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Galois Representations of elliptic curves
and abelian entanglements

door Julio Brau Avila

1. Let a,b € Q be rational numbers such that E, j : V- = K-
aX + b defines an elliptic curve that does not have complex
multiplication over Q. Then there exists a deterministic
algorithm which, given as inputs such a and b, determines
the image of the Galois representation pg, , attached to the

torsion points of I .

2. Let I//Q be a Serre curve. Let D be the discriminant of
Q(\/K), where A is the discriminant of any Weierstrass
model of E over , and let Cf be the density (conditional
on GRH) of primes p such that the group E‘(IE‘ p) is cyclic.

Then .
Cs=es]] (1 = 1)(62——@))

where the entanglement correction factor €g is given by

1 if D=0 (mod 4)

Cp= = s
Ei 1+H(€2_1)(£2_€)_1 if D=1 (mod 4)
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3. There exists a modular curve X'(6) of level 6 defined over Q

whose QQ-rational points correspond to j-invariants of ellip-




tic curves E over Q that satisfy Q(F[2]) C Q(E[3]), hence
do not have abelian entanglements.
. The modular curve X'(6) completes a set X of modular

curves such that, for any elliptic curve E over Q we have
that

E is not a Serre curve < j(E) € |J j(X(Q)).
XeX

. Let E/Q be the elliptic curve given by Y2+ XY +Y = X?—
X2_X-14. Let K = Q((3) and Ly, = K({/m). Then there
are infinitely many cube-free m such that rk E/L,, = 0.
(J.Brau. Selmer groups of elliptic curves in degree p extensions, preprint.
arxiv: 1401.3304, 2014.)

. Suppose that G is a normal subgroup of G; X - -Gy such
that the projection maps m; : G — G; are surjective for all
i. Then the quotient (G1 X -+ X Gy,)/G is abelian.

. Let E/Q be the elliptic curve given by Weierstrass equation
Y2 4+Y = X3 — X2 —10X — 20. Then we expect E(F,) to
be cyclic for around 61% of primes p.

. Let E be a non-CM elliptic curve over Q and let S be the
finite set of primes £ for which the representation pg ¢ is not

surjective. Define

T:={2,3}USU{¢ : {| Ng},

m::HE.
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Then the integer m splits pg, that is,

G = Gm x || GL2(Zy).
#4m




