

ANCA-associated glomerulonephritis: insights into etiology, pathogenesis, and prognosis

Lind van Wijngaarden, R.A.F. de

Citation

Lind van Wijngaarden, R. A. F. de. (2009, March 12). *ANCA-associated glomerulonephritis : insights into etiology, pathogenesis, and prognosis*. Retrieved from https://hdl.handle.net/1887/13612

Version: Corrected Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13612

Note: To cite this publication please use the final published version (if applicable).

It is the mark of an educated mind to be able to entertain a thought without accepting it.

Aristotle

Chapter 6

Hypotheses on the etiology of ANCA-associated vasculitis: the cause is hidden, but the result is known*

* Publius Ovidius Naso, Metamorphoses; IV: 287

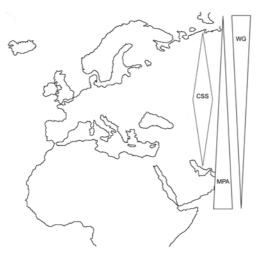
Robert A.F. de Lind van Wijngaarden Leendert van Rijn E. Christiaan Hagen Richard A. Watts Gina Gregorini Jan Willem Cohen Tervaert Alfred D. Mahr John L. Niles Emile de Heer Jan A. Bruijn Ingeborg M. Bajema

Published in Clin J Am Soc Nephrol 2008 Jan;3(1):237-52

Abstract

The first description of what is now known as antineutrophil cytoplasmic antibody (ANCA)-associated necrotizing vasculitis appeared over 140 years ago. Since then, many aspects of the pathogenic pathway have been elucidated, indicating the involvement of ANCA, but why ANCA are produced in the first place remains unknown. Over the years, many hypotheses have emerged addressing the etiology of ANCA production, but no exclusive factor or set of factors can so far be held responsible. We review the most influential hypotheses regarding the causes of ANCA-associated vasculitis with the aim of placing the different hypotheses centered on environmental and genetic influences in an epidemiological background.

Introduction


ANCA-associated necrotizing vasculitis was probably first described in 1866 by Kussmaul and Maier as "polyarteritis nodosa" ¹. It was not until the early 1930s, when the first case of what was later named Wegener's granulomatosis (WG) was described ². The disease was named after Friedrich Wegener, who described it as an entity in 1939 ³. In 1985, antibodies associated with the disease were detected and later became known as antineutrophil cytoplasmic autoantibodies (ANCA) ⁴. WG is a systemic autoimmune disease that can cause damage in various organs. Later on, microscopic polyangiitis (MPA) was distinguished as a separate ANCA-associated vasculitis. The disease-or its immunosuppressive treatment-can cause high levels of morbidity and death, especially in patients with renal involvement. Animal experiments have shown that ANCA directed against myeloperoxidase (MPO) can cause vasculitis that resembles human vasculitic disease ^{5,6}. However, the etiology of ANCA production remains unresolved.

Theories have been developed to explain how ANCA could interact with neutrophils, along with monocytes and most probably T-lymphocytes, to form the lesions characteristic of ANCA-associated vasculitis, such as fibrinoid necrosis and granulomas ⁷. A recent theory of interest has been postulated by Pendergraft et al., stating that an antibody against the complementary peptide of PR-3 in an idiotypic/anti-idiotypic network is essential to the development of ANCA and to the development of clinical vasculitis 8. But why and how these ANCA are produced in the first place remains unanswered. Nonetheless, many hypotheses have been developed about the initiating factor for ANCA production. Many factors, either directly or indirectly, have been considered important in the development of ANCA: Silica exposure 9, genetic predisposition 10, bacterial infection by S. aureus 11, viral infection by, for instance, parvovirus B19 12, and thyroid drugs 13 have all been correlated with and held to contribute to the incidence of ANCA-associated vasculitis. Some of these hypotheses are still the focus of ongoing research, while others have been put aside. Most of the proposed mechanisms did not disappear from the spotlight because they were proven wrong, but because they could not be proven right.

In this review, a number of the most influential hypotheses about the causes of ANCA-associated vasculitis are described. We summarize research activities aimed at proving the possible mechanisms of these causes in relation to the disease. Moreover, the paper focuses on the feasibility of the hypotheses and current views on their relevance to our understanding of ANCA production.

Epidemiology: incidences with respect to geography and seasons

To put the spectrum of ANCA-associated vasculitides into perspective, we first outline the epidemiological background. Studies describing differences in incidence between the various subtypes of systemic vasculitis must be carefully interpreted with regard to the classification criteria used. Accurate and reliable classification of systemic vasculitis into WG and MPA remains difficult and controversial. The recent development of an algorithm using both the American College of Rheumatology criteria and the Chapel Hill consensus conference definitions for epidemiological purposes has improved the situation ¹⁴. The annual incidence of the systemic vasculitides as a group is similar among regions of Norway, the UK, Germany, Spain, and Kuwait, ranging from 11 to 47 patients per million ¹⁵⁻¹⁸. From north to south, there appears to be a decreasing incidence of WG, complemented by an increasing incidence of MPA, as shown in Figure 1. Remarkably, a recent study from New Zealand found a much higher incidence of WG than of MPA, suggesting a reciprocal gradient for the southern hemisphere ¹⁹. The incidence of Churg-Strauss syndrome (CSS), a disease also within the spectrum of ANCA-associated vasculitis, was highest in the UK, compared to Norway and Spain; in the UK, incidences of WG and MPA were similar ¹⁶. Annual incidences for different geographical areas in the northern hemisphere are depicted in Table 1. These topographical incidence differences might indicate a difference in pathogenesis between WG and MPA 15.

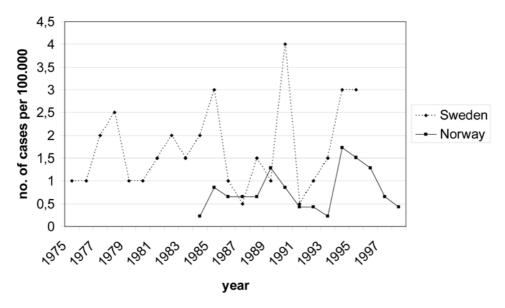
Figure 1. Image of the map of Europe, the Middle East, and North Africa in which an impression of the geographical distribution of incidence numbers of ANCA-associated vasculitis is given. CSS = Churg-Strauss syndrom, MPA = microscopic polyangiitis, WG = Wegener's granulomatosis.

Table 1. Annual incidence of primary systemic vasculitis in different regions in Europe and the Middle East

	Norway (Tromsø)	North Germany	UK (Norwich)	South Germany	Spain (Lugo)	Kuwait (Kuwait
		(Schleswig-		(Baden-		City and Al-Jahra)
		Holstein)		Württemberg)		
WG	10.5 (7.6-14.2)	8 (2-14)	10.6 (7.8-14.0)	6 (3-9)	4.9 (2.4-8.8)	0
MPA	2.7 (1.3-4.8)	3 (0-6)	8.4 (5.9-11.5)	2 (0-4)	11.6 (7.6-17.0)	25
PAN	0.5 (0.06-1.8)	1 (0-3)	0.0 (0.0-0.8)	2 (0-4)	0.9 (0.1-3.2)	16
CCS	0.5 (0.06-1.8)	0 (0)	3.1 (1.7-5.2)	1 (0-2)	0.9 (0.1-3.2)	NR
Total	13.7 (10.3-17.8)	12 (2-23)	18.9 (15.1-23.4)	11 (3-19)	18.3 (13.1-24.8)	47

Numbers are expressed as cases per million (95% CI). Columns from left to right represent regions from north to south. WG = Wegener's granulomatosis, MPA = microscopic polyangiitis, PAN = polyarteritis nodosa, CCS = Churg-Strauss syndrome, Total = annual incidences of above mentioned diseases together, NR = not reported. Patients were diagnosed according to the criteria of the Chapel Hill Consensus Conference. This table is adapted from references (16-18). Incidence numbers of Norway, the UK, and Spain are the average of the period between 1 January 1988 and 31 December 1998. Numbers from Germany are an average of the period between 1 January 1998 and 31 December 2002, while in Kuwait the period between 1 January 1993 and 31 December 1996 was analyzed.

In all areas and all disease categories, the incidence was greater in males than in females ^{16,18,20}, except in Germany where incidences were similar ¹⁷. The peak incidence of vasculitis was between 65 and 74 years of age in the UK, Spain, Norway, and China, but in Sweden and the US, these peak age ranges seemed to be somewhat lower ^{16,20-23}.


There are few epidemiological studies from outside Europe or North America, and data on the occurrence of vasculitis in non-Caucasian populations is sparse. A French study showed a risk two times greater for patients of European ancestry ²⁴. In China, there is a striking preponderance of MPO-ANCA-associated vasculitis, and proteinase-3 (PR3)-associated disease is relatively rare ^{22,25}. A recent retrospective study from Japan has shown an incidence of renal vasculitis similar to that observed in the UK, but strikingly all the patients from Japan were classified as MPA and were MPO-ANCA positive. No patients with WG or PR3-ANCA were observed, whereas in the UK, there were roughly equal incidences of WG and MPA ^{26,27}. Furthermore, it is generally believed that systemic vasculitis is rare in the Afro-Caribbean populations of the UK and North America.

Findings that point to an environmental factor inducing ANCA-associated vasculitis are supported by reports on seasonal variation, although this phenomenon is still subject to discussion. Some reports found no seasonal variability ^{15,21,28,29}. Studies from Europe, the US, and China that do find seasonal trends usually report a higher incidence of vasculitis and especially WG in winter, and a lower incidence in summer ^{20,22,30-35}. Some recent reports have from Italy and France, however, identified higher incidences of WG and MPA in summer ^{35,36}. In Australia, anti-PR3 was mostly found in April, May, and June, the fall season in the southern hemisphere ³². This apparent seasonal

variability might be explained by seasonal differences in incidence of infections such as influenza, or the correlation between influenza vaccinations and predominantly MPA ^{37,38}, which might be explained by a direct effect of the vaccine or by a more general immunological activation ³⁹. The major confounding factor in the analyses concerning seasonal variation is the precise definition of disease onset-first symptom or clinical diagnosis.

Another remarkable finding was reported in two detailed studies from Norway and Sweden that found 3- to 5-year trends of peak incidences, with peaks in 1985, 1989-1990, and 1994 ^{20,21} (Figure 2). It was speculated that this trend was due to environmental factors, such as infection ^{20,21}. However, a British report found neither cyclical fluctuation of systemic vasculitis over 15 years nor an association with peaks of influenza or other infections ³⁴. Some evidence suggests an increase in overall incidence of ANCA-associated vasculitides ^{21,30,40,41}, but this was most likely due to increased recognition following introduction of ANCA testing ^{30,40,41}.

Figure 2. Incidence of Wegener's granulomatosis in northern Norway between 1984 and 1998 (straight line) ²¹ and incidence of ANCA-associated vasculitis with renal involvement in Örebro, Sweden, between 1975 and 1995 (dashed line) ²⁰. Of note are the concordant peaks in incidences in 1985, 1989-90, and 1994.

Although geographical differences in incidence of the different vasculitides are striking, they provide only clues to the cause of the diseases. The seasonal differences in incidence might indicate an infectious agent or another environmental factor that is mainly present during or prior to the season of high incidence. Geographical differences may suggest that the initiating factor in vasculitis has a different temporal distribution or extent in various countries. However, the different genetic backgrounds may be as important, if not more so, in determining the response to triggering or initiating factors.

Silica

Background

Silica is probably the most extensively studied environmental factor hypothesized to play a causative role in the pathogenesis of ANCA-associated glomerulonephritis, predominantly in MPA. After oxygen, silicon (Si) is the most prominent element of the earth's crust 9. Silicates (SiO4) occur in glass and cement, and silicic acid (H4SiO4) is one of the main constituents of soil water, soil itself, and grasses 42. When interpreting studies on the relationship between ANCA-associated vasculitis and silica exposure, the route of silica exposure and silica source may be relevant. In earlier studies of the relationship between silica exposure and disease, only exposure to mineral silica was evaluated. Since the 1980s, biological forms of silica, such as sand, grass, grain, wood, cotton, wool, quartz, flint, and "coal" have been considered indicative of silica exposure. Jobs with high exposure to silica dust that have been associated with the occurrence of ANCA-associated vasculitis are farming, mill and textile work, sandblasting, lumber work, and drilling ⁴³. Exposure to mineral silica is frequent in jobs like mining and quarrying, and construction work that involves cement, stone, brick, or concrete, and also in pottery or china manufacturing 9,43,44.

Silica and Vasculitis

Already by the early 1950s, silica exposure was described as being associated with renal insufficiency ⁴⁵. In the 1980s, several case reports of rapidly progressive glomerulonephritis in patients previously exposed to silica appeared ⁴⁶⁻⁵⁰. When ANCA testing became available, the first reports on silica exposure in ANCA-positive patients appeared, in the early 1990s ^{51,52}. In patients with pulmonary silicosis and renal failure, a renal biopsy revealed a pauci-immune necrotizing crescentic glomerulonephritis in a number of studies ⁵²⁻⁵⁷. ANCA positivity

was later confirmed in these patients ^{52,57-61}, who were diagnosed as having ANCA-associated glomerulonephritis ^{58,62-64}. Silica-induced ANCA-positive disease is often associated with a perinuclear (P-ANCA) staining pattern under indirect immunofluorescence and with antibodies directed against MPO ^{52,65}. Although silica-induced disease has been reported in patients with C-ANCA and anti-PR3-ANCA, as well ^{52,66}, the clinical picture for these patients usually justifies a diagnosis of microscopic polyangiitis, but very rarely of WG.

While it has been found that silicosis is a risk factor for developing ANCA, as determined by indirect immunofluorescence, the presence of ANCA need not necessarily be accompanied by clinical vasculitis ⁶⁷⁻⁶⁹. In fact, the titers of anti-PR3 and anti-MPO, as determined by enzyme-linked immunosorbent assay, are usually negative or very low. The explanation for this could be that in 50% of patients with silicosis, antinuclear antibodies are present, allowing an interpretation of P-ANCA. Moreover, many of these patients have a high percentage of rheumatoid factor and high immunoglobulin levels ⁹.

Silica exposure is also associated with other systemic diseases, in particular Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus ⁷⁰, although for this last, the association is disputed ⁴³. Next to silica, asbestos exposure was also reported to be associated with ANCA positivity ⁷¹, but this finding was contradicted in case-control studies ^{72,73}. However, patients exposed to asbestos can be exposed to silica in the same occupations ⁷⁴.

Epidemiological Studies

To find epidemiological evidence for a relationship between silica exposure and renal failure, several case-control studies have been performed ^{44,52,75,76}. The results showed that among patients with ANCA-associated rapidly progressive glomerulonephritis or WG, 22% to 46% were previously exposed to silica ^{43,44,52,72,73}. Silica exposure in each study was significantly more frequent in patients compared to controls. Most of the studies defined silica exposure in terms of duration rather than intensity. Recently, this choice has been justified by the finding that duration is more important than intensity in the onset of ANCA-associated vasculitis ⁷⁷, although other reports contradict this finding ^{78,79}. Of note is the difference between silica exposure and silicosis. At time of diagnosis with vasculitic disease, some patients exhibit a picture of pulmonary silicosis while others do not. This difference may arise from the limitations of imaging techniques. Moreover, predisposition to vasculitis does not require the presence of severe pulmonary lesions ^{9,74}.

Risk Factors

The finding that farming and livestock exposure are risk factors for primary systemic vasculitides ^{73,79} supports the causative role of silica in their pathogenesis. Other environmental risk factors are exposure to fumes or materials from construction; pesticides ²⁹; exposure to hydrocarbons such as paint, solvent, cleaning agents, and diesel ⁸⁰; and air pollution after an earthquake ⁸¹. However, the association between silica and ANCA-associated vasculitis is not always obvious. In a recent survey among 701 patients with ANCA-associated vasculitis, no association with environmental exposure, occupation, or hobby was found ²³. Among those who were exposed to silica, there was no increased frequency of ANCA compared to controls ⁶⁷. The different outcomes of these studies probably arise from differences in methods of establishing silica exposure.

Hypotheses

Although silica exposure has been shown to evoke an immune response 82-85 and inflammatory reactions 86, its role in the etiology of ANCA-associated glomerulonephritis is not well understood. Several hypotheses have been described. It has been suggested that at the site of pulmonary lesions, which can be caused by silica exposure, cytokines released by activated macrophages can attract polymorphonuclear cells. These cells can express the ANCA-antigens PR3 and MPO and are taken up by pulmonary macrophages 87-89. Another hypothesis is that alveolar macrophages exposed to silica, especially quartz, release a large amount of lysosomal enzymes, like PR3 and MPO, and reactive oxygen species 90-92. Release of these compounds is even greater when the macrophage or monocyte enters apoptosis 93. Silica can cause apoptosis of monocytes and macrophages, and probably also of neutrophils, by rupturing their phagolysosomal membrane 93,94. Binding of ANCAs to their antigens on apoptotic cells amplifies the release of lysosomal enzymes and reactive oxygen species 95. Furthermore, silica may decrease total lymphocyte counts, which might explain the observed lymphopenia reported in some studies ⁹⁶. In addition, in vitro silica inactivates α1-antitrypsin 97, the natural inhibitor of PR3. Although not all associations between silica exposure and vasculitis are clear-cut, these findings may suggest a causative role of silica in ANCA-associated glomerulonephritis and vasculitis.

One explanation for the geographical differences in vasculitis incidence is the climate. If silica or farming are related to the development of (predominantly

MPO-associated) vasculitis, it would be expected that in wet weather, silica particles would be scattered to a lesser extent than in dry weather. This difference could explain the relatively higher prevalence of vasculitis with MPO-ANCA in warmer countries, illustrated by a high incidence of patients with ANCA directed against MPO in Kuwait ¹⁸. The high incidence of MPO-ANCA-associated vasculitis may be explained by the amount of sand present in the air in this region. The role that farming plays in a society might also explain differences in mainly MPO-ANCA-associated vasculitis. This weather-related hypothesis is supported by the higher incidence of vasculitis with MPO-ANCA in Spain combined with the fact that 9% of the population engage in agricultural employment, as opposed to 2% in the UK ⁹⁸.

These climate-based considerations could only be applied to exposure coming from silica dust, e.g. farming or air pollution, not to people exposed to occupational mineral silica. Geographical differences could arise from the almost exclusive link between silica exposure and P-ANCA/anti-MPO-positive MPA that is prevalent in southern Europe and Japan.

Staphylococcus aureus

Background

Microbial infections have been associated with initiation and relapse of WG ^{99,100}, and there are several case reports of patients with WG preceded by infections ^{87,101,102}. In particular, S. aureus is often cultured in these cases ^{103,104}. Furthermore, several patients have developed ANCA-associated systemic vasculitis during subacute bacterial endocarditis 105,106. Of note, in all cocaine users with cocaineinduced midline destructive lesions, S. aureus nasal colonization was present, and some of these patients are ANCA positive ¹⁰⁷. This observation emphasizes the need for awareness regarding chronic bacterial infections in patients with ANCA-associated vasculitis because these patients can be treated with antibiotics ^{105,108,109}. Treatment with trimethoprim-sulfamethoxazole (TS) has been described as successful in WG patients, even as monotherapy 103,104, helping them achieve remission 110-119 or prevent relapses 113. Although this effect could be attributed to the immunosuppressant activity of TS, its effects could also be ascribed to its anti-staphylococcal properties. In line with these characteristics, hypotheses have been proposed that infections, particularly in the upper or lower respiratory tracts, may play a role in the pathogenesis of WG 120.

The most extensively studied bacterial association with ANCA-associated vasculitis involves *S. aureus* found in the nasal cavity, which is often affected in WG. A study of 57 patients with WG identified the chronic nasal presence of *S. aureus* as an independent risk factor for relapse ¹²¹, suggesting a role for *S. aureus* in the etiology of ANCA-associated vasculitis. More recently, the presence of nasal *S. aureus* expressing the superantigen staphylococcal-toxic-shock-syndrome-toxin 1 was identified as a risk factor for relapse in WG ¹²². CD4-positive T cells from the peripheral blood of patients with WG show reactivity to *S. aureus*, and a substantial number also recognize PR3, suggesting a role for staphylococci-specific CD4-positive T cells in triggering the immune response ¹²³. In an animal model, however, after immunization with *S. aureus*, no significant T cell proliferation in response to *S. aureus* could be observed ¹²⁴.

Other bacterial infections, such as *Stenotrophomonas* (*Pseudomonas*) *maltophilia*, *Pseudomonas* aeruginosa, and *Haemophilus* influenzae, have also been associated with crescentic glomerulonephritis ^{102,125}. In these cases, vasculitis was noticed after chronic bronchial suppuration, which is hypothesized to be responsible for MPO-ANCA formation and subsequently causing vasculitis ¹²⁶⁻¹²⁸.

Hypotheses

Different hypotheses have been postulated in extensive reviews on the etiology behind infections that lead to vasculitis ^{11,119,129-131}, most of which could act in proximity with each other. First of all, bacterial toxins, such as those produced by *S. aureus*, may function as superantigens that may unrestrictedly stimulate B and T cells, resulting in ANCA production ^{130,132-135}. However, part of this hypothesis was more or less debunked by the fact that no relationship could be demonstrated between T cell expansion and *S. aureus* or its superantigens ¹³⁶. Otherwise, a staphylococcal acid phosphatase may be nephritogenic ^{137,138} and, bound to endothelial cells, can act as a planted antigen and be recognized by sera of WG patients ¹³⁸. Molecular mimicry could also explain the pathogenesis ¹³⁹; granzyme B, a serine protease with strong similarity to PR3, is induced by *S. aureus* enterotoxin A ^{140,141}. Lawyer et al. postulated that the *S. aureus* genome can also directly encode serine proteases with antigenic cross-reactivity to the C-ANCA autoantigen ¹⁴⁰. Molecular mimicry of the complementary peptide to PR3 could also explain the onset of the pathogenic mechanism ⁸.

On the other hand, infections cause a rise in pro-inflammatory cytokines (e.g., TNF- α and IL-1 β and IFN- γ), leading to the production of PR3 and bringing it to the cell surface, thereby exposing it to ANCA ^{119,142}. Although this mechanism cannot be responsible for ANCA induction, it can play a role in relapse of disease ¹⁴³. Finally, infections promote interaction between B and T cells, supposedly by molecular mimicry, mediated in an HLA-II-dependent manner and resulting in differentiation of ANCA-producing plasma cells ^{119,139,144}. In summary, infections can induce autoimmune responses by antigenic mimicry and by enhancing immunogenicity of host antigens due to triggering of the innate immune system ¹⁴⁵.

As observed, many mechanisms have been proposed for *S. aureus* to explain its role in the etiology of ANCA-associated vasculitis. Despite numerous indications for an association between ANCA-associated vasculitis and infections in general, and *S. aureus* infection in particular, no attempt has been successful in fully explaining their cause-and-effect relationship, and their connection remains poorly understood.

Epidemiology

With regard to incidence, both the four- to five-year cyclic pattern and the seasonal fluctuations are hypothesized to be associated with infections of bacterial or viral origin ^{20,21}. Underlining this hypothesis, the peak incidences of *S. aureus* infection have been reported in the wet season in Australia ¹⁴⁶. This relationship may possibly explain the higher incidence of vasculitis directly after the wet season, in winter, but also the higher incidence of vasculitis with ANCA directed to PR3 in countries with more rainy days, such as those in Northern Europe. Another explanation for a higher incidence of ANCA-associated vasculitis in winter is the higher incidence of respiratory illness, such as that arising from influenza infection, when *S. aureus* residing in the nose can cross the damaged nasal epithelium.

Viral infections

There is not much supportive evidence for the hypothesis that ANCA-associated vasculitides are caused or triggered by a virus. Among the few viruses suspected to play a role, parvovirus B19 likely represents the most compelling candidate ¹². B19 has been associated with a variety of autoimmune diseases ¹⁴⁷ and several publications have reported the co-occurrence of acute B19 infection and WG ^{12,148,149}. Moreover, acute B19 infection may trigger production of C- or P-ANCA and

PR3- or MPO-ANCA, and these autoantibodies disappear, at least in some instances, once the infection has subsided 147,150,151. However, none of these cases of ANCA-positive B19 infection presented with clinical signs suggestive of systemic vasculitis 147,150,151, and larger serological 152,153 or molecular investigations ^{153,154} have not supported the relationship between B19 infection and ANCA-associated vasculitis. Taken together, B19 might constitute a possible but not a predominant cause or trigger of ANCA-associated vasculitis. Hepatitis B virus infection has been closely linked to polyarteritis nodosa ¹⁵⁵, but the data to support that this or other hepatotropic viruses might be involved in ANCA-associated vasculitis are not convincing. The presence of anti-hepatitis B antibodies has been occasionally observed in WG 156, including a study that detected hepatitis B antigen in 3 of 15 (20%) subjects with WG as compared to 3% of the healthy population ¹⁵⁶. This finding might point to a pathogenic role of hepatitis B virus, but it could also arise from an increased susceptibility to hepatitis B infection as a consequence of immunosuppressive therapy ¹⁵⁶. On the other hand, studies have suggested that viral hepatitis might induce the production of ANCA. One study found 2 P-/MPO-ANCA-positive individuals among 22 subjects infected with hepatitis B virus ¹⁵⁷. Similar reports have emerged regarding the presence of ANCA in patients with hepatitis C infection ^{158,159}, including one study that found ANCA in as many as 56% of patients with a predominant anti-PR3 specificity ¹⁵⁸. Although the high prevalence of ANCA in the setting of hepatitis is intriguing, evidence for a causal association between these viruses and ANCA-associated vasculitis remains poor.

A number of other viral illnesses, including Epstein-Barr virus ¹⁵¹, arbovirus ¹⁶⁰, human immunodeficiency virus ¹⁶¹⁻¹⁶⁵, and influenza virus ¹⁶⁶, may give rise to ANCA of various types, but these observations do not provide strong support to implicate those viruses in ANCA-associated vasculitis. Results of a study examining bronchoalveolar lavage fluids and lung biopsies of WG patients with active lower airway disease failed to detect viral agents ¹⁶⁷.

Genetics

One hypothesis that has been broadly accepted is that genetic factors predispose for the induction of ANCA-associated vasculitis. Several reports have described familial cases of ANCA-associated vasculitis ¹⁶⁸⁻¹⁷³, but such cases are unusual. Numerous studies have been conducted on the genetic susceptibility of both development and relapse of the disease (reviewed in ¹⁰). Efforts target gaining insight into the genes involved in immune responses in patients, and into factors

that determine the expression of target antigens, PR3 and MPO, in and on cells. Polymorphisms of the main inhibitor of PR3, α 1-AT, and of HLA genes have been described, as well ¹⁷⁴⁻¹⁸².

An overview of genetic alterations and their possible clinical implications is given in Table 2. Polymorphisms of HLA genes, predominantly of HLA-DR, have been held responsible for a longer duration of the immune response, both in WG and MPA. In patients with WG and MPA, Hagen et al. found a decreased frequency of HLA-DR13DR6 ¹⁷⁵, while others discovered that the frequency of HLA-DQw7 and DR1 was increased and that of HLA-DR3 was decreased ^{156,183}

ANCA can activate neutrophils by binding to their Fcγ-receptors (Fcγ-R). The co-occurrence of the homozygous polymorphisms FcγRIIa-H/H¹³¹ and FcγRIIIa-V/V¹⁵⁸ has been identified as a risk factor for developing WG ¹⁸⁴. These polymorphisms result in a decrease of Fc-receptor-mediated clearance, promoting a chronic nasal presence of *S. aureus*. Moreover, these polymorphisms could bind more IgG1 and IgG3, suggesting a stronger interaction with ANCA ¹⁸⁴.

As for complement, the C4A3 and C3F were increased in ANCA-positive vasculitis, while the C4B allele seemed to be increased in PR3-ANCA-positive patients, possibly modulating the immune response and influencing antibody production ¹⁸⁵.

Other polymorphisms in relation to immune responses were also studied. CD18 gene polymorphisms were found to be associated with MPO-ANCA-positive vasculitis ¹⁸⁶, indicating a facilitated degranulation and respiratory burst by an increase in adhesion of polymorphonuclear neutrophils to endothelial cells ¹⁸⁷. Furthermore, regarding genes that encode inhibitory molecules of T cell activation, a microsatellite of CTLA-4 has been associated with WG ¹⁸⁸⁻¹⁹⁰ and may account for increased T cell activation ¹⁹⁰⁻¹⁹².

In WG and MPA, especially in females, a polymorphism of IL-10,was more frequent compared to healthy controls 193 . Differences in frequencies of polymorphisms in other genes encoding for proinflammatory cytokines, such as TNF- α , IL-1, IL-1 β , IL-2, IL-5R α , and IL-6, could not be found 187,188,191 , although others found increased polymorphisms of the TNF- α , the IFN- γ and the TGF- β 1 genes $^{194-196}$. IL-1 and IL-1R antagonist genotypes 197 and polymorphisms of the IFN- γ and CTLA-4 genes were associated with endstage renal disease in PR3-ANCA-positive vasculitis 194 .

Hypotheses on the etiology of ANCA-vasculitis

Table 2. Genetic alterations and their possible clinical implication							
Reference	Gene encoding for	Ger					
EC Hagen (175)	HLA	HLA-DR13DR6					
SJ Spencer (183)		HLA-DR3 decr					
SJ Spencer (183)		HLA-DQw7 inc					
M Gencik (176)		HLA-DRB1*04					
KA Boki (156)		HLA-DR1 antiş					
SS Papiha (177)		HLA-DR1-DQv					
P Katz (178)		HLA-B8 increa					
MF Cotch (179)		HLA-B50 incre					
MF Cotch (179)		HLA-DR9 incre					
KB Eikon (180)		HLA-DR2 incre					
SJ Spencer (183)		HLA-DR4DQ7					
P Jagiello (181)		HLA-DPB1*04					
P Jagiello (181)		HLA-DPB1*03					
N Tsuchiya (182)		HLA-DPB1*09					
M Gencik (176)		HLA-DRB1*13					
M Gencik (176)		HLA-DQB1*06					
P Jagiello (181)	Apoptosis	Casp14					

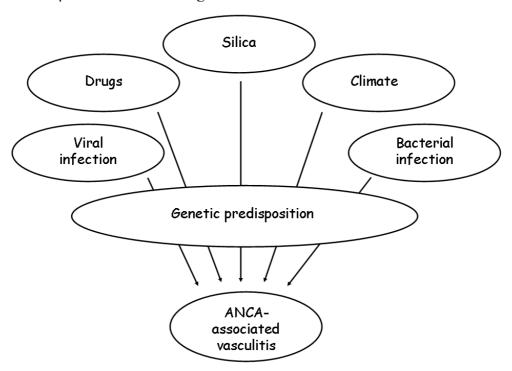
A homozygous phenotype of deficient α 1-AT and a heterozygous deficient/normal phenotype were associated with PR3-ANCA-positive vasculitis ¹⁷⁴ and may contribute to disease induction. Moreover, heterozygote α 1-AT deficiency-as compared to homozygote non-deficiency-in PR3-ANCA-associated vasculitis increases the risk of dissemination of the vasculitic process and the risk of fatal outcome ¹⁹⁸.

As for the PR3 gene itself, the promoter region seemed to be overexpressed in WG 199. Polymorphisms in the promoter region of the MPO gene have been associated with an increased risk for developing MPO-ANCA-associated vasculitis, but also with increased relapse and earlier age of diagnosis 200. Moreover, an increase in PR3 and MPO mRNA expression in circulating leukocytes was associated with ANCA-associated glomerulonephritis ²⁰¹. PR3 membrane expression was significantly increased in patients with ANCAassociated vasculitis as compared to healthy subjects, suggesting a genetic susceptibility ^{202,203}. More evidence for genetically controlled PR3 membrane expression came from a study that found a strong correlation between the percentage of PR3-positive polymorphonuclear neutrophils in identical twins ²⁰⁴. Anti-PR3 antibody was shown to induce activation of neutrophils with high PR3 membrane expression in a dose-dependent manner, while high PR3 membrane expression appeared to be associated with relapse, possibly mimicking the initial activation step of induction of PR3-ANCA-positive vasculitis 205,206.

Pharmacological induction

Numerous articles have appeared on ANCA-positivity arising from administration of propylthiouracil (PTU) for anti-thyroid treatment in patients with Graves' disease, hyperthyroidism, and thyrotoxicosis ^{13,207-209}. The majority of these patients have ANCA directed against MPO, though ANCA that were simultaneously directed against other antigens such as human leukocyte elastase, lactoferrin, and even PR3, were also described ^{210,211}. Even cases of classical WG induced by PTU have been reported ^{212,213}; however a number of patients showed no clinical signs of vasculitis, despite persistent positive PR3-ANCA titers ²¹¹. In 4.1-64.0% of patients treated with PTU, MPO-ANCA levels could be detected but were only detectable in 0-3.4% of patients treated with methimazole and in 0-5.9% of untreated patients ^{207,211,212,214-217}. Although in some cases, the development of anti-MPO ANCA seems to be related to PTU treatment, only a minority of patients with thyroid disease, PTU treatment,

and anti-MPO antibodies developed clinical vasculitis ^{211,216,217}. Usually, with cessation of PTU treatment, MPO levels decreased significantly and sometimes even vanished ^{207,217}. One case report even describes a change in ANCA type in a WG patient from PR3-ANCA to MPO-ANCA after PTU therapy and a switch back upon cessation of the therapy ²¹⁸. In most patients with vasculitis, these symptoms disappeared when PTU therapy was stopped ²¹⁸, although additional immunosuppressive therapy may still be needed. Therefore, PTU may be regarded as a factor inducing ANCA and (transient) vasculitis in a specific group of patients under specific circumstances.


Hypotheses for how PTU can induce vasculitis or modulate the immune system remain controversial. PTU therapy has been shown to reduce intrathyroidal CD4-positive lymphocytes, whereas CD8-positive T cells were increased ²¹⁹. While some reports claim that PTU induces polyclonal activation of B cells, thereby causing vasculitis ^{220,221}, in other studies, no difference in early T and B cell activation after PTU treatment was demonstrated ^{222,223}. MPO is necessary to transform PTU into its reactive product, which induces neutrophil-dependent cytotoxicity ²²⁴. In animal models, an induction of T cell sensitization ²²⁵ and a decrease in T cell proliferation appeared in PTU-treated mice, but no differences in B cell response were apparent ²²⁶. Thus, the link between PTU and vasculitis remains unclear.

The occurrence of ANCA-associated vasculitis and glomerulonephritis has also been associated with hydralazine treatment ²²⁷⁻²²⁹, administered for hypertension. Again, MPO is the most important antigen that ANCA target in these patients ^{230,231}. Some case reports implied that, next to PTU and hydralazine, a variety of other medications such as penicillamine, minocycline, allopurinol, sulfasalazine, levamisole, and thioridazine were associated with ANCA-associated vasculitis ²³²⁻²³⁶; however, in larger studies, these hypotheses could not be confirmed ²³⁷. The patient's condition usually improves with withdrawal of the drug ²³²⁻²³⁴.

It is possible that drug allergies are responsible for the association between these drug treatments and the development of ANCA-associated vasculitis ⁷⁹. Allergies in general have a relatively high prevalence among vasculitis patients and their families ²³⁸. Theories have been postulated about the role for a Th2 (atopic) cytokine environment, and these ideas find support in the association of allergies with vasculitis. On the other hand, drug allergies can be evoked by antibiotics and therefore be a surrogate marker for previous infection ⁷⁹, which has been correlated with the occurrence of vasculitis, as described above.

Conclusion

Evidence accumulates supporting a pathogenetic role for ANCA in ANCA-associated vasculitides, and many factors of various origins have been assigned a part in its etiology (Figure 3). Environmental factors, such as silica, bacterial or viral infectious agents, medication, and genetic susceptibility have all been described as being involved in either creating the environment for inducing ANCA production or inducing ANCA themselves.

Figure 3. In people with a genetic predisposition, the interplay of different environmental factors can eventually lead to ANCA-associated vasculitis.

Although the typically advanced age at disease onset suggests an environmental cause rather than genetic factors, genetic differences have been identified between patients and controls. Differences in incidence by season and by geographical region could point to an environmental agent, such as *S. aureus*, as triggering predominantly PR3-ANCA-associated disease or to silica as triggering predominantly MPO-ANCA-associated disease. However, these factors cannot explain the etiological role of medication. For each environmental factor, exposure does not in all cases result in ANCA-associated vasculitis,

and these factors are not necessarily associated with all vasculitis patients. Although it is important to identify etiological and risk factors for disease, not much is known about how these factors contribute to, or are necessary for, disease onset. The induction of ANCA-associated vasculitis appears multifactorial, with an interplay of environmental factors and genetic predisposition creating the environment for developing disease.

References

- Kussmaul A, Maier R: Ueber eine bisher nicht beschriebene eigenthümliche Arterienerkrankung (Periarteritis nodosa), die mit Morbus Brightii und rapid fortschreitender allgemeiner Muskellähmung einhergeht. *Deutches Arch klin Med* 1:484-518, 1866
- 2. Klinger H: Grenzformen der Periarteriitis nodosa. *Frankfurt Z Pathol* 42:455-480, 1932
- 3. Wegener F: Uber eine eigenartige rhinogene Granulomatose mit besonderer Beteiligung des Arteriensystem und der Nieren. *Beitr Pathol Anat* 102:36-68, 1939
- van der Woude FJ, Rasmussen N, Lobatto S, Wiik A, Permin H, van Es LA, van der GM, van der Hem GK, The TH: Autoantibodies against neutrophils and monocytes: tool for diagnosis and marker of disease activity in Wegener's granulomatosis. *Lancet* 1:425-429, 1985
- 5. Xiao H, Heeringa P, Hu P, Liu Z, Zhao M, Aratani Y, Maeda N, Falk RJ, Jennette JC: Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. *J Clin Invest* 110:955-963, 2002
- 6. Little MA, Smyth CL, Yadav R, Ambrose L, Cook HT, Nourshargh S, Pusey CD: Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. *Blood* 106:2050-2058, 2005
- 7. Day CJ, Hewins P, Savage CO: New developments in the pathogenesis of ANCA-associated vasculitis. *Clin Exp Rheumatol* 21:S35-S48, 2003
- 8. Pendergraft WF, III, Preston GA, Shah RR, Tropsha A, Carter CW, Jr., Jennette JC, Falk RJ: Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen proteinase-3. *Nat Med* 10:72-79, 2004
- 9. Gregorini G, Tira P, Frizza J, D'Haese PC, Elseviers MM, Nuyts G, Maiorca R, De Broe ME: ANCA-associated diseases and silica exposure. *Clin Rev Allergy Immunol* 15:21-40, 1997

- 10. Kallenberg CG, Rarok A, Stegeman CA: Genetics of ANCA-associated vasculitides. *Cleve Clin J Med* 69 Suppl 2:SII61-SII63, 2002
- 11. Popa ER, Stegeman CA, Kallenberg CG, Tervaert JW: Staphylococcus aureus and Wegener's granulomatosis. *Arthritis Res* 4:77-79, 2002
- Finkel TH, Torok TJ, Ferguson PJ, Durigon EL, Zaki SR, Leung DY, Harbeck RJ, Gelfand EW, Saulsbury FT, Hollister JR: Chronic parvovirus B19 infection and systemic necrotising vasculitis: opportunistic infection or aetiological agent? *Lancet* 343:1255-1258, 1994
- Dolman KM, Gans RO, Vervaat TJ, Zevenbergen G, Maingay D, Nikkels RE, Donker AJ, dem Borne AE, Goldschmeding R: Vasculitis and antineutrophil cytoplasmic autoantibodies associated with propylthiouracil therapy. *Lancet* 342:651-652, 1993
- 14. Watts R, Lane S, Hanslik T, Hauser T, Hellmich B, Koldingsnes W, Mahr A, Segelmark M, Cohen-Tervaert JW, Scott D: Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. *Ann Rheum Dis* 66:222-227, 2007
- 15. Watts RA, Gonzalez-Gay MA, Lane SE, Garcia-Porrua C, Bentham G, Scott DG: Geoepidemiology of systemic vasculitis: comparison of the incidence in two regions of Europe. *Ann Rheum Dis* 60:170-172, 2001
- Watts RA, Lane SE, Scott DG, Koldingsnes W, Nossent H, Gonzalez-Gay MA, Garcia-Porrua C, Bentham GA: Epidemiology of vasculitis in Europe. *Ann Rheum Dis* 60:1156-1157, 2001
- 17. Reinhold-Keller E, Herlyn K, Wagner-Bastmeyer R, Gutfleisch J, Peter HH, Raspe HH, Gross WL: No difference in the incidences of vasculitides between north and south Germany: first results of the German vasculitis register. *Rheumatology* (Oxford) 41:540-549, 2002
- 18. el Reshaid K, Kapoor MM, el Reshaid W, Madda JP, Varro J: The spectrum of renal disease associated with microscopic polyangiitis and classic polyarteritis nodosa in Kuwait. *Nephrol Dial Transplant* 12:1874-1882, 1997
- 19. Gibson A, Stamp LK, Chapman PT, O'Donnell JL: The epidemiology of Wegener's granulomatosis and microscopic polyangiitis in a Southern Hemisphere region. *Rheumatology (Oxford)* 45:624-628, 2006

- Tidman M, Olander R, Svalander C, Danielsson D: Patients hospitalized because
 of small vessel vasculitides with renal involvement in the period 1975-95: organ
 involvement, anti-neutrophil cytoplasmic antibodies patterns, seasonal attack rates
 and fluctuation of annual frequencies. *J Intern Med* 244:133-141, 1998
- 21. Koldingsnes W, Nossent H: Epidemiology of Wegener's granulomatosis in northern Norway. *Arthritis Rheum* 43:2481-2487, 2000
- 22. Xin G, Zhao MH, Wang HY: Detection rate and antigenic specificities of antineutrophil cytoplasmic antibodies in chinese patients with clinically suspected vasculitis. *Clin Diagn Lab Immunol* 11:559-562, 2004
- 23. Abdou NI, Kullman GJ, Hoffman GS, Sharp GC, Specks U, McDonald T, Garrity J, Goeken JA, Allen NB: Wegener's granulomatosis: survey of 701 patients in North America. Changes in outcome in the 1990s. *J Rheumatol* 29:309-316, 2002
- Mahr A, Guillevin L, Poissonnet M, Ayme S: Prevalences of polyarteritis nodosa, microscopic polyangiitis, Wegener's granulomatosis, and Churg-Strauss syndrome in a French urban multiethnic population in 2000: a capture-recapture estimate. *Arthritis Rheum* 51:92-99, 2004
- 25. Li PK, Leung JC, Lai FM, Wang A, Lui SF, Leung CB, Lai KN: Use of antineutrophil cytoplasmic autoantibodies in diagnosing vasculitis in a Chinese patient population. *Am J Nephrol* 14:99-105, 1994
- Fujimoto S, Uezono S, Hisanaga S, Fukudome K, Kobayashi S, Suzuki K, Hashimoto H, Nakao H, Nunoi H: Incidence of ANCA-associated primary renal vasculitis in the Miyazaki Prefecture: The first population-based, retrospective, epidemiologic survey in Japan. Clinical Journal of the American Society of Nephrology 1:1016-1022, 2006
- 27. Watts RA, Scott DGI, Fujimoto S, Kobayashi S, Suzuki K, Shigeto S, Hashimoto H, Jayne DRW: Epidemiology of renal ANCA-associated vasculitis in the UK and Japan. *Clin Exp Rheumatol* 25:s95, 2007
- 28. Cotch MF, Hoffman GS, Yerg DE, Kaufman GI, Targonski P, Kaslow RA: The epidemiology of Wegener's granulomatosis. Estimates of the five-year period prevalence, annual mortality, and geographic disease distribution from population-based data sources. *Arthritis Rheum* 39:87-92, 1996
- 29. Duna GF, Cotch MF, Galperin C, Hoffman DB, Hoffman GS: Wegener's granulomatosis: role of environmental exposures. *Clin Exp Rheumatol* 16:669-674, 1998

- 30. Carruthers DM, Watts RA, Symmons DP, Scott DG: Wegener's granulomatosis—increased incidence or increased recognition? *Br J Rheumatol* 35:142-145, 1996
- 31. Raynauld JP, Bloch DA, Fries JF: Seasonal variation in the onset of Wegener's granulomatosis, polyarteritis nodosa and giant cell arteritis. *J Rheumatol* 20:1524-1526, 1993
- 32. Jennings JG, Chang L, Savige JA: Anti-proteinase 3 antibodies, their characterization and disease associations. *Clin Exp Immunol* 95:251-256, 1994
- 33. Jennette JC, Falk RJ: Antineutrophil cytoplasmic autoantibodies and associated diseases: a review. *Am J Kidney Dis* 15:517-529, 1990
- 34. Watts RA, Lane SE, Bentham G, Scott DGI: Seasonal and periodic variation in primary systemic vasculitis (PSV). *Cleve Clin J Med* 69:167, 2002
- 35. Pavone L, Grasselli C, Chierici E, Maggiore U, Garini G, Ronda N, Manganelli P, Pesci A, Rioda WT, Tumiati B, Pavesi G, Vaglio A, Buzio C: Outcome and prognostic factors during the course of primary small-vessel vasculitides. *J Rheumatol* 33:1299-1306, 2006
- 36. Mahr A, Artigues N, Coste J, Aouba A, Pagnoux C, Guillevin L: Seasonal variations in onset of Wegener's granulomatosis: increased in summer? *J Rheumatol* 33:1615-1622, 2006
- 37. Blumberg S, Bienfang D, Kantrowitz FG: A possible association between influenza vaccination and small-vessel vasculitis. *Arch Intern Med* 140:847-848, 1980
- 38. Kelsall JT, Chalmers A, Sherlock CH, Tron VA, Kelsall AC: Microscopic polyangiitis after influenza vaccination. *J Rheumatol* 24:1198-1202, 1997
- 39. Uji M, Matsushita H, Iwata S: Microscopic polyangiitis after influenza vaccination. *Intern Med* 44:892-896, 2005
- 40. Lane SE, Scott DG, Heaton A, Watts RA: Primary renal vasculitis in Norfolk—increasing incidence or increasing recognition? *Nephrol Dial Transplant* 15:23-27, 2000
- 41. Andrews M, Edmunds M, Campbell A, Walls J, Feehally J: Systemic vasculitis in the 1980s—is there an increasing incidence of Wegener's granulomatosis and microscopic polyarteritis? *J R Coll Physicians Lond* 24:284-288, 1990
- 42. Epstein E: The anomaly of silicon in plant biology. *Proc Natl Acad Sci U S A* 91:11-17, 1994

- 43. Hogan SL, Satterly KK, Dooley MA, Nachman PH, Jennette JC, Falk RJ: Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and lupus nephritis. *J Am Soc Nephrol* 12:134-142, 2001
- 44. Nuyts GD, Van Vlem E, De Vos A, Daelemans RA, Rorive G, Elseviers MM, Schurgers M, Segaert M, D'Haese PC, De Broe ME: Wegener granulomatosis is associated to exposure to silicon compounds: a case-control study. *Nephrol Dial Transplant* 10:1162-1165, 1995
- 45. Saita G, Zavaglia O: Renal function in silicotics. Med Lav 42:41-48, 1951
- 46. Slavin RE, Swedo JL, Brandes D, Gonzalez-Vitale JC, Osornio-Vargas A: Extrapulmonary silicosis: a clinical, morphologic, and ultrastructural study. *Hum Pathol* 16:393-412, 1985
- 47. Perez Perez AJ, Sobrado J, Cigarran S, Courel M, Gonzalez L, Fernandez R, Perez VJ: Renal vasculitis, diffuse pulmonary hemorrhage and silicosis. Analysis of 2 cases. *Med Clin (Barc)* 87:858-860, 1986
- 48. Arnalich F, Lahoz C, Picazo ML, Monereo A, Arribas JR, Martinez AJ, Vazquez JJ: Polyarteritis nodosa and necrotizing glomerulonephritis associated with long-standing silicosis. *Nephron* 51:544-547, 1989
- 49. Dracon M, Noel C, Wallaert B, Dequiedt P, Lelievre G, Tacquet A: Rapidly progressive glomerulonephritis in pneumoconiotic coal miners. *Nephrologie* 11:61-65, 1990
- Sanchez M, Devinuesa SG, Luno J, Barrio V, Lafuente J, Niembro E, Valderrabano F: Rapidly Progressive Glomerulonephritis and Diffuse Pulmonary Hemorrhage Not Mediated by Anti Basement-Membrane Antibodies. *Nefrologia* 5:157-160, 1985
- 51. Talaszka A, Boulanger E, Le Monies H: Silicosis, anti-myeloperoxidase antibodies and glomerular nephropathy. *Nephrologie* 13:234, 1992
- 52. Gregorini G, Ferioli A, Donato F, Tira P, Morassi L, Tardanico R, Lancini L, Maiorca R: Association between silica exposure and necrotizing crescentic glomerulonephritis with p-ANCA and anti-MPO antibodies: a hospital-based case-control study. *Adv Exp Med Biol* 336:435-440, 1993
- 53. Bonnin A, Mousson C, Justrabo E, Tanter Y, Chalopin JM, Rifle G: Silicosis associated with crescentic IgA mesangial nephropathy. *Nephron* 47:229-230, 1987
- 54. Sherson D, Jorgensen F: Rapidly progressive crescenteric glomerulonephritis in a sandblaster with silicosis. *Br J Ind Med* 46:675-676, 1989

- 55. Rispal P, Wen L, De Precigout V, Aparicio M: Silicon nephropathy in a dental prosthetist. *Presse Med* 20:176, 1991
- 56. Pouthier D, Duhoux P, Van Damme B: Pulmonary silicosis and glomerular nephropathy. Apropos of 1 case. *Nephrologie* 12:8-11, 1991
- 57. Neyer U, Woss E, Neuweiler J: Wegener's granulomatosis associated with silicosis. *Nephrol Dial Transplant* 9:559-561, 1994
- Tervaert JW, Goldschmeding R, Elema JD, van der GM, Huitema MG, van der Hem GK, The TH, dem Borne AE, Kallenberg CG: Autoantibodies against myeloid lysosomal enzymes in crescentic glomerulonephritis. *Kidney Int* 37:799-806, 1990
- Niles JL, Pan GL, Collins AB, Shannon T, Skates S, Fienberg R, Arnaout MA, Mccluskey RT: Antigen-specific radioimmunoassays for anti-neutrophil cytoplasmic antibodies in the diagnosis of rapidly progressive glomerulonephritis. *J Am Soc Nephrol* 2:27-36, 1991
- 60. Bachmeyer C, Grateau G, Gomez V, Choukroun G, Noel LH, Choudat D, Sereni D: Periarteritis nodosa in a dental prosthetist. *Presse Med* 23:446, 1994
- 61. Chevailler A, Carrere F, Renier G, Hurez D, Subra JF, Reboul P, Riberi P, Masson C: Silicon nephropathy and myeloperoxidase antibodies. *Ann Rheum Dis* 53:781-782, 1994
- 62. Kallenberg CG, Mulder AH, Tervaert JW: Antineutrophil cytoplasmic antibodies: a still-growing class of autoantibodies in inflammatory disorders. *Am J Med* 93:675-682, 1992
- 63. Jennette JC, Falk RJ, Andrassy K, Bacon PA, Churg J, Gross WL, Hagen EC, Hoffman GS, Hunder GG, Kallenberg CG: Nomenclature of systemic vasculitides. Proposal of an international consensus conference. *Arthritis Rheum* 37:187-192, 1994
- 64. Niles JL, Bottinger EP, Saurina GR, Kelly KJ, Pan G, Collins AB, Mccluskey RT: The syndrome of lung hemorrhage and nephritis is usually an ANCA-associated condition. *Arch Intern Med* 156:440-445, 1996
- 65. Nakajima H, Miyazaki M, Imai N, Yokokawa T, Yamamoto S: A case of silicosis with MPO-ANCA-associated glomerulonephritis and alveolar hemorrhage. *Nippon Jinzo Gakkai Shi* 43:351-356, 2001
- 66. Siebels M, Schulz V, Andrassy K: Silicosis and systemic diseases. *Immun Infekt* 21 Suppl 1:53-54, 1993

- 67. Bartunkova J, Pelclova D, Kolarova I, Fenclova Z, Lebedova J, Sediva A, Tesar V: Exposure to silica and ANCA-associated vasculitis. *Cleve Clin J Med* 69:168, 2002
- 68. Wichmann I, Sanchez-Roman J, Morales J, Castillo MJ, Ocana C, Nunez-Roldan A: Antimyeloperoxidase antibodies in individuals with occupational exposure to silica. *Ann Rheum Dis* 55:205-207, 1996
- Bartunkova J, Pelclova D, Fenclova Z, Sediva A, Lebedova J, Tesar V, Hladikova M, Klusackova P: Exposure to silica and risk of ANCA-associated vasculitis. Am J Ind Med 49:569-576, 2006
- 70. Sanchez-Roman J, Wichmann I, Salaberri J, Varela JM, Nunez-Roldan A: Multiple clinical and biological autoimmune manifestations in 50 workers after occupational exposure to silica. *Ann Rheum Dis* 52:534-538, 1993
- 71. Pelclova D, Bartunkova J, Fenclova Z, Lebedova J, Hladikova M, Benakova H: Asbestos exposure and antineutrophil cytoplasmic Antibody (ANCA) positivity. *Arch Environ Health* 58:662-668, 2003
- 72. Beaudreuil S, Lasfargues G, Laueriere L, Ghoul ZE, Fourquet F, Longuet C, Halimi JM, Nivet H, Buchler M: Occupational exposure in ANCA-positive patients: A case-control study. *Kidney Int* 67:1961-1966, 2005
- 73. Stratta P, Messuerotti A, Canavese C, Coen M, Luccoli L, Bussolati B, Giorda L, Malavenda P, Cacciabue M, Bugiani M, Bo M, Ventura M, Camussi G, Fubini B: The role of metals in autoimmune vasculitis: epidemiological and pathogenic study. *Sci Total Environ* 270:179-190, 2001
- 74. De Vuyst P, Camus P: The past and present of pneumoconioses. *Curr Opin Pulm Med* 6:151-156, 2000
- 75. Steenland NK, Thun MJ, Ferguson CW, Port FK: Occupational and other exposures associated with male end-stage renal disease: a case/control study. *Am J Public Health* 80:153-157, 1990
- Nuyts GD, Van Vlem E, Thys J, De Leersnijder D, D'Haese PC, Elseviers MM, De Broe ME: New occupational risk factors for chronic renal failure. *Lancet* 346:7-11, 1995
- 77. Hogan SL, Cooper GS, Nylander French LA, Parks CG, Savitz DA, Chin H, Jennette CE, Jennette JC, Falk RJ: Duration of silica exposure and development of ANCA-associated small vessel vasculitis (ANCA-SVV) with glomerular involvement: a case-control study. *J Am Soc.Nephrol*: SA-PO182, 2004

- 78. Watts RA, Lane SE, Bentham G, Innes NJ, Scott DGI: Are environmental factors important in systemic vasculitis? *Cleve Clin J Med* 69:SII166-SII167,2002
- Lane SE, Watts RA, Bentham G, Innes NJ, Scott DG: Are environmental factors important in primary systemic vasculitis? A case-control study. *Arthritis Rheum* 48:814-823, 2003
- 80. Pai P, Bone JM, Bell GM: Hydrocarbon exposure and glomerulonephritis due to systemic vasculitis. *Nephrol Dial Transplant* 13:1321-1323, 1998
- 81. Yashiro M, Muso E, Itoh-Ihara T, Oyama A, Hashimoto K, Kawamura T, Ono T, Sasayama S: Significantly high regional morbidity of MPO-ANCA-related angitis and/or nephritis with respiratory tract involvement after the 1995 great earthquake in Kobe (Japan). *Am J Kidney Dis* 35:889-895, 2000
- 82. McHugh NJ, Whyte J, Harvey G, Haustein UF: Anti-topoisomerase I antibodies in silica-associated systemic sclerosis. A model for autoimmunity. *Arthritis Rheum* 37:1198-1205, 1994
- 83. Watanabe S, Shirakami A, Takeichi T, Ohara T, Saito S: Alterations in lymphocyte subsets and serum immunoglobulin levels in patients with silicosis. *J Clin Lab Immunol* 23:45-51, 1987
- 84. Youinou P, Ferec C, Cledes J, Zabbe C, Philippon P, Dewitte JD, Guillerm D, Clavier J: Immunological effect of silica dust analyzed by monoclonal antibodies. *J Clin Lab Immunol* 16:207-210, 1985
- 85. Pernis B, Paronetto F: Adjuvant effect of silica (tridymite) on antibody production. *Proc Soc Exp Biol Med* 110:390-392, 1962
- 86. Kallenberg CG: Overlapping syndromes, undifferentiated connective tissue disease, and other fibrosing conditions. *Curr Opin Rheumatol* 7:568-573, 1995
- 87. Sitara D, Hoffbrand BI: Chronic bronchial suppuration and antineutrophil cytoplasmic antibody (ANCA) positive systemic vasculitis. *Postgrad Med J* 66:669-671, 1990
- 88. Finnegan MJ, Hinchcliffe J, Russell-Jones D, Neill S, Sheffield E, Jayne D, Wise A, Hodson ME: Vasculitis complicating cystic fibrosis. *Q J Med* 72:609-621, 1989
- 89. Pinching AJ, Lockwood CM, Pussell BA, Rees AJ, Sweny P, Evans DJ, Bowley N, Peters DK: Wegener's granulomatosis: observations on 18 patients with severe renal disease. *Q J Med* 52:435-460, 1983

- 90. Allison AC, Harington JS, Birbeck M: An examination of the cytotoxic effects of silica on macrophages. *J Exp Med* 124:141-154, 1966
- 91. Sarih M, Souvannavong V, Brown SC, Adam A: Silica induces apoptosis in macrophages and the release of interleukin-1 alpha and interleukin-1 beta. *J Leukoc Biol* 54:407-413, 1993
- 92. Vallyathan V, Mega JF, Shi X, Dalal NS: Enhanced generation of free radicals from phagocytes induced by mineral dusts. *Am J Respir Cell Mol Biol* 6:404-413, 1992
- 93. Gilligan HM, Bredy B, Brady HR, Hebert MJ, Slayter HS, Xu Y, Rauch J, Shia MA, Koh JS, Levine JS: Antineutrophil cytoplasmic autoantibodies interact with primary granule constituents on the surface of apoptotic neutrophils in the absence of neutrophil priming. *J Exp Med* 184:2231-2241, 1996
- 94. Iyer R, Hamilton RF, Li L, Holian A: Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages. *Toxicol Appl Pharmacol* 141:84-92, 1996
- 95. Tervaert JW, Stegeman CA, Kallenberg CG: Silicon exposure and vasculitis. *Curr Opin Rheumatol* 10:12-17, 1998
- Subra JF, Renier G, Reboul P, Tollis F, Boivinet R, Schwartz P, Chevailler A: Lymphopenia in occupational pulmonary silicosis with or without autoimmune disease. *Clin Exp Immunol* 126:540-544, 2001
- 97. Zay K, Devine D, Churg A: Quartz inactivates alpha 1-antiproteinase: possible role in mineral dust-induced emphysema. *J Appl Physiol* 78:53-58, 1995
- 98. http://europa.eu.int
- 99. Fauci AS, Haynes BF, Katz P, Wolff SM: Wegener's granulomatosis: prospective clinical and therapeutic experience with 85 patients for 21 years. *Ann Intern Med* 98:76-85, 1983
- Pinching AJ, Rees AJ, Pussell BA, Lockwood CM, Mitchison RS, Peters DK: Relapses in Wegener's granulomatosis: the role of infection. *Br Med J* 281:836-838, 1980
- van Putten JW, van Haren EH, Lammers JW: Association between Wegener's granulomatosis and Staphylococcus aureus infection? *Eur Respir J* 9:1955-1957, 1996

- Park J, Banno S, Sugiura Y, Yoshikawa K, Naniwa T, Wakita K, Hayami Y, Sato S, Ueda R: Microscopic polyangiitis associated with diffuse panbronchiolitis. *Intern* Med 43:331-335, 2004
- 103. Boudewyns A, Verbelen J, Koekelkoren E, Van Offel J, Van de HP: Wegener's granulomatosis triggered by infection? *Acta Otorhinolaryngol Belg* 55:57-63, 2001
- 104. Ohtake T, Kobayashi S, Honjou Y, Shirai T, Takayanagi S, Tohyama K, Tokura Y, Kimura M: Generalized Wegener's granulomatosis responding to sulfamethoxazole-trimethoprim monotherapy. *Intern Med* 40:666-670, 2001
- 105. Subra JF, Michelet C, Laporte J, Carrere F, Reboul P, Cartier F, Saint-Andre JP, Chevailler A: The presence of cytoplasmic antineutrophil cytoplasmic antibodies (C-ANCA) in the course of subacute bacterial endocarditis with glomerular involvement, coincidence or association? Clin Nephrol 49:15-18, 1998
- 106. Hellmich B, Ehren M, Lindstaedt M, Meyer M, Pfohl M, Schatz H: Anti-MPO-ANCA-positive microscopic polyangiitis following subacute bacterial endocarditis. *Clin Rheumatol* 20:441-443, 2001
- 107. Trimarchi M, Gregorini G, Facchetti F, Morassi ML, Manfredini C, Maroldi R, Nicolai P, Russell KA, McDonald TJ, Specks U: Cocaine-induced midline destructive lesions: clinical, radiographic, histopathologic, and serologic features and their differentiation from Wegener granulomatosis. *Medicine (Baltimore)* 80:391-404, 2001
- 108. Choi HK, Lamprecht P, Niles JL, Gross WL, Merkel PA: Subacute bacterial endocarditis with positive cytoplasmic antineutrophil cytoplasmic antibodies and anti-proteinase 3 antibodies. *Arthritis Rheum* 43:226-231, 2000
- 109. Mandell BF, Calabrese LH: Infections and systemic vasculitis. *Curr Opin Rheumatol* 10:51-57, 1998
- DeRemee RA, McDonald TJ, Weiland LH: Wegener's granulomatosis: observations on treatment with antimicrobial agents. *Mayo Clin Proc* 60:27-32, 1985
- 111. DeRemee RA: The treatment of Wegener's granulomatosis with trimethoprim/sulfamethoxazole: illusion or vision? *Arthritis Rheum* 31:1068-1074, 1988
- 112. Leavitt RY, Hoffman GS, Fauci AS: The role of trimethoprim/sulfamethoxazole in the treatment of Wegener's granulomatosis. *Arthritis Rheum* 31:1073-1074, 1988

- 113. Stegeman CA, Tervaert JW, De Jong PE, Kallenberg CG: Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener's granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. *N Engl J Med* 335:16-20, 1996
- 114. Israel HL: Sulfamethoxazole-trimethoprim therapy for Wegener's granulomatosis. *Arch Intern Med* 148:2293-2295, 1988
- 115. West BC, Todd JR, King JW: Wegener granulomatosis and trimethoprim-sulfamethoxazole. Complete remission after a twenty-year course. *Ann Intern Med* 106:840-842, 1987
- Axelson JA, Clark RH, Ancerewicz S: Wegener granulomatosis and trimethoprimsulfamethoxazole. *Ann Intern Med* 107:600, 1987
- 117. Yuasa K, Tokitsu M, Goto H, Kato H, Shimada K: Wegener's granulomatosis: diagnosis by transbronchial lung biopsy, evaluation by gallium scintigraphy and treatment with sulfamethoxazole/trimethoprim. *Am J Med* 84:371-372, 1988
- 118. Valeriano-Marcet J, Spiera H: Treatment of Wegener's granulomatosis with sulfamethoxazole-trimethoprim. *Arch Intern Med* 151:1649-1652, 1991
- 119. George J, Levy Y, Kallenberg CG, Shoenfeld Y: Infections and Wegener's granulomatosis—a cause and effect relationship? *QJM* 90:367-373, 1997
- 120. Roberts DE, Curd JG: Sulfonamides as antiinflammatory agents in the treatment of Wegener's granulomatosis. *Arthritis Rheum* 33:1590-1593, 1990
- 121. Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, De Jong PE, Kallenberg CG: Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. *Ann Intern Med* 120:12-17, 1994
- 122. Popa ER, Stegeman CA, Abdulahad WH, van der MB, Arends J, Manson WM, Bos NA, Kallenberg CG, Cohen Tervaert JW: Staphylococcal toxic-shock-syndrome-toxin-1 as a risk factor for disease relapse in Wegener's granulomatosis. *Rheumatology (Oxford)* 2007
- 123. Mayet WJ, Marker-Hermann E, Schlaak J, Meyer zum Buschenfelde KH: Irregular cytokine pattern of CD4+ T lymphocytes in response to Staphylococcus aureus in patients with Wegener's granulomatosis. *Scand J Immunol* 49:585-594, 1999
- 124. Savige J, Nassis L, Cooper T, Paspaliaris B, Martinello P, MacGregor D: Antineutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis after immunisation with bacterial proteins. Clin Exp Rheumatol 20:783-789, 2002

- 125. Tanaka E, Tada K, Amitani R, Kuze F: Systemic hypersensitivity vasculitis associated with bronchiectasis. *Chest* 102:647-649, 1992
- Saku N, Sugiyama Y, Kitamura S, Fujii T, Saitoh K: Diffuse panbronchiolitis with P-ANCA-positive arteritis and necrotizing glomerulitis. *Nihon Kyobu Shikkan Gakkai Zasshi* 34:434-438, 1996
- Bruce IN, McAteer JA, Gardiner PV, McFarland RJ, Sloan JM, Bell AL: Chronic suppurative lung disease with associated vasculitis. *Postgrad Med J* 71:24-27, 1995
- 128. Miyamoto D, Ichinose Y, Kikawada M, Kusumoto H, Yanagisawa N, Kanai E, Minemura K, Yonemaru M, Toyama K: Diffuse panbronchiolitis with myeloperoxidase-specific antineutrophil cytoplasmic antibody-related vasculitis. *Nihon Kokyuki Gakkai Zasshi* 36:453-458, 1998
- 129. Kallenberg CG, Rarok A, Stegeman CA, Limburg PC: New insights into the pathogenesis of antineutrophil cytoplasmic autoantibody-associated vasculitis. *Autoimmun Rev* 1:61-66, 2002
- 130. Capizzi SA, Specks U: Does infection play a role in the pathogenesis of pulmonary vasculitis? *Semin Respir Infect* 18:17-22, 2003
- 131. Popa ER, Tervaert JW: The relation between Staphylococcus aureus and Wegener's granulomatosis: current knowledge and future directions. *Intern Med* 42:771-780, 2003
- 132. Fleischer B, Schrezenmeier H: T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. J Exp Med 167:1697-1707, 1988
- 133. Hamidou M, Belizna C: Superantigens and vasculitis. *Ann Med Interne (Paris)* 154:96-100, 2003
- 134. Tervaert JW, Popa ER, Bos NA: The role of superantigens in vasculitis. *Curr Opin Rheumatol* 11:24-33, 1999
- 135. Voswinkel J, Muller A, Lamprecht P: Is PR3-ANCA formation initiated in Wegener's granulomatosis lesions? Granulomas as potential lymphoid tissue maintaining autoantibody production. *Ann N Y Acad Sci* 1051:12-19, 2005
- 136. Popa ER, Stegeman CA, Bos NA, Kallenberg CG, Tervaert JW: Staphylococcal superantigens and T cell expansions in Wegener's granulomatosis. *Clin Exp Immunol* 132:496-504, 2003

- 137. Yousif Y, Okada K, Batsford S, Vogt A: Induction of glomerulonephritis in rats with staphylococcal phosphatase: new aspects in post-infectious ICGN. *Kidney Int* 50:290-297, 1996
- 138. Brons RH, Bakker HI, Van Wijk RT, Van Dijk NW, Muller Kobold AC, Limburg PC, Manson WL, Kallenberg CG, Tervaert JW: Staphylococcal acid phosphatase binds to endothelial cells via charge interaction; a pathogenic role in Wegener's granulomatosis? *Clin Exp Immunol* 119:566-573, 2000
- 139. Rasmussen N, Petersen J: Cellular immune responses and pathogenesis in c-ANCA positive vasculitides. *J Autoimmun* 6:227-236, 1993
- 140. Lawyer C, Henkle J, Bakir H: Nasal carriage of staphylococcal infection in Wegener granulomatosis. *Ann Intern Med* 121:74-75, 1994
- 141. Caputo A, Fahey D, Lloyd C, Vozab R, McCairns E, Rowe PB: Structure and differential mechanisms of regulation of expression of a serine esterase gene in activated human T lymphocytes. *J Biol Chem* 263:6363-6369, 1988
- 142. Mayet WJ, Schwarting A, Meyer zum Buschenfelde KH: Cytotoxic effects of antibodies to proteinase 3 (C-ANCA) on human endothelial cells. *Clin Exp Immunol* 97:458-465, 1994
- 143. Huugen D, Xiao H, van Esch A, Falk RJ, Peutz-Kootstra CJ, Buurman WA, Tervaert JW, Jennette JC, Heeringa P: Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol 167:47-58, 2005
- 144. Brouwer E, Stegeman CA, Huitema MG, Limburg PC, Kallenberg CG: T cell reactivity to proteinase 3 and myeloperoxidase in patients with Wegener's granulomatosis (WG). *Clin Exp Immunol* 98:448-453, 1994
- 145. Wraith DC, Goldman M, Lambert PH: Vaccination and autoimmune disease: what is the evidence? *Lancet* 362:1659-1666, 2003
- 146. Skull SA, Krause V, Coombs G, Pearman JW, Roberts LA: Investigation of a cluster of Staphylococcus aureus invasive infection in the top end of the Northern Territory. *Aust N Z J Med* 29:66-72, 1999
- 147. Lehmann HW, Von Landenberg P, Modrow S: Parvovirus B19 infection and autoimmune disease. *Autoimmun Rev* 2:218-223, 2003
- 148. Nikkari S, Mertsola J, Korvenranta H, Vainionpaa R, Toivanen P: Wegener's granulomatosis and parvovirus B19 infection. *Arthritis Rheum* 37:1707-1708, 1994

- 149. Corman LC, Staud R: Association of Wegener's granulomatosis with parvovirus B19 infection: comment on the concise communication by Nikkari et al. *Arthritis Rheum* 38:1174-1175, 1995
- 150. Chou TN, Hsu TC, Chen RM, Lin LI, Tsay GJ: Parvovirus B19 infection associated with the production of anti-neutrophil cytoplasmic antibody (ANCA) and anticardiolipin antibody (aCL). *Lupus* 9:551-554, 2000
- 151. Hermann J, Demel U, Stunzner D, Daghofer E, Tilz G, Graninger W: Clinical interpretation of antineutrophil cytoplasmic antibodies: parvovirus B19 infection as a pitfall. *Ann Rheum Dis* 64:641-643, 2005
- 152. Nikkari S, Vainionpaa R, Toivanen P, Gross WL, Mistry N, Csernok E, Szpirt W, Baslund B, Wiik A: Association of Wegener Granulomatosis with Parvovirus B19 Infection Comment Reply. Arthritis and Rheumatism 38:1175, 1995
- 153. Eden A, Mahr A, Servant A, Radjef N, Amard S, Mouthon L, Garbarg-Chenon A, Guillevin L: Lack of association between B19 or V9 erythrovirus infection and ANCA-positive vasculitides: a case-control study. *Rheumatology (Oxford)* 42:660-664, 2003
- 154. Sachetto Z, Costa SC, Andrade PD, Conde RA, Amstalden EM, Samara AM, Fernandes SR: No evidence of parvovirus B19 in tissue samples from patients with polyarteritis nodosa and microscopic polyangiitis as assessed by the polymerase chain reaction. *Ann Rheum Dis* 65:418-420, 2006
- 155. Trepo C, Guillevin L: Polyarteritis nodosa and extrahepatic manifestations of HBV infection: the case against autoimmune intervention in pathogenesis. *J Autoimmun* 16:269-274, 2001
- 156. Boki KA, Dafni U, Karpouzas GA, Papasteriades C, Drosos AA, Moutsopoulos HM: Necrotizing vasculitis in Greece: clinical, immunological and immunogenetic aspects. A study of 66 patients. *Br J Rheumatol* 36:1059-1066, 1997
- 157. Hauschild S, Csernok E, Schmitt WH, Gross WL: Antineutrophil cytoplasmic antibodies in systemic polyarteritis nodosa with and without hepatitis B virus infection and Churg-Strauss syndrome—62 patients. *J Rheumatol* 21:1173-1174, 1994
- 158. Wu YY, Hsu TC, Chen TY, Liu TC, Liu GY, Lee YJ, Tsay GJ: Proteinase 3 and dihydrolipoamide dehydrogenase (E3) are major autoantigens in hepatitis C virus (HCV) infection. *Clin Exp Immunol* 128:347-352, 2002

- Lamprecht P, Gutzeit O, Csernok E, Gause A, Longombardo G, Zignego AL, Gross WL, Ferri C: Prevalence of ANCA in mixed cryoglobulinemia and chronic hepatitis C virus infection. Clin Exp Rheumatol 21:S89-S94, 2003
- 160. Davies DJ, Moran JE, Niall JF, Ryan GB: Segmental necrotising glomerulonephritis with antineutrophil antibody: possible arbovirus aetiology? Br Med J (Clin Res Ed) 285:606, 1982
- Savige JA, Chang L, Crowe SM: Anti-neutrophil cytoplasm antibodies in HIV infection. Adv Exp Med Biol 336:349-352, 1993
- 162. Sakkas L, Kistis C, Akritidis N: Antineutrophil cytoplasmic autoantibodies in human immunodeficiency virus infection. *Am J Kidney Dis* 24:731, 1994
- 163. Cornely OA, Hauschild S, Weise C, Csernok E, Gross WL, Salzberger B, Fatkenheuer G, Diehl V, Schrappe M: Seroprevalence and disease association of antineutrophil cytoplasmic autoantibodies and antigens in HIV infection. *Infection* 27:92-96, 1999
- 164. Bonnet F, Pineau JJ, Taupin JL, Feyler A, Bonarek M, de Witte S, Bernard N, Lacoste D, Morlat P, Beylot J: Prevalence of cryoglobulinemia and serological markers of autoimmunity in human immunodeficiency virus infected individuals: a cross-sectional study of 97 patients. *J Rheumatol* 30:2005-2010, 2003
- 165. Schultz H, Csernok E, Herlyn K, Reichel PH, Moosig F, Cornely OA, Fagerhol MK, Gross WL: ANCA against bactericidal/permeability-increasing protein, azurocidin, calprotectin and defensins in rheumatic and infectious diseases: prevalence and clinical associations. *Clin Exp Rheumatol* 21:S117-S120, 2003
- 166. Staud R, Ramos LG: Influenza A-associated bronchiolitis obliterans organizing pneumonia mimicking Wegener's granulomatosis. *Rheumatol Int* 20:125-128, 2001
- 167. Hoffman GS, Sechler JM, Gallin JI, Shelhamer JH, Suffredini A, Ognibene FP, Baltaro RJ, Fleisher TA, Leavitt RY, Travis WD, .: Bronchoalveolar lavage analysis in Wegener's granulomatosis. A method to study disease pathogenesis. Am Rev Respir Dis 143:401-407, 1991
- 168. Muniain MA, Moreno JC, Gonzalez CR: Wegener's granulomatosis in two sisters. *Ann Rheum Dis* 45:417-421, 1986
- 169. Hay EM, Beaman M, Ralston AJ, Ackrill P, Bernstein RM, Holt PJ: Wegener's granulomatosis occurring in siblings. *Br J Rheumatol* 30:144-145, 1991

- 170. Franssen CF, ter Maaten JC, Hoorntje SJ: Brother and sister with myeloperoxidase associated autoimmune disease. *Ann Rheum Dis* 53:213, 1994
- 171. Nowack R, Lehmann H, Flores-Suarez LF, Nanhou A, van der Woude FJ: Familial occurrence of systemic vasculitis and rapidly progressive glomerulonephritis. *Am J Kidney Dis* 34:364-373, 1999
- 172. Hull CM, Couser WG, Knostman JD: A familial case of P-ANCA glomerulonephritis presenting in a father and daughter. *Am J Kidney Dis* 35:E23, 2000
- 173. Brener Z, Cohen L, Goldberg SJ, Kaufman AM: ANCA-associated vasculitis in Greek siblings with chronic exposure to silica. *Am J Kidney Dis* 38:E28, 2001
- 174. Esnault VL, Testa A, Audrain M, Roge C, Hamidou M, Barrier JH, Sesboue R, Martin JP, Lesavre P: Alpha 1-antitrypsin genetic polymorphism in ANCA-positive systemic vasculitis. *Kidney Int* 43:1329-1332, 1993
- 175. Hagen EC, Stegeman CA, D'Amaro J, Schreuder GM, Lems SP, Tervaert JW, de Jong GM, Hene RJ, Kallenberg CG, Daha MR: Decreased frequency of HLA-DR13DR6 in Wegener's granulomatosis. *Kidney Int* 48:801-805, 1995
- 176. Gencik M, Borgmann S, Zahn R, Albert E, Sitter T, Epplen JT, Fricke H: Immunogenetic risk factors for anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis. *Clin Exp Immunol* 117:412-417, 1999
- 177. Papiha SS, Murty GE, Ad'Hia A, Mains BT, Venning M: Association of Wegener's granulomatosis with HLA antigens and other genetic markers. *Ann Rheum Dis* 51:246-248, 1992
- 178. Katz P, Alling DW, Haynes BF, Fauci AS: Association of Wegener's granulomatosis with HLA-B8. *Clin Immunol Immunopathol* 14:268-270, 1979
- 179. Cotch MF, Fauci AS, Hoffman GS: HLA typing in patients with Wegener granulomatosis. *Ann Intern Med* 122:635, 1995
- 180. Elkon KB, Sutherland DC, Rees AJ, Hughes GR, Batchelor JR: HLA antigen frequencies in systemic vasculitis: increase in HLA-DR2 in Wegener's granulomatosis. *Arthritis Rheum* 26:102-105, 1983
- 181. Jagiello P, Gencik M, Arning L, Wieczorek S, Kunstmann E, Csernok E, Gross WL, Epplen JT: New genomic region for Wegener's granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes. *Hum Genet* 114:468-477, 2004

- Tsuchiya N, Kobayashi S, Hashimoto H, Ozaki S, Tokunaga K: Association of HLA-DRB1*0901-DQB1*0303 haplotype with microscopic polyangiitis in Japanese. *Genes Immun* 7:81-84, 2006
- Spencer SJ, Burns A, Gaskin G, Pusey CD, Rees AJ: HLA class II specificities in vasculitis with antibodies to neutrophil cytoplasmic antigens. *Kidney Int* 41:1059-1063, 1992
- 184. Dijstelbloem HM, Scheepers RH, Oost WW, Stegeman CA, van der Pol WL, Sluiter WJ, Kallenberg CG, van de Winkel JG, Tervaert JW: Fcgamma receptor polymorphisms in Wegener's granulomatosis: risk factors for disease relapse. Arthritis Rheum 42:1823-1827, 1999
- Persson U, Truedsson L, Westman KW, Segelmark M: C3 and C4 allotypes in antineutrophil cytoplasmic autoantibody (ANCA)-positive vasculitis. *Clin Exp Immunol* 116:379-382, 1999
- 186. Gencik M, Meller S, Borgmann S, Sitter T, Menezes Saecker AM, Fricke H, Epplen JT: The association of CD18 alleles with anti-myeloperoxidase subtypes of ANCA-associated systemic vasculitides. *Clin Immunol* 94:9-12, 2000
- 187. Meller S, Jagiello P, Borgmann S, Fricke H, Epplen JT, Gencik M: Novel SNPs in the CD18 gene validate the association with MPO-ANCA+ vasculitis. *Genes Immun* 2:269-272, 2001
- 188. Huang D, Giscombe R, Zhou Y, Lefvert AK: Polymorphisms in CTLA-4 but not tumor necrosis factor-alpha or interleukin 1beta genes are associated with Wegener's granulomatosis. *J Rheumatol* 27:397-401, 2000
- Segelmark M, Persson U, Westman KWA, Sturfelt G, Truedsson L: Polymorphisms of candidate genes in ANCA positive vasculitis. *Cleve Clin J Med* 69:SII155-SII156, 2002
- Cohen Tervaert JW, Slot MC, Sokolowska M, Savelkouls K, Janssen R,
 Damoiseaux J: Immunoregulatory gene polymorphisms in ANCA-associated vasculitis. *Kidney Blood Press Res* 28:176, 2005
- 191. Zhou Y, Huang D, Paris PL, Sauter CS, Prock KA, Hoffman GS: An analysis of CTLA-4 and proinflammatory cytokine genes in Wegener's granulomatosis. *Arthritis Rheum* 50:2645-2650, 2004
- 192. Giscombe R, Wang X, Huang D, Lefvert AK: Coding sequence 1 and promoter single nucleotide polymorphisms in the CTLA-4 gene in Wegener's granulomatosis. *J Rheumatol* 29:950-953, 2002

- Bartfai Z, Gaede KI, Russell KA, Murakozy G, Muller-Quernheim J, Specks U: Different gender-associated genotype risks of Wegener's granulomatosis and microscopic polyangiitis. *Clin Immunol* 109:330-337, 2003
- 194. Spriewald BM, Witzke O, Wassmuth R, Wenzel RR, Arnold ML, Philipp T, Kalden JR: Distinct tumour necrosis factor alpha, interferon gamma, interleukin 10, and cytotoxic T cell antigen 4 gene polymorphisms in disease occurrence and end stage renal disease in Wegener's granulomatosis. *Annals of the Rheumatic Diseases* 64:457-461, 2005
- 195. Murakozy G, Gaede KI, Ruprecht B, Gutzeit O, Schurmann M, Schnabel A, Schlaak M, Gross WL, Muller-Quernheim J: Gene polymorphisms of immunoregulatory cytokines and angiotensin-converting enzyme in Wegener's granulomatosis. *J Mol Med* 79:665-670, 2001
- 196. Csernok E, Szymkowiak CH, Mistry N, Daha MR, Gross WL, Kekow J: Transforming growth factor-beta (TGF-beta) expression and interaction with proteinase 3 (PR3) in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Clin Exp Immunol 105:104-111, 1996
- 197. Borgmann S, Endisch G, Hacker UT, Song BS, Fricke H: Proinflammatory genotype of interleukin-1 and interleukin-1 receptor antagonist is associated with ESRD in proteinase 3-ANCA vasculitis patients. *Am J Kidney Dis* 41:933-942, 2003
- 198. Segelmark M, Elzouki AN, Wieslander J, Eriksson S: The PiZ gene of alpha 1-antitrypsin as a determinant of outcome in PR3-ANCA-positive vasculitis. *Kidney Int* 48:844-850, 1995
- 199. Gencik M, Meller S, Borgmann S, Fricke H: Proteinase 3 gene polymorphisms and Wegener's granulomatosis. *Kidney Int* 58:2473-2477, 2000
- Reynolds WF, Stegeman CA, Tervaert JW: -463 G/A myeloperoxidase promoter polymorphism is associated with clinical manifestations and the course of disease in MPO-ANCA-associated vasculitis. Clin Immunol 103:154-160, 2002
- Alcorta D, Preston G, Munger W, Sullivan P, Yang JJ, Waga I, Jennette JC, Falk R: Microarray studies of gene expression in circulating leukocytes in kidney diseases. *Exp Nephrol* 10:139-149, 2002
- 202. Witko-Sarsat V, Lesavre P, Lopez S, Bessou G, Hieblot C, Prum B, Noel LH, Guillevin L, Ravaud P, Sermet-Gaudelus I, Timsit J, Grunfeld JP, Halbwachs-Mecarelli L: A large subset of neutrophils expressing membrane proteinase 3 is a risk factor for vasculitis and rheumatoid arthritis. *J Am Soc Nephrol* 10:1224-1233, 1999

- 203. Muller Kobold AC, Kallenberg CG, Tervaert JW: Leucocyte membrane expression of proteinase 3 correlates with disease activity in patients with Wegener's granulomatosis. *Br J Rheumatol* 37:901-907, 1998
- 204. Schreiber A, Busjahn A, Luft FC, Kettritz R: Membrane expression of proteinase 3 is genetically determined. *J Am Soc Nephrol* 14:68-75, 2003
- 205. van Rossum AP, Rarok AA, Huitema MG, Fassina G, Limburg PC, Kallenberg CG: Constitutive membrane expression of proteinase 3 (PR3) and neutrophil activation by anti-PR3 antibodies. *J Leukoc Biol* 76:1162-1170, 2004
- 206. Rarok AA, Stegeman CA, Limburg PC, Kallenberg CG: Neutrophil membrane expression of proteinase 3 (PR3) is related to relapse in PR3-ANCA-associated vasculitis. *J Am Soc Nephrol* 13:2232-2238, 2002
- 207. Gunton JE, Stiel J, Clifton-Bligh P, Wilmshurst E, McElduff A: Prevalence of positive anti-neutrophil cytoplasmic antibody (ANCA) in patients receiving anti-thyroid medication. *Eur J Endocrinol* 142:587, 2000
- 208. D'Cruz D, Chesser AM, Lightowler C, Comer M, Hurst MJ, Baker LR, Raine AE: Antineutrophil cytoplasmic antibody-positive crescentic glomerulonephritis associated with anti-thyroid drug treatment. *Br J Rheumatol* 34:1090-1091, 1995
- Yuasa S, Hashimoto M, Yura T, Sumikura T, Takahashi N, Shoji T, Uchida K, Fujioka H, Kihara M, Matsuo H: Antineutrophil cytoplasmic antibodies (ANCA)associated crescentic glomerulonephritis and propylthiouracil therapy. *Nephron* 73:701-703, 1996
- Gao Y, Chen M, Ye H, Guo XH, Zhao MH, Wang HY: The target antigens of antineutrophil cytoplasmic antibodies (ANCA) induced by propylthiouracil. *Int Immunopharmacol* 7:55-60, 2007
- 211. Slot MC, Links TP, Stegeman CA, Tervaert JW: Occurrence of antineutrophil cytoplasmic antibodies and associated vasculitis in patients with hyperthyroidism treated with antithyroid drugs: A long-term followup study. *Arthritis Rheum* 53:108-113, 2005
- 212. Gao Y, Zhao MH, Guo XH, Xin G, Gao Y, Wang HY: The prevalence and target antigens of antithyroid drugs induced antineutrophil cytoplasmic antibodies (ANCA) in Chinese patients with hyperthyroidism. *Endocr Res* 30:205-213, 2004
- 213. Pillinger M, Staud R: Wegener's granulomatosis in a patient receiving propylthiouracil for Graves' disease. *Semin Arthritis Rheum* 28:124-129, 1998

- 214. Sato H, Hattori M, Fujieda M, Sugihara S, Inomata H, Hoshi M, Miyamoto S: High prevalence of antineutrophil cytoplasmic antibody positivity in childhood onset Graves' disease treated with propylthiouracil. *J Clin Endocrinol Metab* 85:4270-4273, 2000
- 215. Sera N, Ashizawa K, Ando T, Abe Y, Ide A, Usa T, Tominaga T, Ejima E, Yokoyama N, Eguchi K: Treatment with propylthiouracil is associated with appearance of antineutrophil cytoplasmic antibodies in some patients with Graves' disease. *Thyroid* 10:595-599, 2000
- 216. Noh JY, Asari T, Hamada N, Makino F, Ishikawa N, Abe Y, Ito K, Ito K: Frequency of appearance of myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA) in Graves' disease patients treated with propylthiouracil and the relationship between MPO-ANCA and clinical manifestations. *Clin Endocrinol (Oxf)* 54:651-654, 2001
- 217. Wada N, Mukai M, Kohno M, Notoya A, Ito T, Yoshioka N: Prevalence of serum anti-myeloperoxidase antineutrophil cytoplasmic antibodies (MPO-ANCA) in patients with Graves' disease treated with propylthiouracil and thiamazole. *Endocr J* 49:329-334, 2002
- 218. Choi HK, Merkel PA, Tervaert JW, Black RM, Mccluskey RT, Niles JL:
 Alternating antineutrophil cytoplasmic antibody specificity: drug-induced vasculitis in a patient with Wegener's granulomatosis. *Arthritis Rheum* 42:384-388, 1999
- 219. Walfish PG, Tseng KH: Intrathyroidal activated (Ia+) T-lymphocyte CD+ subsets and B cells in Graves' hyperthyroidism respond rapidly to propylthiouracil therapy: demonstration using fine needle aspirates and two-colour laser flow cytometry. *Autoimmunity* 13:35-41, 1992
- 220. Guo XH, Zhao MH, Gao Y, Wang SF, Gao Y: Antineutrophil cytoplasmic antibody associated vasculitis induced by antithyroid agents. *Zhonghua Yi Xue Za Zhi* 83:932-935, 2003
- 221. Xu X, Zhao M, Zhang Y, Guo X, Wang H: Clinicopathological characteristics of propylthiouracil-induced antineutrophil cytoplasmic antibodies-positive vasculitis and their target antigens: a report of 4 cases and literature review. *Zhonghua Nei* Ke Za Zhi 41:404-407, 2002
- 222. Elias AN, Goodman MM, Rohan MK: Serum ICAM-1 concentrations in patients with psoriasis treated with antithyroid thioureylenes. *Clin Exp Dermatol* 18:526-529, 1993

- 223. Elias AN, Goodman MM, Rohan MK: Effect of propylthiouracil and methimazole on serum levels of interleukin-2 receptors in patients with psoriasis. *Int J Dermatol* 32:537-540, 1993
- 224. Jiang X, Khursigara G, Rubin RL: Transformation of lupus-inducing drugs to cytotoxic products by activated neutrophils. *Science* 266:810-813, 1994
- 225. von Schmiedeberg S, Hanten U, Goebel C, Schuppe HC, Uetrecht J, Gleichmann E: T cells ignore the parent drug propylthiouracil but are sensitized to a reactive metabolite generated in vivo. Clin Immunol Immunopathol 80:162-170, 1996
- Silberman DM, Wald M, Genaro AM: Effects of chronic mild stress on lymphocyte proliferative response. Participation of serum thyroid hormones and corticosterone. *Int Immunopharmacol* 2:487-497, 2002
- 227. Nassberger L, Sjoholm AG, Thysell H: Antimyeloperoxidase antibodies in patients with extracapillary glomerulonephritis. *Nephron* 56:152-156, 1990
- 228. Short AK, Lockwood CM: Antigen specificity in hydralazine associated ANCA positive systemic vasculitis. *QJM* 88:775-783, 1995
- 229. Choi HK, Merkel PA, Walker AM, Niles JL: Drug-associated antineutrophil cytoplasmic antibody-positive vasculitis: prevalence among patients with high titers of antimyeloperoxidase antibodies. *Arthritis Rheum* 43:405-413, 2000
- Almroth G, Enestrom S, Hed J, Samuelsson I, Sjostrom P: Autoantibodies to leucocyte antigens in hydralazine-associated nephritis. *J Intern Med* 231:37-42, 1992
- Cambridge G, Wallace H, Bernstein RM, Leaker B: Autoantibodies to myeloperoxidase in idiopathic and drug-induced systemic lupus erythematosus and vasculitis. *Br J Rheumatol* 33:109-114, 1994
- Greenfield JR, McGrath M, Kossard S, Charlesworth JA, Campbell LV: ANCApositive vasculitis induced by thioridazine: confirmed by rechallenge. *Br J Dermatol* 147:1265-1267, 2002
- 233. Powell J, Grech H, Holder J: A boy with cutaneous necrosis occurring during treatment with levamisole. *Clin Exp Dermatol* 27:32-33, 2002
- Merkel PA: Drugs associated with vasculitis. Curr Opin Rheumatol 10:45-50, 1998

Chapter 6

- 235. Jones BF, Major GA: Crescentic glomerulonephritis in a patient taking penicillamine associated with antineutrophil cytoplasmic antibody. *Clin Nephrol* 38:293, 1992
- 236. Noel LH: Antineutrophil cytoplasm antibodies (ANCA): description and immunopathological role. *Ann Med Interne (Paris)* 151:178-183, 2000
- Choi HK, Slot MC, Pan G, Weissbach CA, Niles JL, Merkel PA: Evaluation of antineutrophil cytoplasmic antibody seroconversion induced by minocycline, sulfasalazine, or penicillamine. *Arthritis Rheum* 43:2488-2492, 2000
- Cuadrado MJ, D'Cruz D, Lloyd M, Mujic F, Khamashta MA, Hughes GR: Allergic disorders in systemic vasculitis: a case-controlled study. *Br J Rheumatol* 33:749-753, 1994

