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Chapter 3

Non-Serre curves

3.1 Introduction

Let E be a non-CM elliptic curve over a number field K. As we have seen
in chapters 1 and 2, understanding the image of flE in GL

2

(Ẑ) amounts to
understanding the ¸-adic images flE,¸Œ(GK) for every prime ¸ as well as the
entanglement fields

K(E[m
1

]) fl K(E[m
2

])

for each pair m
1

, m
2

œ N which are relatively prime. We have also seen
such entanglement fields appear prominently in Chapter 2. Indeed, using
Lemma 2.3.1 we see that the character sum method for the study of con-
jectural constants can only be applied to the class of elliptic curves whose
entanglement fields are abelian extensions of K. This naturally leads to the
question: given a number field K, can one classify the triples (E, m

1

, m
2

)
with E an elliptic curve over K and m

1

, m
2

a pair of coprime integers for
which the entanglement field K(E[m

1

]) fl K(E[m
2

]) is non-abelian over K?
The study of correction factors done in Chapter 2 illustrates why it would
be of interest to obtain a complete classification of such examples.

In this chapter we show that there does indeed exist at least one infi-
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Non-Serre curves

nite family of curves such that the curves in it do not satisfy the abelian
entanglements property. The character sum method as we have developed
it cannot be applied to the curves in this family, however we will see that
with some additional restrictions it still can be. The family of curves we
have found appears to be of a very idiosyncratic nature.

Let us restrict our attention now to elliptic curves over Q. With respect
to understanding the entanglement fields, the case K = Q, although it is
usually the first case considered, has a complication which doesn’t arise over
any other number field. Indeed, when the base field is Q, the Kronecker-
Weber theorem, together with the containment Q(’n) ™ Q(E[n]), forces the
occurrence of non-trivial entanglement fields. Recall from Section 2.4.1 that
for any elliptic curve E over Q one has

Q(


�E) ™ Q(E[2]) fl Q(’n), (3.1.1)

where n = 4|�E |, and that a Serre curve is one whose Galois action on its
torsion points is as large as possible. That is, it satisfies that [GL

2

(Ẑ) :
flE(GQ)] = 2. These are precisely the curves E over Q for which the entan-
glement (3.1.1) is the only obstruction to surjectivity of flE . It is also shown
in Section 2.4 that Serre curves have abelian entanglements.

Let Er,s denote the curve given by the equation

Er,s : Y 2 = X3 + rX + s.

For a varying parameter x let R(x) and S(x) be a given length and width
that grow with x and define

C(x) := {Er,s : (r, s) œ Z2, |r| 6 R(x), |s| 6 S(x) and 4r3 + 27s2 ”= 0}.

In [Jon10] Nathan Jones proves a theorem bounding the mean-square error
in the Chebotarev theorem for division fields of elliptic curves and uses this
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3.1. Introduction

to count the elliptic curves over Q which are Serre curves. More precisely,
he proves the following theorem (Theorem 4 in [Jon10]).

Theorem 3.1.1 (Jones). Let CSerre(x) denote the set

{Er,s œ C(x) : Er,s is a Serre curve}.

Assuming that min{R(x), S(x)} > x2, one has

|C(x) ≠ CSerre(x)| π |C(x)| logB x

x
,

where B is an explicit constant. Thus, in particular,

lim
xæŒ

|CSerre(x)|
C(x)| = 1.

The main algebraic ingredient used by Jones in his proof is the following
lemma (Lemma 5 in [Jon10]) which gives a su�cient condition for an elliptic
curve E to be a Serre curve.

Lemma 3.1.2 (Jones). Suppose E is an elliptic curve over Q such that:

1. For all primes ¸ we have that flE,¸(GQ) = GL
2

(Z/¸Z),

2. flE,72

(GQ) = GL
2

(Z/72Z).

Then E is a Serre curve.

In [Zyw10], Zywina generalizes Theorem 3.1.1 to the case K ”= Q (see
also [Rad08], which sharpens the upper bound to an asymptotic formula).
In [GJ11], di�erent ideas are used to deduce stronger upper bounds for
the number of elliptic curves in one-parameter families which are not Serre
curves. These results are obtained by viewing non-Serre curves as coming
from rational points on modular curves. More precisely, there is a family
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Non-Serre curves

X = {X
1

, X
2

, . . . } of modular curves with the property that, for each elliptic
curve E, one has

E is not a Serre curve ≈∆ j(E) œ
€

XœX
j(X(Q)), (3.1.2)

where j denotes the natural projection followed by the usual j-map:

j : X ≠æ X(1) ≠æ P1.

In [GJ11], the authors use (3.1.2) together with geometric methods to bound
the number of non-Serre curves in a given one-parameter family. This brings
us to the following question, which serves as additional motivation for the
present chapter.

Question 3.1.3. What is an explicit list of modular curves in a family
X = {X

1

, X
2

, . . . } satisfying (3.1.2)?

In order to answer this question it will be essential to have a necessary
and su�cient condition for an elliptic curve to be a Serre curve. Lemma
3.1.2 above gives a su�cient condition, and this was furthered strengthened
by Jones (Corollary 2.12 in [Jon]) to provide a necessary condition as well.

Proposition 3.1.4 (Jones). Let E be an elliptic curve over Q. Then E is
a Serre curve if and only if the following two conditions hold.

1. For each prime ¸ > 5, flE,¸(GQ) = GL
2

(Z/¸Z).

2. One has [flE,36

(GQ), flE,36

(GQ)] = [GL
2

(Z/36Z), GL
2

(Z/36Z)].

Let E¸ be the set of modular curves whose rational points correspond to
j-invariants of elliptic curves E for which flE,¸ is not surjective. Then we
have seen in Section 1.2.3 that

E¸ ™
Ó

X
0

(¸), X+

split

(¸), X+

non-split

(¸), XA4(¸), XS4(¸), XA5(¸)
Ô

(3.1.3)
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3.1. Introduction

where each of the modular curves XA4(¸), XS4(¸), and XA5(¸) corresponding
to the exceptional groups A

4

, S
4

and A
5

only occurs for certain primes ¸.
We have then €

¸ prime

E¸ ™ X .

If flE,¸ is surjective for all primes ¸ and E is not a Serre curve then by Propo-
sition 3.1.4 the obstruction must be coming from the mod 36 representation.
By Corollary 1.2.4 we have that if flE,¸ is surjective then so is the ¸-adic
representation flE,¸Œ , however this is not necessarily true for ¸ = 2, 3. These
obstructions are described by two other modular curves X Õ(4) and X ÕÕ(4) of
level 4, and another X Õ(9) of level 9, which have been considered in [DD12]
and [Elk06], respectively.

Here we consider a modular curve X Õ(6) of level 6 which, taken together
with those listed above, completes the set X of modular curves occurring in
(3.1.2), answering Question 3.1.3. Let X(n) denote the complete modular
curve of level n, and let H ™ GL

2

(Z/nZ) be a subgroup containing ≠I for
which the determinant map

det : H ≠æ (Z/nZ)◊

is surjective. Recall from Section 1.2.3 that for any x œ P1(Q), we have that

x œ j(XH(Q)) ≈∆ ÷ an elliptic curve E over Q and ÷g œ GL
2

(Z/nZ)
with j(E) = x and flE,n(Gal(Q/Q)) ™ g≠1Hg.

(3.1.4)
Thus, to describe X Õ(6), it su�ces to describe the corresponding subgroup
H ™ GL

2

(Z/6Z).
There is exactly one index 6 normal subgroup N ™ GL

2

(Z/3Z), defined
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Non-Serre curves

by

N :=
IA

x ≠y

y x

B

: x2 + y2 © 1 mod 3
J

Û
IA

x y

y ≠x

B

: x2 + y2 © ≠1 mod 3
J

. (3.1.5)

This subgroup fits into an exact sequence

1 ≠æ N ≠æ GL
2

(Z/3Z) ≠æ GL
2

(Z/2Z) ≠æ 1, (3.1.6)

and we denote by

◊ : GL
2

(Z/3Z) ≠æ GL
2

(Z/2Z) (3.1.7)

the (non-canonical) surjective map in the above sequence. We take H ™
GL

2

(Z/2Z) ◊ GL
2

(Z/3Z) to be the graph of ◊, viewed as a subgroup of
GL

2

(Z/6Z) via the Chinese Remainder Theorem. The modular curve X Õ(6)
is then defined by

X Õ(6) := XHÕ
6
, where H Õ

6

:= {(g
2

, g
3

) œ GL
2

(Z/2Z) ◊ GL
2

(Z/3Z) :

g
2

= ◊(g
3

)} ™ GL
2

(Z/6Z). (3.1.8)

Unravelling (3.1.4) in this case, we find that, for every elliptic curve E over
Q,

j(E) œ j(X Õ(6)(Q)) ≈∆
E ƒQ EÕ for some EÕ over Q for which Q(EÕ[2]) ™ Q(EÕ[3]). (3.1.9)

By considering the geometry of the natural map X Õ(6) ≠æ X(1), the curve
X Õ(6) is seen to have genus zero and one cusp. Since Gal(Q/Q) acts on the
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3.1. Introduction

cusps, the single cusp must be defined over Q, thus endowing X Õ(6) with
a rational point. Therefore X Õ(6) ƒQ P1. We prove the following theorem,
which gives an explicit model of X Õ(6).

Theorem 3.1.5. There exists a parameter t : X Õ(6) ≠æ P1, whose inverse
is a uniformizer at the cusp, and which has the property that

j = 21033t3(1 ≠ 4t3),

where j : X Õ(6) ≠æ X(1) ƒ P1 is the usual j-map.

Remark 3.1.6. By (3.1.9), Theorem 3.1.5 is equivalent to the following state-
ment: for any elliptic curve E over Q, E is isomorphic over Q to an elliptic
curve EÕ satisfying

Q(EÕ[2]) ™ Q(EÕ[3])

if and only if j(E) = 21033t3(1 ≠ 4t3) for some t œ Q.
Furthermore, we prove the following theorem, which answers Question

3.1.3. For each prime ¸, consider the set G¸,max

of maximal proper subgroups
of GL

2

(Z/¸Z), which surject via determinant onto (Z/¸Z)◊:

G¸,max

:= {H ( GL
2

(Z/¸Z) : det(H) = (Z/¸Z)◊

and @H
1

with H ( H
1

( GL
2

(Z/¸Z)}. (3.1.10)

The group GL
2

(Z/¸Z) acts on G¸,max

by conjugation, and let R¸ be a set
of representatives of G¸,max

modulo this action. By (3.1.4), the collection X
occurring in (3.1.2) must contain as a subset

E¸ := {XH : H œ R¸}, (3.1.11)

the set of modular curves attached to subgroups H œ R¸ (this gives a more
precise description of the set E¸ in (3.1.3)). Furthermore, the previously men-
tioned modular curves X Õ(4), X ÕÕ(4), and X Õ(9) correspond to the following
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Non-Serre curves

subgroups. Let Á : GL
2

(Z/2Z) ≠æ {±1} denote the unique non-trivial char-
acter, and we will view det : GL

2

(Z/4Z) ≠æ (Z/4Z)◊ ƒ {±1} as taking the
values ±1.

X Õ(4) = XHÕ
4
, where H Õ

4

:= {g œ GL
2

(Z/4Z) :

det g = Á(g mod 2)} ™ GL
2

(Z/4Z),

X ÕÕ(4) = XHÕÕ
4

where H ÕÕ
4

:=
KA

0 1
3 0

B

,

A
0 1
1 1

BL

™ GL
2

(Z/4Z),

X Õ(9) = XHÕ
9

where H Õ
9

:=
= A

0 2
4 0

B

,

A
4 1

≠3 4

B

,

A
2 0
0 2

B

,

A
≠1 0
0 1

B >
™ GL

2

(Z/9Z).

(3.1.12)

For more details on these modular curves, see [DD12] and [Elk06].

Theorem 3.1.7. Let X be defined by

X =
)
X Õ(4), X ÕÕ(4), X Õ(9), X Õ(6)

* fi
€

¸ prime
E¸,

where X Õ(4), X ÕÕ(4) and X Õ(9) are defined by (3.1.12), X Õ(6) is defined by
(3.1.8), and E¸ is as in (3.1.11). Then, for any elliptic curve E over Q,

E is not a Serre curve ≈∆ j(E) œ
€

XœX
j(X(Q)).

3.2 Proofs

We now prove Theorems 3.1.5 and 3.1.7.
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3.2. Proofs

Proof of Theorem 3.1.5. Consider the elliptic curve E over Q(t) given by

E : y2 = x3 + 3t
1
1 ≠ 4t3

2
x +

1
1 ≠ 4t3

2 31
2 ≠ 4t3

4
,

with discriminant and j-invariant �E, j(E) œ Q(t) given, respectively, by

�E = ≠2633(1 ≠ 4t3)2 and j(E) = 21033t3(1 ≠ 4t3). (3.2.1)

For every t œ Q, the specialization Et is an elliptic curve over Q whose
discriminant �Et œ Q and j-invariant j(Et) œ Q are given by evaluating
(3.2.1) at t. We will show that, for any t œ Q, one has

Q(Et[2]) ™ Q(Et[3]). (3.2.2)

By (3.1.9) and (3.2.1), it then follows that

’t œ Q, 21033t3(1 ≠ 4t3) œ j(X Õ(6)(Q)).

Since the natural j-map j : X Õ(6) ≠æ P1 and the map t ‘æ 21033t3(1 ≠ 4t3)
both have degree 6, Theorem 3.1.5 will then follow. To verify (3.2.2), we
will show that, for every t œ Q, one has

Q(Et[2]) ™ Q(’
3

, �1/3

Et
). (3.2.3)

It is a classical fact that, for any elliptic curve E over Q, one has Q(’
3

, �1/3

E ) ™
Q(E[3]) (for details, see for instance [LT74, p. 181] and the references given
there). Thus, the containment (3.2.2) follows from (3.2.3). Finally, (3.2.3)
follows immediately from the factorization

(x ≠ e
1

(t)) (x ≠ e
2

(t)) (x ≠ e
3

(t)) = x3+3t
1
1 ≠ 4t3

2
x+

1
1 ≠ 4t3

2 31
2 ≠ 4t3

4
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Non-Serre curves

of the 2-division polynomial x3 +3t
1
1 ≠ 4t3

2
x+

1
1 ≠ 4t3

2 31
2 ≠ 4t3

4
, where

e
1

(t) := 1
6�1/3

Et
+ t

18(1 ≠ 4t3)�2/3

Et
,

e
2

(t) := ’
3

6 �1/3

Et
+ ’2

3

t

18(1 ≠ 4t3)�2/3

Et
, and

e
3

(t) := ’2

3

6 �1/3

Et
+ ’

3

t

18(1 ≠ 4t3)�2/3

Et
.

This finishes the proof of Theorem 3.1.5. 2
Remark 3.2.1. Our proof shows that, viewing Et as an elliptic curve over
Q(t), we have a containment of function fields

Q(t)(Et[2]) ™ Q(t)(Et[3]).

We will now turn to Theorem 3.1.7, whose proof employs the following
group theoretic lemma. Recall from Section 1.2.2 that if Â is the abbreviation
for the ordered pair (Â

0

, Â
1

), then the group G given by

G
1

◊Â G
2

:= {(g
1

, g
2

) œ G
1

◊ G
2

: Â
1

(g
1

) = Â
2

(g
2

)} (3.2.4)

is called the fibered product of G
0

and G
1

over Â, and is commonly denoted
by G

0

◊Â G
1

. Notice that, for a surjective group homomorphism f : Q æ Q
1

,
if f ¶ Â denotes the ordered pair (f ¶ Â

0

, f ¶ Â
1

) and G
0

◊f¶Â G
1

denotes the
corresponding fibered product, then one has

G
0

◊Â G
1

™ G
0

◊f¶Â G
1

. (3.2.5)

Lemma 3.2.2. Let G
0

and G
1

be groups, let Â
0

: G
0

æ Q and Â
1

: G
1

æ Q

be a pair of surjective homomorphisms onto a common quotient group Q,
and let H = G

0

◊Â G
1

be the associated fibered product. If Q is cyclic, then
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3.2. Proofs

one has the following equality of commutator subgroups:

[H, H] = [G
0

, G
0

] ◊ [G
1

, G
1

].

Proof. See [LT74, Lemma 1, p. 174] (the hypothesis of this lemma is readily
verified when Q is cyclic).

Proof of Theorem 3.1.7. Using Proposition 3.1.4 one has

E is not a Serre curve ≈∆

÷ a prime ¸ Ø 5 with
flE,¸(Gal(Q/Q)) ( GL

2

(Z/¸Z),
or [flE,36

(Gal(Q/Q)), flE,36

(Gal(Q/Q))]
( [GL

2

(Z/36Z), GL
2

(Z/36Z)].

For each divisor d of 36, let

fi
36,d : GL

2

(Z/36Z) ≠æ GL
2

(Z/dZ) (3.2.6)

denote the canonical projection. One checks that, for ¸ œ {2, 3}, any proper
subgroup H ( GL

2

(Z/¸Z) for which det(H) = (Z/¸Z)◊ must satisfy [H, H] (
[GL

2

(Z/¸Z), GL
2

(Z/¸Z)]. We then define

G
36

:=

Y
__]

__[
H ™ GL

2

(Z/36Z) :
’d œ {2, 3}, fi

36,d(H) = GL
2

(Z/dZ),
det(H) = (Z/36Z)◊,

and [H, H] ( [GL
2

(Z/36Z), GL
2

(Z/36Z)]

Z
__̂

__\
,

(3.2.7)
and note that

E is not a Serre curve ≈∆

÷ a prime ¸ and H œ G¸,max

for which
flE,¸(Gal(Q/Q)) ™ H,

or ÷H œ G
36

for which
flE,36

(Gal(Q/Q)) ™ H.

(3.2.8)
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Non-Serre curves

As in the prime level case, we need only consider maximal subgroups H œ
G

36

, and because of (3.1.4), only up to conjugation by GL
2

(Z/36Z). Thus,
we put

G
36,max

:= {H œ G
36

: @H
1

œ G
36

with H ( H
1

( GL
2

(Z/36Z)},

we let R
36

™ G
36,max

be a set of representatives of G
36,max

modulo GL
2

(Z/36Z)-
conjugation, and we set

E
36

:= {XH : H œ R
36

}.

The equivalence (3.2.8) now becomes (see (3.1.11))

E is not a Serre curve ≈∆
÷ a prime ¸ and XH œ E¸ for which

j(E) œ j(XH(Q)), or ÷XH œ E
36

for which
j(E) œ j(XH(Q)).

Thus, Theorem 3.1.7 will follow from the next proposition.

Proposition 3.2.3. With the above notation, one may take

R
36

= {fi≠1

36,4(H Õ
4

), fi≠1

36,4(H ÕÕ
4

), fi≠1

36,9(H Õ
9

), fi≠1

36,6(H Õ
6

)},

where fi
36,d is as in (3.2.6) and the groups H Õ

4

, H ÕÕ
4

, H Õ
9

and H Õ
6

are given by
(3.1.12) and (3.1.8).

Proof. Let H œ G
36,max

. If fi
36,4(H) ”= GL

2

(Z/4Z), then [DD12] shows
that fi

36,4(H) ™ H Õ
4

or fi
36,4(H) ™ H ÕÕ

4

, up to conjugation in GL
2

(Z/4Z). If
fi

36,9(H) ”= GL
2

(Z/9Z), then [Elk06] shows that, up to GL
2

(Z/9Z)-conjugation,
one has fi

36,9(H) ™ H Õ
9

. Thus, we may now assume that fi
36,4(H) = GL

2

(Z/4Z)
and fi

36,9(H) = GL
2

(Z/9Z). By Lemma 1.2.7, this implies that there exists
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3.2. Proofs

a group Q and a pair of surjective homomorphisms

Â
4

: GL
2

(Z/4Z) ≠æ Q

Â
9

: GL
2

(Z/9Z) ≠æ Q

for which H = GL
2

(Z/4Z) ◊Â GL
2

(Z/9Z). We will now show that in this
case, up to GL

2

(Z/36Z)-conjugation, we have

H ™ {(g
4

, g
9

) œ GL
2

(Z/4Z) ◊ GL
2

(Z/9Z) : ◊(g
9

mod 3) = g
4

mod 2},

(3.2.9)
where ◊ : GL

2

(Z/3Z) ≠æ GL
2

(Z/2Z) is the map given in (3.1.7), whose
graph determines the level 6 structure defining the modular curve X Õ(6).
This will finish the proof of Proposition 3.2.3.

Let us make the following definitions:

N
4

:= ker Â
4

™ GL
2

(Z/4Z), N
9

:= ker Â
9

™ GL
2

(Z/9Z)
N

2

:= fi
4,2(N

4

) ™ GL
2

(Z/2Z), N
3

:= fi
9,3(N

9

) ™ GL
2

(Z/3Z)
Q

2

:= GL
2

(Z/2Z)/N
2

, Q
3

:= GL
2

(Z/3Z)/N
3

,

where fi
4,2 : GL

2

(Z/4Z) æ GL
2

(Z/2Z) and fi
9,3 : GL

2

(Z/9Z) æ GL
2

(Z/3Z)
denote the canonical projections. We then have the following exact se-
quences:

1 ≠æ N
9

≠æ GL
2

(Z/9Z) ≠æ Q ≠æ 1

1 ≠æ N
4

≠æ GL
2

(Z/4Z) ≠æ Q ≠æ 1

1 ≠æ N
3

≠æ GL
2

(Z/3Z) ≠æ Q
3

≠æ 1

1 ≠æ N
2

≠æ GL
2

(Z/2Z) ≠æ Q
2

≠æ 1,

(3.2.10)

as well as

1 ≠æ K
2

≠æ Q ≠æ Q
2

≠æ 1

1 ≠æ K
3

≠æ Q ≠æ Q
3

≠æ 1,
(3.2.11)
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Non-Serre curves

where for each ¸ œ {2, 3}, the kernel K¸ ƒ ker fi¸2,¸

N¸2 fl ker fi¸2,¸
™ GL

2

(Z/¸2Z)
N¸2

ƒ
Q is evidently abelian (since ker fi¸2,¸ is), and has order dividing ¸4 = | ker fi¸2,¸|.
We will proceed to prove that

Q
2

ƒ GL
2

(Z/2Z) and Q
3

ƒ Q, (3.2.12)

which is equivalent to

N
4

™ ker fi
4,2 and ker fi

9,3 ™ N
9

.

Writing Ẫ
4

: GL
2

(Z/4Z) æ Q æ Q
2

ƒ GL
2

(Z/2Z) and Ẫ
9

: GL
2

(Z/9Z) æ
Q æ Q

2

ƒ GL
2

(Z/2Z), we then see by (3.2.5) that

H = GL
2

(Z/4Z) ◊Â GL
2

(Z/9Z) ™ GL
2

(Z/4Z) ◊
˜Â GL

2

(Z/9Z).

Furthermore, it follows from Q ƒ Q
3

that Ẫ
9

factors through the projec-
tion GL

2

(Z/9Z) æ GL
2

(Z/3Z). This, together with the uniqueness of N
in (3.1.6) and the fact that every automorphism of GL

2

(Z/2Z) is inner, im-
plies that (3.2.9) holds, up to GL

2

(Z/36Z)-conjugation. Thus, the proof of
Proposition 3.2.3 is reduced to showing that (3.2.12) holds.

We will first show that Q
2

ƒ GL
2

(Z/2Z). Suppose on the contrary that
Q

2

( GL
2

(Z/2Z). Looking at the first exact sequence in (3.2.11), we see
that Q must then be a 2-group, and since K

3

has order a power of 3 (possibly
1), we see that Q ƒ Q

3

, and the third exact sequence in (3.2.10) becomes

1 ≠æ N
3

≠æ GL
2

(Z/3Z) ≠æ Q ≠æ 1.

The kernel N
3

must contain an element ‡ of order 3, and by considering
GL

2

(Z/3Z)-conjugates of ‡, we find that |N
3

| Ø 8. Since 3 also divides |N
3

|,
we see that |N

3

| Ø 12, and so Q must be abelian, having order at most 4.
Furthermore, since [GL

2

(Z/3Z), GL
2

(Z/3Z)] = SL
2

(Z/3Z), we find that Q
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has order at most 2, and thus is cyclic. Applying Lemma 3.2.2, we find that
[H, H] = [GL

2

(Z/36Z), GL
2

(Z/36Z)], contradicting (3.2.7). Thus, we must
have that Q

2

ƒ GL
2

(Z/2Z).
We will now show that Q

3

ƒ Q. To do this, we will first take a more
detailed look at the structure of the group GL

2

(Z/4Z). Note the embedding
of groups GL

2

(Z/2Z) Òæ GL
2

(Z) given by
A

1 0
0 1

B

‘æ
A

1 0
0 1

B

,

A
1 1
1 0

B

‘æ
A

≠1 ≠1
1 0

B

,

A
0 1
1 1

B

‘æ
A

0 1
≠1 ≠1

B

,

A
0 1
1 0

B

‘æ
A

0 1
1 0

B

,

A
1 1
0 1

B

‘æ
A

≠1 ≠1
0 1

B

,

A
1 0
1 1

B

‘æ
A

1 0
≠1 ≠1

B

.

This embedding, followed by reduction modulo 4, splits the exact sequence

1 æ ker fi
4,2 æ GL

2

(Z/4Z) æ GL
2

(Z/2Z) æ 1.

Also note the isomorphism (ker fi
4,2, ·) æ (M

2◊2

(Z/2Z), +) given by I +
2A ‘æ A (mod 2). These two observations realize GL

2

(Z/4Z) as a semi-
direct product

GL
2

(Z/4Z) ƒ GL
2

(Z/2Z) n M
2◊2

(Z/2Z), (3.2.13)

where the right-hand factor is an additive group and the action of GL
2

(Z/2Z)
on M

2◊2

(Z/2Z) is by conjugation. Since Q
2

ƒ GL
2

(Z/2Z), we see that,
under (3.2.13), one has

N
4

™ M
2◊2

(Z/2Z),

and since it is a normal subgroup of GL
2

(Z/4Z), we see that N
4

must be
a Z/2Z-subspace which is invariant under GL

2

(Z/2Z)-conjugation. This
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implies that we must be in one of the following 5 cases.

N
4

Q

M
2◊2

(Z/2Z) GL
2

(Z/2Z)
{A œ M

2◊2

(Z/2Z) : trA = 0} GL
2

(Z/2Z) ◊ {±1}
IA

0 0
0 0

B

,

A
1 0
0 1

B

,

A
1 1
1 0

B

,

A
0 1
1 1

BJ

GL
2

(Z/2Z) n (Z/2Z)2

IA
0 0
0 0

B

,

A
1 1
0 1

B

,

A
1 0
1 1

B

,

A
0 1
1 0

BJ

GL
2

(Z/2Z) n (Z/2Z)2

IA
0 0
0 0

B

,

A
1 0
0 1

BJ

PGL
2

(Z/4Z)

(We have omitted from the table the case that N
4

is trivial, since then
Q ƒ GL

2

(Z/4Z), which has order 25 · 3 and thus cannot be a quotient
of GL

2

(Z/9Z).) In the third row of the table, the action of GL
2

(Z/2Z)
on (Z/2Z)2 defining the semi-direct product is the usual action by matrix
multiplication on column vectors, while in the fourth row of the table, the
action is defined via

g ·
A

x

y

B

=

Y
_______]

_______[

Q

ax

y

R

b if g œ
Y
]

[

Q

a1 0

0 1

R

b ,

Q

a1 1

1 0

R

b ,

Q

a0 1

1 1

R

b

Z
^

\ ,

Q

ay

x

R

b if g œ
Y
]

[

Q

a1 1

0 1

R

b ,

Q

a1 0

1 1

R

b ,

Q

a0 1

1 0

R

b

Z
^

\ .

Since 9 does not divide |Q|, the degree of the projection Q ⇣ Q
3

is either 1 or
3. Inspecting the table above, we see that in all cases except Q = GL

2

(Z/2Z),
either Q has no normal subgroup of order 3, or for each normal subgroup
K

3

⇥ Q of order 3, Q
3

ƒ Q/K
3

has Z/2Z◊Z/2Z as a quotient group. Since
[GL

2

(Z/3Z), GL
2

(Z/3Z)] = SL
2

(Z/3Z), the group GL
2

(Z/3Z) cannot have
Z/2Z ◊ Z/2Z as a quotient group, and so we must have Q ƒ Q

3

in these
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cases, as desired.
When Q = GL

2

(Z/2Z), we must proceed di�erently. Suppose that Q =
GL

2

(Z/2Z) and (for the sake of contradiction) that Q ”= Q
3

, so that the
projection Q ⇣ Q

3

has degree 3. Then Q
3

ƒ Z/2Z, which implies that
N

3

= SL
2

(Z/3Z), so that

N
9

™ fi≠1

9,3(SL
2

(Z/3Z)) ™ GL
2

(Z/9Z).

Furthermore, the quotient group fi≠1

9,3(SL
2

(Z/3Z))/N
9

ƒ Z/3Z, and in par-
ticular is abelian. A commutator calculation shows that

[fi≠1

9,3(SL
2

(Z/3Z)), fi≠1

9,3(SL
2

(Z/3Z))] = fi≠1

9,3(N ) fl SL
2

(Z/9Z),

(see (3.1.5)) and that the corresponding quotient group satisfies

fi≠1

9,3(SL
2

(Z/3Z))/[fi≠1

9,3(SL
2

(Z/3Z)), fi≠1

9,3(SL
2

(Z/3Z))] ƒ Z/3Z ◊ Z/3Z.

Furthermore, fixing a pair of isomorphisms

÷
1

:
AIA

1 0
0 1

B

,

A
1 1
1 0

B

,

A
0 1
1 1

BJ

, ·
B

≠æ (Z/3Z, +) ,

÷
2

: (1 + 3 · Z/9Z, ·) ≠æ (Z/3Z, +),

and defining the characters

‰
1

: fi≠1

9,3(SL
2

(Z/3Z)) ≠æ Z/3Z,

‰
2

: fi≠1

9,3(SL
2

(Z/3Z)) ≠æ Z/3Z

by ‰
1

= ÷
1

¶ ◊ ¶ fi
9,3 and ‰

2

= ÷
2

¶ det, we have that every homomorphism
‰ : fi≠1

9,3(SL
2

(Z/3Z)) æ Z/3Z must satisfy

‰ = a
1

‰
1

+ a
2

‰
2

,
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Non-Serre curves

for appropriately chosen a
1

, a
2

œ Z/3Z. In particular,

N
9

= ker(a
1

‰
1

+ a
2

‰
2

) (3.2.14)

for some choice of a
1

, a
2

œ Z/3Z. One checks that

÷g œ GL
2

(Z/9Z), x œ fi≠1

9,3(SL
2

(Z/3Z)) for which ‰
1

(gxg≠1) ”= ‰
1

(x),

whereas ‰
2

(gxg≠1) = ‰
2

(x) for any such choice of g and x. Since N
9

is a normal subgroup of GL
2

(Z/9Z), it follows that a
1

= 0, a
2

”= 0 in
(3.2.14). This implies that N

9

= SL
2

(Z/9Z), which contradicts the fact
that GL

2

(Z/9Z)/N
9

ƒ Q ƒ GL
2

(Z/2Z) is non-abelian. This contradiction
shows that we must have Q ƒ Q

3

, and this verifies (3.2.12), completing the
proof of Proposition 3.2.3.

As already observed, the proof of Proposition 3.2.3 completes the proof
of Theorem 3.1.7. 2

3.3 Elliptic curves without abelian entanglements

Let us study in more detail one example coming from the family of curves
in Theorem 3.1.5. Consider the curve E/Q given by minimal Weierstrass
equation Y 2 = X3 ≠ 63504X + 6223392. This curve has j(E) = ≠21034, as
well as � = ≠2431176. Machine computation shows that G(¸) = GL

2

(Z/¸Z)
and Q(E[2]) µ Q(E[3]). We also have that Q(

Ô
�) = Q(

Ô≠3), which
is what we expect since the maximal abelian extension inside Q(E[3]) is
precisely Q(

Ô≠3).
Suppose we wish to compute the conjectural density of primes p such

that Ẽ(Fp) is cyclic. As we have seen, the naive density of this is
r

¸ ”¸,
however a correction factor is needed. As the only critical primes are 2, 3
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and 7, the density we are looking for is

CE = |G(42) fl S
42

|
G(42)|

Ÿ

”̧=2,3,7

”¸,

where we are using the notation of Section 2.4. Now GL
2

(Z/3Z) and GL
2

(Z/7Z)
have no simple non-abelian quotients, hence any entanglement between the
fields Q(E[3]) and Q(E[7]) would have to contain a non-trivial abelian sub-
field. However the maximal abelian extensions of Q(E[3]) and Q(E[7]) are
Q(’

3

) and Q(’
7

), hence we conclude Q(E[3]) fl Q(E[7]) = Q. This implies
that G(42) = G(6) ◊ G(7), hence

CE = |G(6) fl S
6

|
|G(6)|

Ÿ

”̧=2,3

”¸,

Finally, note that because G(6) = G(3) and G(2) is a quotient of G(6), then

|G(6) fl S
6

|
|G(6)| = |S(2)|

|G(2)| .

Using machine computation we find that the observed density of primes
p 6 100000000 is 0.831069 while our computation yields

CE =
Ÿ

”̧=3

”¸

¥ 0.831066.

As mentioned in the introduction, another natural question which arises
from this is whether one can one classify the triples (E, m

1

, m
2

) with E

an elliptic curve over Q and m
1

, m
2

a pair of coprime integers for which
the entanglement field Q(E[m

1

]) fl Q(E[m
2

]) is non-abelian over Q. We are
not sure if any other families exist, however one systematic way one could
possibly rule out other examples is via the following steps.
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(i) Classify the non-abelian groups which arise as common quotients of
subgroups Hm1 and Hm2 , where Hmi µ GL

2

(Z/miZ) and det(Hmi) =
(Z/miZ)◊ for i = 1, 2.

(ii) For each example in step (i), compute the genus of the associated
modular curve.

(iii) For each modular curve in step (ii), decide whether or not it has any
rational points.

For each of these families of curves it would also be of interest to find a
systematic way to compute their entanglement correction factors. For the
family we have described here this is easy to do because one of the torsion
fields is fully contained in another one. It may occur however, at least
in theory, that a curve could have many non-abelian intersections between
various of its torsion fields. However it seems unlikely many examples of this
type exist.
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