consists of splitting the relations according to
the number of large primes occurring in the relation. The set of relations with i large
primes on the rational side and j large primes on the algebraic side is denoted by
riaj for i, j ∈ {0, 1, 2}. This leads to nine different sets and the mutual ratios of their
cardinalities determine the ratios by which we will simulate the relations. In the case
of lattice sieving we split the relations in the same way, treating the special prime
separately.

Our first experiments with simulating the large primes for the set r1a0 (and re-
moving singletons) concentrated on the large primes at hand. We tried linear inter-
polation between two consecutive large primes, Lagrange polynomials, and splines,
but all these local approaches did not give a satisfying result: the number of relations
after singleton removal was too far from the original data. We then tried a more
global approach, looking at all the large primes and seeing if we could find a distribu-
tion for them. We found in this case that an exponential distribution simulates best
the distribution of these large primes over the interval [F,L] (cf. [7], Ch. 6) and the
result after singleton removal was satisfying. The inverse of this distribution function
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is given by

g(x) = F − a log
(

1 − x
(

1 − e
F−L

a

))

, 0 ≤ x ≤ 1, (4.1)

where a is the average of the large primes in the set r1a0. Note that g(0) = F and
g(1) = L. In order to generate primes according to the actual distribution of the
large primes, we generate a random number between 0 and 1, substitute this number
in g(x), round the number g(x) to the nearest prime, and repeat this for each prime
that we want to generate.

To avoid expensive prime tests, we work with the index of the primes p, defined
as ip = π(p), rather than with the prime itself. This index can be found by using a
look-up table or the approximation ip being the nearest integer to p

log p + p
log2 p

+ 2p
log3 p

[37]. Experiments showed that this third order approximation gives almost the same
results as looking up indices in a table. It is more efficient to use the approximation
when L is large.

We choose for the simulation of the indices the same type of exponential distri-
bution. This may seem strange, as prime numbers have a different distribution, but
experiments showed that this choice gave good results after singleton removal. So we
choose for simulating the indices of the large primes in the set r1a0

G(x) = iF − a′ log
(

1 − x
(

1 − e
iF −iL

a′

))

, 0 ≤ x ≤ 1, (4.2)

where iF stands for the index of the first prime above F , iL for the index of the prime
just below L, and a′ for the average of the indices of the large primes in the set r1a0.

During our experiments with various choices of functions for simulating the dis-
tributions of the large primes in the different sets of relations riaj , we found that
it is convenient to distinguish between two cases: the case in which the ratio F/L
is approaching 1 (Case I) and the case in which this ratio is approaching 0 (Case
II). These two cases ask for different choices of the distribution functions (described
below). Table 4.18 in Section 4.5 gives an overview of the experiments which we have
carried out for each case to illustrate our method for simulating relations.

All functions that we give for simulating relations in the following two subsections
were found experimentally. We have no theoretical proof of why the distributions of
the large primes found during the sieving stage follow these distributions, only ex-
perimental proof that the result after removing singletons of the simulated relations,
generated with these functions, is good.

4.2.1 Case I

If F and L are relatively close, we use the following approach for the different types
of relations.
r0a0: We count the number of relations in this set.
r1a0: As mentioned before, for simulating the indices of the large primes, we use the
function:

GI(x) = iF − a′ log
(

1 − x
(

1 − e
iF −iL

a′

))

, 0 ≤ x ≤ 1, (4.3)
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with iF and iL the corresponding indices of F and L, respectively, and a′ the average
of the indices of the large primes in the set.

To illustrate that the distribution of the large primes is approximated well by (4.3)
we have generated the following graph (Figure 4.1), which consists of two sorted sets.
One set consists of the indices of the primes of the original sieving data and the other
set consists of the indices simulated according to (4.3). The line of the simulated data
is the one which lies below the other line (of the original data) around position 7000.

4,000

position

10

15

5

8,0000

index

10 6

20

Figure 4.1: Comparing original and simulated data (r1a0)

r0a1: We would like to use the same idea as we used for r1a0, but now we have to deal
with algebraic primes. This means that not all primes can occur, and that each prime
that does occur can have up to d different roots, where d is the degree of the polynomial
f2(x). This yields pairs of a prime and a root which we denote by (prime, root).
Luckily, (heuristically) the amount of pairs (prime, root) with F < prime < L is
about equal to the amount of primes between F and L. This implies that we do not
have to simulate pairs with a certain subset of indices, as we may assume that all
indices can occur in the simulation. We found that an exponential distribution fits
here as well, so here we use the same approach as we did for r1a0.
r1a1: We assume that the value of the index on the rational side is independent of the
value of the index on the algebraic side. So we combine the approach for r1a0 and
that for r0a1. Using (4.3), generate a random number and compute the corresponding
rational index, generate a new random number (do not use the first random number
as input for the random number generator) and compute the corresponding algebraic
index.
r2a0: Here we have to deal with two large primes on the rational side, denoted by q1

and q2 with q1 > q2. We started with sorting the list with q1 and we found that a
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linear distribution fits these data well. This first surprised us, as we expected a type
of exponential distribution. However, if we look at the first terms of the Taylor series
of (4.3) and take iF −iL

a′
as an independent variable, we get

iF + a′
(

(

iF − iL
a′

)

x +
1

2

(

iF − iL
a′

)2

x

)

.

If iF and iL are relatively close, the first term of the series determines the output. So
the distribution function of the index iq1

of q1 is given by

HI,1(x) = iF + x(iL − iF ),

where x is a number between 0 and 1.
We continued with q2 and sorted them. Here, an exponential distribution fits

the data, but we have to take into account that q2 < q1. Remember that we need
an average value for the exponential distribution, but we cannot use all q2-values.
Instead of using one average value, we make a list of averages aq2

of the sorted q2-
indices. We denote the average of the first j q2-indices by aq2

[j] (j = 1, 2, . . .).
Now we describe how to simulate elements of r2a0. We begin with a random

number between 0 and 1 and compute HI,1(x), which gives us an index iq1
of q1. We

look up this index in the sorted list of q2-indices and the corresponding position j
tells us which average we should use for computing the index iq2

of q2. We generate a
new random number between 0 and 1 and substitute it for x in the following formula
for HI,2(x), which is an adjusted form of GI(x):

HI,2(x) = iF − aq2
[j] log

(

1 − x

(

1 − e
iF −iq1
aq2

[j]

))

.

This formula gives us an index iq2
of q2 that is smaller than the index we generated

for q1.
We made two graphs (cf. Figure 4.2) similar to Figure 4.1, but for q1 (graph on the

left-hand side) and q2 (graph on the right-hand side). Especially the simulation of q2

is very close; for q1 the gap is larger (in the graph on the left-hand side the simulation
is given by the upper line around position 60 000, in the graph on the right-hand side
the simulation is given by the lower line around position 90 000). It might be possible
to find an even better approximation of q1, but as the result after singleton removal
is very good, it will not be worth the effort from a practical point of view.

Given the distributions of the largest and second largest prime, we wondered how
the products of the two primes are distributed. To illustrate this, we took the data
set of 13, 220+ (cf. Subsection 4.4.1) found by our implementation of the siever. We
added for each relation in r2a0 the indices of the two large primes and split the interval
[2iF , 2iL] in ten equal subintervals (labeled s = 1, . . . , 10). For each subinterval we
counted the number of relations for which the sum of the two indices of the two large
primes lies in this subinterval. The result is given in Table 4.1.
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position
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index
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Figure 4.2: Comparing original and simulated data (q1 left, q2 right)

Table 4.1: Distribution of the sum of the indices (13, 220+)

s # relations
1 120780
2 161735
3 148757
4 133845
5 121967
6 78725
7 39253
8 20710
9 8107
10 0

This is consistent with the smallest prime having an exponential distribution. The
zero in the last column is due to one of the bounds in the siever, which was set at
F 0.1L1.9 instead of L2.
r0a2: We know how to deal with r2a0 and we apply the same approach to r0a2, as we
can make the same transition as we made from r1a0 to r0a1.

Sorting the list with q1 showed that we could indeed use a linear distribution and
the sorted list with q2 showed that an exponential distribution fitted here. Now we
simulate elements of r0a2 in the same way as elements of r2a0.
r1a2: As with r1a1, we assume that the rational side and the algebraic side are in-
dependent. Here we combine the approaches of r1a0 and r0a2 to get the elements of
r1a2.
r2a1: Combine the approaches of r2a0 and r0a1 to get the elements of r2a1.
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r2a2: We combine the approaches of r2a0 and r0a2.
Summarizing, Case I is based upon the following assumptions:

• iF and iL are relatively close,

• the probability that the rational side is (semi)smooth is independent of the
probability that the algebraic side is (semi)smooth for a pair (a, b) in the sieving
area (as a consequence, the simulated value of a rational prime has no influence
on the value of an algebraic prime),

• if the sieving bounds are the same on both sides, the rational prime(s) and
algebraic prime(s) follow the same distribution and are simulated with the same
model,

• the above model for one large prime (GI(x), described in r1a0),

• the above model for two large primes (HI,1(x) and HI,2(x), described in r2a0).

4.2.2 Case II

We now look at data sets with F and L far apart and describe which functions simulate
best the distribution of the indices of the large primes in these sets. The basic idea
is the same as in Case I; we only use slightly different approximating functions.

First, we give the model for one large prime. For ease of exposition, we show it
for the set r1a0. In Case I we use GI(x) to simulate the indices of this set, but this
function does not fit any longer. This is due to the behavior of e(iF −iL)/a′

when iL is
much larger than iF . After some experiments we decided to fit the following function,
given the relations of the sieving test:

GII(x) = e(αx+β)γ

, 0 < γ ≤ 1, 0 ≤ x ≤ 1, (4.4)

with α = (log(iL))1/γ − (log(iF ))1/γ and β = (log(iF ))1/γ , so we have GII(0) = iF
and GII(1) = iL. To determine γ, we apply the least squares method. Suppose we
have n relations in the set r1a0, and the indices of the large primes are sorted into an
array lp with lp[0] ≤ lp[1] ≤ . . . ≤ lp[n − 1]. Then let

S :=

n
∑

i=1

(

lp[i − 1] − GII

(

i

n + 1

))2

.

Select the γ for which the sum S has the lowest value by either trying all γ from 0.01
to 0.99 with step 0.01 or by using a more sophisticated method like Newton’s method.

As an example, we show for B449 (a number of 449 bits) a graph with the original
indices and a graph with the simulated indices of r1a0 (Figure 4.3). The indices are
sorted and the place of the index in this sorted list is indicated by position. We have
chosen F = 4M and L = 230 (≈ 1074M). It turned out that γ = 0.44 fitted best after
trying all values for γ, for a sieving test of 0.11% of the original data.
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position
0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

index

1#107

2#107

3#107

4#107

5#107

Figure 4.3: Comparing original and simulated data (r1a0)

For two large primes we use the exponential distribution for the largest prime as
well. We define

HII,1(x) = iF − a′ log
(

1 − x
(

1 − e
iF −iL

a′

))

, 0 ≤ x ≤ 1, (4.5)

where a′ is the average of the indices. For the second prime, the situation remains
the same as in Case I. We make a list of averages aq2

of the sorted q2-indices, where
aq2

[j] contains the average of the first j q2-indices. After computing iq1
with HII,1(x),

we look up the corresponding average aq2
[j] and compute iq2

with

HII,2(x) = iF − aq2
[j] log

(

1 − x

(

1 − e
iF −iq1
aq2

[j]

))

, 0 ≤ x ≤ 1.

To illustrate this, we show in Figure 4.4 for B449 the curves of indices for the original
data and for the simulated data for the set r2a0. Recall that we have F = 4M and
L = 230 ≈ 1074M.



70 Predicting the sieving effort

position
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index
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Figure 4.4: Comparing original and simulated data r2a0 (q1 left, q2 right)

In both graphs the simulation is given by the lower line around position 90 000.
As q2 should be smaller than q1, the difference in the second graph is a consequence
of the difference in the first graph. As the approximating functions for the indices of
the large primes are tailor-made for this data set, more data sets with similar sieving
bounds are needed to test how widely applicable Case II is.

Summarizing, Case II is based upon the following assumptions:

• iF and iL are far apart,

• the probability that the rational side is (semi)smooth is independent of the
probability that the algebraic side is (semi)smooth for a pair (a, b) in the sieving
area (as a consequence, the simulated value of a rational prime has no influence
on the value of an algebraic prime),

• if the sieving bounds are the same on both sides, the rational prime(s) and
algebraic prime(s) follow the same distribution and are simulated with the same
model,

• the above model for one large prime (GII(x)),

• the above model for two large primes (HII,1(x) and HII,2(x)).

4.2.3 Special primes

In case of lattice sieving, we simulate the relations as described in either Case I or
Case II and add a special prime to each relation in the following way. From the
relations in the sieving test we compute the average number of relations per pair
(special prime, root). Then we divide the number of relations we want to simulate
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by this average and this gives the total number of special primes in our simulation.
We select an appropriate interval for the special primes from which they are chosen
as follows. Divide the interval in a (small) number of sections: per section select
randomly the special primes and add one special prime to each of the relations. By
dividing in sections (and simulating the same amount of relations per section) we
make sure that each part of the interval of special primes is well presented, and by
choosing randomly in each section, we get enough variation in the amount of relations
per special prime. If the interval of the special primes is very large, it might become
necessary to decrease the number of relations per section. A sieving test, of which
the special primes are uniformly distributed over the interval, will indicate a suitable
choice of sections and the number of relations for each section.

It is possible to use different factorbase bounds for the rational primes and the
algebraic primes, bound the product of the two large primes on the same side, etc.
All these details in the sieving influence the relations, but once the general model is
known, it is relatively easy to adjust it to match the details.

4.3 The stop criterion

We now know how to simulate relations, but how many should we simulate?
In order to factor the number N we have to find dependencies in a matrix, as

explained in Section 4.1. For our stop criterion it is enough to know when we have
enough relations, i.e. when the number of relations after singleton removal exceeds the
number of different primes that occur in the remaining relations.

After the singleton removal, we count how many relations are left and how many
different large primes occur in these relations. We define the percentage oversquare-
ness Or after singleton removal (s.r.) as

Or :=
nr

nl + nF − nf
× 100,

where nr is the number of relations after singleton removal, nl is the number of
distinct large primes after singleton removal, nF is the number of primes in the
factorbase, approximated by π(Frat) + π(Falg), and nf is the number of free relations
from factorbase elements. We have (cf. [18], Ch. 3):

nf =
1

g
π(min(Frat, Falg)),

where g is the order of the Galois group of f1(x)f2(x), and Frat and Falg refer to the
rational and algebraic factorbase bound, respectively. As we use the free relations in
a later stage, we could have chosen to add nf in the numerator, instead of subtracting
nf in the denumerator. However, as nf is relatively small, this only makes a small
difference and if Or = 100, both fractions are the same. If Or ≥ 100 we expect to
find a dependency in the matrix, and we stop with simulating relations. To make
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practically sure to find a dependency, we stop when Or = 102. An even larger
percentage is advised if one would like to have more choices in the relations that can
form a dependency and subsequently form a smaller matrix in the linear algebra step.

4.3.1 Duplicates

One final point concerns lattice sieving. It is well known that lattice sieving produces
lots of duplicates, especially when it involves many special primes. For instance, the
authors of [3] report 16.58 % duplicates. We treat our relations as if there are no
duplicates, but that implies that in the case of lattice sieving we have to add a certain
number of relations to the relations that we should collect in the sieving stage. This
number can be computed as in [3]. The basic idea in [3] is to run a sieving test, in
which only a small fraction of the special primes is processed. These special primes
are uniformly distributed over the special primes interval. For each relation found
in this sieving test, the authors of [3] check if it has more than one prime in the
special primes interval. If so, they check for each special prime in this relation if
the relation is in the sieving region of the corresponding lattice and if the cofactor
bounds are kept. If both answers are positive, this gives rise to a duplicate relation.
By processing all relations in the sieving test in the above way, we get the number
of expected duplicates for this fraction of the special primes. Thus we also know the
number of expected duplicates for the entire interval.

4.4 Experiments

We have applied our method to several original data sets (coming from factored
numbers) and show that this gives good results. We have carried out two types of
experiments.

First we assumed that the complete data set is given and we wanted to know if
the simulation gave the same oversquareness when simulating the same number of
relations as contained in the original data set. As input for the simulation we used
0.1% of the original data (taking 1 out of every 1000 relations).

Secondly we assumed that only a small percentage (0.1%) of the original data is
known. Based on this data we simulated relations until Or ≥ 100. Then we compared
this with the oversquareness of the same number of original relations.

This 0.1% was found in an empirical way. We started a simulation based on 100%
original data and lowered this percentage in the next experiment until results after
singleton removal were too far from the original data. We went down as far as 0.01%,
but this percentage did not always give good results, unless we would have been
satisfied with an estimate within 5% of the original data (although some experiments
with 0.01% of the original data were even as good as the ones based on 0.1% of the
real data). Another approach, based on Chebyshev’s inequality, is given in Subsection
4.6.1.
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4.4.1 Case I, line sieving

Some relevant parameters for all the original data sets in this section are given in
Table 4.2, where M stands for million. Numbers are written in the format a, b+ or
a, b−, meaning ab +1 or ab−1. In the case of GNFS, some prime factors were already
known and for the remaining factors it was more efficient to use GNFS instead of
SNFS.

Table 4.2: Sieving parameters (line sieving)

number # dec. digits F L g nF − nf

13,220+ 117 30M 400M 120 3700941
26,142+ 124 30M 250M 120 3700941
19,183− 131 30M 250M 18 3613192
66,129+ 136 35M 300M 18 4175312
80,123− 150 55M 450M 18 6383294

The experiments for the first two GNFS data sets 13, 220+ and 26, 142+ are in
Table 4.3. Here, O stands for the original data and S for the simulated data. Table
4.3 shows that the numbers were oversieved, but the simulated data show about the
same oversquareness. In Table 4.4, we computed the relative difference (S−O)/O ×
100 of the entries in the S- and O-column of Table 4.3. We see that our predictions of
the number of relations after singleton removal (nr), the number of large primes after
singleton removal (nl), and the oversquareness (Or) differ from the original data by
not much more than 1%.

Table 4.3: Experiments line sieving

GNFS 13,220+ O 13,220+ S
# relations before s.r. 35 496 483 35 496 483
nr 21 320 864 21 394 640
nl 13 781 518 13 950 420
Or (%) 121.96 121.21

26,142+ O 26,142+ S
# relations before s.r. 23 580 294 23 580 294
nr 15 150 790 15 253 825
nl 9 448 082 9 397 751
Or (%) 115.22 116.45
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Table 4.4: Relative differences of Table 4.3 results

GNFS 13,220+ 26,142+
nr (%) 0.35 0.68
nl (%) 1.22 −0.53
Or (%) −0.61 1.07

We give the following timings for these experiments: simulation of the relations,
singleton removal, and actual sieving time (Table 4.5). The simulations in this section
and the rest of the chapter were carried out on an Intel R© CoreTM2 Duo desktop with
2 GB of memory. For the actual sieving we used multiple machines and added the
sieving times of each machine. As we used 0.1% data, we have to keep in mind that
we need to add 0.1% of the sieving time to the time of a complete experiment, which
consists of generating a small data set, simulate a big data set, and remove singletons.
When we change parameters in NFS we have to generate a new data set.

Roughly speaking, we can say that the calculation of the prediction of the total
sieving time (for a given choice of the NFS parameters) by our method costs less than
one CPU hour, whereas the actual sieving costs several hundreds of CPU hours.

Table 4.5: Timings

GNFS 13,220+ 26,142+
simulation (sec.) 224 156
singleton removal (sec.) 927 573
actual sieving (hrs.) 316 709

For our second type of experiments, we assume that we only have a small sieving
test of the number to be factored. When are we in the neighbourhood of Or = 100
according to our simulation and will the original data agree with our simulation?
We started to simulate 5M, 10M, . . . relations (with increment 5M) and for these
numbers we computed the oversquareness Or; when Or approached the 100 bound
we decreased the increment to 1M. Table 4.6 gives the number of relations for which
Or is closest to 100 and the next Or (for 1M more relations), both for the simulated
data and the original data. This may of course be refined.
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Table 4.6: Around 100 % oversquareness (GNFS)

# rel. before s.r. Or S (%) Or O (%) relative diff. (%)
28M (13,220+) 99.66 99.87 −0.21
29M (13,220+) 103.15 103.29 −0.14
20M (26,142+) 100.57 99.24 1.34
21M (26,142+) 105.38 104.03 1.30

For SNFS the higher degree polynomial has small coefficients, which leads to a
shorter sieving step. Tables 4.7–4.10 show the same kind of data as Tables 4.3–4.6,
but now for SNFS. We start in Table 4.7 with the complete data set and simulate the
same number of relations. Table 4.8 gives the relative differences of the results of the
experiments in Table 4.7. The timings are given in Table 4.9.

Table 4.7: Experiments line sieving

SNFS # rel. before s.r. nr nl Or (%)
19,183− O 21 259 569 11 887 312 7 849 531 103.70
19,183− S 21 259 569 12 156 537 7 936 726 105.25
66,129+ O 26 226 688 15 377 495 10 036 942 108.20
66,129+ S 26 226 688 15 656 253 10 123 695 109.49
80,123− O 36 552 655 20 288 292 12 810 641 105.70
80,123− S 36 552 655 20 648 909 12 973 952 106.67

Table 4.8: Relative differences of Table 4.7 results

SNFS 19,183− 66,129+ 80,123−
nr (%) 2.26 1.81 1.78
nl (%) 1.11 0.86 1.27
Or (%) 1.49 1.19 0.92

Table 4.9: Timings

SNFS 19,183− 66,129+ 80,123−
simulation (sec.) 128 166 223
singleton removal (sec.) 487 603 771
actual sieving (hrs.) 154 197 200
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In Table 4.10 we simulate the number of relations that leads to an oversquareness
around 100 %. We compare this number with the original data and give the differences
in oversquareness.

Table 4.10: Around 100 % oversquareness (SNFS)

# rel. before s.r. Or S (%) Or O (%) relative diff. (%)
20M (19,183−) 99.22 97.71 1.55
21M (19,183−) 104.06 102.51 1.51
23M (66,129+) 96.44 95.35 1.14
24M (66,129+) 100.72 99.60 1.12
34M (80,123−) 99.93 98.66 1.29
35M (80,123−) 102.82 101.50 1.30

All these data sets were generated with the NFS software package of CWI, and
the models for describing the underlying distributions were the same for SNFS and
GNFS, as described in Section 4.2.

4.4.2 Case I, lattice sieving

For lattice sieving we used a data set from Bruce Dodson (7,333−, SNFS). Besides the
factorbase bound and the large primes bound, we have two intervals for the special
primes. These are given in Table 4.11.

Table 4.11: Sieving parameters (lattice sieving)

7,333−
# dec. digits 177

F 16 777 215
L 250 000 000

ranges of special primes [16 777 333, 29 120 617]
[60 000 013, 73 747 441]

g 6
nF − nf 1 976 740

As we are now dealing with lattice sieving, we have an extra (special) prime to
simulate, in the way described in Subsection 4.2.3. Fortunately, the distribution of the
other large primes is similar to that for line sieving. The results of our experiments
are given in Table 4.12, based on 0.023 % of the original data. The last line in this
table is the total number of relations without duplicates. In total 26 024 921 relations
were found after completion of the sieving.
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Table 4.12: Oversquareness 7,333−

# rel. before s.r. Or S (%) Or O (%) relative diff. (%)
17M (7,333−) 98.34 97.45 0.91
18M (7,333−) 103.96 103.08 0.85
25 112 543 (7,333−) 135.39 136.64 −0.91

4.4.3 Case II, line sieving

As an example of Case II for line sieving, we show the experiments of B449. The
parameters used for the sieving are given in Table 4.13.

• B449 = 124485 3679600401 0445323086 2441169510
2215499569 1394018820 4269680737 8014739981 2209253057
0913282691 2163486784 5908830265 1464632317 1300493001

Table 4.13: Sieving parameters B449 (line / lattice sieving)

B449
# dec. digits 136

Frat 4 000 000
Falg 9 000 000
L 230

upper bound on the
product of two large primes 256

ranges of special primes [9 000 000, 17 000 000]
[19 000 000, 22 897 969]

g 120
nF − nf 883 275

We show the graphs for the original and simulated data for r1a0 and r2a0 in Figures
4.5 and 4.6, respectively. The simulation lines in Figure 4.6 are the lower lines around
position 90 000.
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position
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index
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Figure 4.5: Comparing original and simulated data r1a0
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0 20,000 40,000 60,000 80,000 100,000

index

2#106

4#106

6#106

8#106

1#107

1.2#107

1.4#107

Figure 4.6: Comparing original and simulated data r2a0 (q1 left, q2 right)

The results of simulating the line sieving data set are in Table 4.14. The simulation
is based on 0.1% of the original data set.
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Table 4.14: Oversquareness B449 (line sieving)

# rel. before s.r. Or S (%) Or O (%) relative diff. (%)
40M 99.99 96.02 4.13
41M 102.11 98.37 3.80
44 444 780 109.32 105.57 3.55

Due to the absence of special primes, we reach the 100% oversquareness a bit later
than with lattice sieving (cf. Subsection 4.4.4).

4.4.4 Case II, lattice sieving

We also used lattice sieving on the same B449. The parameters used for the sieving,
including the interval of the special primes, are given in Table 4.13. As before, we
simulate the complete original data set and we estimate when we have reached 100 %
oversquareness. The results of our experiments are given in Table 4.15, based on
0.11% original data. The last line in this table is the total number of relations
without duplicates. In total 48 885 461 relations were found after completion of the
sieving.

Table 4.15: Oversquareness B449 (lattice sieving)

# rel. before s.r. Or S (%) Or O (%) relative diff. (%)
37M 98.80 88.41 11.75
38M 101.43 95.00 6.76
44 401 665 115.02 107.20 7.29

We already saw in Subsection 4.2.2 that the model for two large primes had both
lines of q1 and q2 below the original data. The consequence is that the simulated data
has more primes in a smaller interval, and thus reaches the 100% oversquareness
earlier than the original data. The effect is even stronger as the special primes are
also in this interval.

4.4.5 Comparing line and lattice sieving

In the two subsections on Case II examples, we used the same sieving bounds for
generating the data set for line sieving and for lattice sieving. In the present subsection
we choose again the same bounds, but now with F and L closer to each other so that
we get a Case I example. We performed the sieving for the same number 13, 220+ (cf.
Subsection 4.4.1), but now with a different large prime bound. We used F = 30M
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and L = 229 ≈ 537M, and the special primes were chosen in the interval [30M, 35M].
We started with line sieving and for the simulation we used the models as described
in Case I. The next two graphs (Figures 4.7 and 4.8) show the behavior of the large
primes of r1a0 and r2a0. In Figure 4.7, the simulation is given by the lower line around
position 90 000. In Figure 4.8, in the graph on the left-hand side the simulation of q1

is given by the upper line around position 60 000 and in the graph on the right-hand
side the simulation of q2 is given by the lower line around position 90 000.

position
0 20,000 40,000 60,000 80,000 100,000

index
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1.5#107

2#107

2.5#107

Figure 4.7: Comparing original and simulated data r1a0
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Figure 4.8: Comparing original and simulated data r2a0 (q1 left, q2 right)
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We give the oversquareness results of some experiments in Table 4.16. The simu-
lations are based on 0.1% of the original data.

Table 4.16: Oversquareness 13,220+ (line sieving)

# rel. before s.r. Or S (%) Or O (%) relative diff. (%)
32M 97.50 100.75 −3.23
33M 100.61 103.65 −2.93
48 387 564 132.80 135.64 −2.09

To see if the models in Case I work as well for Kleinjung’s lattice siever, we
repeat the sieving for 13,220+ with Kleinjung’s lattice siever with F = 30M and
L = 229 ≈ 537M and the special primes between 30M and 35M. As before, we give
the graphs of r1a0 and r2a0 (Figures 4.9 and 4.10). The lines of the simulated data
are in the same position as in Figures 4.7 and 4.8.

position
0 20,000 40,000 60,000 80,000 100,000

index

5#106

1#107

1.5#107

2#107

2.5#107

Figure 4.9: Comparing original and simulated data r1a0
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Figure 4.10: Comparing original and simulated data r2a0 (q1 left, q2 right)

The results, based on 0.1% of the data, are given in Table 4.17. Note that the
complete data set is smaller than the corresponding data set of line sieving, as we
used a better estimate of the sieve area, required to factor the number.

Table 4.17: Oversquareness 13,220+ (lattice sieving)

# rel. before s.r. Or S (%) Or O (%) relative diff. (%)
32M 98.45 100.17 −1.72
33M 101.51 103.15 −1.59
36 526 526 110.86 112.31 −1.29

Again, the graphs and oversquareness of the two original data sets show good
resemblance.

Our observation that the same model can be used both for line sieving and lattice
sieving having the same sieving bounds F and L may be explained as follows. In
lattice sieving, the special primes are always chosen in an interval [F, F ′], where
(F ′ − F )/(L − F ) is small. For example, for 13, 220+ we have (F ′ − F )/(L − F ) =
(35M−30M)/(229−30M) ≈ 0.01. This means that in lattice sieving the large primes
occur in about the same interval as in line sieving.

4.5 Which case to choose

As we found that the models for simulating the large primes seem to depend largely
on the chosen sieving bounds, we should be able to tell which model to use, given
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a number to factor and the sieving parameters. We start with an overview of the
experiments so far (Table 4.18), where we focus on the used sieving bounds and the
corresponding model we used for the simulation. If there are two values for F , it
should be read as Frat / Falg, else both sides use the same factorbase bound. For the
convenience of the reader, we give as well the ratio of F and L as a percentage.

Table 4.18: Sieving bounds and corresponding case

number F L L/F line / lattice Case
13, 220+ 30M 400M 13.33 line I
26, 142+ 30M 250M 8.33 line I
19, 183− 30M 250M 8.33 line I
66, 129+ 35M 300M 8.57 line I
80, 123− 55M 450M 8.18 line I
7, 333− 16.78M 250M 14.90 lattice I
13, 220+ 30M 536.87M 17.90 line I
13, 220+ 30M 536.87M 17.90 lattice I

B449 4M / 9M 1073.74M 268.44 / 119.30 line II
B449 4M / 9M 1073.74M 268.44 / 119.30 lattice II
B454 5M / 10M 4294.97M 858.99 / 429.50 lattice II

For the Case II experiments, we had a much smaller factorbase bound and a larger
large prime bound than for the Case I experiments. To see the influence of taking only
a larger large prime bound, we looked at the line sieve data set of another number,
viz. 12, 287+ with Frat = 90M, Falg = 300M, and L = 1070M. If we look at the
graphs (Figures 4.11 and 4.12) for r1a0, r0a1, r2a0, and r0a2, we see a behavior that
resembles Case I. Note that we plot large primes of both r2a0 and r0a2 in one graph.
In Figure 4.12, q1 is given by the upper line and q2 by the lower line.
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Figure 4.11: Original data of r1a0 and r0a1
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Figure 4.12: Original data of r2a0 and r0a2

The simulation of the complete line sieve data set confirms the resemblance of
Case I, as we get almost the same oversquareness (Table 4.19).
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Table 4.19: Experiment 12,287+ (line sieving)

GNFS 12,287+ O 12,287+ S
# relations before s.r. 91 159 660 91 159 660
nr 58 261 730 58 794 418
nl 32 318 386 32 284 786
Or (%) 108.40 109.46

Table 4.18, combined with the simulation of the data set of 12, 287+ by using the
models in Case I, suggests that varying the factorbase bound has a larger influence on
which model to prefer than varying the large prime bound. Based on the experiments
we did so far, a large prime bound that is at most 20 times the factorbase bound
requires the models of Case I for the simulation, whereas a large prime bound that is
at least 100 times the factorbase bound requires the models of Case II. By making a
graph of the large primes of r1a0 and r2a0 in the sieving test, we decide which model
to use.

4.6 Additional experiments

In Section 4.2 we have presented a method for predicting the sieving effort for the
number field sieve. Here we look at some of the details of that method. In Subsection
4.6.1 we study the influence of the size of the sample sieving test on the average of
the indices, hence on the quality of the simulation. We continue in Subsection 4.6.2
with determining the optimal size of the sieve area and computing the corresponding
expected total sieving time.

We look in Subsection 4.6.3 at the number of useful relations compared with the
total number of relations. Dodson and Lenstra describe the growth of useful relations
as explosive [17], whereas we observe that a more gradual growth is also possible, if the
larger factorbases required are feasible, and would lead to a faster overall factorization.
We end this section with studying the influence of the amount of oversquareness on
the resulting matrix size in Subsection 4.6.4.

4.6.1 Size of the sample sieve test

We found empirically that if we have 0.1% of the data set available, our predictions
of the sieving effort are satisfactory. However, a lower percentage sometimes worked
as well. Recall that we used the small data set for (among others) computing the
average of the indices. So we have to answer the following question: how large should
a randomly chosen subset be in order that the average value of the subset is sufficiently
close to the average of the complete set. For this we can use the so-called law of
large numbers (cf. [16], Ch. 13):
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Theorem 8 If X̄n is the average of n independent random variables with expectation
µ and variance σ2, then for any ε > 0:

lim
n→∞

P(|X̄n − µ| > ε) = 0.

Here, P denotes the probability. Theorem 12 can be proved with the help of Cheby-
shev’s inequality, which states:

for an arbitrary random variable Y and any ε > 0:

P(|Y − E[Y ]| ≥ ε) ≤ 1

ε2
Var(Y ).

As usual, E[Y ] is the expectation of Y and Var(Y ) is the variance of Y . Apply this
inequality with Y = X̄n, E[X̄n] = µ and Var(X̄n) = σ2/n. This leads to

P(|X̄n − µ| > ε) ≤ σ2

nε2
. (4.6)

By letting n tend to ∞, we get the law of large numbers. A consequence of the law of
large numbers concerns the variance of a subset. We have with very high probability
that s2

n → σ2 as n → ∞, where s2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 is the variance of the

subset [16]; s2
n is an unbiased estimator of σ2, i.e., E[s2

n] = σ2. If the variance of the
complete data set is not known, we will use s2

n, as this is the best possible estimation.
Depending on the extent to which we want to approximate the average we can

compute n by using (4.6). To see which percentage deviation of the average is accept-
able (which will be expressed by ε in (4.6)), we performed some experiments with a
fixed average for r1a0 in case of 13, 220+ with F = 30M and L = 400M. The complete
data set has 2 501 147 relations in r1a0 with an average index of 8.161 × 106. After
removing singletons we have 432 118 relations and 206 162 large primes, which has
a ratio of 2.096. In the seven experiments referred to in Table 4.20 we generated
2 501 147 relations with the given average and the exponential distribution GI(x),

GI(x) = iF − a′ log
(

1 − x
(

1 − e
iF −iL

a′

))

;

subsequently we removed the singletons and computed the ratio. The first row refers
to the simulation with the average of the original data set. The percentages given in
the next rows indicate the deviation of the average. Here s.r. stands for singleton
removal and l.p. for large primes.
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Table 4.20: Average of r1a0 and simulation

average # rel. after s.r. # l.p. after s.r. ratio
8.161 × 106 411 809 198 246 2.077

7.345 × 106 (−10%) 433 180 207 862 2.084
7.753 × 106 (−5%) 421 930 202 896 2.080
8.080 × 106 (−1%) 412 307 198 436, 2.078
8.243 × 106 (1%) 408 460 196 819 2.075
8.569 × 106 (5%) 401 088 193 368 2.074
8.977 × 106 (10%) 393 395 189 833 2.072

Due to the small deviation between the exponential model and original data, we
see in Table 4.20 that the simulation with the average of the complete data set gives a
deviation of almost 5% in the number of relations and large primes, but the ratio stays
within 1% of the ratio of the original data. This indicates that a small deviation of
the average has no major consequences for the oversquareness. The factorbase bound
and the large prime bound are the same for all types of relations, and we expect the
same behavior for the other types, since either they have the same exponential dis-
tribution or a simpler linear distribution. This is in compliance with our observation
that our method for simulating relations is a robust method; the deviation has to be
large in order to notice it. So we took this case to work out the details, as we expect
the same behavior for other data sets.

We need to know the variance σ2 = 1
n

∑

1≤i≤n x2
i − µ2, in order to apply Cheby-

shev’s inequality. For the complete set r1a0, we have σ2 ≈ 2.938 × 1013. If we want
the average to be correct up to 5% (ε = 0.05µ) in 95% of the cases (P = 0.05), we

solve 0.05 = 2.938×1013

(0.05µ)2n , where µ = 8.161 × 106, which gives n = 3529. If we enlarge

the deviation to 10% of the average (ε = 0.1µ, P = 0.05), we get n = 882. In the
experiment with 0.1% data referred to in Table 4.3, we have the following partitioning
in the small data set from the sieving test (Table 4.21):

Table 4.21: Number of relations in sieving test

type #
r0a1 5859
r0a2 5859
r1a0 2490
r1a1 7542
r1a2 7833
r2a0 837
r2a1 2560
r2a2 2535
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We see that the smallest number in Table 4.21, 837, agrees with our computation
n = 882 when we accept a deviation to 10% of the average in 95% of the cases. This
indicates that the relation type that occurs the least is determining the size of the
sieving test. It also implies that the other types will be better approximated. In case
one type relation occurs much less frequently, we might accept an even larger deviation
for this type, as this type relation might have a smaller influence on the oversquareness
of the complete data set. However, this needs to be investigated further, because it
might also be possible that although a certain type relation occurs rarely, it might
still be important in the singleton removal phase.

In the computations above we used the average and variance of the complete data
set, but these are unknown when we start with a new number. However, we can
perform a small sieving test and use the average and variance of this test, assuming
that these are representative for the complete data set. By applying Chebyshev’s
inequality, we get the minimum size of a good sieving test. We demonstrate this
by repeating the computation for 13, 220+ for approximately 0.01% of the data (by
sieving 0.01% of the lines). We computed for all types of relations the average,
variance and the least number of relations that allows a deviation of the average up
to 10% in 95% of the cases. In Tables 4.22–4.24, the numbers between brackets after
the type of relation indicates the numbers of relations in the sieving test.

Table 4.22: Average

type rational, p1 rational, p2 algebraic, p1 algebraic, p2

r0a1 (597) 8.566 × 106

r0a2 (639) 1.110 × 107 5.048 × 106

r1a0 (232) 8.323 × 106

r1a1 (770) 8.069 × 106 8.466 × 106

r1a2 (743) 8.176 × 106 1.159 × 107 5.131 × 106

r2a0 (88) 1.017 × 107 4.553 × 106

r2a1 (231) 1.089 × 107 5.346 × 106 7.823 × 106

r2a2 (254) 1.090 × 107 4.963 × 106 1.132 × 107 5.232 × 106

Table 4.23: Variance

type rational, p1 rational, p2 algebraic, p1 algebraic, p2

r0a1 (597) 3.112 1013

r0a2 (639) 2.785 1013 1.028 1013

r1a0 (232) 2.995 1013

r1a1 (770) 2.903 1013 3.168 1013

r1a2 (743) 2.914 1013 2.806 1013 1.069 1013

r2a0 (88) 3.157 1013 1.064 1013

r2a1 (231) 2.853 1013 1.153 1013 2.984 1013

r2a2 (254) 2.857 1013 1.024 1013 2.740 1013 1.078 1013
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Table 4.24: Required number of relations

type rational, p1 rational, p2 algebraic, p1 algebraic, p2

r0a1 (597) 848
r0a2 (639) 452 807
r1a0 (232) 865
r1a1 (770) 892 884
r1a2 (743) 872 418 812
r2a0 (88) 611 1027
r2a1 (231) 481 807 975
r2a2 (254) 481 832 427 788

The highest number of necessary relations is 1027 for r2a0 (for each type of relation
we select the highest number); as this type had only 88 relations in the sieving test,
this is not very accurate. If we look at r0a2, which has the same behavior of the large
primes as r2a0, and occurred more frequently, we only need 807 relations. Therefore,
if we allow a deviation of the average up to 10% in 95% of the cases, we should
enlarge the sieving test in order to get at least 800 relations of r2a0. This agrees with
the number 837 in Table 4.21, which was found after sieving 0.1% of the data. This
larger sieving test will give a better approximation of the averages and the behavior
of the large primes. Consequently, we will get a better approximation of the total
number of relations needed for factoring the given number.

4.6.2 Expected sieving area and sieving time

The same small sieving test we advised for estimating the size of the sample sieving
test can be used for estimating the size of the sieving area. If the area is too small,
we will not get enough relations and if it is too large, we will spend too much time
on parts of the sieving area with a relative low yield. This affects especially line
sieving; Figure 3.1 of [18] shows that the yield around the origin is the highest. We
assume a rectangular sieving area with base A and height B, where the ratio A/B is
prescribed by the choice of the polynomials. We increase (or decrease) both, to keep
the suggested ratio of A/B. Once the area is estimated, we give an estimate of the
total sieving time, based on the running time of the sieving test.

We concentrate on line sieving in this subsection. For lattice sieving a similar
approach will work, if one selects the special primes in the sieving test carefully to
represent the entire interval of special primes. Furthermore, we assume that we have
already chosen the sieving bounds and that we only have to adjust the sieving area.

A simulation based on a small sieving test will give a rough approximation of the
number of relations necessary for factoring the given number, but this estimate need
not be close to the expected number of relations in the entire sieving area. We use
the same small sieving test to decide the size of the next sieving test (cf. Subsection
4.6.1) and we get an estimate for the number of relations we will get on the entire
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sieving area (just multiply the number of relations with the fraction points in entire
area / points in sieving test). If this number of estimated relations in the sieving
area agrees with the number of necessary relations, we only have to sieve more points
in the next sieving test, else we should adjust the sieving area before starting a new
sieving test.

To give an example of correcting the sieving area, we start for 19, 183− with the
following initial area: A = [−7.5M, 7.5M] and B = [1, 3 011 000]. The polynomials
and sieving parameters are the same as in Section 4.4. A sieving test used the lines
with b = i × 30011, i = 1, 2, . . . , 100, which yielded 3540 relations. Based on these
relations, we simulated relations and computed the oversquareness after removing
singletons. A set of 18M relations gave an oversquareness of 95.40%, and a set of
20M relations gave an oversquareness of 105.87%. As we only get a rough impression
of the relations (3540 relations represent only 0.0177% of the possible 20M relations
we should collect), we start with an estimate of 20M necessary relations.

The yield of the sieving test is 3540, which should be viewed as an unknown value
in the interval (3540 −

√
3540, 3540 +

√
3540). This is based on the assumption that

the yield of a sieving test follows a Poisson distribution and that we are within one
standard deviation of the mean [34]. We expect that the yield of the entire area is
104.45M to 108.02M relations as we multiply the yield of the sieving test with 30011.
Our first conclusion is that our area is much too large, as we expect to need about
20M relations.

Empirically we found that if we need a fraction α of the number of expected re-
lations in the sieving area, we should multiply both A and B with (approximately)
α. Therefore we multiply both A and B by 1

5 in the new sieving test. If we want to
work efficiently, we can simply take the relations from the first test that were found
in the area [−1.5M, 1.5M]× [1, 600 000]. There are 704 relations fulfilling this require-
ment, thus we expect 20.33M to 21.92M relations in this area, which satisfies the first
estimate of 20M relations. Based on only 704 relations, we repeated the simulation
of 18M relations and 20M relations, which gave an oversquareness of 103.06% and
113.13%, respectively. The percentages changed, because the distribution of the large
primes changed slightly, but the average in the model takes care of these changes.

We expect that our sieve area has the proper size, so we continue with a refinement
of the sieving test. If we have bad luck, it will turn out that we have to change the
area once more. To give an idea how good the prediction of 20M necessary relations
is, we give in Table 4.25 of both sieving tests (of 3540 and 704 relations, named test
1 and test 2, respectively) the number of relations found and the needed number to
get a good approximation of the average with ε = 0.1µ and P = 0.05, as explained in
the previous subsection.
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Table 4.25: Number of relations in sieving test and needed number

type # in test 1 needed # in test 2 needed
r0a1 539 599 112 539
r0a2 380 574 62 487
r1a0 375 584 86 594
r1a1 751 601 144 572
r1a2 494 651 79 654
r2a0 176 499 41 453
r2a1 326 551 71 581
r2a2 226 555 31 473

The two columns with the number of needed relations in the sieving test are quite
close. As we need to refine the second test, we look for the highest quotient needed
number / number in test 2 . Here, we should sieve 473/31 ≈ 15 times as many points
to get a good sieving test (test 3). We choose the prime 1999, which is closest to
the quotient 30011/15 and we sieve the lines b = i × 1999, i = 1, 2, . . . , 300, over
the complete width of 3M. This gives 9986 relations, so we expect 19.76M to 20.16M
relations in the entire area. The analysis of the relations shows the following partition.

Table 4.26: Number of relations in sieving test and needed number

type # in test 3 needed
r0a1 1486 539
r0a2 864 487
r1a0 1322 594
r1a1 2075 572
r1a2 1283 654
r2a0 570 453
r2a1 1005 581
r2a2 519 473

Compared with the number of needed relations, we see that we have enough rela-
tions of each type.

If we simulate 20M relations, we get an oversquareness of 109.19%. In Subsection
4.4.1 we got an oversquareness of 99.22% after simulating 20M relations, but there
the sieving area was larger, which leads to larger polynomial values and probably a
different distribution as the average values might change. To see if our new simula-
tion gives the correct result, we took the original data of Subsection 4.4.1, extracted
the relations located in the smaller area and removed singletons. There were 19.79M
relations and they gave an oversquareness of 107.35%. We simulated exactly the
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same amount of relations and this gave an oversquareness of 108.17%, which gives
a relative difference of 0.76%. So 20M relations are indeed sufficient to factor the
number. Even 19M relations are enough, as 19M relations (based on the same test of
9986 relations) gave already an oversquareness of 103.61%. Thus we can reduce the
area even a bit further.

Finally we are able to give the expected sieving time. The sieving test found 9986
relations in 143.13 seconds. If we sieve the entire area ([−1.5M, 1.5M] × [1, 600 000]),
we expect to find approximately 20M relations in 2000× 143.13/ 3600 = 79.52 hours,
when we sieve on the same machine. This is much less than the 154 hours in Table
4.9. There are two reasons for the difference: in Table 4.9 the area was 1.36 times
larger, and the sieving time grows faster than linearly with the size of the sieving area
and secondly we used many machines with different CPU speeds for the sieving.

4.6.3 Growth behavior of useful relations

In this subsection we look at the number of useful relations after singleton removal, as
a function of the number of generated relations. For MPQS with three large primes,
the growth is described as a kind of phase transition [30]. For NFS with at most two
large primes on both the rational and algebraic side, the phenomenon of a sudden
explosion (as defined in [17]) in the number of useful relations is described in [17]. In
[19], the situation for hyperelliptic index calculus with two large primes is described,
with the analysis of a simplified algorithm and the corresponding large primes graph.
In this subsection, we investigate the interesting explosion phenomenon in NFS and
demonstrate by some experiments that, by reducing the ratio of the large prime bound
L and the factorbase bound F , the explosion may be avoided and the sieving time
may be reduced.

We start with the following graph (Figure 4.13), which shows the growth behavior
for 13, 220+, with horizontally the number of generated relations and vertically the
number of relations after singleton removal (s.r.). It is hard to see, but the graph
consists of two lines, one for the original data and one for the simulation.

# rel. before s.r.
5#106 1#107 1.5#107 2#107 2.5#107 3#107 3.5#107

# rel. after s.r. 

2#106

4#106

6#106

8#106

1#107

1.2#107

1.4#107

1.6#107

1.8#107

2#107

Figure 4.13: Growth behavior of useful relations
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We notice the absence of an explosion or something that indicates a sudden change
in the number of useful relations. Table 4.27, where we compare the data of 13, 220+
with the data in Table 3 of [17], gives the ratios of the different types of relations (with
respect to the total number of relations used to factor the number). For completeness,
13, 220+ has 117 digits and the number in Table 3 of [17] has 116 digits.

Table 4.27: Ratios of the relations

type [17], Table 3 (%) 13,220+(%)
r0a0 0.13 5.13
r0a1 1.46 15.43
r0a2 3.64 15.92
r1a0 1.02 6.68
r1a1 10.97 20.19
r1a2 27.26 20.79
r2a0 1.47 2.23
r2a1 15.81 6.72
r2a2 38.25 6.91

We see that the ratios are very different, as well as the used sieving bounds. For
13, 220+ we had F = 30M (1857860 primes in the factorbase) and L = 400M. Dodson
and Lenstra used for the data in [17], Table 3 #FBrat = 100 001, #FBalg = 400 001,
and L = 230 ≈ 1074M. Note that our factorbase bound is much larger and our large
primes bound is 2.68 times smaller.

Motivated by this observation we performed sieving tests with different combina-
tions of F and L, combined with the simulation of relations. We kept L constant at
400M and decreased F from 30M to 20M, 10M, 5M, and 3M. The growth behavior is
indicated in Figure 4.14, where the line leftmost corresponds to F=30M and all lines
are in decreasing order of the factorbase bound, so that the rightmost line corresponds
with F=3M. We see the explosive behavior for F=3M and F=5M. The ratios show
the same behavior as the data set in [17], so more than 80% of the relations has
three and four large primes in total. It is likely that it is much harder to combine
these relations into cycles when there are not so many relations to choose from, as
all three or four large primes have to match with primes in other relations. Once
there are many relations, the matching becomes easier. If, on the other hand, a data
set has more relations with only one or two large primes, the matching is easier and
the growth of the useful relations is a more gradual growth. To see which behavior
we should prefer in terms of shortest sieving time, we first show a graph with the
oversquareness Or (Figure 4.15). The lines (at height Or = 30) are in the same order
as in Figure 4.14.
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# rel. before s.r.
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Figure 4.14: Growth behavior of the number of relations after singleton removal for F =

30M, 20M, 10M, 5M, and 3M
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Figure 4.15: Growth behavior of the oversquareness for F = 30M, 20M, 10M, 5M, and 3M

If we look at 100% oversquareness, we see that as a function of the number of
relations the line with F = 20M reaches this point first, followed by F = 10M,
F = 30M, F = 5M, and F = 3M. This does not automatically imply that F = 20M
gives the shortest sieving time. In Table 4.28 we give the number of relations needed
to reach Or = 100 and the expected sieving time, both based on a short sieving test.
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Table 4.28: Expected sieving time

F # rel. before s.r. expected sieving time
3M 27.8M 312.8h
5M 27.0M 196.0h
10M 26.3M 126.5h
20M 26.1M 109.4h
30M 26.5M 107.2h

Although F = 20M needs the least amount of relations, it does not have the
smallest sieving time. The most important influence on the shortest sieving time
is the size of the sieving area, which was the smallest for F = 30M in this set of
experiments. Another issue is the amount of cofactors (the composite factor of a
polynomial value that is left after sieving) one needs to factor, as this takes some
time as well.

Based on the data we show here and experiments on a few other data sets, we
observe that the occurrence of an explosion in the number of useful relations depends
largely on the factorbase bound and the large prime bound, as these bounds influence
the ratios in which the different types of relations occur. As the two bounds move
further apart, the probability of an explosive growth increases.

One of the reasons for still choosing a relatively small factorbase bound could be
the physical limitations of the machine at hand. One of the authors of [17] told me
that this was the case for their experiments and they tried to compensate it with
L. With new record factorizations it is likely that the machine is the limiting factor
again.

4.6.4 Oversquareness and matrix size

Here we study the relation between oversquareness of a set of relations and the result-
ing matrix size. More precisely, we want to know what is the optimal oversquareness.
To get a good approximation of the size of the matrix, we perform the following two
steps on subsets of the complete data set:

1. filter 1: remove all singletons, focus on primes larger than F .

2. filter 2: merge relations with mergelevel 9, focus on primes larger than F .

As explained in the thesis of Cavallar ([9], p. 54), mergelevel 9 indicates that at most
9-way merges are allowed to be executed. In the extreme case, if a prime ideal I
occurs an odd number of times in 9 relations, we can choose 8 independent relation
pairs out of the possible

(

9
2

)

pairs. In each pair, the prime ideal I occurs an even
number of times, hence can be part of a relation set to form a square. All details of
the possible filter parameters and how they influence the filter algorithm can be found
in Chapter 3 of [9]. Here we restrict our attention to the parameters which vary in
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the two filter steps.
The relations left after the second filter determine the size of the matrix, as they

represent the rows of the matrix. In order to get a fair comparison between the differ-
ent subsets, we kept the parameters during the first and second filter fixed. Filter 1
has an extra parameter, keep. In the filter step we delete relations if the gap between
the number of relations and the number of large primes after singleton removal is
larger than the number keep which results in decreasing the oversquareness. The
relations that are removed are part of so-called cliques, which can be seen as relations
that stick together, i.e., if one of them is removed, the others will be removed as well
as they become singletons. Using a suitable metric on the cliques, the heavy cliques
are removed. In order to guarantee that the number of relations exceeds the num-
ber of large primes plus the number of primes in the factorbase, keep has to exceed
the number of primes in the factorbase. In practice, keep is set at approximately
4
3 × (π(Frat) + π(Falg)), in order to have more freedom in choosing relations in the
next filter.

For the second step, there are two other important parameters. First, we set
maxpass at 10. This fixes the number of shrinkage passes, during which all large
primes are checked and possibly merged. Second, we set maxdiscard at approx-
imately 1

3 × (π(Frat) + π(Falg)), as this is the number of relations we can loose,
without getting into trouble with covering primes in the factorbase, i.e., we aim at an
oversquareness of 100% after this filter.

For the relation between oversquareness and matrix size the weight of the matrix
is relevant as well. The weight is defined as the number of 1’s in the matrix. If the
matrix is heavy, the linear algebra (we use block Lanczos) will need more memory and
this may not fit on a given computer. Furthermore, the running time is linear in the
weight of the matrix. The weight is influenced by the initial number of relations (how
much freedom in choosing relations is available) and the filter strategies. It is difficult
to optimize all the parameters to minimize the factorization time. Here, as a first
approach, we look at the size of the resulting matrix as we vary the oversquareness.

To get a feeling for the relationship between oversquareness and matrix size, we
start with the lattice sieve data set of 7, 333− with F = 16 777 215 and L = 250M.
The complete set consists of 25 112 543 relations and has Or = 136.64. For filter 1
we set keep = 3 000 000. We give in Table 4.29 for different subsets the size of the
subset, the oversquareness of the subset (after removing singletons, without the use of
keep), the number of relations after filter 1, the number of relations after filter 2 and
the number of large primes after filter 2, with between brackets the oversquareness
after filter 2.
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Table 4.29: Oversquareness and matrix size (7, 333−)

subset Or # rel. filter 1 # rel. filter 2 # l.p. filter 2 (Or)
19M 109.52 9 424 147 4 015 131 1 148 335 (121.49)
21M 119.32 7 501 878 3 971 660 963 546 (127.30)
23M 128.13 6 721 073 3 860 995 851 142 (128.38)
25M 136.20 6 294 741 3 765 882 758 009 (129.21)

As there is still a difference of about 3M between the number of relations and
the number of large primes (which is reflected in the large numbers of oversquareness
given in the last column), we add an extra parameter to filter 2. We set maxrels
at 4.0 instead of the standard 10.0, so a relation set has a maximum weight of 4.0.
Relation sets that are too heavy, will be removed. This value of maxrels is much
lower than what we normally choose, but now we only look at the primes above F . In
Table 4.30, we give the size of the subset, the number of shrinkage passes (how often
the file is read after removing part of the relations and start again with combining
relations), the number of relations after filter 2 and the number of large primes after
filter 2.

Table 4.30: Oversquareness and matrix size (7, 333−)

subset # passes # rel. filter 2 # l.p. filter 2 (Or)
19M 8 3 538 379 1 290 950 (102.64)
21M 10 2 969 426 748 917 (102.21)
23M 10 2 773 822 646 840 (101.08)
25M 10 3 180 923 669 176 (112.57)

The last entry in Table 4.30 is higher than expected, but this is due to the fact
that maxdiscard is not reached after 10 passes, i.e. we can still remove relations
and keep enough excess to cover the primes in the factorbase.

If we look at the number of relations after filter 1 (in Table 4.29), we see a non-
linear decrease, where we gain the most when we increase the initial subset from 19M
to 21M relations. The same effect is visible in Table 4.30, as the number of relations
after filter 2 decreases from 3 538 379 relations to 2 969 426 relations when the size of
the initial subset increases with two million relations to 21M relations.

To see if this behavior occurs more often, we look at another data set. We take the
line sieving data set of 13, 220+ with F = 30M and L = 229 ≈ 537M. The complete
data set has 48 387 564 relations and an oversquareness of 132.80%. We set keep
at 5 000 000, and maxrels at 4.0. In Table 4.31 we give the size of the subset, the
oversquareness of this subset after removing singletons, the number of relations after
filter 1, the number of relations after filter 2 with between brackets the number of
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passes if this differs from 10, and the number of large primes after filter 2, with the
oversquareness after filter 2 between brackets.

Table 4.31: Oversquareness and matrix size (13, 220+)

subset Or # rel. filter 1 # rel. filter 2 # l.p. filter 2 (Or)
34M 106.29 12 226 490 5 024 040 1 303 589 (100.39)
36M 111.29 12 894 358 4 122 961 (7) 403 999 (100.44)
38M 115.83 11 056 646 3 784 399 56 501 (100.72)
40M 120.04 10 076 131 4 064 445 58 911 (108.10)
42M 124.00 9 410 076 4 387 683 68 784 (116.39)
44M 127.78 8 919 825 4 591 032 64 559 (121.92)
46M 131.41 8 478 465 4 703 480 65 659 (124.87)
48M 134.94 8 177 874 4 865 822 59 813 (129.38)

For the subset of 34M relations, we had to adjust maxdiscard in filter 2, as the
difference between the number of relations and the number of large primes after filter
1 was only 4.4M instead of the required 5M (by keep).

In the column of the number of relations after filter 1 (Table 4.31), we see the
highest decrease when the subset increases from 36M to 38M relations. However, if
we look at the increase in oversquareness after filter 2, we see the highest increase
from 100.72% to 108.10% to 116.39%, which coincides with a subset of about 40M
relations. Since the total sieving time increases faster than linearly, it is not useful to
go beyond 40 M relations.

Note that the subset of 40M relations has an oversquareness of 120.04% after
removing only singletons, whereas the subset of 21M relations of 7, 333− (which seems
to be optimal for this number in terms of matrix size vs. number of relations) has
an oversquareness of 119.32% after removing singletons. It may well be that an
oversquareness of about 120% after removing singletons is a good estimate for a
relatively small matrix. As we ignored the weight of the matrix, this is only a rough
indication of what a good oversquareness after removing singletons is for optimizing
the running time of the sieving step and the linear algebra step together.



Chapter 5

Conclusions and Suggestions

for Future Research

Throughout this thesis we have worked on different ways to obtain a good estimate
of the sieving time in advance. We started with a theoretical approach in Chapter
2 and compared it with practical results in Chapter 3. This showed that there was
a discrepancy between theoretical and practical results. In Chapter 4 we gave a
practical approach for estimating the sieving time of NFS and the resulting estimates
for the sieving time are good. In this chapter we summarize the main results and give
conclusions, as well as suggestions for further research.

5.1 Smooth and semismooth numbers

In Chapter 2 we focused on what is theoretically known about the expected number
of smooth and semismooth numbers. Our main contribution is stated in Theorem 7
(Subsection 2.4.2): it gives the main term, the second order term and error term of
the asymptotic expansion in powers of 1/ log x, for x → ∞, of the expected number of
k-semismooth numbers ≤ x (k = 1, 2, . . .) with possibly different upper bounds on the
large primes where the main and second order term are given explicitly as functions
of the Dickman ρ function.

In Chapter 3 we compared our theoretical results with practical data, obtained
during the sieving step of the factoring algorithms MPQS and NFS. One of the conclu-
sions is that for numbers of approximately 100 decimal digits, the second order term
adds about 10% to the main term. In general, this is a considerable contribution that
should be taken into account. However, in our experiments we see sometimes rela-
tively big differences between theory and practice. Possible causes might depend on
the use of asymptotic formulas, the implementation of MPQS and NFS at hand, and
a too crude estimate of the polynomial values. A second conclusion is that it may be
beneficial to use different upper bounds on the two large primes of 2-semismooth num-
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bers in MPQS. We compared the timings by keeping the product L1L2 constant and
only allow 2-semismooth relations with one prime ≤ L1 and the other prime ≤ L2.
An improvement of our approach might be to keep as well 2-semismooth numbers
with both large primes between L1 and L2 as long as their product ≤ L1L2. These
additional relations will influence the optimal values of L1 and L2, which should be
investigated further. In order to be able to choose optimal bounds, we need to know
how to predict the sieving time of MPQS. This is due to the fact that different bounds
lead to different frequencies of (semi)smooth numbers. The rate at which the relations
are found differs as well per type of relation, thus we need to find out in advance how
many relations are necessary to factor the number at hand. As far as we know, there
is no good way of predicting the number of necessary relations [28] before the sieving
is started, hence no good estimate of the sieving time. It might be possible to adjust
the developed method, i.e., simulating the large primes, for the Number Field Sieve.
The efficacy of this treatment is left for further research.

As some factorers already have started to use 3-semismooth numbers, it would
be useful to extend our experiments from 1- and 2-semismooth numbers to 3- and
4-semismooth numbers: we expect the generalization to be straightforward, but the
implementation may be cumbersome. Another object of study is the optimization
of the integration regions for computing the expected number of relations, as we no-
ticed in Section 3.4 a big improvement by dividing the sieving region into only eight
subregions.

5.2 Simulating the sieving

In Chapter 4 we presented a method for predicting the number of relations needed
for factoring a given number with NFS, and, subsequently, the required sieving time.
This method is based on a short sieving test; from the relations found during this test
we obtain a good model of the distribution of the large primes in the relations. Next
we cheaply simulate all the relations needed for the factorization, as we use easily
computable numbers with the same distribution as prescribed by our model.

Our experiments suggest us to use two different models to simulate data sets, Case
I and Case II. If the large prime bound is at most 20 times the factorbase bound,
Case I seems to be preferred. If the large prime bound is at least 100 times the
factorbase bound, Case II seems to be the better choice. As extra support for making
the proper choice, graphs of the large primes of the different types of relations can be
very helpful, see for instance Figures 4.1, 4.2, 4.3 and 4.4. The choice of the correct
model seems to be independent of the implementation of line sieving or lattice sieving.

The simulation of the relations combined with singleton removal shows that our
estimation of the oversquareness is within 2 % of the real data in Case I; in Case II
it is approximately 5 %. By our simulation we cheaply obtain a good estimate for
the number of necessary relations for factoring a given number on a given computer,
and hence of the actual computing time. Therefore, this method is a useful tool for
optimizing parameters in the number field sieve.
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Based on a small sieving test, we choose both the size of the next (proper) sieving
test and the size of the sieving area, as a first simulation gives an indication of the
necessary number of relations for factoring the given number. If the sieve area needs
a big adjustment, a second small sieving test on this new area is helpful to check
correctness, before starting with the proper sieving test.

We compared different combinations of factorbase bounds and large prime bounds
with the number of relations after singleton removal. This showed that different types
of growth behavior of the number of relations after singleton removal are possible, but
for line sieving a gradual growth seemed to lead to less sieving time than an explosive
growth. Therefore the factorbase bound should not be chosen too small.

We also looked at the influence of the oversquareness (ratio of the number of
relations to the number of large primes, cf. Section 4.3) on the size of the resulting
matrix. There are many different filter strategies to get from the initial data set to a
smaller subset, which makes it difficult to perform a good analysis. We found that, as
a starting point, an oversquareness of about 120% gives a much smaller matrix than
100% oversquareness. A larger percentage oversquareness will decrease the matrix
further, but the decrease becomes less and it takes considerably more time to generate
the extra relations.

It is desirable to run more experiments with both line sieving and lattice sieving,
while varying the size of N , F , and L, in order to see if more models are required
for simulating the various data sets and which model is the best in a given situation.
Once this is known, we can use ideas from statistics to choose the correct model,
given the relations of a sieving test. With these extra data sets, we will be able to get
a better understanding of the relation between oversquareness and matrix size. This
will get us closer to the goal of developing a tool to automatically determine bounds
F and L that optimize the overall effort for relation collection and matrix processing
with respect to the available resources.

As mentioned in Section 5.1 the experiments should include cases with three large
primes as well. Especially with the present record factorization attempt (RSA768),
relations with 3 large primes on each side are collected. This data set will provide a
good test case for these new models, whose development is left for future research.

Another subject for further research is the matching behavior of the large primes.
We found a reason for an explosive growth behavior (cf. Subsection 4.6.3), yet we do
not know exactly how the number of relations after singleton removal grows and this
remains subject of further research.
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Samenvatting

Het ontbinden van een getal in priemfactoren is een eeuwenoud probleem. Het is
mogelijk om van twee gegeven grote getallen snel het product te berekenen, maar in
het algemeen is het lastig om uit een gegeven product van twee grote priemgetallen
de beide priemfactoren te bepalen. Vanwege deze moeilijkheid worden zulke grote
getallen (meestal het product van twee priemgetallen van dezelfde orde van grootte)
gebruikt in het RSA encryptiealgoritme om berichten te versleutelen en veilig te ver-
sturen. Veilig wil zeggen: zonder dat de berichten begrepen of ongemerkt veranderd
kunnen worden door derden. Om te weten welke grootte nog veilig is, wordt onder-
zoek gedaan naar algoritmes die grote getallen ontbinden in priemfactoren.

In dit proefschrift worden twee zulke algoritmes bestudeerd en wel MPQS (Multi-
ple Polynomial Quadratic Sieve) en NFS (Number Field Sieve). In beide algoritmes
worden eerst polynomen gekozen. Vervolgens worden polynoomwaarden ontbonden
in priemfactoren in zoverre ze samengesteld zijn uit priemgetallen kleiner dan een
voorgeschreven grens F . Zulke waarden noemen we gladde getallen. Aanvullend
worden ook bijna-gladde getallen gebruikt. Dit zijn getallen die alle priemfactoren
beneden F hebben met uitzondering van één of twee priemfactoren tussen F en een
hogere grens L. De priemgetallen ≤ F noemen we kleine priemgetallen, die tussen
F en L grote priemgetallen. Deze (bijna-)gladde polynoomwaarden leiden tot zo-
genaamde relaties die bestaan uit paren getallen (x, f(x)) bij MPQS en uit paren
(f1(x, y), f2(x, y)) bij NFS. Dit proces van het verzamelen van geschikte relaties noe-
men we zeven en het is de meest tijdrovende stap van beide algoritmes. Het aantal
grote priemfactoren in bijna-gladde getallen kan worden uitgebreid tot k priemfactoren
tussen F en L, waarbij k een willekeurig natuurlijk getal is. Een andere generalisering
is het gebruik van verschillende bovengrenzen voor de verschillende grote priemfac-
toren in plaats van een vaste bovengrens L.

Aangezien er veel relaties nodig zijn om het getal te kunnen ontbinden, is het een
natuurlijke vraag om uit te zoeken hoeveel getallen onder een gegeven grens (bijna-)
glad zijn. In hoofdstuk 2 geven we een theoretische analyse van het te verwachten aan-
tal (bijna-)gladde getallen. Dit is een uitbreiding van resultaten van, onder anderen,
De Bruijn, Ramaswami, Bach en Peralta, en Lambert. De benaderingen worden
uitgedrukt in een hoofdterm en een restterm of in een hoofdterm, een tweede orde
term en een restterm. In hoofdstuk 3 vergelijken we de theoretische aantallen met de
praktische aantallen, zoals we die tegenkomen bij implementaties van MPQS en NFS.
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We gaan na hoe groot de invloed van de tweede orde term is en hoe groot het voordeel
van het kiezen van verschillende bovengrenzen. Uit de analyses blijkt dat het gebruik
van de theoretisch berekende aantallen nog niet tot een bruikbare schatting van de
benodigde zeeftijd leidt.

Om toch een goede indicatie van de zeeftijd te krijgen, hebben we voor NFS een
nieuwe methode ontwikkeld om de zeeftijd te schatten. Deze methode is gebaseerd
op een korte zeeftest, waarna de dichtheid van de grote priemgetallen in de hiermee
verkregen relaties wordt bepaald. In hoofdstuk 4 wordt een model gepresenteerd
waarmee we in zeer korte tijd veel relaties simuleren, doordat we, in plaats van met
grote priemgetallen, rekenen met getallen die sneller berekenbaar zijn en dezelfde
dichtheid hebben als de grote priemgetallen uit de zeeftest. Met de zo gevonden ge-
simuleerde relaties bepalen we hoeveel relaties nodig zijn om het getal te ontbinden
en met experimenten laten we zien dat hiermee het noodzakelijke aantal relaties tot
op 2% nauwkeurig voorspeld kan worden. Daardoor wordt het mogelijk om de pa-
rameters van NFS te optimaliseren. Omdat het aantal relaties rechtstreeks gekoppeld
is aan de tijd die nodig is voor het zeven, is het mogelijk om na een korte zeeftest de
voor factorisatie benodigde rekentijd nauwkeurig te schatten en zo laag mogelijk te
houden.

We geven ook een tweede model in hoofdstuk 4. Het verschil met het eerste model
is de distributie van de grote priemgetallen in de relaties. Deze distributie hangt
samen met de gebruikte grenzen F en L. De keuze voor het meest geschikte model is
dan ook afhankelijk van F en L.

Een ander aspect is het bepalen van de grootte van de zeeftest. Als de test te
groot is, kost het te veel tijd, maar als de test te klein is, is de voorspelling niet
nauwkeurig. We beginnen dan ook met een kleine zeeftest (0.01% van het zeefgebied)
en door Chebyshev’s ongelijkheid toe te passen op de data uit de zeeftest krijgen we
informatie over hoe groot de zeeftest zou moeten zijn. Ook al is de eerste zeeftest erg
klein, we krijgen met behulp van een simulatie al een eerste schatting van het aantal
relaties dat nodig is. Hiermee kunnen we nagaan of het zeefgebied voldoende groot is.
Met een nieuwe zeeftest van de juiste grootte en een zeefgebied van de goede omvang
krijgen we een goede voorspelling van het aantal relaties dat nodig is om het getal te
factoriseren. En indien nodig wordt het zeefgebied opnieuw aangepast.

Verder kijken we nog naar de toename van het aantal nuttige relaties (niet alle
gevonden relaties zijn bruikbaar) ten opzichte van het aantal gevonden relaties en
naar de omvang van de matrix die in een latere stap van NFS gemaakt wordt. De
omvang hangt samen met het aantal relaties en een toename van het aantal relaties
zorgt voor een kleinere matrix, maar het precieze verband is niet bekend.

In hoofdstuk 5 geven we conclusies en suggesties voor verder onderzoek.
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