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Chapter 3

Non-Serre curves

3.1 Introduction

Let E be a non-CM elliptic curve over a number field K. As we have seen
in chapters 1 and 2, understanding the image of pg in GLQ(Z) amounts to
understanding the (-adic images pg g (Gk) for every prime ¢ as well as the

entanglement fields

K(E[m]) 0 K(E[ma])

for each pair mi,mo € N which are relatively prime. We have also seen
such entanglement fields appear prominently in Chapter 2. Indeed, using
Lemma 2.3.1 we see that the character sum method for the study of con-
jectural constants can only be applied to the class of elliptic curves whose
entanglement fields are abelian extensions of K. This naturally leads to the
question: given a number field K, can one classify the triples (E,mq,ms)
with E an elliptic curve over K and mqy, me a pair of coprime integers for
which the entanglement field K (E[m,]) N K (E[ms]) is non-abelian over K7
The study of correction factors done in Chapter 2 illustrates why it would
be of interest to obtain a complete classification of such examples.

In this chapter we show that there does indeed exist at least one infi-
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Non-Serre curves

nite family of curves such that the curves in it do not satisfy the abelian
entanglements property. The character sum method as we have developed
it cannot be applied to the curves in this family, however we will see that
with some additional restrictions it still can be. The family of curves we
have found appears to be of a very idiosyncratic nature.

Let us restrict our attention now to elliptic curves over Q. With respect
to understanding the entanglement fields, the case K = Q, although it is
usually the first case considered, has a complication which doesn’t arise over
any other number field. Indeed, when the base field is QQ, the Kronecker-
Weber theorem, together with the containment Q((,) C Q(E[n]), forces the
occurrence of non-trivial entanglement fields. Recall from Section 2.4.1 that

for any elliptic curve E over Q one has

Q(VAg) € Q(E[2]) N Q%) (3.1.1)

where n = 4|Ag/|, and that a Serre curve is one whose Galois action on its
torsion points is as large as possible. That is, it satisfies that [GL2(2) :
pe(Gqg)] = 2. These are precisely the curves E over Q for which the entan-
glement (3.1.1) is the only obstruction to surjectivity of pg. It is also shown
in Section 2.4 that Serre curves have abelian entanglements.

Let E, ; denote the curve given by the equation

E.:Y?’=X34+7rX +s.

)

For a varying parameter = let R(z) and S(z) be a given length and width
that grow with x and define

C(x) :={E,4: (r,s) € Z* |r| < R(x),|s| < S(z) and 4r® + 27s% # 0}.

In [Jon10] Nathan Jones proves a theorem bounding the mean-square error

in the Chebotarev theorem for division fields of elliptic curves and uses this
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3.1. Introduction

to count the elliptic curves over Q which are Serre curves. More precisely,

he proves the following theorem (Theorem 4 in [Jon10]).

Theorem 3.1.1 (Jones). Let Cgerre(x) denote the set
{E,s € C(x): E,  is a Serre curve}.

Assuming that min{R(z), S(x)} > 22, one has

B
‘C(.%‘) - CSerre(x)‘ < Wa}()gxa

where B is an explicit constant. Thus, in particular,

lim ‘ OSerre (37) |

=1.

The main algebraic ingredient used by Jones in his proof is the following
lemma (Lemma 5 in [Jon10]) which gives a sufficient condition for an elliptic

curve E to be a Serre curve.

Lemma 3.1.2 (Jones). Suppose E is an elliptic curve over Q such that:
1. For all primes £ we have that pg (Gq) = GL2(Z/(Z),
2. pp2(Go) = GLa(Z/727).

Then E is a Serre curve.

In [Zyw10], Zywina generalizes Theorem 3.1.1 to the case K # Q (see
also [Rad08], which sharpens the upper bound to an asymptotic formula).
In [GJ11], different ideas are used to deduce stronger upper bounds for
the number of elliptic curves in one-parameter families which are not Serre
curves. These results are obtained by viewing non-Serre curves as coming

from rational points on modular curves. More precisely, there is a family
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Non-Serre curves

X ={Xj, Xo,...} of modular curves with the property that, for each elliptic

curve F, one has

E is not a Serre curve <= j(F) € U J(X(Q)), (3.1.2)
Xex

where j denotes the natural projection followed by the usual j-map:
j: X — X(1) — PL

In [GJ11], the authors use (3.1.2) together with geometric methods to bound
the number of non-Serre curves in a given one-parameter family. This brings
us to the following question, which serves as additional motivation for the

present chapter.

Question 3.1.3. What is an explicit list of modular curves in a family
X ={X1, Xo,...} satisfying (3.1.2)7

In order to answer this question it will be essential to have a necessary
and sufficient condition for an elliptic curve to be a Serre curve. Lemma
3.1.2 above gives a sufficient condition, and this was furthered strengthened

by Jones (Corollary 2.12 in [Jon]) to provide a necessary condition as well.

Proposition 3.1.4 (Jones). Let E be an elliptic curve over Q. Then E is

a Serre curve if and only if the following two conditions hold.
1. For each prime ¢ > 5, pp(Gq) = GL2(Z/(Z).
2. One has [,OE,36(GQ), pE’gﬁ(GQ)] = [GLQ(Z/36Z), GLQ(Z/36Z)]

Let & be the set of modular curves whose rational points correspond to
Jj-invariants of elliptic curves E for which pg, is not surjective. Then we

have seen in Section 1.2.3 that

€ € {X0(0), Xyt (0 Xyl pis (0 Xa,(0), X, (0), Xag (0} (3.1.3)

» “*split non-split
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3.1. Introduction

where each of the modular curves X 4,(¢), Xg,(¢), and X 4, (¢) corresponding
to the exceptional groups A4, Sy and As only occurs for certain primes /.
We have then

U &ca.

¢ prime

If pg ¢ is surjective for all primes ¢ and E is not a Serre curve then by Propo-
sition 3.1.4 the obstruction must be coming from the mod 36 representation.
By Corollary 1.2.4 we have that if pg, is surjective then so is the f-adic
representation pg oo, however this is not necessarily true for £ = 2,3. These
obstructions are described by two other modular curves X'(4) and X" (4) of
level 4, and another X’(9) of level 9, which have been considered in [DD12]
and [Elk06], respectively.

Here we consider a modular curve X'(6) of level 6 which, taken together
with those listed above, completes the set X of modular curves occurring in
(3.1.2), answering Question 3.1.3. Let X (n) denote the complete modular
curve of level n, and let H C GL2(Z/nZ) be a subgroup containing —I for

which the determinant map
det: H — (Z/nZ)*

is surjective. Recall from Section 1.2.3 that for any = € P}(Q), we have that

3 an elliptic curve E over Q and 3¢9 € GLa(Z/nZ)
with j(E) = z and pp,(Gal(Q/Q)) € g~ Hy.
(3.1.4)
Thus, to describe X'(6), it suffices to describe the corresponding subgroup
H C GLo(Z/61Z).
There is exactly one index 6 normal subgroup N' C GL2(Z/3Z), defined

T € j(Xu(Q) <
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Non-Serre curves

This subgroup fits into an exact sequence
1— N — GLy(Z/3Z) — GL2(Z/27) — 1, (3.1.6)
and we denote by
0: GLo(Z/37) — GLo(Z/27Z) (3.1.7)

the (non-canonical) surjective map in the above sequence. We take H C
GL2(Z/2Z) x GLa(Z/3Z) to be the graph of 6, viewed as a subgroup of
GL2(Z/67Z) via the Chinese Remainder Theorem. The modular curve X'(6)
is then defined by

X'(6) := Xp;, where H{ .= {(g92,93) € GLa(Z/27) x GLo(Z/37Z) :
g2 = 0(g3)} € GLy(Z/67Z). (3.1.8)

Unravelling (3.1.4) in this case, we find that, for every elliptic curve E over

Q,

Ji(E) € j(X'(6)(Q)
E~g5 E" for some E’ over Q for which Q(E'[2]) C Q(E'[3]). (3.1.9)

By considering the geometry of the natural map X'(6) — X (1), the curve

X'(6) is seen to have genus zero and one cusp. Since Gal(Q/Q) acts on the
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3.1. Introduction

cusps, the single cusp must be defined over Q, thus endowing X’(6) with
a rational point. Therefore X'(6) ~q P'. We prove the following theorem,
which gives an explicit model of X'(6).

Theorem 3.1.5. There exists a parameter t: X'(6) — P, whose inverse

is a uniformizer at the cusp, and which has the property that
§ =219333(1 — 413),

where j: X' (6) — X (1) ~ P! is the usual j-map.

Remark 3.1.6. By (3.1.9), Theorem 3.1.5 is equivalent to the following state-
ment: for any elliptic curve E over Q, E is isomorphic over Q to an elliptic
curve F’ satisfying
Q(E'2]) € Q(E'[3])
if and only if j(F) = 21033t3(1 — 4t3) for some t € Q.
Furthermore, we prove the following theorem, which answers Question

3.1.3. For each prime ¢, consider the set Gy max of maximal proper subgroups
of GLo(Z/¢Z), which surject via determinant onto (Z/(Z)*:

Grmax = {H C GLo(Z/lZ) : det(H) = (Z/(Z)™

and #1H; with H C Hy C GLo(Z/¢Z)}. (3.1.10)

The group GL2(Z/{Z) acts on Gy max by conjugation, and let Ry be a set
of representatives of Gy max modulo this action. By (3.1.4), the collection X

occurring in (3.1.2) must contain as a subset
& ={Xug: H e Ry}, (3.1.11)

the set of modular curves attached to subgroups H € Ry (this gives a more
precise description of the set & in (3.1.3)). Furthermore, the previously men-
tioned modular curves X'(4), X" (4), and X'(9) correspond to the following

89



Non-Serre curves

subgroups. Let ¢ : GL2(Z/2Z) — {£1} denote the unique non-trivial char-
acter, and we will view det: GLo(Z/4Z) — (Z/4Z)* ~ {£1} as taking the

values +1.

X'(4) = Xpy, where Hj :={g € GLa(Z/AZ) :
det g = e(g mod 2)} C GLo(Z/4Z),

X"(4) = Xpy where HY = <<2 é) < >> Lo(Z/4AZ),

0 2 1
X'(9) = X4+ where H, ::<
9) = X = ((; 0)(34

2 0 -1 0
, C GL2(Z/9Z).
(3.1.12)
For more details on these modular curves, see [DD12] and [EIk06].

Theorem 3.1.7. Let X be defined by

X ={X'(4),X"(4),Xx'09,xX'6)}u U &,

£ prime

where X'(4), X"(4) and X'(9) are defined by (3.1.12), X'(6) is defined by
(3.1.8), and & is as in (3.1.11). Then, for any elliptic curve E over Q,

E is not a Serre curve <= j(E) € U J(X(Q)).
Xex

3.2 Proofs

We now prove Theorems 3.1.5 and 3.1.7.
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3.2. Proofs

Proof of Theorem 3.1.5. Consider the elliptic curve E over Q(¢) given by

E:y?=a®+3t(1-46%) 2 + (1 - 4%) (;4153),

with discriminant and j-invariant Ag, j(E) € Q(t) given, respectively, by
Ap = —2633(1 — 4t%)?  and j(E) = 2193331 — 4¢3). (3.2.1)

For every t € Q, the specialization E; is an elliptic curve over Q whose
discriminant Ag, € Q and j-invariant j(E;) € Q are given by evaluating
(3.2.1) at t. We will show that, for any ¢t € Q, one has

Q(E¢[2]) € Q(E[3)). (3.2.2)
By (3.1.9) and (3.2.1), it then follows that
vteQ, 219333(1 —4¢3) € j(X'(6)(Q)).

Since the natural j-map j: X’(6) — P! and the map ¢ — 21933#3(1 — 4¢3)
both have degree 6, Theorem 3.1.5 will then follow. To verify (3.2.2), we

will show that, for every t € QQ, one has

Q(E[2]) € QG AFY). (3.2.3)
It is a classical fact that, for any elliptic curve E over Q, one has Q((3, Agg) C
Q(E13]) (for details, see for instance [LT74, p. 181] and the references given
there). Thus, the containment (3.2.2) follows from (3.2.3). Finally, (3.2.3)

follows immediately from the factorization

(¢~ e1(t) (@ — ea(t)) (& — es(t) = a*+3t (1 — 46%) at (1 — 48°) (; - 4t3>
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Non-Serre curves

1
of the 2-division polynomial 23+ 3t (1 — 4t3) T+ (1 — 4753) (2 — 4t3>, where

1y 2/3

) = gAL" + g A8
(34173 (3t 2/3

ea(t) := GAEt + 18(1—4t3)AEf , and

G A3 €Y 2/3
63(t) = EA]Et + WAI& .

This finishes the proof of Theorem 3.1.5. O

Remark 3.2.1. Our proof shows that, viewing E; as an elliptic curve over

Q(t), we have a containment of function fields

Q(#)(E+[2]) < Q(¢)(E4[3))-

We will now turn to Theorem 3.1.7, whose proof employs the following
group theoretic lemma. Recall from Section 1.2.2 that if ¢ is the abbreviation

for the ordered pair (19, 11), then the group G given by

G1 Xy Go:={(g1,92) € G1 X G2 : 1(g1) = 2(g2) } (3.2.4)

is called the fibered product of Gy and G1 over 1, and is commonly denoted
by G % G1. Notice that, for a surjective group homomorphism f: @ — @1,
if f o1 denotes the ordered pair (f oy, f o) and Go X oy G1 denotes the

corresponding fibered product, then one has
GO Xap G1 - Go X for Gl. (3.2.5)

Lemma 3.2.2. Let Go and G1 be groups, let ¥o: Gy — @ and 1: G1 — Q
be a pair of surjective homomorphisms onto a common quotient group @,
and let H = Gy xy G be the associated fibered product. If Q is cyclic, then
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3.2. Proofs

one has the following equality of commutator subgroups:
[H) H] = [GoaGO] X [leGl]'

Proof. See [LT74, Lemma 1, p. 174] (the hypothesis of this lemma is readily
verified when @ is cyclic). O

Proof of Theorem 3.1.7. Using Proposition 3.1.4 one has

d a prime ¢ > 5 with
p,(Gal(@/Q)) € GLa(Z/0Z),
or [pp,36(Gal(Q/Q)), pr 36(Gal(Q/Q))]
C [GLy(Z/367Z), GLo(Z/36Z)].

F is not a Serre curve <=

For each divisor d of 36, let
T36,d - GLQ(Z/362) — GLQ(Z/dZ) (3.2.6)

denote the canonical projection. One checks that, for ¢ € {2,3}, any proper
subgroup H C GLo(Z/¢Z) for which det(H) = (Z/¢Z)* must satisfy [H, H] C
(GL2(Z/0Z), GL2(Z/¢Z)]. We then define

vd € {2,3}, m36,4(H) = GL2(Z/dZ),
Gsg:= ¢ H C GLy(Z/362Z) : det(H) = (Z/367Z)*, )
and [H, H| C [GLy(Z/36Z), GLa(Z/36Z)]
(3.2.7)
and note that

J a prime £ and H € Gy ax for which
pe(Gal(Q/Q)) C H,
or 3H € Gsp for which
pE36(Gal(Q/Q)) C H.

FE is not a Serre curve <—

(3.2.8)
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Non-Serre curves

As in the prime level case, we need only consider mazimal subgroups H €
Gse, and because of (3.1.4), only up to conjugation by GLy(Z/36Z). Thus,

we put
G36.max := {H € G36 : #1H; € Gsg with H C Hy € GLo(Z/36Z)},

we let R36 C G36 max be a set of representatives of G3g max modulo GL(Z/367Z)-

conjugation, and we set
Es36 := {XH : H e R36}.
The equivalence (3.2.8) now becomes (see (3.1.11))

Ja prime £ and Xy € & for which
E is not a Serre curve <= j(F) € j(Xy(Q)),or Xy € &6 for which

J(E) € j(Xu(Q)).
Thus, Theorem 3.1.7 will follow from the next proposition.

Proposition 3.2.3. With the above notation, one may take
-1 —1 —1 —1
Rae = {7736,4(H1/1)77736,4(Hz/1/)77736,9(H£;)7W36,6(Hé)}7

where w36 4 s as in (3.2.6) and the groups Hy, HJ, Hy and Hg are given by
(3.1.12) and (3.1.8).

Proof. Let H € G3gmax. If m364(H) # GL2(Z/4Z), then [DD12] shows
that ms64(H) C Hj or m3s4(H) C HJ, up to conjugation in GLo(Z/4Z). If
736,9(H ) # GL2(Z/97Z), then [Elk06] shows that, up to GL2(Z/9Z)-conjugation,
one has 36 9(H) C H). Thus, we may now assume that msg 4(H) = GL2(Z/4Z)
and m369(H) = GL2(Z/9Z). By Lemma 1.2.7, this implies that there exists
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3.2. Proofs

a group () and a pair of surjective homomorphisms

for which H = GL2(Z/4Z) x GL(Z/9Z). We will now show that in this
case, up to GLy(Z/36Z)-conjugation, we have

H C {(g4,99) € GLo(Z/AZ) x GL2(Z/9Z) : (g9 mod 3) = g4 mod 2},
(3.2.9)
where 0: GL2(Z/3Z) — GL2(Z/2Z) is the map given in (3.1.7), whose
graph determines the level 6 structure defining the modular curve X'(6).
This will finish the proof of Proposition 3.2.3.

Let us make the following definitions:

N4 = kerw4 g GLQ(Z/4Z), Ng = ker¢9 g GLQ(Z/QZ)
Ny :=m42(Ny) € GLo(Z/2Z), N3 := mg3(Ng) C GLo(Z/3Z)
Q2 := GLo(Z/2Z) /Ny, Q3 := GL2(Z/3Z) /N3,

where T4,2: GLQ (Z/4Z) — GLQ(Z/QZ) and 79,3: GLQ(Z/QZ) — GLQ (Z/?)Z)

denote the canonical projections. We then have the following exact se-

quences:
1 — Ng — GL2(Z/9Z) — Q — 1
1 — Ny — GLo(Z/4Z) — Q — 1
4 2(Z/AL) — Q (3:2.10)
1 — N3 — GLy(Z/3Z) — Q3 — 1
1 — Ny — GL2(Z/2Z) — Q2 — 1,
as well as
1 —Ky— Q — — 1
2 @@ (3.2.11)

1— K3 — Q — Q3 — 1,
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Non-Serre curves

kermpe, o GLy(Z /PPZL)
NZQ ﬂkeI‘ﬂ'p’g B N@Q o
@ is evidently abelian (since ker 72 4 is), and has order dividing ¢* = |ker mp2 ).

where for each ¢ € {2, 3}, the kernel Ky ~

We will proceed to prove that

Q2 ~ GL2(Z/2Z) and Q3 ~Q, (3.2.12)
which is equivalent to

Ny Ckermyo and  kermgz C Ny.

Writing g : GLa(Z/4Z) — Q — Q2 ~ GLy(Z/27Z) and tpg: GLy(Z/9Z) —
Q — Q2 ~ GL2(Z/2Z), we then see by (3.2.5) that

H = GLQ(Z/4Z) Xw GLQ(Z/9Z) - GLQ(Z/4Z) X'J; GLQ(Z/QZ)

Furthermore, it follows from Q ~ Q3 that vy factors through the projec-
tion GLo(Z/9Z) — GLo(Z/37Z). This, together with the uniqueness of N
in (3.1.6) and the fact that every automorphism of GLy(Z/2Z) is inner, im-
plies that (3.2.9) holds, up to GL2(Z/367Z)-conjugation. Thus, the proof of
Proposition 3.2.3 is reduced to showing that (3.2.12) holds.

We will first show that Qo ~ GLy(Z/2Z). Suppose on the contrary that
Q2 € GLo(Z/2Z). Looking at the first exact sequence in (3.2.11), we see
that @ must then be a 2-group, and since K3 has order a power of 3 (possibly
1), we see that @ ~ @3, and the third exact sequence in (3.2.10) becomes

1 — N3 — GL2(Z/3Z) — Q — 1.

The kernel N3 must contain an element o of order 3, and by considering
GL2(Z/37Z)-conjugates of o, we find that |N3| > 8. Since 3 also divides | N3],
we see that |N3| > 12, and so Q must be abelian, having order at most 4.
Furthermore, since [GL2(Z/3Z), GL2(Z/37Z)] = SL2(Z/3Z), we find that Q
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3.2. Proofs

has order at most 2, and thus is cyclic. Applying Lemma 3.2.2, we find that
[H,H| = [GL2(Z/36Z),GL2(Z/367Z)], contradicting (3.2.7). Thus, we must
have that Qo ~ GLy(Z/27).

We will now show that @3 ~ @. To do this, we will first take a more
detailed look at the structure of the group GL2(Z/4Z). Note the embedding
of groups GLo(Z/2Z) < GL2(Z) given by

10 10 11 -1 -1 0 1 0 1
— , — ) — ,
A K 13 O Y S i N (Y I G
0 1 0 1 11 -1 -1 10 1 0
— , — ) — :
R0 I VY B P S e O Y Y Y
This embedding, followed by reduction modulo 4, splits the exact sequence

1— ker7r4,2 — GLQ(Z/4Z) — GLQ(Z/2Z) — 1.

Also note the isomorphism (kermso,) — (Max2(Z/2Z),+) given by I +
2A — A (mod 2). These two observations realize GLo(Z/47Z) as a semi-
direct product

where the right-hand factor is an additive group and the action of GLo(Z/2Z)
on Msy2(Z/27Z) is by conjugation. Since Q2 ~ GL2(Z/2Z), we see that,
under (3.2.13), one has

Ny C Max2(Z/27),

and since it is a normal subgroup of GL2(Z/4Z), we see that Ny must be
a Z/27Z-subspace which is invariant under GLy(Z/2Z)-conjugation. This
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implies that we must be in one of the following 5 cases.

| %

|

Q

Mosy2(7,/27.)

GLo(Z/22)

{A S M2><2(Z/2Z) :

trA =0}

GLo(Z/2Z) x {£1}

o o) (0 2]

1\ /0 1
0/’ \1 1

)

GLo(Z/27) % (Z.)27.)?

{0

)

1 1\ (1
0 1) \1

0 0 1
1/°\1 0

)

GL2(Z/27) % (Z./27,)?

{

0 0\ (1
0 0/ \o

)

PGLy(Z/AZ)

(We have omitted from the table the case that Ny is trivial, since then
Q ~ GL2(Z/AZ), which has order 2° - 3 and thus cannot be a quotient
of GL2(Z/9Z).) In the third row of the table, the action of GL2(Z/2Z)
on (Z/27)?* defining the semi-direct product is the usual action by matrix

multiplication on column vectors, while in the fourth row of the table, the

WIEES (RN R W 1
) {606}

Since 9 does not divide |@Q|, the degree of the projection @) — Qs is either 1 or
3. Inspecting the table above, we see that in all cases except QQ = GLo(Z/2Z),
either @ has no normal subgroup of order 3, or for each normal subgroup
K3 <4Q of order 3, Q3 ~ Q/K3 has Z/27 x 7./27 as a quotient group. Since
(GL2(Z/3Z),GL2(Z/3Z)) = SLa(Z/3Z), the group GL2(Z/3Z) cannot have
Z]27. x 7.J]27 as a quotient group, and so we must have () ~ Q3 in these

action is defined via
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3.2. Proofs

cases, as desired.

When @ = GL2(Z/27Z), we must proceed differently. Suppose that @ =
GL2(Z/2Z) and (for the sake of contradiction) that @ # @3, so that the
projection @ — Q3 has degree 3. Then @3 ~ Z/27Z, which implies that
N3 = SLo(Z/3Z), so that

Ny C 75 5(SL2(Z/3Z)) € GLa(Z/9Z).

Furthermore, the quotient group 779_731,(SL2(Z/3Z))/N9 ~ 7/37, and in par-

ticular is abelian. A commutator calculation shows that
[m9.3(SLa(Z/3Z)), 74 5(SLa(Z/3Z))] = g 3(N) N SLy(Z/9Z),
(see (3.1.5)) and that the corresponding quotient group satisfies
75.3(SLa(Z/32Z))/[mg 5(SL2(Z/3Z)), 74 5(SL2(Z/3Z))] ~ Z/3Z x /3.

Furthermore, fixing a pair of isomorphisms

() e

n2: (1 +3- Z/QZ, ) — (Z/327+>7
and defining the characters

X1: 74.3(SLa(Z/3Z)) — Z/3Z,
X2: 7 3(SLa(Z/3Z)) — Z/3Z

by x1 = m o0 omg3 and x2 = 72 o det, we have that every homomorphism
X: 7T977§(SL2(Z/3Z)) — 7Z/37 must satisfy

X = ai1x1 + az2x2,
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Non-Serre curves

for appropriately chosen aj,ay € Z/37Z. In particular,
Ny = ker(a1x1 + a2x2) (3.2.14)
for some choice of a1, as € Z/37Z. One checks that
dg € GLo(Z/9Z), x € ﬂié(SLg(Z/i&Z)) for which x1(gzg™') # x1(x),

whereas Y2(grg~!) = xo(x) for any such choice of g and 2. Since Ny
is a normal subgroup of GL2(Z/9Z), it follows that a; = 0,a2 # 0 in
(3.2.14). This implies that N9 = SLy(Z/9Z), which contradicts the fact
that GLo(Z/9Z)/Ng ~ @Q ~ GLy(Z/27Z) is non-abelian. This contradiction
shows that we must have @ ~ @3, and this verifies (3.2.12), completing the
proof of Proposition 3.2.3. O

As already observed, the proof of Proposition 3.2.3 completes the proof
of Theorem 3.1.7. O

3.3 Elliptic curves without abelian entanglements

Let us study in more detail one example coming from the family of curves
in Theorem 3.1.5. Consider the curve E/Q given by minimal Weierstrass
equation Y2 = X3 — 63504X + 6223392. This curve has j(E) = —2'03% as
well as A = —2431176, Machine computation shows that G(¢) = GL(Z/¢Z)
and Q(E[2]) C Q(E[3]). We also have that Q(vA) = Q(v/—=3), which
is what we expect since the maximal abelian extension inside Q(E[3]) is
precisely Q(v/—3).

Suppose we wish to compute the conjectural density of primes p such
that E(F,) is cyclic. As we have seen, the naive density of this is [, dr,

however a correction factor is needed. As the only critical primes are 2,3
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and 7, the density we are looking for is

‘G(42 ﬁ 842|

Cr = G(42)]

H 5@7
042,37
where we are using the notation of Section 2.4. Now GLy(Z/37Z) and GL2(Z/77Z)
have no simple non-abelian quotients, hence any entanglement between the
fields Q(E[3]) and Q(E[7]) would have to contain a non-trivial abelian sub-
field. However the maximal abelian extensions of Q(E[3]) and Q(E[7]) are

Q(¢3) and Q((7), hence we conclude Q(E[3]) N Q(E[7]) = Q. This implies
that G(42) = G(6) x G(7), hence
‘ (#2,3

Finally, note that because G(6) = G(3) and G(2) is a quotient of G(6), then

G(6) N S| _ 1S(2)]
EOIEOL

Using machine computation we find that the observed density of primes
p < 100000000 is 0.831069 while our computation yields

Cr =[]

0#£3
~ 0.831066.

As mentioned in the introduction, another natural question which arises
from this is whether one can one classify the triples (F,mj,mo) with E
an elliptic curve over Q and mq, mg a pair of coprime integers for which
the entanglement field Q(E[m1]) N Q(E[mz]) is non-abelian over Q. We are
not sure if any other families exist, however one systematic way one could

possibly rule out other examples is via the following steps.
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(i) Classify the non-abelian groups which arise as common quotients of
subgroups H,,, and H,,,, where H,,,, C GLa(Z/m;Z) and det(H,,,) =
(Z)m;Z)* for i =1,2.

(ii) For each example in step (i), compute the genus of the associated

modular curve.

(iii) For each modular curve in step (ii), decide whether or not it has any

rational points.

For each of these families of curves it would also be of interest to find a
systematic way to compute their entanglement correction factors. For the
family we have described here this is easy to do because one of the torsion
fields is fully contained in another one. It may occur however, at least
in theory, that a curve could have many non-abelian intersections between
various of its torsion fields. However it seems unlikely many examples of this

type exist.
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