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Chapter 2

Entanglement correction
factors as character sums

2.1 Introduction

The motivation for this chapter comes from the classical conjecture of Artin
from 1927 which predicts the density of primes p for which a given rational
number is a primitive root modulo p. More precisely, let g be an integer
di�erent from ±1, and let h be the largest integer such that g = gh

0

with
g

0

œ Z. The heuristic reasoning described by Artin was the following. If p

is a prime number coprime to g, then g is a primitive root modulo p if and
only if there is no prime ¸ dividing p ≠ 1 such that g © y¸ (mod p) for some
y. Note that this congruence condition can be given as a splitting condition
on the prime p in the field F¸ := Q(’¸,

Ô̧
g). Indeed, the condition on p is

equivalent to p not splitting completely in the aforementioned field. In other
words, g is a primitive root modulo p if and only if for every prime ¸ < p we
have that Frobp is not the identity element in Gal(F¸/Q).

For a fixed ¸, the density of primes which do not split completely in F¸
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Entanglement correction factors as character sums

is equal to
”¸ := 1 ≠ 1

[F¸ : Q] ,

and this equals 1 ≠ 1

¸≠1

for ¸ | h and 1 ≠ 1

¸(¸≠1)

otherwise. If we assume
the splitting conditions in the various fields F¸ to be independent, then
it is reasonable to expect that the density of primes p for which g is a
primitive root modulo p is equal to

r
¸ ”¸. This was the density originally

conjectured by Artin, however years later (see [Ste03]) he noticed that this
assumption of independence is not correct, as the fields F¸ can have non-
trivial intersections. If F

2

= Q(Ôg) has discriminant D © 1 (mod 4), then
F

2

is contained in the compositum of the fields F¸ with ¸ | D. The corrected
version of the conjecture was proven by Hooley under the assumption of
the Generalized Riemann Hypothesis (GRH). He showed in [Hoo67] that,
conditional on GRH, the density of primes such that g is a primitive root
modulo p equals

Cg =
Œÿ

n=1

µ(n)
[Fn : Q] (2.1.1)

where Fn = Q(’n, n
Ô

g) and µ is the Möbius function. In the same paper
Hooley shows that (2.1.1) can be rewritten as

Cg = Cg

Ÿ

¸|h

1
1 ≠ 1

¸ ≠ 1
2 Ÿ

¸-h

1
1 ≠ 1

¸(¸ ≠ 1)
2
, (2.1.2)

where Cg is an entanglement correction factor, a rational number which
depends on g. In fact it is given explicitly by

Cg := 1 ≠
Ÿ

¸|D
¸|h

≠1
¸ ≠ 2 ·

Ÿ

¸|D
¸-h

≠1
¸2 ≠ ¸ ≠ 1 .

One advantage of having Cg in the form given by (2.1.2) is that it makes it
easy to see when the density Cg vanishes. Vanishing of Cg implies that, con-
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2.1. Introduction

jecturally, there exist only finitely many primes p such that g is a primitive
root modulo p, and the multiplicative structure of Cg and Cg allows one to
identify precisely what are the obstructions to this.

There are many interesting generalisations to Artin’s conjecture on prim-
itive roots. For instance, one could consider only primes p which lie in a pre-
scribed congruence class modulo some integer f . One could also study the
set of primes p such that g generates a subgroup of a given index in (Z/pZ)◊.
As is shown in [Len77], in both of these cases one can again obtain a density
under GRH via a formula similar to (2.1.1). However, it is not clear how to
describe the non-vanishing criteria of such densities from such a sum.

In [LMS14], the authors develop an e�cient method to compute entan-
glement correction factors Cg for Artin’s original conjecture and several of its
generalisations. Their method consists in expressing Cg as a sum of quadratic
characters. More precisely, they show that Cg has the form

Cg = 1 +
Ÿ

¸

E¸

where each E¸ is the average value of a character ‰¸ over an explicit set. One
crucial fact used to arrive at this form is that when D © 1 (mod 4), then
for n divisible by 2D we have that the subgroup

Gal(Fn/Q) Òæ
Ÿ

¸|n
Gal(F¸/Q)

is cut out by a quadratic character ‰ measuring the nature of the entangle-
ment. The structure of Cg as an Euler product and the description of Cg

naturally lead to non-vanishing criteria.
In this chapter we attempt to generalize this method to the setting of

elliptic curves. There are many problems concerning the study of the set
of primes p such that the reduced curve Ẽ(Fp) satisfies a certain condi-
tion. One of these arises as a natural analogue of Artin’s conjecture on
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Entanglement correction factors as character sums

primitive roots. Namely, given an elliptic curve E over Q, the problem is
to determine the density of primes p such that Ẽ(Fp) is cyclic. The first
thing to note is that the condition of Ẽ(Fp) being cyclic is completely de-
termined by the splitting behaviour of p in the various torsion fields Q(E[¸])
for di�erent ¸. Given this, we can proceed similarly by defining local densi-
ties ”¸ and attempting to find the entanglement correction factor CE , how-
ever one quickly runs into various di�culties which were not present in the
case of classical Artin. One of these is that it is not necessarily true that
Gal(Q(E[m])/Q) Òæ r

¸|m Gal(Q(E[¸])/Q) is a normal subgroup and even if
so, the quotient need not be {±1} or even abelian for that matter.

This leads us to the study in Section 2.2 of so called abelian entangle-
ments. If G is a subgroup of G

1

◊ · · · ◊ Gn such that the projection maps
fii : G æ Gi are surjective for 1 6 i 6 n, then we give a necessary and su�-
cient condition for G being normal in G

1

◊ · · · ◊ Gn with abelian quotient.
In Section 2.3 we define elliptic curves with abelian entanglements to be

those elliptic curves with the property that G(mE) has abelian entangle-
ments in the sense of Section 2.2. We show that this definition is equivalent
to Q(E[m

1

]) fl Q(E[m
2

]) being an abelian extension of Q for every coprime
m

1

, m
2

. It is for this class of curves that we will be able to apply our char-
acter sum method, with Theorem 2.3.4 being a crucial ingredient.

Section 2.4 applies Theorem 2.3.4 to the aforementioned problem of cyclic
reduction of elliptic curves. We explicitly evaluate the density CE as an Euler
product

r
¸ ”¸ times an entanglement correction factor CE . We then compute

CE in the case of Serre curves and give examples of a few other elliptic curves
with more complicated Galois Theory, as well as establishing non-vanishing
criteria for these conjectural densities.

In Section 2.5 we study a variant of the problem of cyclic reduction on
elliptic curves. Namely, we impose the additional condition that p lie in a
prescribed congruence class modulo some integer f . This introduces new
di�culties as the splitting conditions on p become more complicated, but it
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2.2. Abelian entanglements

also illustrates the way in which our method can be used to handle a variety
of di�erent scenarios. In the end the computation of CE is again reduced to
fairly mechanical local computations. Again Serre curves and several other
examples are treated in detail.

Section 2.6 we study a di�erent type of problem. We look at a classical
conjecture of Koblitz on the asymptotic behaviour of the number of primes
p for which the cardinality of Ẽ(Fp) is prime. We see that the character
sum approach can also be applied to describe the constant appearing in
this asymptotic. In this case there are not even conditional results, and the
constant computed is purely conjectural. However the constant we compute
has previously been described via di�erent methods by Zywina in [Zyw11c],
where he provides some convincing numerical evidence for it.

The study of conjectural constants led us to investigate the class of elliptic
curves with abelian entanglements, and naturally leads to the question of
whether there exist elliptic curves with non-abelian entanglements. To be
precise, can one classify the triples (E, m

1

, m
2

) with E an elliptic curve over
Q and m

1

, m
2

a pair of coprime integers for which the entanglement field
Q(E[m

1

]) fl Q(E[m
2

]) is non-abelian over Q? In Chapter 3 we exhibit an
infinite family of elliptic curves for which this is the case, and in doing so
we obtain a complete set of modular curves which parametrize non-Serre
curves.

2.2 Abelian entanglements

In this section we study the following question: if G is a subgroup of G
1

◊
· · · ◊ Gn such that the projection maps fii : G æ Gi are surjective for
1 6 i 6 n, when does it happen that G is normal in G

1

◊ · · · ◊ Gn with
abelian quotient?

For a group G, we will denote by GÕ the commutator subgroup of G, and
for x, y œ G, [x, y] = x≠1y≠1xy will denote the commutator of x and y. For
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Entanglement correction factors as character sums

a non-empty subset S µ {1, . . . , n} we write fiS for the projection map

fiS : G
1

◊ · · · ◊ Gn ≠æ
Ÿ

iœS

Gi

and let GS denote the image of G under this projection map. Note that for
each partition ÛjTj = {1, . . . , n} we have a canonical inclusion

G Ò≠≠≠æ
Ÿ

j

GTj .

Let P := {S, T} be a partition of {1, . . . , n}, so that S Û T = {1, . . . , n}.
Then G is a subdirect product of GS ◊ GT so by Goursat’s lemma there is
a group QP and a pair of homomorphisms ÂP := (Â(1)

P , Â
(2)

P ) with

Â
(1)

P : GS ≠æ QP

Â
(2)

P : GT ≠æ QP

such that G = GS ◊ÂP GT . We say that G has abelian entanglements
with respect to G

1

◊ · · · ◊ Gn if QP is abelian for each two-set partition P
of {1, . . . , n}. We will often write only that G has abelian entanglements,
omitting with respect to which direct product of groups if this is clear from
the context. The following proposition is the main result of this section and
provides an answer to the question posed at the start.

Proposition 2.2.1. Keeping the notation as above, G is a normal subgroup
of G

1

◊ · · · ◊ Gn if and only if G has abelian entanglements.

The proof will use the following proposition, which is the case n = 2.

Proposition 2.2.2. Let G be a subgroup of G
1

◊G
2

such that the projection
maps fi

1

: G æ G
1

and fi
2

: G æ G
2

are surjective. Then G ⇥ G
1

◊ G
2

if
and only if G has abelian entanglements.
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2.2. Abelian entanglements

Proof. Suppose first that G has abelian entanglements, and let x := (x
1

, x
2

) œ
G. We will show that for any a œ G

1

◊ {1} one has axa≠1 œ G, and
similarly for every b œ {1} ◊ G

2

. The result will then follow. So take
a := (a

1

, 1) œ G
1

◊ {1}. Let N
1

and N
2

be the corresponding Goursat sub-
groups associated to G, that is, N

1

= (G
1

◊{1})flG and N
2

= ({1}◊G
2

)flG.
Then because G has abelian entanglements we have that (G

1

◊ {1})/N
1

is
abelian, or equivalently (G

1

◊{1})Õ 6 N
1

. It follows that [(a
1

, 1), (x
1

, 1)] œ G,
however

[(a
1

, 1), (x
1

, 1)] = (a
1

, 1)(x
1

, 1)(a
1

, 1)≠1(x
1

, 1)≠1

= (a
1

, 1)(x
1

, x
2

)(a
1

, 1)≠1(x
1

, x
2

)≠1

and (x
1

, x
2

)≠1 is in G, hence (a
1

, 1)(x
1

, x
2

)(a
1

, 1)≠1 is also in G, as claimed.
Similarly one can show (1, b

2

)(x
1

, x
2

)(1, b
2

)≠1 œ G for any b
2

œ G
2

, and we
conclude G is normal in G

1

◊ G
2

.
For the converse, suppose that G ⇥ G

1

◊ G
2

. We will show that (G
1

◊
{1})Õ 6 N

1

, from which it follows that G has abelian entanglements. Let
(x

1

, 1) and (y
1

, 1) be arbitrary elements of G
1

◊ {1}. Because fi
1

: G æ G
1

is surjective, there exists z œ G
2

such that (y
1

, z) œ G. As G ⇥ G
1

◊ G
2

, we
have (x

1

, 1)(y
1

, z)(x
1

, 1)≠1 is in G and hence so is [(x
1

, 1), (y
1

, z)]. Using the
fact that [(x

1

, 1), (y
1

, 1)] = [(x
1

, 1), (y
1

, z)], we obtain [(x
1

, 1), (y
1

, 1)] œ G.
However [(x

1

, 1), (y
1

, 1)] = ([x
1

, y
1

], 1) œ G
1

◊ {1}, hence the result.

Proof of Proposition 2.2.1. Again we suppose first that G has abelian en-
tanglements, and we proceed similarly as in the case n = 2. Let x :=
(x

1

, . . . , xn) œ G, and for j œ {1, . . . , n} let a := (1, . . . , 1, aj , 1, . . . , 1) œ
{1}◊ · · ·◊{1}◊Gj ◊{1}◊ · · ·◊{1} where the aj is in the j-th position. Let
Sj := {1, . . . , n}\{j}. Then G 6 Gj ◊ GSj with surjective projection maps
and the corresponding quotient (Gj ◊ {1})/Nj is abelian. By Proposition
2.2.2, G is a normal subgroup of Gj ◊ GSj . But a is certainly an element
of Gj ◊ GSj , hence axa≠1 œ G. Since j was chosen arbitrarily we conclude
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Entanglement correction factors as character sums

G ⇥ G
1

◊ · · · ◊ Gn.
Conversely, suppose G⇥G

1

◊ · · ·◊Gn, and let P := {S, T} be a partition
of {1, . . . , n}. Then note that GS ◊ GT may be viewed as a subgroup of
G

1

◊ · · · ◊ Gn and so G ⇥ GS ◊ GT . By Proposition 2.2.2 the corresponding
Goursat quotient QP is abelian, hence G has abelian entanglements. This
completes the proof.

In the proof we used the subset Sj := {1, . . . n}\{j} µ {1, . . . , n}. Here
we have that G is a subdirect product of Gj ◊ GSj , so by Goursat’s lemma
there is a group Qj and a pair of homomorphisms Âj := (Â(1)

j , Â
(2)

j ) such
that G = Gj ◊Âj GSj . The following corollary tells us that these are all the
partitions we need to consider in order to determine whether or not G has
abelian entanglements.

Corollary 2.2.3. With the notation above, G has abelian entanglements if
and only if Qj is abelian for every j œ {1, . . . , n}.

Proof. One implication is trivial. Suppose that Qj is abelian for every
j œ {1, . . . , n}. Then by the proof of Proposition 2.2.1, G is a normal
subgroup of G

1

◊ · · · ◊ Gn, and again using Proposition 2.2.1, G has abelian
entanglements, as claimed.

Proposition 2.2.4. Suppose that G is a normal subgroup of G
1

◊ · · · ◊ Gn

such that the projection maps fii : G æ Gi are surjective for all i. Then the
quotient (G

1

◊ · · · ◊ Gn)/G is abelian.

Proof. We will proceed by showing that (G
1

◊ · · · ◊ Gn)Õ 6 G. Let x :=
(x

1

, . . . xn) œ (G
1

◊ · · · ◊ Gn)Õ. By Proposition 2.2.1 G has abelian entan-
glements, so for each j, to the inclusion G Òæ Gj ◊ GSj there corresponds an
abelian quotient Gj/fij(Nj), where Nj = (Gj ◊ {1}) fl G. The composition

G
1

◊ · · · ◊ Gn
fij≠æ Gj ≠æ Gj/fij(Nj)
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2.3. Elliptic curves with abelian entanglements

gives an abelian quotient of G
1

◊ · · · ◊ Gn, hence xj = fij(x
1

, . . . , xn) is
contained in fij(Nj). It follows that (1, . . . , 1, xj , 1 . . . , 1) œ G. As j was
arbitrary, and

r
j(1, . . . , 1, xj , 1 . . . , 1) = x, we conclude x œ G.

Proposition 2.2.5. Suppose G has abelian entanglements with respect to
G

1

◊ · · · ◊ Gn and let S ™ {1, . . . , n}. Then GS has abelian entanglements
with respect to

r
iœS Gi.

Proof. We will show that GS is normal in
r

iœS Gi. Note that

G 6 fi≠1

S (GS) 6 G
1

◊ · · · ◊ Gn

and by Proposition 2.2.4 the quotient (G
1

◊· · ·◊Gn)/G is abelian. It follows
then that fi≠1

S (GS) is normal in G
1

◊ · · · ◊ Gn, and denote the quotient by
�S . Now ker fiS µ fi≠1

S (GS) so the map G
1

◊ · · · ◊ Gn æ �S factors via
r

iœS Gi. Let ÂS be such that the following diagram commutes

G
1

◊ · · · ◊ Gn

Ÿ

iœS

Gi �S

fiS

ÂS

.

It is easy to see that the kernel of ÂS is precisely GS , hence GS is normal in
r

iœS Gi and by Proposition 2.2.1 GS has abelian entanglements with respect
to

r
iœS Gi, as claimed.

2.3 Elliptic curves with abelian entanglements

We consider here a family of elliptic curves with the property that the inter-
sections of the di�erent torsion fields of each curve in this family are abelian
extensions.
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We say that an elliptic curve E has abelian entanglements if the corre-
sponding group G(mE) 6 G(¸–1

1

) ◊ · · · ◊ G(¸–n
n ) has abelian entanglements

in the sense of section 2.2, where mE as usual denotes the smallest split and
stable integer for E, and has prime factorisation mE = ¸–1

1

. . . ¸–n
n .

Lemma 2.3.1. The following two conditions are equivalent:

(i) E has abelian entanglements.

(ii) For each m
1

, m
2

œ N which are relatively prime, the intersection

Q([m
1

]) fl Q([m
2

])

is an abelian extension of Q.

Proof. Suppose E has abelian entanglements, and let m
1

, m
2

be relatively
prime. If m

1

and m
2

both divide mE , then by Proposition 2.2.5 G(m
1

m
2

)
has abelian entanglements with respect to G(m

1

) ◊ G(m
2

). This implies the
Goursat quotient Qm1m2 is abelian, and by Lemma 1.2.8 Q([m

1

]) fl Q([m
2

])
is an abelian extension of Q. For general m

1

, m
2

, let

mÕ
1

= (m
1

, mE), mÕ
2

= (m
2

, mE).

Then mÕ
1

and mÕ
2

are relatively prime integers dividing mE so be the same
argument Q([mÕ

1

])flQ([mÕ
2

]) is an abelian extension of Q. From Serre’s open
image Theorem if n is any integer and d is coprime to nmE then

G(nd) = G(n) ◊ GL
2

(Z/dZ).

It follows that Qm1m2 is isomorphic to QmÕ
1mÕ

2
, hence the claim.

Corollary 2.3.2. If E has abelian entanglements, then for any m :=
r

i qsi
i

we have that G(m) 6 r
i G(qsi

i ) has abelian entanglements.

Proof. This follows immediately from Corollary 2.2.3 and Lemma 2.3.1.
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2.3. Elliptic curves with abelian entanglements

Assume now that E is an elliptic curve over Q with abelian entangle-
ments, and let m be a positive integer with prime factorisation m =

r
¸ ¸–¸ .

Since E has abelian entanglements, by Corollary 2.3.2 and Proposition 2.2.4
there are a map Âm and a finite abelian group �m that fit into the exact
sequence

1 ≠æ G(m) ≠æ
Ÿ

¸|m
G(¸–¸) Âm≠≠≠æ �m ≠æ 1. (2.3.1)

Note that the group �m measures the extent to which there are entan-
glements between the various ¸–¸-torsion fields. For instance �m is triv-
ial if and only if for any two coprime integers m

1

, m
2

dividing m one has
Q(E[m

1

])flQ(E[m
2

]) = Q. The following lemma tells us that �mE measures
the full extent to which the distinct torsion fields of E have any entangle-
ments.

Lemma 2.3.3. Let m be a positive integer and d be a positive integer co-
prime to mE. Then �md ƒ �m.

Proof. Again there is a map Âmd and an abelian group �md which fit into
the short exact sequence

1 ≠æ G(md) ≠æ
Ÿ

¸–¸ ||md

G(¸–¸) Âmd≠≠≠≠æ �md ≠æ 1.

As d is coprime to mE , by Serre’s open image Theorem we have that

G(md) = G(m) ◊
Ÿ

¸–¸ ||d
G(¸–¸) (2.3.2)

It follows that G(¸–¸) is contained in the kernel of Âmd for any ¸ | d, hence
�md ƒ �m.
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For each prime ¸ | m, let S(¸) be a subset of G(¸–¸), and define

Sm :=
Ÿ

¸|m
S(¸), Gm :=

Ÿ

¸|m
G(¸–¸).

so that Sm µ Gm. The following theorem allows us to compute the fraction
of elements in G(m) that belong to

r
¸|m S(¸). It will play a key role in

the method we will develop for computing entanglement correction factors
as character sums. If A is an abelian group, then ‚A denotes the group of
characters ‰ : A æ C◊.

Theorem 2.3.4. Assume E/Q has abelian entanglements, and let �m be as
in (2.3.1). For each ‰̃ œ ‚�m a character of �m, let ‰ be the character of
Gm obtained by composing ‰̃ with Âm, and let ‰¸ the restriction of ‰ to the
component G(¸–¸). Then

|Sm fl G(m)|
|G(m)| =

3
1 +

ÿ

‰̃œ‚
�m≠{1}

Ÿ

¸|m
E‰,¸

4 |Sm|
|Gm| ,

where
E‰,¸ =

ÿ

xœS(¸)

‰¸(x)
|S(¸)| .

Proof. Let Sm be the indicator function of Sm in Gm, and G(m)

that of
G(m). Also, to simplify notation we will use � in place of �m. Then we
have that |Sm fl G(m)|

|G(m)| = 1
|G(m)|

ÿ

xœGm

Sm(x) G(m)

(x).

By the orthogonality relations of characters (see for instance §VI.1 of [Ser73])
we have that if x œ Gm, then

ÿ

‰̃œ‚
�

‰(x) =

Y
]

[
[Gm : G(m)] if x œ G(m)

0 if x /œ G(m).
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2.4. Cyclic reduction of elliptic curves

This implies that
G(m)

= 1
[Gm : G(m)]

ÿ

‰̃œ‚
�

‰,

so it follows that

|Sm fl G(m)|
|G(m)| = 1

|Gm|
3 ÿ

xœGm

Sm(x) +
ÿ

xœGm

ÿ

‰̃œ‚
�\{1}

Sm(x)‰(x)
4

= |Sm|
|Gm|

3
1 +

ÿ

xœGm

ÿ

‰̃œ‚
�\{1}

Sm(x)‰(x)
|Sm|

4

= |Sm|
|Gm|

A

1 +
ÿ

‰̃œ‚
�\{1}

3 Ÿ

¸|m

ÿ

xœG(¸)

S(¸)

(x)‰¸(x)
|S(¸)|

4B

= |Sm|
|Gm|

A

1 +
ÿ

‰̃œ‚
�\{1}

3 Ÿ

¸|m

ÿ

xœS(¸)

‰¸(x)
|S(¸)|

4B

where the third equality follows from the fact that Sm and ‰ are products
of functions S(¸)

and ‰¸ defined on the components G(¸–¸). The result now
follows from letting E‰,¸ be the average value of ‰¸ on S(¸), that is

E‰,¸ =
ÿ

xœS(¸)

‰¸(x)
|S(¸)| .

2.4 Cyclic reduction of elliptic curves

In this section we consider an elliptic curve analogue of Artin’s classical
conjecture on primitive roots. Recall that this conjecture predicts the density
of primes p such that a given rational number is a primitive root modulo p.
In [LT77], Lang and Trotter formulated an analogous conjecture for elliptic
curves over Q. Namely, if P is a point of E(Q) of infinite order, then the

53



Entanglement correction factors as character sums

problem is to determine the density of primes p for which Ẽ(Fp) is generated
by P̃ , the reduction of P modulo p.

Note that for there to exist even one prime p of good reduction with
this property, a necessary condition is that the group Ẽ(Fp) be cyclic, and
that is the question we consider here. In [Ser86], Serre showed assuming
the Generalized Riemann Hypothesis that the set of primes p such that
Ẽ(Fp) is cyclic has a density. He did this by adapting Hooley’s argument
of conditionally proving Artin’s conjecture on primitive roots. Namely, we
have the following:

Theorem 2.4.1 (Serre, 1976). Let E be an elliptic curve defined over Q
with conductor NE. Assuming GRH we have that

|{p 6 x prime : p - NE , Ẽ(Fp) is cyclic}| ≥ CE
x

log x

as x æ Œ, where CE :=
ÿ

n>1

µ(n)
[Q(E[n]) : Q] .

We explicitly evaluate this density CE as an Euler product. Note that
the condition of Ẽ(Fp) being cyclic is completely determined by flE(GQ).
Indeed, Ẽ(Fp) is cyclic if and only if p does not split completely in the field
Q(E[¸]) for any ¸ ”= p. Note that this condition is automatically satisfied
when ¸ > p, since p splitting completely in Q(E[¸]) implies p © 1 (mod ¸).
In other words, if for each prime ¸ we define the set S(¸) := G(¸) ≠ {1}, then
for all p - NE the group Ẽ(Fp) is cyclic if and only if fl¸(Frobp) œ S(¸) for
any ¸ < p, i.e. if p does not split completely in Q(E[¸]).

By the Chebotarev density theorem, the set of primes p that do not split
completely in Q(E[¸]) has density equal to

”¸ := |S(¸)|
|G(¸)| = 1 ≠ 1

[Q(E[¸]) : Q] .

If we assume that the various splitting conditions at each prime ¸ are in-

54



2.4. Cyclic reduction of elliptic curves

dependent, then it is reasonable to expect that the density of primes p for
which Ẽ(Fp) is cyclic is equal to

r
¸ ”¸. However as we know, this assumption

of independence is not correct, as di�erent torsion fields may have non-trivial
intersection. To be precise, for each square-free integer d let

Sd :=
Ÿ

¸|d
S(¸), Gd :=

Ÿ

¸|d
G(¸).

By Chebotarev, the density of primes p such that p - NE and fl¸(Frobp) œ
S(¸) for all ¸ | d and ¸ ”= p is equal to |Sd fl G(d)|/|G(d)|. If we let d increase
to infinity ranging over square-free integers, then Serre’s above result implies
that, assuming GRH,

CE = lim
dæŒ

|Sd fl G(d)|
|G(d)| (2.4.1)

where the limit will be seen to exist.
Now let m =

r
¸|mE

¸ be the square-free part of mE , and let d be a
square-free integer coprime to m. By (2.3.2) we have

|Smd fl G(md)|
|G(md)| = |Sm fl G(m)|

|G(m)|
Ÿ

¸|d

|S(¸)|
|G(¸)| .

For ¸ coprime to mE , we have that |S(¸)|/|G(¸)| is 1 + O(1/¸4) so the limit
in (2.4.1) does indeed exist. Letting d tend to infinity over the square-free
numbers then gives

CE = |Sm fl G(m)|
|G(m)|

Ÿ

¸-m

|S(¸)|
|G(¸)| .

The above discussion implies that if we do take into account entanglements,
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then assuming GRH we have

CE = CE

Ÿ

¸

”¸ (2.4.2)

where CE is an entanglement correction factor, and explicitly evaluating
such densities amounts to computing the correction factors CE . The en-
tanglement correction factor CE arises as the factor by which CE di�ers
from the uncorrected value limdæŒ |Sd|/|Gd| =

r
¸ ”¸. We will use Theorem

2.3.4 for evaluating CE as a character sum for elliptic curves with abelian
entanglements.

Theorem 2.4.2. Assume E/Q has abelian entanglements, and let �m be as
in (2.3.1). Let ‰̃ œ ‚�m be a character of �m and let ‰ be the character of
Gm obtained by composing ‰̃ with Âm. Define E‰,¸ by

E‰,¸ =

Y
]

[
1 if ‰ is trivial on G(¸),

≠1

[Q(E[¸]):Q]≠1

otherwise.

Then
CE = CE

Ÿ

¸

”¸

where the entanglement correction factor CE is given by

CE = 1 +
ÿ

‰̃œ‚
�≠{1}

Ÿ

¸|m
E‰,¸.

Proof. By Theorem 2.3.4 we have that

|Sm fl G(m)|
|G(m)| = |Sm|

|Gm|

A

1 +
ÿ

‰̃œ‚
�\{1}

Ÿ

¸|m
E‰,¸

B

,
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2.4. Cyclic reduction of elliptic curves

where E‰̃,¸ is the average value of ‰¸ on S(¸). By (2.4.2), we know that

CE = CEr
¸ ”¸

= |Sm fl G(m)|/|G(m)|
|Sm|/|Gm| .

Finally, notice that if ‰ is non-trivial on G(¸) then ‰¸ is non-trivial, hence

ÿ

xœS(¸)

‰¸(x) =
3 ÿ

xœG(¸)

‰¸(x)
4

≠ ‰¸(1) = ≠1.

This completes the proof.

Remark 2.4.3. Note that in the above theorem we may replace m by any
square-free multiple of it. Indeed, for any ‰̃, it follows from Lemma 2.3.3
that E‰,¸ = 1 for any ¸ - m, hence the product

r
¸|m E‰,¸ does not change,

and the quotient of |Smd fl G(md)|/|G(md)| and |Smd|/|Gmd| is constant as
d tends to infinity.

In what follows we will use Theorem 2.4.2 to compute CE for various
elliptic curves over Q.

2.4.1 Serre curves

Consider the representation flE : GQ æ GL
2

(‚Z) given by the action of GQ on
E(Q)

tors

. Serre has shown in [Ser72] that the image of flE is always contained
in a specific index 2 subgroup of GL

2

(‚Z) and thus flE is never surjective.
Following Lang and Trotter, we define an elliptic curve E over Q to be a
Serre curve if [GL

2

(‚Z) : G] = 2.
It follows from the result of Serre that Serre curves are elliptic curves over

Q whose Galois action on their torsion points is as large as possible. Jones
has shown in [Jon10] that “most” elliptic curves over Q are Serre curves (see
Section 3.1 for the more precise statement) . Thus they are prevalent over
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Q and we also have complete understanding of their Galois theory, and this
makes their entanglement factors particularly easy to handle in conjunction
with Theorem 2.4.2.

First we briefly describe the index 2 subgroup HE of GL
2

(‚Z) (see [Ser72],
page 311 for more details). To this end let ‰

�

: GQ æ {±1} be the character
associated to K := Q(

Ô
�), where � is the discriminant of any Weierstrass

model of E over Q, and note that ‰
�

does not depend on the choice of
model. Let

Á : GL
2

(Z/2Z) ≠æ {±1}

be the signature map under any isomorphism GL
2

(Z/2Z) ƒ S
3

. Then as
K µ Q(E[2]), one can check that ‰

�

= Á ¶ flE,2.
Note that K µ Q(’|D|), where D is the discriminant of Q(

Ô
�). Then

there exists a unique quadratic character – : (Z/|D|Z)◊ æ {±1} such that
‰

�

= – ¶ det flE,|D|. From this it follows that Á ¶ flE,2 = – ¶ flE,|D|. If we then
define ME = lcm(|D|, 2) and

HME :=
)
A œ GL

2

(Z/MEZ) : Á(A mod 2) = –
!

det(A mod |D|)"*
,

then it follows from the above discussion that HME contains G(ME). If we
let HE be the inverse image of HME in GL

2

(‚Z) under the reduction map,
then HE is clearly an index 2 subgroup of GL

2

(‚Z) which contains G. We
have then that G is a Serre curve if and only if flE(GQ) = HE . It follows
from the above discussion that all Serre curves have abelian entanglements.

Proposition 2.4.4. Let E/Q be a Serre curve. Let D be the discriminant
of Q(

Ô
�) where � is the discriminant of any Weierstrass model of E over

Q. Then
CE = CE

Ÿ

¸

3
1 ≠ 1

(¸2 ≠ 1)(¸2 ≠ ¸)

4
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2.4. Cyclic reduction of elliptic curves

where the entanglement correction factor CE is given by

CE =

Y
__]

__[

1 if D © 0 (mod 4)

1 +
Ÿ

¸|2D

≠1
(¸2 ≠ 1)(¸2 ≠ ¸) ≠ 1 if D © 1 (mod 4)

Proof. Since E is a Serre curve, we have that G(¸) = GL
2

(Z/¸Z) holds for
all ¸, hence [Q(E[¸]) : Q] = (¸2 ≠ 1)(¸2 ≠ ¸).

Now suppose first that D © 0 (mod 4). Then mE = |D| is divisible by
4, hence we have that

G(m) =
Ÿ

¸|m
G(¸)

for all square-free m. It follows that �m ƒ {1} hence its character group is
trivial and CE = 1.

Now suppose D © 1 (mod 4). In this case mE = 2|D| is square-free,
hence G(mE) is an index 2 subgroup of

r
¸|mE

G(¸) and � ƒ {±1}. For each
¸ > 2 dividing mE , ‰¸ is the character given by the composition G(¸) det≠≠æ
!
Z/¸Z

"ú æ {±1}, that is ‰¸ =
1

det

¸

2
, and ‰

2

:= Á is the signature map under
an isomorphism GL

2

(Z/2Z) ƒ S
3

. If we let ‰ :=
r

¸|mE
‰¸ then we have an

exact sequence

1 ≠æ G(mE) ≠æ
Ÿ

¸|mE

G(¸) ‰≠≠æ {±1} ≠æ 1.

Clearly each ‰¸ is non-trivial on G(¸) for each ¸ dividing mE so the result
follows from Theorem 2.4.2 and using that �mE ƒ {±1}.

2.4.2 Example: Y 2

+ Y = X3 ≠ X2 ≠ 10X ≠ 20

We now consider the elliptic curve over Q defined by the Weierstrass equation
Y 2 + Y = X3 ≠ X2 ≠ 10X ≠ 20. The Galois theory for this elliptic curve has
been worked out by Lang and Trotter in [LT74], and in particular they have
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shown that mE = 2 · 52 · 11, and that the following properties hold:

• G(2) = GL
2

(Z/2Z).

• E has a rational 5-torsion point, and Q(E[5]) = Q(’
5

).

• [Q(E[52]) : Q(E[5])] = 54, hence 5 is stable.

• Q(E[52]) fl Q(E[11]) = Q(’
11

)+, where Q(’
11

)+ is the real quadratic
subfield of Q(’

11

). This implies there is a map

„
5

: G(52) ≠æ !
Z/11Z

"◊
/{±1}.

We make this map explicit. There is a basis for E[52] over Z/25Z
under which we have

G(52) =
IA

1 + 5a 5b

5c u

B

: a, b, c, d œ Z/25Z, u œ !
Z/25Z

"◊
J

.

Define the (surjective) homomorphism

Â : G(52) ≠æ Z/5Z
A

1 + 5a 5b

5c u

B

‘≠æ a mod 5.

Then „
5

is given by
A ‘≠æ (±2)Â(A),

where we note that ±2 is a generator of (Z/11Z)◊/{±1}.

• Q(E[2]) fl Q(E[11]) = Q(
Ô≠11).
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From this we conclude that E has abelian entanglements and

G(2 · 52 · 11) =
Ó

(g
2

, g
25

, g
11

) œ G(2) ◊ G(52) ◊ G(11) :

Á(g
2

) =
3det(g

11

)
11

4
, „

5

(g
5

) = „
11

(g
11

)
Ô

.

Proposition 2.4.5. Let E/Q be the elliptic curve given by Weierstrass equa-
tion Y 2 + Y = X3 ≠ X2 ≠ 10X ≠ 20. Then we have

CE = 3
4CE

Ÿ

”̧=5

3
1 ≠ 1

(¸2 ≠ ¸)(¸2 ≠ 1)

4

¥ 0.611597,

where CE is given by
CE = 1 + 1

65995 .

Proof. As before we take m = 2 · 5 · 11 to be the square-free part of mE .
Because E has abelian entanglements there is an exact sequence

1 ≠æ G(2 · 5 · 11) ≠æ G(2) ◊ G(5) ◊ G(11) ‰≠≠æ �
110

≠æ 1

From the description of G(2·52 ·11) it follows that G(2·5·11) = G(22)◊G(5),
hence �

110

ƒ {±1}. It follows that if we set ‰
2

equal to the sign character
Á, ‰

11

to
1

det(g11)

11

2
and ‰

5

be trivial, then ‰ = ‰
2

‰
5

‰
11

.
By Theorem 2.4.2 we have

CE = CE

Ÿ

¸

”¸.

where
CE = 1 + E‰2E‰5E‰11 .

From the description of G(¸) it is then straightforward to compute ”¸ as well
as E‰¸ for every ¸.
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Remark 2.4.6. Note that in this example, even though the Galois theory
of E was considerably more complicated than that of a Serre curve, at the
‘square-free’ torsion level it was still very similar. Indeed, the subgroup
G(110) 6 G(2)◊G(5)◊G(11) was still cut out only by a quadratic character.

2.5 Cyclic reduction for primes in an arithmetic
progression

We now consider a variant of the problem on cyclic reduction of elliptic
curves. We have been looking at the density of primes p for which the
reduction Ẽ(Fp) is cyclic. Here we impose the additional requirement that
p lie in a prescribed residue class modulo some integer f . This is just one
of many possible generalizations one could consider, and in many of them
one should still obtain a density assuming GRH. One of the di�culties that
arises however, is the explicit computation of the density as an Euler product.
The character sum method we have given allows us to do this in a relatively
simple manner.

If we keep the same setup as in Theorem 2.4.2, then note that the condi-
tion we are imposing on p being satisfied is again completely determined by
flE(GQ). In this case however, it is not necessarily enough to consider only
the ‘square-free’ torsion fields Q(E[¸]). Suppose then that we are interested
in primes p such that

(i) Ẽ(Fp) is cyclic,

(ii) p © a (mod f).

For each prime power ¸–, define

Da(¸–) := {A œ GL
2

(Z/¸–Z) : det A © a (mod ¸–)},
!
I + ¸M

2

(Z/¸–Z)
"c := {A œ GL

2

(Z/¸–Z) : A ”© I (mod ¸)}.
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Let f =
r

¸ ¸e¸ be the prime factorisation of f , and for each ¸ | f set

�a(¸e¸) : = Da(¸e¸) fl !
I + ¸M

2

(Z/¸e¸Z)
"c

= {A œ GL
2

(Z/¸e¸Z) : A ”© I (mod ¸), det A © a (mod ¸e¸)}.

Then set
S(¸) := G(¸e¸) fl �a(¸e¸)

for those ¸ dividing f , and just as in the case of the previous subsection,
set S(¸) := G(¸) ≠ {1} for all other ¸. Then it follows that p - NE satisfies
conditions (i) and (ii) above if and only if for any ¸ - p one has

(i) fl¸(Frobp) œ S(¸) if ¸ - f ,

(ii) fl¸e¸ (Frobp) œ S(¸) if ¸ | f .

Then the density of p having the ‘right’ local behaviour at ¸ equals

”¸ =

Y
]

[
|S(¸)|/|G(¸)| if ¸ - f

|S(¸)|/|G(¸e¸)| if ¸ | f

and the naive density of primes satisfying conditions (i) and (ii) equals
r

¸ ”¸.
To account for entanglements, we proceed more or less along the same

line as the case without the condition of p lying in a prescribed residue class,
with some slight modifications. That is, let

m :=
Ÿ

¸|(f,mE)

¸e¸
Ÿ

¸|mE
¸-f

¸

For any square-free d coprime to m, define

Smd :=
Ÿ

¸|md

S(¸), Gmd :=
Ÿ

¸|(f,m)

G(¸e¸)
Ÿ

¸|md
¸-f

G(¸).
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By Corollary 2.3.2
G(md) 6 Gmd

has abelian entanglements, hence we have an exact sequence

1 ≠æ G(md) ≠æ Gmd
Âmd≠≠≠≠æ �md ≠æ 1

for some abelian group �md. We again have by (2.3.2) that �md ƒ �m for
any square-free d coprime to m, and the density we are looking for is then

CE(a, f) = lim
dæŒ

|Smd fl G(md)|
|G(md)| = |Sm fl G(m)|

|G(m)|
Ÿ

¸-m

|S(¸)|
|G(¸)| .

Theorem 2.5.1. Let ‰̃ œ ‚�m be a character of �m and let ‰ be the character
of Gm obtained by composing ‰̃ with Âm. Define E‰,¸ by

E‰̃,¸ =
ÿ

xœS(¸)

‰¸(x)
|S(¸)| .

Then
CE(a, f) = CE(a, f)

Ÿ

¸

”¸

where the entanglement correction factor CE(a, f) is given by

CE(a, f) = 1 +
ÿ

‰̃œ‚
�m≠{1}

Ÿ

¸|m
E‰,¸.

Proof. The proof is exactly as that of Theorem 2.3.4 with the obvious mod-
ifications.

It follows from the previous theorem that in order to evaluate the cor-
rection factors CE(a, f) it su�ces to compute the order of S(¸) as well as
the average value of the ‰¸ on S(¸).
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2.5.1 Serre curves

In what follows we again consider the example of Serre curves. To simplify
the following proofs we will henceforth assume a and f are coprime integers.
If not, then for a prime ¸ dividing (a, f) we obtain |�a(¸e¸)| = 0 hence
|S(¸)| = 0 and CE(a, f) = 0, which we take to mean the conditions imposed
are satisfied for only finitely many p.

Lemma 2.5.2. Let E/Q be a Serre curve, and let a and f be coprime positive
integers. Let D be the discriminant of Q(

Ô
�) where � is the discriminant

of any Weierstrass model of E over Q. Suppose that |D| ”= 4, 8. Then

”¸ =

Y
____]

____[

1

„(¸e¸
)

if a ”© 1 (mod ¸) and ¸ | f

1

„(¸e¸
)

1
1 ≠ 1

¸(¸≠1)(¸+1)

2
if a © 1 (mod ¸) and ¸ | f

1 ≠ 1

(¸2≠1)(¸2≠¸)

if ¸ - f .

Proof. If ¸ - f then as before we obtain the local density ”¸ = 1 ≠ 1/(¸2 ≠
1)(¸2 ≠ ¸). At ¸ | f we consider the two cases. If a ”© 1 (mod ¸) then

S(¸) = Da(¸e¸)

since any element with determinant a ”© 1 cannot be trivial mod ¸. It
follows that for such ¸ one has ”¸ = 1/„(¸e¸). If a © 1 (mod ¸) then we
need to count the fraction of elements of Da(¸e¸) which are non-trivial mod
¸. There is a surjective map G(¸) æ !

Z/¸Z
"ú of degree ¸(¸ ≠ 1)(¸ + 1), and

Q(E[¸]) flQ(’¸e¸ ) = Q(’¸) (since |D| ”= 4, 8) so it follows that this fraction is
precisely 1 ≠ 1/¸(¸ ≠ 1)(¸ + 1), as desired.

Lemma 2.5.3. Let E, a and f be as in Lemma 2.5.2. Suppose further that
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|D| = 4. Then

”
2

=

Y
____]

____[

1

„(2

e2
)

if a © 3 (mod 4) and 4 | f

1

„(2

e2
)

!
1 ≠ 1

3

"
if a © 1 (mod 4) and 4 | f

5

6

if 4 - f.

Proof. The assumption on D implies that Q(
Ô

�) = Q(i) and mE = 4.
Recall that 2e2 ||f is the highest power of 2 dividing f . If e

2

> 2 then a is
odd, hence is 1 or 3 mod 4. Note that Q(’

2

e2 ) fl Q(E[2]) = Q(i). Now the
fraction of elements A œ G(2e2) such that A œ Da(2e2) equals 1/„(2e2). If
a © 3 (mod 4) then any such A œ Da(2e2) acts non-trivially on Q(i), hence
is non-trivial mod 2. It follows that S(2) = Da(2e2) and ”

2

= 1/„(2e2). If
a © 1 (mod 4), then because [Q(E[2]) : Q(i)] = 3 exactly 1 ≠ 1/3 of the
elements in A œ Da(2e2) are in S(2). Finally suppose e

2

< 2. Then the only
condition at 2 is being non-trivial mod 2, and the conclusion follows.

Lemma 2.5.4. Let E, a and f be as in Lemma 2.5.2. Suppose further that
|D| = 8. Then

(i) If Q(
Ô

�) = Q(
Ô

2) then

”
2

=

Y
____]

____[

1

„(2

e2
)

if a © 3 or 5 (mod 8) and 8 | f

1

„(2

e2
)

!
1 ≠ 1

3

"
if a © 1 or 7 (mod 8) and 8 | f

5

6

if 8 - f.

(ii) Q(
Ô

�) = Q(
Ô≠2) then

”
2

=

Y
____]

____[

1

„(2

e2
)

if a © 5 or 7 (mod 8) and 8 | f

1

„(2

e2
)

!
1 ≠ 1

3

"
if a © 1 or 3 (mod 8) and 8 | f

5

6

if 8 - f.
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Proof. We proceed similarly to Lemma 2.5.3. The assumption on D implies
that Q(

Ô
�) = Q(

Ô±2). If e
2

> 3 then in this case Q(’
2

e2 ) fl Q(E[2]) =
Q(

Ô±2). In case (i), elements in Da(2e2) act non-trivially on Q(
Ô

2) if and
only if a © 3 or 5 (mod 8), hence the conclusion. Case (ii) follows from the
same argument.

In what remains of this section we will deduce the correction factor
CE(a, f). In the following lemmas we compute the local factors E¸ for the
di�erent primes ¸ dividing mE . As is often the case, the prime 2 requires
special consideration and we split the computation of the local correction
factor E

2

into various cases. Keep the same notation for E, a, f and D, and
suppose further that |D| ”= 4, 8. Then mE contains at least one odd prime
factor and we have an exact sequence

1 ≠æ G(m) ≠æ
Ÿ

¸|(f,mE)

G(¸e¸)
Ÿ

¸|mE
¸-f

G(¸) ‰≠≠æ {±1} ≠æ 1

where ‰ =
r

¸ ‰¸ is a product of characters ‰¸. Here ‰¸ is given by the
composition G(¸e¸) æ G(¸) det≠≠æ !

Z/¸Z
"ú æ {±1} and ‰

2

is the character
corresponding to the quadratic extension Q(E[2–2 ]) fl Q(E[m/2–2 ]), where
2–2 ||m. When e

2

= 1 for instance, ‰
2

is the signature map GL
2

(Z/2Z) æ
{±1}, corresponding to the quadratic extension Q(

Ô
�).

Lemma 2.5.5. Suppose ord
2

(D) = 0. Then E
2

= ≠1/5.

Proof. Since D © 1 (mod 4) it follows that mE = 2|D| and ‰
2

is the signa-
ture map. Let 2e2 ||f be the largest power of 2 dividing f . If e

2

6 0 then
E

2

= ≠1/5 by the same argument as in Proposition 2.4.1. If e
2

> 1, then
S(2) µ G(ee2) consists of the elements of Da(2e2) which are non-trivial mod
2.

Because mE = 2|D| with D odd, ‰
2

is the signature map, hence it
factors through the surjection G(2e2) æ Gal(Q(E[2]), ’

2

e2 ), so we have a
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commutative diagram

G(2e2)

Gal(Q(E[2], ’
2

e2 )

{±1}
‰Õ

2

.

Let SÕ(2) be the image of S(2) under the surjection G(2e2) æ Gal(Q(E[2]), ’
2

e2 ).
Then note that because Q(’

2

e2 ) flQ(E[2]) = Q, for each ‡ œ G(2) there is a
unique ‡Õ œ Gal(Q(E[2]), ’

2

e2 ) such that ‡(’
2

e2 ) = ’a
2

e2 and ‡Õ © ‡ (mod 2).
It follows that ÿ

xœSÕ
(2)

‰Õ(x) = ≠1

and the conclusion follows.

Lemma 2.5.6. Suppose ord
2

(D) = 2. We have

(i) If |D| ”= 4 and 4 | f then

E
2

= ≠
3

a

4

4 1
5 .

(ii) If |D| = 4 or 4 - f then
E

2

= 0.

Proof. If 4 - f then because mE = |D| it follows that mE - m, hence

G(m) =
Ÿ

¸|(f,mE)

G(¸e¸)
Ÿ

¸|mE
¸-f

G(¸)

and �m ƒ {1}, so E
2

= 0. Similarly if |D| = 4 then mE has no odd prime
factors and we again conclude E

2

= 0.

68



2.5. Cyclic reduction for primes in an arithmetic progression

Now suppose |D| ”= 4 and 4 | f . If we let �
sf

denote the square-free part
of �, then the assumption on ord

2

(D) implies that �
sf

© 3 (mod 4). Also,
because 4 | f , we have that Q(i) µ Q(E[2e2), hence

Q(


i�
sf

) = Q(E[2e2 ]) fl Q(E[m/2e2 ])

and ‰
2

is the character corresponding to this quadratic extension. If we
define

‰i : G(2e2) æ {±1}, ‰
�

: G(2e2) æ {±1}

to be the characters corresponding to the quadratic extensions Q(i) and
Q(

Ô
�), respectively, then ‰

2

= ‰i‰
�

. Now ‰i has constant value equal to
!

a
4

"
on S(2), and by the same argument as in Lemma 2.5.5 ‰

�

has average
value ≠1/5 on S(2). It follows then that

E
2

= 1
S(2)

ÿ

xœS(2)

‰
2

(x)

= 1
S(2)

ÿ

xœS(2)

‰i(x)‰
�

(x)

= ≠
3

a

4

4 1
5 .

To deal with the case of ord
2

(D) = 3, we establish the following notation.
Note that if ord

2

(D) = 3 then we must have that 2 | �
sf

. Let �Õ be such
that �

sf

= 2�Õ.

Lemma 2.5.7. Suppose ord
2

(D) = 3, and keep the notation above. We have

(i) If |D| ”= 8, 8 | f and �Õ © 1 (mod 4) then

E
2

=

Y
]

[
1/5 if a © 1 or 7 (mod 8)

≠1/5 if a © 3 or 5 (mod 8) .
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(ii) If |D| ”= 8, 8 | f and �Õ © 3 (mod 4) then

E
2

=

Y
]

[
1/5 if a © 1 or 3 (mod 8)

≠1/5 if a © 5 or 7 (mod 8) .

(iii) If |D| = 8 or 8 - f then
E

2

= 0.

Proof. If |D| = 8 or 8 - f then by the same reasoning as in Lemma 2.5.6 we
conclude E

2

= 0. Assume then that |D| ”= 8 and 8 | f . Because 8 | f , we
have that Q(

Ô±2) µ Q(E[2e2 ]). Let

‰Ô
2

: G(2e2) æ {±1}, ‰Ô
≠2

: G(2e2) æ {±1}, ‰
�

: G(2e2) æ {±1}

to be the characters corresponding to the quadratic extensions Q(
Ô

2), Q(
Ô≠2)

and Q(
Ô

�), respectively. If �Õ © 1 (mod 4) then

Q(
Ô

�Õ) = Q(E[2e2 ]) fl Q(E[m/2e2 ])

and ‰
2

is the quadratic character corresponding to this extension, with ‰
2

=
‰Ô

2

‰
�

. If �Õ © 3 (mod 4) then

Q(
Ô

≠�Õ) = Q(E[2e2 ]) fl Q(E[m/2e2 ])

and ‰
2

is the quadratic character corresponding to this extension, with ‰
2

=
‰Ô

≠2

‰
�

. Now note that ‰Ô
2

has constant value on S(2) equal to 1 if a © 1
or 7 (mod 8), and ≠1 if a © 3 or 5 (mod 8), and ‰Ô

≠2

has constant value
on S(2) equal to 1 if a © 1 or 3 (mod 8), and ≠1 if a © 5 or 7 (mod 8) We
conclude exactly as in Lemma 2.5.6.

Proposition 2.5.8. Let E/Q be a Serre curve, and let a and f be coprime
positive integers. Let D be the discriminant of Q(

Ô
�) where � is the dis-

70



2.5. Cyclic reduction for primes in an arithmetic progression

criminant of any Weierstrass model of E over Q. Suppose that |D| ”= 4, 8.
Then

CE(a, f) = CE(a, f) 1
„(f)

Ÿ

¸|(a≠1,f)

3
1≠ 1

¸(¸ ≠ 1)(¸ + 1)

4 Ÿ

¸-f

3
1≠ 1

(¸2 ≠ 1)(¸2 ≠ ¸)

4

where the entanglement correction factor CE(a, f) is given by

CE(a, f) = 1 + E
2

Ÿ

¸|(D,f)

¸ ”=2

3
a

¸

4 Ÿ

¸|D
¸-2f

≠1
(¸2 ≠ 1)(¸2 ≠ ¸) ≠ 1 .

Here E
2

is given by Lemmas 2.5.5, 2.5.6 and 2.5.7,

Proof. Since |D| ”= 4, 8, the equality involving CE(a, f) follows from using
Lemma 2.5.2 for all ¸. The form of the entanglement correction factor at 2
follows from Lemmas 2.5.5, 2.5.6 and 2.5.7. It remains to consider ¸ ”= 2.
By Theorem 2.5.1 if ¸ - f and ¸ | D then S(¸) = G(¸) ≠ {1} and so

E¸ = ≠1
(¸2 ≠ 1)(¸2 ≠ ¸) ≠ 1 .

Ir ¸ | (D, f) then because Q(E[¸]) fl Q(’¸e¸ ) = Q(’¸) we have that ‰¸ has
constant value

!
a
¸

"
on S(¸) and the result follows.

Corollary 2.5.9. For any (a, f) coprime integers, we have CE(a, f) > 0.

Proof. It is clear that the naive density
r

¸ ”¸ does not vanish, hence in order
for CE(a, f) to be zero, we would need the correction factor CE(a, f) to be
zero, which happens if and only if

r
¸ E¸ = ≠1. This is impossible as E

2

is
always ±1/5 or 0.

Corollary 2.5.10. The correction factor CE(a, f) equals 1 if and only if
ord

2

(D) > ord
2

(f).

Proof. From the form of the correction factor it follows that CE(a, f) = 1 if
and only if E

2

= 0, and the result follows.
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2.5.2 Example: Y 2

= X3

+ X2

+ 4X + 4

We look now at an example of a non-Serre curve where the constant CE(a, f)
can vanish. This implies that conjecturally, there should only exist finitely
many primes p such that Ẽ(Fp) is cyclic and p © a (mod f). Let E be the
elliptic curve over Q given by the Weierstrass equation Y 2 = X3 + X2 +
4X + 4. In [Bra09], a description of the Galois theory of E is worked out.
In particular, for this curve we have that mE = 120, and the following
properties hold:

• E has a rational 3-torsion point, and G(3) ƒ S
3

.

• E has a rational two-torsion point, and Q(E[2]) = Q(i).

• G(4) has order 16, and Q(E[4]) fl Q(E[5]) = Q(
Ô

5).

• G(8) has order 128, and Q(E[8]) fl Q(E[5]) = Q(’
5

).

• G(5) = GL
2

(Z/5Z)

• Q(E[3]) fl Q(E[40]) = Q, hence G(120) = G(3) ◊ G(40).

From all of this we conclude that

G(120) = {(g
8

, g
3

, g
5

) œ G(8) ◊ G(3) ◊ G(5) : g
8

(’
5

) = ’det g5
5

}

hence E has abelian entanglements and G(120) fits into the exact sequence

1 ≠æ G(120) ≠æ G(8) ◊ G(3) ◊ G(5) ≠æ �
120

≠æ 1,

where �
120

ƒ (Z/5Z)◊. Also, given coprime integers a and f =
r

¸ ¸e¸ we
again set

m :=
Ÿ

¸|(f,120)

¸e¸
Ÿ

¸|120

¸-f

¸.
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2.5. Cyclic reduction for primes in an arithmetic progression

Lemma 2.5.11. For any ‰̃ œ ‚�m ≠ {1} we have E‰,2 = 0.

Proof. Suppose first that 4 - f . Then m is square-free, and because

G(30) = G(2) ◊ G(3) ◊ G(5)

it follows that �m ƒ {1}, hence E‰,2 = 0. Suppose now that 4 | f , and let ÷̃

be a generator of �̃
120

. If 8 | f , then 120 | m, hence �m ƒ �
120

ƒ (Z/5Z)◊.
Any ‰̃ œ ‚�m ≠ {1} is equal to ÷̃j for some j œ {1, 2, 3} and ‰

2

is equal to ÷j
2

,
where

÷
2

: G(2e2) ≠æ (Z/5Z)◊

is the character corresponding to the subfield Q(’
5

) µ Q(E[2e2 ]). Now be-
cause Q(E[2]) = Q(i) µ Q(’

2

e2 ) it follows that Q(E[2], ’
2

e2 ) fl Q(’
5

) = Q,
hence

ÿ

gœS(2)

÷j
2

(g) =
ÿ

xœ(Z/5Z)

◊

x

= 0.

We conclude that E‰,2 = 0. If 4||f , then �m ƒ {±1} and we can use the
same argument given that Q(i) fl Q(’

5

) = Q. This proves the claim.

Proposition 2.5.12. For any coprime (a, f) we have that CE(a, f) = 1.
Further,

CE(a, f) = 0 ≈∆ 4 | f and a © 1 (mod 4).

Proof. That CE(a, f) = 1 follows directly from Theorem 2.5.1 and Lemma
2.5.11. It follows from this that

CE(a, f) =
Ÿ

¸

”¸.
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For ¸ ”= 2 we have that ”¸ ”= 0. Indeed,

”
3

=

Y
____]

____[

1

„(3

e3
)

if a © 2 (mod 3) and 3 | f

1

„(3

e3
)

!
1 ≠ 1

3

"
if a © 1 (mod 3) and 3 | f

5

6

if 3 - f

,

and

”¸ =

Y
____]

____[

1

„(¸e¸
)

if a ”© 1 (mod ¸) and ¸ | f

1

„(¸e¸
)

1
1 ≠ 1

¸(¸≠1)(¸+1)

2
if a © 1 (mod ¸) and ¸ | f

1 ≠ 1

(¸2≠1)(¸2≠¸)

if ¸ - f .

Finally, given that Q(E[2]) = Q(i), it follows that ”
2

= 0 if and only if 4 | f

and a © 1 (mod 4), and the conclusion follows.

Remark 2.5.13. Suppose a and f are coprime integers such that a © 1
(mod 4). The above proposition is saying that the only obstruction to the
existence of infinitely many primes p such that Ẽ(Fp) is cyclic and p © a

(mod f) is a local one at the prime 2. Meaning, for any prime p it is im-
possible for it to satisfy the required condition at the prime 2, that is, for
Frobp to lie in the set S(2), which is the empty set. Note also that even
when f is divisible by 4, we still have E‰,2 = 0 and hence CE(a, f) = 1.
What this is encoding is the fact that Q(’

2

e2 ) fl Q(’
5

) = Q for any e
2

. The
only entanglement of E occurs in the subfield Q(’

5

), and this field is disjoint
from Q(’

2

Œ).

2.5.3 Example: Y 2

+ XY + Y = X3 ≠ X2 ≠ 91X ≠ 310

So far we have only considered examples where the constant CE(a, f) either
does not vanish, or vanishes because there is a condition at some prime ¸

which cannot be satisfied. Another interesting possibility is when all ”¸ are
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2.5. Cyclic reduction for primes in an arithmetic progression

non-zero, yet the constant CE(a, f) still vanishes. This occurs if and only
if the entanglement correction factor CE(a, f) vanishes and its expression as
a product of local correction factors makes it easy to determine when this
happens. The entanglement correction factor being zero means there is an
obstruction coming from the entanglement fields which prevent there being
infinitely many primes p satisfying the imposed conditions. We will now
analyse an example when this occurs.

Consider the elliptic curve E over Q given by Weierstrass equation Y 2 +
XY + Y = X3 ≠ X2 ≠ 91X ≠ 310. The discriminant of our Weierstrass
model is � = 17. This curve has one rational torsion point of order 2 and
Q(E[2]) = Q(

Ô
17). In fact, machine computation shows that m = 34, where

m is the square-free part of mE , and

G(34) = {(g
2

, g
17

) œ G(2) ◊ GL
2

(Z/17Z) : Á(g
2

) = ◊
17

¶ det(g
17

)}

where as usual Á denotes the signature map and ◊
17

: (Z/17Z)ú æ {±1}
denotes the unique quadratic character of (Z/17Z)ú.

If we let D denote the discriminant of Q(
Ô

�), then D = 17 © 1 (mod 4),
hence by a similar argument to Lemma 2.5.2 we obtain that

Ÿ

¸

”¸ = 1
2

1
„(f)

Ÿ

¸|(a≠1,f)

”̧=2

3
1 ≠ 1

¸(¸ ≠ 1)(¸ + 1)

4 Ÿ

¸-f
¸”=2

3
1 ≠ 1

(¸2 ≠ ¸)(¸2 ≠ 1)

4

which is non-zero for all a and f . By Theorem 2.5.1 we have that

CE(a, f) = CE(a, f)1
2

1
„(f)

Ÿ

¸|(a≠1,f)

¸ ”=2

3
1≠ 1

¸(¸ ≠ 1)(¸ + 1)

4 Ÿ

¸-f
¸”=2

3
1≠ 1

(¸2 ≠ ¸)(¸2 ≠ 1)

4

with
EE(a, f) = 1 +

Ÿ

¸|34

E¸.
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We conclude then the following.

Proposition 2.5.14. For the above elliptic curve we have that CE(a, f) = 0
if and only if 17 | f and a is a quadratic residue modulo 17.

Proof. The naive density
r

¸ ”¸ is non-vanishing, hence CE(a, f) = 0 if and
only if CE(a, f) = 0. Using the same argument as in Lemma 2.5.5, we deduce
E

2

= ≠1 for all a, f . We have then that

CE(a, f) = 0 ≈∆ E
17

= 1.

If 17 - f then E
17

= ≠1/78335. If 17 | f then E
17

=
!

a
17

"
and the conclusion

follows.

Remark 2.5.15. Note that if 17 | f and a is a quadratic residue mod 17, then
for any prime p © a (mod f) we have that p splits in Q(

Ô
17) = Q(E[2]),

so Frobp would not satisfy the condition at the prime 2. The obstruction to
the existence of infinitely many primes p such that Ẽ(Fp) is cyclic and p © a

(mod f) is precisely the entanglement between the 2 and 17 torsion fields.
The above proposition is saying that this the only obstruction that exists.

2.6 Koblitz’s conjecture

In [Kob88], N. Koblitz made a conjecture on the asymptotic behaviour of the
number of primes p for which the cardinality of the group Ẽ(Fp) is prime.
In this section we use our character sum method to give a description of the
constants appearing in this asymptotic.

Conjecture 2.6.1 (Koblitz). Let E/Q be a non-CM curve and let � be the
discriminant of any Weierstrass model of E over Q. Suppose that E is not
Q-isogenous to a curve with non-trivial Q-torsion. Then

|{primes p 6 x : p - �, |Ẽ(Fp)| is prime}| ≥ CE
x

(log x)2
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2.6. Koblitz’s conjecture

as x æ Œ where CE is an explicit positive constant.

In [Zyw11c], Zywina shows that the description of the constant CE given
by Koblitz is not always correct, and he gives a corrected description of the
constant along with providing several interesting examples and numerical
evidence for the refined conjecture. In particular the constant described
by Zywina is not necessarily positive. The reason the original constant is
not always correct is that it does not take into account that divisibility
conditions modulo distinct primes need not be independent. Put another
way, it could occur that there are non-trivial intersections between distinct
¸-power torsion fields of E. The following is the refined Koblitz conjecture
given by Zywina, which here we state restricted to non-CM curves over Q.

Conjecture 2.6.2. Let E/Q be a non-CM elliptic curve of discriminant �,
and let t be a positive integer. Then there is an explicit constant CE,t > 0
such that

|{primes p 6 x : p - �, |Ẽ(Fp)|/t is prime}| ≥ CE,t
x

(log x)2

as x æ Œ.

The condition on p that |Ẽ(Fp)|/t be prime can be given as a splitting
condition in the various ¸-torsion fields, so the character sum method we have
developed again seems well suited to compute CE,t. In his paper Zywina
computes the constants CE,t via a di�erent method than the one we use
here, both in the CM and non-CM cases. Here we will restrict ourselves to
non-CM curves with abelian entanglements over the rationals.

For each prime power ¸–, define

�t(¸–) :=
Ó

A œ GL
2

(Z/¸–Z) : det (I ≠ A) œ t · !
Z/¸–Z

"◊Ô
.

For a prime p - NE¸ note that Ẽ(Fp)/t is invertible modulo ¸–/(¸–, t) if and
only if fl¸–(Frobp) œ G(¸–) fl �t(¸–). Suppose that t has prime factorisation
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t =
r

¸ ¸e¸ . With this in mind, define the set of ‘good’ Frobenius elements to
be

St(¸) =

Y
]

[
G(¸e¸+1) fl �t(¸e¸+1) if ¸ | t

G(¸) fl �t(¸) if ¸ - t .

We now give a description of the constant CE,t in terms of our sets
St(¸) as well as a crude heuristic of justifying it. This heuristic follows
the same lines as that of Koblitz and Zywina. The key argument relies
on the Cramer’s model which asserts that, roughly speaking, the primes
behave as if every random integer n is prime with probability 1/ log n. If
the sequence {|Ẽ(Fp)|/t}p-NE

were assumed to behave like random integers,
then the proability that |Ẽ(Fp)|/t is prime would be

1
log

!|Ẽ(Fp)|/t
" ¥ 1

log(p + 1) ≠ log t
.

The last approximation uses the fact that by Hasse’s bound, Ẽ(Fp) is close
to p + 1.

It is not true however, that the |Ẽ(Fp)|/t behave like random integers
with respect to congruences, and in order to get a better approximation we
need to take these congruences into account. If we fix a prime ¸, then for all
but finitely many p. if |Ẽ(Fp)|/t is prime then it is invertible modulo ¸. If
¸ does not divide t, then by Chebotarev, the density of primes p - NE such
that Ẽ(Fp)/t is invertible modulo ¸ is |St(¸)|/|G(¸)|. If ¸ | t, then similarly
the density of primes p - NE such that Ẽ(Fp) is divisible by ¸e¸ and Ẽ(Fp)/t

is invertible modulo ¸ equals |St(¸)|/|G(¸e¸+1)|. Meanwhile the density of
natural numbers that are invertible mod ¸ is (1 ≠ 1/¸). If we let d be a
square-free integer coprime to t, then

Ÿ

¸|td

1
1 ≠ 1/¸

Ÿ

¸|t

|St(¸)|
|G(¸e¸+1)|

Ÿ

¸|d

|St(¸)|
|G(¸)| · 1

log(p + 1) ≠ log t
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should constitute a better approximation to the probability that |Ẽ(Fp)|/t

is prime, as it takes into account the congruences modulo all primes ¸ | td.
Taking into account all congruences amounts to letting d tend to infinity,
hence this model suggests that for a randomly chosen p, |Ẽ(Fp)|/t is prime
with probability

Ÿ

¸

”¸

1 ≠ 1/¸
· 1

log(p + 1) ≠ log t

where

”¸ =

Y
]

[
|St(¸)|/|G(¸)| if ¸ - t

|St(¸)|/|G(¸e¸+1)| if ¸ | t .

This is the constant that was given by Koblitz with t = 1 and later refined
by Zywina. The problem that still remained with the approximation given
by Koblitz, is that while it does take into account congruences modulo ¸, is
assumes that divisibility conditions modulo distinct primes are independent.
In order to deal with this we take a similar approach as in the previous
sections. That is, we let

m :=
Ÿ

¸|t
¸e¸+1

Ÿ

¸|mE
¸-t

¸

and for each square-free d coprime to m, let

Smd :=
Ÿ

¸|md

St(¸), Gmd :=
Ÿ

¸|t
G(¸e¸+1)

Ÿ

¸|md
¸-t

G(¸).

By Corollary 2.3.2
G(md) 6 Gmd

has abelian entanglements, hence we have an exact sequence

1 ≠æ G(md) ≠æ Gmd
Âmd≠≠≠≠æ �md ≠æ 1
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for some abelian group �md. By (2.3.2) we have that �md ƒ �m for any
square-free d coprime to m. Note now that |Smd fl G(md)|/|G(md)| is the
density of p for which |Ẽ(Fp)|/t is an integer and invertible modulo md,
hence by letting d tend to infinity over the square free integers coprime to
m, the refined constant is

CE,t = lim
dæŒ

|Smd fl G(md)|/|G(md)|
1 ≠ 1/¸

=

Q

a
Ÿ

¸|m

1
1 ≠ 1/¸

R

b · |Sm fl G(m)|
|G(m)|

Ÿ

¸-m

”¸

1 ≠ 1/¸
.

It follows by the prime number theorem that the expected number of primes
p such that |Ẽ(Fp)|/t is prime is asymptotic to CE,t · x/(log x)2.

Applying Theorem 2.3.4 with m defined as above we obtain

CE,t = CE,t

Ÿ

¸

”¸

1 ≠ 1/¸
(2.6.1)

where the entanglement correction factor CE,t is given by

CE,t = 1 +
ÿ

‰̃œ‚
�m≠{1}

Ÿ

¸|m
E‰,¸.

2.6.1 Serre curves

In this section we compute the constants CE,1 in Conjecture 2.6.2 for Serre
curves. This will amount to finding the average value of various quadratic
characters on S(¸). In the case of Serre curves, the sets S(¸) are particularly
easy to treat.

Proposition 2.6.3. Let E/Q be a Serre curve. Let D be the discriminant
of Q(

Ô
�) where � is the discriminant of any Weierstrass model of E over
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Q. Then

CE,1 = CE,1

Ÿ

¸

3
1 ≠ ¸2 ≠ ¸ ≠ 1

(¸ ≠ 1)3(¸ + 1)

4

where the entanglement correction factor CE,1 is given by

CE,1 =

Y
__]

__[

1 if D © 0 (mod 4)

1 +
Ÿ

¸|D

1
¸3 ≠ 2¸2 ≠ ¸ + 3 if D © 1 (mod 4)

Proof. We begin by noting that, for Serre curves,

S
1

(¸) =
Ó

A œ GL
2

(Z/¸Z) : det (I ≠ A) œ !
Z/¸Z

"◊Ô
.

We have then that

”¸ = |S
1

(¸)|
|G(¸)|

= 1 ≠ |S
1

(¸)c|
|GL

2

(Z/¸Z)|

where S
1

(¸)c = {A œ GL
2

(Z/¸Z) : det (I ≠ A) = 0}. Thus S
1

(¸)c consists
of those matrices whose eigenvalues are 1 and ⁄ for some ⁄ œ (Z/¸Z)◊.
It follows from Table 12.4 in §12, Chapter XVIII of [Lan02], that there
are ¸2 elements of GL

2

(Z/¸Z) with both eigenvalues equal to 1, and ¸2 + ¸

elements with eigenvalues 1 and ⁄ ”= 1. We obtain then that |S
1

(¸)c| =
¸2 + (¸ ≠ 2)(¸2 + ¸), hence we have that

”¸ = 1 ≠ ¸2 + (¸ ≠ 2)(¸2 + ¸)
(¸2 ≠ ¸)(¸2 ≠ 1)

and a calculation yields that

”¸

1 ≠ 1/¸
= 1 ≠ ¸2 ≠ ¸ ≠ 1

(¸ ≠ 1)3(¸ + 1) .
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From (2.6.1) it rests only to compute CE,1. Because t = 1, m equals the
square-free part of mE , and we may proceed just as in the proof of Proposi-
tion 2.4.4. That is, when D © 0 (mod 4) then CE,1 = 1. If D © 1 (mod 4),
then for each ¸ | 2D it su�ces to compute the average value of ‰¸ on S

1

(¸).
Note that since the ‰¸ are non-trivial, then

q
xœG(¸)

‰¸(x) = 0. For ¸ > 2
recall that ‰¸ =

1
det

¸

2
, hence given an element x œ S

1

(¸)c with eigenvalues
1 and ⁄, we have that ‰¸(x) =

1
⁄
¸

2
. There are an equal number of squares

and non-squares in (Z/¸Z)◊, so we conclude then

ÿ

xœS1(¸)

‰¸(x) = ≠
ÿ

xœS1(¸)

c

‰¸(x)

= ≠
3

¸2

31
¸

4
+ (¸2 + ¸)

ÿ

⁄œ(Z/¸Z)

◊

”̧=1

3
⁄

¸

4 4

= ≠!
¸2 ≠ (¸2 + ¸)

"

= ¸.

From this we obtain

E¸ = ¸

|G(¸)| ≠ |S
1

(¸)|
= ¸

(¸2 ≠ ¸)(¸2 ≠ 1) ≠ (¸2 + ¸)(¸ ≠ 2) ≠ ¸2

= 1
¸3 ≠ 2¸2 ≠ ¸ + 3 .

For ¸ = 2 one can directly compute S
1

(2). It consists of the 2 matrices
1

1 1
1 0

2

and
1

0 1
1 1

2
both of which have order 3 and hence are even permutations.

Since ‰
2

is the signature character we conclude E
2

= 1, and this completes
the proof.
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