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Chapter 2

Entanglement correction

factors as character sums

2.1 Introduction

The motivation for this chapter comes from the classical conjecture of Artin
from 1927 which predicts the density of primes p for which a given rational
number is a primitive root modulo p. More precisely, let g be an integer
different from +1, and let h be the largest integer such that g = g(})’ with
go € Z. The heuristic reasoning described by Artin was the following. If p
is a prime number coprime to g, then g is a primitive root modulo p if and
only if there is no prime £ dividing p — 1 such that g = y* (mod p) for some
1. Note that this congruence condition can be given as a splitting condition
on the prime p in the field Fy := Q((, /g). Indeed, the condition on p is
equivalent to p not splitting completely in the aforementioned field. In other
words, ¢ is a primitive root modulo p if and only if for every prime £ < p we
have that Frob, is not the identity element in Gal(F;/Q).

For a fixed ¢, the density of primes which do not split completely in Fj
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Entanglement correction factors as character sums

is equal to )

[Fy: Q)

and this equals 1 — ﬁ for ¢ | h and 1 — Z(Tl—n otherwise. If we assume

Op:=1—

the splitting conditions in the various fields Fy to be independent, then
it is reasonable to expect that the density of primes p for which g is a
primitive root modulo p is equal to [[,d,. This was the density originally
conjectured by Artin, however years later (see [Ste03]) he noticed that this
assumption of independence is not correct, as the fields Fy can have non-
trivial intersections. If F5 = Q(,/g) has discriminant D = 1 (mod 4), then
F; is contained in the compositum of the fields Fy; with ¢ | D. The corrected
version of the conjecture was proven by Hooley under the assumption of
the Generalized Riemann Hypothesis (GRH). He showed in [Hoo67] that,
conditional on GRH, the density of primes such that ¢ is a primitive root

modulo p equals
— A(n)
= 2.1.1
2 211

where F,, = Q((n, {/g) and g is the Mobius function. In the same paper

Hooley shows that (2.1.1) can be rewritten as

1
g_e:gH(1—m)H(1—m), (2.1.2)

tth

where €, is an entanglement correction factor, a rational number which

depends on g. In fact it is given explicitly by

He—z Hﬁ—z—l

‘D
é|h oh

One advantage of having Cj in the form given by (2.1.2) is that it makes it

easy to see when the density Cy vanishes. Vanishing of C; implies that, con-
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2.1. Introduction

jecturally, there exist only finitely many primes p such that g is a primitive
root modulo p, and the multiplicative structure of Cy and €, allows one to
identify precisely what are the obstructions to this.

There are many interesting generalisations to Artin’s conjecture on prim-
itive roots. For instance, one could consider only primes p which lie in a pre-
scribed congruence class modulo some integer f. One could also study the
set of primes p such that g generates a subgroup of a given index in (Z/pZ)*.
As is shown in [Len77], in both of these cases one can again obtain a density
under GRH via a formula similar to (2.1.1). However, it is not clear how to
describe the non-vanishing criteria of such densities from such a sum.

In [LMS14], the authors develop an efficient method to compute entan-
glement correction factors €, for Artin’s original conjecture and several of its
generalisations. Their method consists in expressing €, as a sum of quadratic

characters. More precisely, they show that €, has the form
Cg =1+ H Ey
¢

where each Ejy is the average value of a character y, over an explicit set. One
crucial fact used to arrive at this form is that when D = 1 (mod 4), then

for n divisible by 2D we have that the subgroup

Gal(F,,/Q) = | [ Gal(F;/Q)

ln

is cut out by a quadratic character x measuring the nature of the entangle-
ment. The structure of C; as an Euler product and the description of €,
naturally lead to non-vanishing criteria.

In this chapter we attempt to generalize this method to the setting of
elliptic curves. There are many problems concerning the study of the set
of primes p such that the reduced curve E(Fp) satisfies a certain condi-

tion. Onme of these arises as a natural analogue of Artin’s conjecture on
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Entanglement correction factors as character sums

primitive roots. Namely, given an elliptic curve E over QQ, the problem is
to determine the density of primes p such that E(Fp) is cyclic. The first
thing to note is that the condition of E(Fp) being cyclic is completely de-
termined by the splitting behaviour of p in the various torsion fields Q(E[¢])
for different ¢. Given this, we can proceed similarly by defining local densi-
ties dy and attempting to find the entanglement correction factor €g, how-
ever one quickly runs into various difficulties which were not present in the
case of classical Artin. One of these is that it is not necessarily true that
Gal(Q(E[m])/Q) = IIyjm Gal(Q(E[(])/Q) is a normal subgroup and even if
so, the quotient need not be {£1} or even abelian for that matter.

This leads us to the study in Section 2.2 of so called abelian entangle-
ments. If G is a subgroup of G1 x --- x GG, such that the projection maps
m « G — G; are surjective for 1 < ¢ < n, then we give a necessary and suffi-
cient condition for G being normal in G1 X --- X GG, with abelian quotient.

In Section 2.3 we define elliptic curves with abelian entanglements to be
those elliptic curves with the property that G(mpg) has abelian entangle-
ments in the sense of Section 2.2. We show that this definition is equivalent
to Q(E[m1]) N Q(E[ms2]) being an abelian extension of Q for every coprime
m1,ms. It is for this class of curves that we will be able to apply our char-
acter sum method, with Theorem 2.3.4 being a crucial ingredient.

Section 2.4 applies Theorem 2.3.4 to the aforementioned problem of cyclic
reduction of elliptic curves. We explicitly evaluate the density Cr as an Euler
product [, ¢ times an entanglement correction factor €g. We then compute
€r in the case of Serre curves and give examples of a few other elliptic curves
with more complicated Galois Theory, as well as establishing non-vanishing
criteria for these conjectural densities.

In Section 2.5 we study a variant of the problem of cyclic reduction on
elliptic curves. Namely, we impose the additional condition that p lie in a
prescribed congruence class modulo some integer f. This introduces new

difficulties as the splitting conditions on p become more complicated, but it
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2.2. Abelian entanglements

also illustrates the way in which our method can be used to handle a variety
of different scenarios. In the end the computation of € is again reduced to
fairly mechanical local computations. Again Serre curves and several other
examples are treated in detail.

Section 2.6 we study a different type of problem. We look at a classical
conjecture of Koblitz on the asymptotic behaviour of the number of primes
p for which the cardinality of E(Fp) is prime. We see that the character
sum approach can also be applied to describe the constant appearing in
this asymptotic. In this case there are not even conditional results, and the
constant computed is purely conjectural. However the constant we compute
has previously been described via different methods by Zywina in [Zywllc],
where he provides some convincing numerical evidence for it.

The study of conjectural constants led us to investigate the class of elliptic
curves with abelian entanglements, and naturally leads to the question of
whether there exist elliptic curves with non-abelian entanglements. To be
precise, can one classify the triples (E, mi,m2) with E an elliptic curve over
Q and my,msy a pair of coprime integers for which the entanglement field
Q(E[mi1]) N Q(E[m2]) is non-abelian over Q7 In Chapter 3 we exhibit an
infinite family of elliptic curves for which this is the case, and in doing so
we obtain a complete set of modular curves which parametrize non-Serre

curves.

2.2 Abelian entanglements

In this section we study the following question: if G is a subgroup of G x

- X Gy such that the projection maps m; : G — G; are surjective for

1 < i < n, when does it happen that G is normal in G; x --- X G,, with
abelian quotient?

For a group G, we will denote by G’ the commutator subgroup of G, and

1

for z,y € G, [z,y] = 2~y toy will denote the commutator of z and y. For
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Entanglement correction factors as character sums

a non-empty subset S C {1,...,n} we write mg for the projection map

7T5':G1><'-‘XGn—>HGi
€S
and let Gg denote the image of G under this projection map. Note that for

each partition U;T; = {1,...,n} we have a canonical inclusion

G —— H GTj-
J
Let P :={S, T} be a partition of {1,...,n}, so that SUT ={1,...,n}.
Then G is a subdirect product of Gg x G so by Goursat’s lemma there is

a group @Qp and a pair of homomorphisms ¥p := (wg ),wg )) with

such that G = Gg Xy, Gr. We say that G has abelian entanglements
with respect to G1 X -+ x Gy, if Qp is abelian for each two-set partition P
of {1,...,n}. We will often write only that G has abelian entanglements,
omitting with respect to which direct product of groups if this is clear from
the context. The following proposition is the main result of this section and

provides an answer to the question posed at the start.

Proposition 2.2.1. Keeping the notation as above, G is a normal subgroup

of G1 X -+ X Gy, if and only if G has abelian entanglements.
The proof will use the following proposition, which is the case n = 2.

Proposition 2.2.2. Let G be a subgroup of G1 X Go such that the projection
maps w1 : G = G1 and mo : G — Go are surjective. Then G I Gy X Gy if

and only if G has abelian entanglements.
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2.2. Abelian entanglements

Proof. Suppose first that G has abelian entanglements, and let = := (x1,x2) €
G. We will show that for any a € Gy x {1} one has aza™! € G, and
similarly for every b € {1} x Ga2. The result will then follow. So take
a:= (a1,1) € Gy x {1}. Let Ny and Na be the corresponding Goursat sub-
groups associated to G, that is, N = (G1 x{1})NG and Ny = ({1} xG2)NG.
Then because G has abelian entanglements we have that (G1 x {1})/N; is
abelian, or equivalently (G x{1})" < Nj. It follows that [(a1,1), (z1,1)] € G,

however

[(a17 1)a (:L‘la 1)] = ((11, 1)($1a 1)((11’ 1)_1($1a 1)_1

= (al, 1)(.%1, mg)(al, 1)_1($1, IEQ)_l

Lis in G, hence (a1, 1)(z1,72)(a1,1)7! is also in G, as claimed.

and (z1,z2)”
Similarly one can show (1,b2)(z1,22)(1,b2)~! € G for any by € Go, and we
conclude G is normal in G1 x Gs.

For the converse, suppose that G I G x Ga. We will show that (G x
{1})" < Ny, from which it follows that G has abelian entanglements. Let
(1,1) and (y1,1) be arbitrary elements of G; x {1}. Because m; : G — G}
is surjective, there exists z € Gg such that (y1,2) € G. As G 4Gy x Ga, we
have (x1,1)(y1, 2)(z1,1)"! is in G and hence so is [(z1, 1), (y1, 2)]. Using the
fact that [(z1,1), (y1,1)] = [(z1,1), (y1, 2)], we obtain [(z1,1), (y1,1)] € G.
However [(z1,1), (y1,1)] = ([x1,¥1],1) € G1 x {1}, hence the result. O

Proof of Proposition 2.2.1. Again we suppose first that G has abelian en-
tanglements, and we proceed similarly as in the case n = 2. Let z :=
(z1,...,2,) € G, and for j € {1,...,n} let a := (1,...,1,a;,1,...,1) €
{1} x---x {1} x Gj x {1} x - - - x {1} where the a; is in the j-th position. Let
Sj = A{1,...,n}\{j}. Then G < G; x G, with surjective projection maps
and the corresponding quotient (G; x {1})/N; is abelian. By Proposition
2.2.2, G is a normal subgroup of G; x Gg,. But a is certainly an element

of Gj x Gg;, hence axa~' € G. Since j was chosen arbitrarily we conclude
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Entanglement correction factors as character sums

G<Gy x - x Gy

Conversely, suppose GGy X - - - X Gy, and let P := {5, T} be a partition
of {1,...,n}. Then note that Gg x Gp may be viewed as a subgroup of
G1 X --+x Gy and so G AGg x Gr. By Proposition 2.2.2 the corresponding
Goursat quotient @p is abelian, hence G has abelian entanglements. This

completes the proof. O

In the proof we used the subset S; := {1,...n}\{j} C {1,...,n}. Here
we have that G is a subdirect product of G; X Gg;, so by Goursat’s lemma
there is a group (); and a pair of homomorphisms v; := (@ij(l),q/JJ@)) such
that G = G; x4, Gg,. The following corollary tells us that these are all the
partitions we need to consider in order to determine whether or not G has

abelian entanglements.

Corollary 2.2.3. With the notation above, G has abelian entanglements if
and only if Q; is abelian for every j € {1,...,n}.

Proof. One implication is trivial. Suppose that ; is abelian for every
j € {1,...,n}. Then by the proof of Proposition 2.2.1, G is a normal
subgroup of G1 X - -+ x G, and again using Proposition 2.2.1, G has abelian

entanglements, as claimed. O

Proposition 2.2.4. Suppose that G is a normal subgroup of G1 X --- X Gy,
such that the projection maps m; : G — G; are surjective for all i. Then the
quotient (G1 x -+ X Gy)/G is abelian.

Proof. We will proceed by showing that (G7 x -+ x Gp) < G. Let = :=
(x1,... 2n) € (G1 X -+ x Gy)". By Proposition 2.2.1 G has abelian entan-
glements, so for each j, to the inclusion G — G; x Gg; there corresponds an
abelian quotient G;/7;(N;), where N; = (G x {1}) N G. The composition

Gl X X Gn ﬂ-—J> Gj —)Gj/ﬂ'j(Nj)
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2.8. Elliptic curves with abelian entanglements

gives an abelian quotient of G1 x --- x Gy, hence x; = mj(x1,...,2y,) is
contained in m;(Nj). It follows that (1,...,1,z;,1...,1) € G. As j was
arbitrary, and [];(1,...,1,2;,1...,1) =z, we conclude x € G. O

Proposition 2.2.5. Suppose G has abelian entanglements with respect to
Gy x -+ x Gy and let S C{l,...,n}. Then Gg has abelian entanglements
with respect to [[;cq Gi.

Proof. We will show that G'g is normal in [[;cg G;. Note that
G <75 (Gs) <G1x - x Gy

and by Proposition 2.2.4 the quotient (G x - - - X G},)/G is abelian. It follows
then that 75'(Gg) is normal in G x --- x Gy, and denote the quotient by
®g. Now kermg C ng(GS) so the map Gy x -+ x G, — ®g factors via
[l;cs Gi- Let 15 be such that the following diagram commutes

Gy x - x Gy

ﬂsl

ieS

It is easy to see that the kernel of vg is precisely Gg, hence Gg is normal in
[I;cs Gi and by Proposition 2.2.1 Gg has abelian entanglements with respect
to [[;cs Gi, as claimed. O]

2.3 Elliptic curves with abelian entanglements

We consider here a family of elliptic curves with the property that the inter-
sections of the different torsion fields of each curve in this family are abelian

extensions.
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Entanglement correction factors as character sums

We say that an elliptic curve F has abelian entanglements if the corre-
sponding group G(mpg) < G({]") x -+ x G(£%) has abelian entanglements
in the sense of section 2.2, where mg as usual denotes the smallest split and

stable integer for E, and has prime factorisation mpg = ¢7" ... 27,
Lemma 2.3.1. The following two conditions are equivalent:
(i) E has abelian entanglements.

(i) For each my,mq € N which are relatively prime, the intersection

Q([ma]) N Q([ma])

is an abelian extension of Q.

Proof. Suppose E has abelian entanglements, and let mq,mo be relatively
prime. If m; and mgy both divide mpg, then by Proposition 2.2.5 G(mims)
has abelian entanglements with respect to G(m;) x G(mg). This implies the
Goursat quotient @, m, is abelian, and by Lemma 1.2.8 Q([m1]) N Q([mz2])

is an abelian extension of Q. For general m1,ms, let

my = (m1,mg), mhH= (mg,mpg).

Then m) and m} are relatively prime integers dividing mpg so be the same
argument Q([m}])NQ([m4]) is an abelian extension of Q. From Serre’s open

image Theorem if n is any integer and d is coprime to nmg then
G(nd) = G(n) x GLo(Z/dZ).

It follows that @y, m, is isomorphic to erl my» hence the claim. O

Corollary 2.3.2. If E has abelian entanglements, then for any m :=I[; ¢;*
we have that G(m) < I[; G(¢;*) has abelian entanglements.

Proof. This follows immediately from Corollary 2.2.3 and Lemma 2.3.1. [
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2.8. Elliptic curves with abelian entanglements

Assume now that E is an elliptic curve over Q with abelian entangle-
ments, and let m be a positive integer with prime factorisation m = [], £*¢.
Since E has abelian entanglements, by Corollary 2.3.2 and Proposition 2.2.4
there are a map 1, and a finite abelian group ®,, that fit into the exact
sequence

1 — G(m) — [ Ger) 2 @, — 1. (2.3.1)

om
Note that the group ®,, measures the extent to which there are entan-
glements between the various ¢*¢-torsion fields. For instance ®,, is triv-
ial if and only if for any two coprime integers mq,mo dividing m one has
Q(E[m1])NQ(E[mz]) = Q. The following lemma tells us that ®,,, measures
the full extent to which the distinct torsion fields of F have any entangle-

ments.

Lemma 2.3.3. Let m be a positive integer and d be a positive integer co-

prime to mg. Then ®,q ~ P,y

Proof. Again there is a map ,,4 and an abelian group ®,,4 which fit into

the short exact sequence

1— Gimd) — [ G*) 2% @, — 1.
¢ ||lmd

As d is coprime to mp, by Serre’s open image Theorem we have that

G(md) = G(m) x [[ G(*) (2.3.2)
e||d

It follows that G(£*) is contained in the kernel of 1,4 for any ¢ | d, hence
B0~ D, 0

51



Entanglement correction factors as character sums

For each prime ¢ | m, let S(¢) be a subset of G(£**), and define

Sm=[[500), Gm:=][GCU*).

£m £m

so that S, C G,,,. The following theorem allows us to compute the fraction
of elements in G(m) that belong to ]y, S(€). It will play a key role in
the method we will develop for computing entanglement correction factors
as character sums. If A is an abelian group, then A denotes the group of

characters x : A — C*.

Theorem 2.3.4. Assume E/Q has abelian entanglements, and let ®,, be as
in (2.3.1). For each x € ®,, a character of @, let x be the character of
Gm obtained by composing X with Y., and let x,p the restriction of x to the
component G(£*¢). Then

18,01 G(m)
et (LD SR | L

Xeq)'m_{l} Elm

where

Xe ()

Evi= Y :

RNEC
Proof. Let 1s,, be the indicator function of Sy, in G, and lg(y) that of
G(m). Also, to simplify notation we will use ® in place of ®,,. Then we

have that \S ﬁG( )|
= ] 2 Yo e @)

Iegm

By the orthogonality relations of characters (see for instance §VI.1 of [Ser73])
we have that if x € G,,,, then

[Gm : G(m)] if z € G(m)
(z) =
éx {O if x ¢ G(m).
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2.4. Cyclic reduction of elliptic curves

This implies that
Lem) = [Qm Z X

xe@

so it follows that

ISmNG(m)| 1
G 1Gul (xegm Ls,, (@) + Egi AZ\{} Is,, <x>x<x>)
_ [Sml )x(x)
| ml(Hngm @Z ysm| )
:'Sm‘<1+ 3 (H > 15(@)”))
Gl ged\(1} " lmzEG(0) 15(0)]

:EZKH > (II XZ@)))

)265\{ 1} LmzeS(L

where the third equality follows from the fact that 1s,, and x are products
of functions 1g(;) and x, defined on the components G(£*¢). The result now
follows from letting E, , be the average value of x, on S(¢), that is

_ xe()
Be= 2 sy

zeS(0)

2.4 Cyclic reduction of elliptic curves

In this section we consider an elliptic curve analogue of Artin’s classical
conjecture on primitive roots. Recall that this conjecture predicts the density
of primes p such that a given rational number is a primitive root modulo p.
In [LT77], Lang and Trotter formulated an analogous conjecture for elliptic

curves over Q. Namely, if P is a point of F(Q) of infinite order, then the
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Entanglement correction factors as character sums

problem is to determine the density of primes p for which E (F,) is generated
by P, the reduction of P modulo p.

Note that for there to exist even one prime p of good reduction with
this property, a necessary condition is that the group E (F,) be cyclic, and
that is the question we consider here. In [Ser86], Serre showed assuming
the Generalized Riemann Hypothesis that the set of primes p such that
E(Fp) is cyclic has a density. He did this by adapting Hooley’s argument
of conditionally proving Artin’s conjecture on primitive roots. Namely, we

have the following:

Theorem 2.4.1 (Serre, 1976). Let E be an elliptic curve defined over Q
with conductor Ng. Assuming GRH we have that

x

{p < x prime: pt Ng, E(F,) is cyclic}| ~ CElog:v

as x — oo, where Cg := n%:l [QER) - Q"

We explicitly evaluate this density Cr as an Euler product. Note that
the condition of E(Fp) being cyclic is completely determined by pp(Gg).
Indeed, E(Fp) is cyclic if and only if p does not split completely in the field
Q(E[()) for any £ # p. Note that this condition is automatically satisfied
when ¢ > p, since p splitting completely in Q(E[¢]) implies p = 1 (mod ¢).
In other words, if for each prime ¢ we define the set S(¢) := G(¢) — {1}, then
for all p f Ng the group E(F,) is cyclic if and only if p,(Frob,) € S(¢) for
any ¢ < p, i.e. if p does not split completely in Q(E[¢]).

By the Chebotarev density theorem, the set of primes p that do not split
completely in Q(FE[¢]) has density equal to

1S(6)] 1

“=lowl =T ED - Q

If we assume that the various splitting conditions at each prime ¢ are in-
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2.4. Cyclic reduction of elliptic curves

dependent, then it is reasonable to expect that the density of primes p for
which E () is cyclic is equal to [], 6. However as we know, this assumption
of independence is not correct, as different torsion fields may have non-trivial

intersection. To be precise, for each square-free integer d let

Sa=[]50). Ga=][G).

0d 0ld

By Chebotarev, the density of primes p such that p { Ng and p,(Frob,) €
S(¢) for all £ | d and ¢ # p is equal to |SgNG(d)|/|G(d)|. If we let d increase
to infinity ranging over square-free integers, then Serre’s above result implies
that, assuming GRH,

(2.4.1)

where the limit will be seen to exist.
Now let m = HamEﬁ be the square-free part of mpg, and let d be a

square-free integer coprime to m. By (2.3.2) we have

[Sma NG(md)| _ |Sm N G(m)] I SO
|G (md)] |G (m)] '

For ¢ coprime to mp, we have that |S(¢)|/|G(¢)] is 1 + O(1/¢*) so the limit
in (2.4.1) does indeed exist. Letting d tend to infinity over the square-free

numbers then gives

 Sun G| 17 IS(O)
% =amy Wamr

The above discussion implies that if we do take into account entanglements,
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Entanglement correction factors as character sums

then assuming GRH we have
Ce=¢g]]d (2.4.2)
4

where Cp is an entanglement correction factor, and explicitly evaluating
such densities amounts to computing the correction factors €g. The en-
tanglement correction factor €g arises as the factor by which Cg differs
from the uncorrected value limg_,~ |S4|/|Gal = 1, 9¢. We will use Theorem
2.3.4 for evaluating €g as a character sum for elliptic curves with abelian

entanglements.

Theorem 2.4.2. Assume E/Q has abelian entanglements, and let ®,, be as
in (2.3.1). Let x € ®,, be a character of ®,, and let x be the character of
Gm obtained by composing X with 1y,. Define E, o by

1 if x s trivial on G(¢),
Ey¢= ) |
QEMQ-1 otherwise.
Then
Crg =g H Oy
)4

where the entanglement correction factor €g is given by

Cp=1+ Z HEX,K'

xed—{1}tm

Proof. By Theorem 2.3.4 we have that

S0 N G(m)| _ [Sn)
Gm)] ‘w(“ 2 HE’“)’

xed\{1} tim
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2.4. Cyclic reduction of elliptic curves

where Ey ¢ is the average value of x, on S(¢). By (2.4.2), we know that

 TLed
_ S 0 G(m)|/|G(m)]
|Sml/|Gm| '

Ck

Finally, notice that if x is non-trivial on G(¢) then x; is non-trivial, hence

> xelz) = ( > m(x)) —xe(1) = —1.

zeS(¢) z€G (L)
This completes the proof. O

Remark 2.4.3. Note that in the above theorem we may replace m by any
square-free multiple of it. Indeed, for any ¥, it follows from Lemma 2.3.3
that E, , = 1 for any ¢ { m, hence the product Hﬁlm E, ; does not change,
and the quotient of |S,,q N G(md)|/|G(md)| and |Spal/|Gmal is constant as
d tends to infinity.

In what follows we will use Theorem 2.4.2 to compute €g for various

elliptic curves over Q.

2.4.1 Serre curves

Consider the representation pr : Gg — GLy(Z) given by the action of Gg on
E(Q)tors- Serre has shown in [Ser72] that the image of pg is always contained
in a specific index 2 subgroup of GLQ(Z) and thus pp is never surjective.
Following Lang and Trotter, we define an elliptic curve £ over Q to be a
Serre curve if [GLa(Z) : G] = 2.

It follows from the result of Serre that Serre curves are elliptic curves over
@ whose Galois action on their torsion points is as large as possible. Jones
has shown in [Jon10] that “most” elliptic curves over Q are Serre curves (see

Section 3.1 for the more precise statement) . Thus they are prevalent over
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Entanglement correction factors as character sums

Q and we also have complete understanding of their Galois theory, and this
makes their entanglement factors particularly easy to handle in conjunction
with Theorem 2.4.2.

First we briefly describe the index 2 subgroup Hg of GLa(Z) (see [Ser72],
page 311 for more details). To this end let xa : Gg — {£1} be the character
associated to K := Q(v/A), where A is the discriminant of any Weierstrass
model of E over Q, and note that ya does not depend on the choice of
model. Let

e: GLo(Z)27) — {£1}

be the signature map under any isomorphism GLy(Z/2Z) ~ Ss. Then as
K C Q(E[2]), one can check that xyo =¢c o0 pga.

Note that K C Q((|p|), where D is the discriminant of Q(VA). Then
there exists a unique quadratic character « : (Z/|D|Z)* — {£1} such that
Xa = aodet pg p|. From this it follows that eopp 2 = aopg p|. If we then
define Mg =lem(|D|,2) and

Hypy, = {A € GLo(Z/MEZ) : (A mod 2) = a(det(A mod |D|))},

then it follows from the above discussion that Hjs, contains G(Mg). If we
let Hg be the inverse image of Hys, in GLQ(Z) under the reduction map,
then Hg is clearly an index 2 subgroup of GLg(z) which contains G. We
have then that G is a Serre curve if and only if pp(Gg) = Hg. It follows

from the above discussion that all Serre curves have abelian entanglements.

Proposition 2.4.4. Let E/Q be a Serre curve. Let D be the discriminant
of Q(vVA) where A is the discriminant of any Weierstrass model of E over
Q. Then

1
Co=cel] (- 7=5e=7)

o8



2.4. Cyclic reduction of elliptic curves

where the entanglement correction factor €g is given by

1 if D=0 (mod 4)
Cp = —1 e —
H}};(le)@ﬁ)l if D=1 (mod 4)

Proof. Since E is a Serre curve, we have that G(¢) = GLa(Z/¢Z) holds for
all £, hence [Q(E[/]) : Q] = (£2 — 1)(¢2 - ¢).
Now suppose first that D = 0 (mod 4). Then mg = |D| is divisible by

4, hence we have that

G(m) =[G
t\m
for all square-free m. It follows that ®,, ~ {1} hence its character group is
trivial and € = 1.

Now suppose D = 1 (mod 4). In this case mg = 2|D| is square-free,
hence G(mp) is an index 2 subgroup of ]y, G(¢) and ® ~ {+1}. For each
¢ > 2 dividing mpg, xy¢ is the character given by the composition G(¢) det,
(Z/0Z)" — {£1}, that is x, = (%), and y2 := ¢ is the signature map under
an isomorphism GLa(Z/2Z) ~ S3. If we let x := ][, x¢ then we have an

exact sequence

1— G(mp) — ] G(&) = {£1} — 1.

LmEg

Clearly each xy is non-trivial on G(¥) for each ¢ dividing mpg so the result
follows from Theorem 2.4.2 and using that ®,,, ~ {+1}. O

2.4.2 Example: Y?24+Y = X3 - X2 - 10X — 20

We now consider the elliptic curve over Q defined by the Weierstrass equation
Y24Y = X3 - X2 - 10X — 20. The Galois theory for this elliptic curve has
been worked out by Lang and Trotter in [LT74], and in particular they have
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shown that mp = 2- 52 - 11, and that the following properties hold:
o G(2) = GLy(Z/2Z).
e F has a rational 5-torsion point, and Q(E[5]) = Q((s).
e [Q(E[5%) : Q(E[5])] = 5%, hence 5 is stable.

e Q(E[5%) N Q(E[11]) = Q(¢11)™, where Q(¢11)T is the real quadratic
subfield of @Q(¢y1). This implies there is a map

b5 : G(5%) — (ZJ11Z)” J{+£1}.

We make this map explicit. There is a basis for E[5%] over Z/25Z

under which we have

1+5a 5b
G(52):{< j5Lca u) ta,b,c,d € 2257, u € (Z/25Z)X}.

Define the (surjective) homomorphism

Y : G(5%) — Z/5Z
(1 +5a 5b

5c U

)Ha mod 5.

Then ¢5 is given by
A (£2)¥A)
where we note that £2 is a generator of (Z/11Z)* /{+£1}.

e Q(ER2]) NQ(ENM]) = Q(v—11).
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2.4. Cyclic reduction of elliptic curves

From this we conclude that E has abelian entanglements and

G(2-52-11) = {(gg,g25,gn) € G(2) x G(5?) x G(11) :

e(g2) = (detl(fn)> , ¢5(g5) = ¢11(911)}-

Proposition 2.4.5. Let E/Q be the elliptic curve given by Weierstrass equa-
tion Y2 +Y = X3 — X2 — 10X —20. Then we have

3 1
Co=jgerll (- 7==)

~ 0.611597,

where Cg is given by

1
— 14—
Ce =14 55995

Proof. As before we take m = 2-5- 11 to be the square-free part of mg.

Because E has abelian entanglements there is an exact sequence
1— G((2-5-11) — G(2) x G(5) x G(11) =5 &g — 1

From the description of G(2-52-11) it follows that G(2-5-11) = G(22) x G(5),
hence @119 ~ {£1}. It follows that if we set x2 equal to the sign character
€, X11 to (%) and x5 be trivial, then x = x2x5Xx11-

By Theorem 2.4.2 we have

Cg = Q:EHCSZ-
l
where
Cp=1+ EXzEX5EX11-

From the description of G(¢) it is then straightforward to compute &, as well

as E,, for every /. O
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Remark 2.4.6. Note that in this example, even though the Galois theory
of E was considerably more complicated than that of a Serre curve, at the
‘square-free’ torsion level it was still very similar. Indeed, the subgroup
G(110) < G(2) xG(5) x G(11) was still cut out only by a quadratic character.

2.5 Cyclic reduction for primes in an arithmetic

progression

We now consider a variant of the problem on cyclic reduction of elliptic
curves. We have been looking at the density of primes p for which the
reduction E(F,) is cyclic. Here we impose the additional requirement that
p lie in a prescribed residue class modulo some integer f. This is just one
of many possible generalizations one could consider, and in many of them
one should still obtain a density assuming GRH. One of the difficulties that
arises however, is the explicit computation of the density as an Euler product.
The character sum method we have given allows us to do this in a relatively
simple manner.

If we keep the same setup as in Theorem 2.4.2, then note that the condi-
tion we are imposing on p being satisfied is again completely determined by
pe(Gg). In this case however, it is not necessarily enough to consider only
the ‘square-free’ torsion fields Q(E[¢]). Suppose then that we are interested

in primes p such that
(i) E(F,) is cyclic,
(ii) p=a (mod f).

For each prime power ¢, define

DoY) :={A € GLo(Z/t*Z) : det A=a (mod (%)},
(I +(Mo(Z/0°7))" = {A € GLo(Z/0*Z) : A% T (mod £)}.
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2.5. Cyclic reduction for primes in an arithmetic progression

Let f =TI, ¢ be the prime factorisation of f, and for each ¢ | f set

o (09) : = Dy (£) N (I + LMo(Z/ 1 7))"
={A e GLo(Z/t7) : AZ£T (mod {), det A=a (mod £*)}.

Then set
S(l) := G) N, ()
for those ¢ dividing f, and just as in the case of the previous subsection,
set S(¢) := G(¢) — {1} for all other ¢. Then it follows that p { Ng satisfies
conditions (i) and (ii) above if and only if for any ¢ { p one has
(i) pe(Froby) € S(¢) if L1 f,
(ii) peec (Frob,) € S(0) if £ f.

Then the density of p having the ‘right’ local behaviour at ¢ equals

5 {rsw/aw if (1 f
S@I/IGe] ] f

and the naive density of primes satisfying conditions (i) and (ii) equals [, dp.
To account for entanglements, we proceed more or less along the same
line as the case without the condition of p lying in a prescribed residue class,

with some slight modifications. That is, let

wie T =11
Zl(fsz) €|mE
uf

For any square-free d coprime to m, define

Smai=[] S0, Gma:= ] Gu=) ] G0).
Lmd L) (f,m) ZZ}}d
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By Corollary 2.3.2

has abelian entanglements, hence we have an exact sequence

1 — G(md) — Gmg —22% By — 1

for some abelian group @,,4. We again have by (2.3.2) that ®,,4 ~ ®,, for

any square-free d coprime to m, and the density we are looking for is then

(S N G(md)| S mG |H e

iSse  |Gmd)]  |G(m

Theorem 2.5.1. Let x € ®,, be a character of ®,,, and let x be the character
of G obtained by composing X with Vy,. Define E, o by

B xe()
Bre= 2 sy

Then
CE(CL, f) = CE(a, f) H 5(

14

where the entanglement correction factor €g(a, f) is given by

¢pla, f)=1+ > [IExe

€D, —{1} tIm

Proof. The proof is exactly as that of Theorem 2.3.4 with the obvious mod-

ifications. O

It follows from the previous theorem that in order to evaluate the cor-
rection factors €g(a, f) it suffices to compute the order of S(¢) as well as

the average value of the x, on S(¥).
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2.5. Cyclic reduction for primes in an arithmetic progression

2.5.1 Serre curves

In what follows we again consider the example of Serre curves. To simplify
the following proofs we will henceforth assume ¢ and f are coprime integers.
If not, then for a prime ¢ dividing (a, f) we obtain |¥,(¢*)] = 0 hence
|S(¢)| = 0 and Cg(a, f) = 0, which we take to mean the conditions imposed

are satisfied for only finitely many p.

Lemma 2.5.2. Let E/Q be a Serre curve, and let a and f be coprime positive
integers. Let D be the discriminant of Q(v/A) where A is the discriminant
of any Weierstrass model of E over Q. Suppose that |D| # 4,8. Then

¢(51€4) ifa#1 (mod/{) and (| f
0 = d>(€1€4’) (1 - Z(Lﬁ(ul)) ifa=1 (mod¥)and | f
L= Wl(gz,g) if et f.

Proof. If £ 1 f then as before we obtain the local density 6, = 1 — 1/({? —
1)(¢£?2 —¢). At £ | f we consider the two cases. If a # 1 (mod /) then

S(€) = Da (%)

since any element with determinant a # 1 cannot be trivial mod ¢. It
follows that for such ¢ one has 6y = 1/¢(¢%¢). If a = 1 (mod ¥¢) then we
need to count the fraction of elements of D,(¢%*) which are non-trivial mod
¢. There is a surjective map G(¢) — (Z/(Z)" of degree £(£ — 1)(¢ + 1), and
Q(EN]) NQ(Cpee) = Q(¢r) (since |D| # 4,8) so it follows that this fraction is
precisely 1 — 1/¢(¢ — 1)(¢£ + 1), as desired. O

Lemma 2.5.3. Let E, a and f be as in Lemma 2.5.2. Suppose further that
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|D| = 4. Then
ﬁ ifa=3 (mod4) and 4| f
5y = ﬁ(l_%) ifa=1 (mod4) and 4| f
5 ifatf.

Proof. The assumption on D implies that Q(v/A) = Q(i) and mp = 4.
Recall that 2¢2||f is the highest power of 2 dividing f. If ea > 2 then a is
odd, hence is 1 or 3 mod 4. Note that Q({2e2) N Q(E[2]) = Q(i). Now the
fraction of elements A € G(2°?) such that A € D,(2°?) equals 1/¢(2°?). If
a =3 (mod 4) then any such A € D,(2°?) acts non-trivially on Q(7), hence
is non-trivial mod 2. It follows that S(2) = D,(2°?) and do = 1/¢(2%?). If
a = 1 (mod 4), then because [Q(E[2]) : Q(i)] = 3 exactly 1 — 1/3 of the
elements in A € D,(2°?) are in S(2). Finally suppose ez < 2. Then the only

condition at 2 is being non-trivial mod 2, and the conclusion follows. O

Lemma 2.5.4. Let E, a and f be as in Lemma 2.5.2. Suppose further that
|D| =8. Then

(i) If Q(VA) = Q(v2) then

=

ifa=3or5 (mod8) and 8| f
ifa=1or7 (mod8) and8]| f
if8tf.

~
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(i) Q(VA) = Q(v/=2) then

=

ifa=5o0r7 (mod8) and 8| f
ifa=1or3 (mod8) and8]| f
if8tf.
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2.5. Cyclic reduction for primes in an arithmetic progression

Proof. We proceed similarly to Lemma 2.5.3. The assumption on D implies
that Q(v/A) = Q(v/E2). If ey > 3 then in this case Q(Coez) N Q(E[2]) =
Q(v/%2). In case (i), elements in D, (2°2) act non-trivially on Q(v/2) if and
only if @ = 3 or 5 (mod 8), hence the conclusion. Case (ii) follows from the

same argument. [

In what remains of this section we will deduce the correction factor
Cg(a, f). In the following lemmas we compute the local factors E; for the
different primes ¢ dividing mp. As is often the case, the prime 2 requires
special consideration and we split the computation of the local correction
factor Fo into various cases. Keep the same notation for F,a, f and D, and
suppose further that |D| # 4,8. Then mpg contains at least one odd prime

factor and we have an exact sequence

1—Gm)— ][] Gu=) [ G = {+1} — 1
A(fm) tmp
uf

where x = ][, x¢ is a product of characters x,. Here x; is given by the
composition G(£°¢) — G(f) <& (Z/0Z)" — {£1} and x2 is the character
corresponding to the quadratic extension Q(E[2%?]) N Q(E[m/2%?]), where
2°2||m. When ey = 1 for instance, x2 is the signature map GLo(Z/2Z) —

{#£1}, corresponding to the quadratic extension Q(v/A).
Lemma 2.5.5. Suppose orda(D) = 0. Then Ey = —1/5.

Proof. Since D =1 (mod 4) it follows that mg = 2|D| and x2 is the signa-
ture map. Let 2°2||f be the largest power of 2 dividing f. If e; < 0 then
Ey = —1/5 by the same argument as in Proposition 2.4.1. If ez > 1, then
S(2) C G(e®?) consists of the elements of D, (2?) which are non-trivial mod
2.

Because mp = 2|D| with D odd, x2 is the signature map, hence it
factors through the surjection G(2°?) — Gal(Q(E[2]),(2¢2), so we have a
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commutative diagram

G(2°2) — {£1)

lx'z

Gal(Q(E[2], Cze2 )

Let S’(2) be the image of S(2) under the surjection G(2°2) — Gal(Q(E[2]), (ae2 ).
Then note that because Q({2¢2) N Q(E[2]) = Q, for each o € G(2) there is a
unique o’ € Gal(Q(E[2]), (ae2) such that o(Cae2) = (5, and ¢/ = o (mod 2).

It follows that
> X(@)=-1
z€S'(2)

and the conclusion follows. O
Lemma 2.5.6. Suppose ords(D) = 2. We have

(i) If |D| # 4 and 4 | f then

(i) If |D| =4 or 41t f then
Ey=0.

Proof. 1f 41 f then because mg = |D| it follows that mg { m, hence

G(m) = H G(e°) H G(0)
4 (fmEe) flg);}E

and ®,, >~ {1}, so By = 0. Similarly if |D| = 4 then mg has no odd prime

factors and we again conclude Es = 0.
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2.5. Cyclic reduction for primes in an arithmetic progression

Now suppose |D| # 4 and 4 | f. If we let Ay denote the square-free part
of A, then the assumption on ords(D) implies that Ay =3 (mod 4). Also,
because 4 | f, we have that Q(i) C Q(E[2°?), hence

Q(Vids) = Q(E[2%]) N Q(E[m/2%])

and o is the character corresponding to this quadratic extension. If we
define
Xi: G(2%) = {£1}, xa:G(2%) = {£1}

to be the characters corresponding to the quadratic extensions Q(i) and
Q(\/E), respectively, then x2 = xixa. Now x; has constant value equal to

(Z) on S(2), and by the same argument as in Lemma 2.5.5 xa has average
value —1/5 on S(2). It follows then that

1

oy D Xe(@
S(z) z€S5(2)

1

oy > Xil@
S( mGS(2

>l

2
To deal with the case of ords(D) = 3, we establish the following notation.

Note that if orda(D) = 3 then we must have that 2 | Ag. Let A’ be such
that Ag = 2A.

O]

Lemma 2.5.7. Suppose orda(D) = 3, and keep the notation above. We have

(i) If |ID| # 8, 8| f and A’ =1 (mod 4) then

I 1/5 ifa=1or7 (mod8)
’ —-1/5 ifa=3o0r5 (mod8) .
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(i) If D] # 8, 8| f and A’ =3 (mod 4) then

B 1/5 ifa=1or3 (mod38)
2 —1/5 ifa=5o0r7 (mod38).

(iii) If |D| =8 or 81 f then
Ey=0.

Proof. 1If |[D| = 8 or 81 f then by the same reasoning as in Lemma 2.5.6 we
conclude Fy = 0. Assume then that |D| # 8 and 8 | f. Because 8 | f, we
have that Q(v/£2) C Q(E[2%?]). Let

Xyz:G2%) = {£1}, X y=: G2%) = {£1}, xa:G(2%) = {£1}

to be the characters corresponding to the quadratic extensions Q(v/2), Q(v/—2)
and Q(V/A), respectively. If A’ =1 (mod 4) then

Q(VA') = Q(E[2]) N Q(E[m/2°2))

and 2 is the quadratic character corresponding to this extension, with xs =
X zXxa- If A”=3 (mod 4) then

Q(v-4") = Q(E[2%]) N Q(E[m/27])

and Y2 is the quadratic character corresponding to this extension, with ys =
Xy—axa- Now note that x5 has constant value on S(2) equal to lifa=1
or 7 (mod 8), and —1 if a =3 or 5 (mod 8), and x /= has constant value
on S(2) equal to 1if a =1 or 3 (mod 8), and —1 if a =5 or 7 (mod 8) We

conclude exactly as in Lemma 2.5.6. 0

Proposition 2.5.8. Let E/Q be a Serre curve, and let a and f be coprime
positive integers. Let D be the discriminant of Q(\/Z) where A is the dis-
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2.5. Cyclic reduction for primes in an arithmetic progression

criminant of any Weierstrass model of E over Q. Suppose that |D| # 4,8.
Then

1

1 1
Celo-f) =l gy 1 (7= D) 1 (-#—@)

where the entanglement correction factor €g(a, f) is given by

a -1
ecta =145 11 () @@ gt
o N gp (B DE =0 =1
0#2 H2f

Here E5 is given by Lemmas 2.5.5, 2.5.6 and 2.5.7,

Proof. Since |D| # 4,8, the equality involving Cg(a, f) follows from using
Lemma 2.5.2 for all . The form of the entanglement correction factor at 2
follows from Lemmas 2.5.5, 2.5.6 and 2.5.7. It remains to consider ¢ # 2.
By Theorem 2.5.1 if £ f and ¢ | D then S(¢) = G(¢) — {1} and so

-1

Ee=p—nwe—p-1

Ir ¢ | (D, f) then because Q(E[¢]) N Q({ree) = Q((r) we have that y, has

constant value (%) on S(¢) and the result follows. O

Corollary 2.5.9. For any (a, f) coprime integers, we have Cg(a, f) > 0.

Proof. 1t is clear that the naive density [], d; does not vanish, hence in order
for Cg(a, f) to be zero, we would need the correction factor €g(a, f) to be
zero, which happens if and only if [[, £y = —1. This is impossible as Ej5 is
always +1/5 or 0. O

Corollary 2.5.10. The correction factor €g(a, f) equals 1 if and only if
orda(D) > orda(f).

Proof. From the form of the correction factor it follows that €g(a, f) =1 if
and only if Fs = 0, and the result follows. O
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2.5.2 Example: Y? = X3+ X2 +4X +4

We look now at an example of a non-Serre curve where the constant Cg(a, f)
can vanish. This implies that conjecturally, there should only exist finitely
many primes p such that E(F,) is cyclic and p = a (mod f). Let E be the
elliptic curve over Q given by the Weierstrass equation Y? = X3 + X2 +
4X + 4. In [Bra09], a description of the Galois theory of E is worked out.
In particular, for this curve we have that mg = 120, and the following

properties hold:
e E has a rational 3-torsion point, and G(3) ~ Sj.
e E has a rational two-torsion point, and Q(E[2]) = Q(3).
e ((4) has order 16, and Q(E[4]) N Q(E[5]) = Q(\/5).
e G(8) has order 128, and Q(E[8]) NQ(E[5]) = Q(Cs).
o G(5) = GLy(Z/5Z)
e Q(E[3]) N Q(E[40]) = Q, hence G(120) = G(3) x G(40).

From all of this we conclude that
G(120) = {(g5.93.95) € G(8) x G(3) x G(5) : gs(s) = G}
hence F has abelian entanglements and G(120) fits into the exact sequence
1 — G(120) — G(8) x G(3) x G(5) — P190 —> 1,

where ®199 ~ (Z/5Z)*. Also, given coprime integers a and f = [], (% we

m = H gt H /.
0(f,120) €120
uf

again set
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Lemma 2.5.11. For any ¥ € ®,, — {1} we have E,,=0.

Proof. Suppose first that 4 1 f. Then m is square-free, and because
G(30) = G(2) x G(3) x G(5)

it follows that ®,, ~ {1}, hence E, » = 0. Suppose now that 4 | f, and let 7
be a generator of ®q9. If 8 | f, then 120 | m, hence ®,, ~ ®199 ~ (Z/5Z)*.
Any Y € ®,, — {1} is equal to 7’ for some j € {1,2,3} and x> is equal to 77%,
where

Ny : G(2%%) — (Z/5Z)"

is the character corresponding to the subfield Q(¢5) C Q(E[2?]). Now be-
cause Q(F[2]) = Q(i) C Q((ae2) it follows that Q(E[2], (2e2) N Q(¢5) = Q,

hence

Sonlo= Y @

geS(2) x€(Z,/57) %

We conclude that E, o = 0. If 4[|f, then ®,, ~ {+1} and we can use the
same argument given that Q(i) N Q(¢s) = Q. This proves the claim. O

Proposition 2.5.12. For any coprime (a, f) we have that €g(a, f) = 1.
Further,
Cpla,f)=0<=4|fanda=1 (mod 4).

Proof. That €g(a, f) = 1 follows directly from Theorem 2.5.1 and Lemma
2.5.11. It follows from this that
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For ¢ # 2 we have that §; # 0. Indeed,

ﬁ ifa=2 (mod3)and3]|f
03 = ﬁ(l—%) ifa=1 (mod3)and3]|f,
2 if 3¢ f
and
% ifaz1l (mod/)and?| f
_ 1 1 P
b= 577 (1~ i) fa=1 (mod¢)and (| f
1 .
Finally, given that Q(E[2]) = Q(¢), it follows that do = 0 if and only if 4 | f
and a =1 (mod 4), and the conclusion follows. O
Remark 2.5.13. Suppose a and f are coprime integers such that ¢ = 1

(mod 4). The above proposition is saying that the only obstruction to the
existence of infinitely many primes p such that E(FP) is cyclic and p = a
(mod f) is a local one at the prime 2. Meaning, for any prime p it is im-
possible for it to satisfy the required condition at the prime 2, that is, for
Frob,, to lie in the set S(2), which is the empty set. Note also that even
when f is divisible by 4, we still have E, > = 0 and hence €g(a, f) = 1.
What this is encoding is the fact that Q({2e2) NQ(¢5) = Q for any es. The
only entanglement of E occurs in the subfield Q((5), and this field is disjoint

from Q(a).

2.5.3 Example: Y2+ XY +Y = X3 — X2 - 91X — 310

So far we have only considered examples where the constant Cg(a, f) either
does not vanish, or vanishes because there is a condition at some prime /¢

which cannot be satisfied. Another interesting possibility is when all d, are
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non-zero, yet the constant Cg(a, f) still vanishes. This occurs if and only
if the entanglement correction factor €z (a, f) vanishes and its expression as
a product of local correction factors makes it easy to determine when this
happens. The entanglement correction factor being zero means there is an
obstruction coming from the entanglement fields which prevent there being
infinitely many primes p satisfying the imposed conditions. We will now
analyse an example when this occurs.

Consider the elliptic curve E over Q given by Weierstrass equation Y2 +
XY +Y = X3 - X? - 91X — 310. The discriminant of our Weierstrass
model is A = 17. This curve has one rational torsion point of order 2 and
Q(E[2]) = Q(v/17). In fact, machine computation shows that m = 34, where

m is the square-free part of mpg, and

G(34) = {(92,917) € G(2) x GLo(Z/17Z) : e(g2) = 617 o det(g17)}

where as usual ¢ denotes the signature map and 617 : (Z/172)* — {£1}
denotes the unique quadratic character of (Z/17Z)*.
If we let D denote the discriminant of Q(v/A), then D = 17 = 1 (mod 4),

hence by a similar argument to Lemma 2.5.2 we obtain that

1 1 1 1
o =550, 11 (e ) (- @)

042 142

which is non-zero for all ¢ and f. By Theorem 2.5.1 we have that

11 1
Crla, f) = Q:E(a’f)mﬁ(f)e'(n (1_6(6—1)(“1)) 11 (1‘@2 —0)( -

a—1,f)
042 02

with
¢pla, f) =1+ ][] Ee

034
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We conclude then the following.

Proposition 2.5.14. For the above elliptic curve we have that Cg(a, f) =0

if and only if 17 | f and a is a quadratic residue modulo 17.

Proof. The naive density [],d¢ is non-vanishing, hence Cg(a, f) = 0 if and
only if €g(a, f) = 0. Using the same argument as in Lemma 2.5.5, we deduce
FEy = —1 for all a, f. We have then that

QﬁE(a, f) =0« Fi7=1.

If 174 f then E17 = —1/78335. If 17 | f then E17 = (%) and the conclusion
follows. O]

Remark 2.5.15. Note that if 17 | f and a is a quadratic residue mod 17, then
for any prime p = a (mod f) we have that p splits in Q(v/17) = Q(E[2]),
so Frob, would not satisfy the condition at the prime 2. The obstruction to
the existence of infinitely many primes p such that E(F,) is cyclic and p = a
(mod f) is precisely the entanglement between the 2 and 17 torsion fields.

The above proposition is saying that this the only obstruction that exists.

2.6 Koblitz’s conjecture

In [Kob88], N. Koblitz made a conjecture on the asymptotic behaviour of the
number of primes p for which the cardinality of the group F (Fp) is prime.
In this section we use our character sum method to give a description of the

constants appearing in this asymptotic.

Conjecture 2.6.1 (Koblitz). Let E/Q be a non-CM curve and let A be the
discriminant of any Weierstrass model of E over Q. Suppose that E is not

Q-isogenous to a curve with non-trivial Q-torsion. Then

X

[{primes p <z : pt A, |E(Fy)| is prime}| ~ CEW
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2.6. Koblitz’s conjecture

as x — oo where Cg is an explicit positive constant.

In [Zywllc], Zywina shows that the description of the constant C'g given
by Koblitz is not always correct, and he gives a corrected description of the
constant along with providing several interesting examples and numerical
evidence for the refined conjecture. In particular the constant described
by Zywina is not necessarily positive. The reason the original constant is
not always correct is that it does not take into account that divisibility
conditions modulo distinct primes need not be independent. Put another
way, it could occur that there are non-trivial intersections between distinct
{-power torsion fields of E. The following is the refined Koblitz conjecture

given by Zywina, which here we state restricted to non-CM curves over Q.

Conjecture 2.6.2. Let E/Q be a non-CM elliptic curve of discriminant A,
and let t be a positive integer. Then there is an explicit constant Cgy = 0
such that

X
(log 2)?

[{primes p < x: pt A, |E(Fp)|/t is prime}| ~ Cry

as r — 0.

The condition on p that |E(F,)|/t be prime can be given as a splitting
condition in the various /-torsion fields, so the character sum method we have
developed again seems well suited to compute Cg;. In his paper Zywina
computes the constants Cg; via a different method than the one we use
here, both in the CM and non-CM cases. Here we will restrict ourselves to
non-CM curves with abelian entanglements over the rationals.

For each prime power £, define
U, (%) = {A € GLo(Z/0°Z) : det (I - A) € t- (2/°2)" }.

For a prime p { Ngf note that E(F,)/t is invertible modulo £*/(£*,t) if and
only if pga (Frob,) € G(£%) N W (£*). Suppose that ¢ has prime factorisation
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Entanglement correction factors as character sums

t = [, £°. With this in mind, define the set of ‘good’ Frobenius elements to
be

0 Gty A W, (oY) iE g |t
e ne ifOrt

We now give a description of the constant Cr; in terms of our sets
Si(¢) as well as a crude heuristic of justifying it. This heuristic follows
the same lines as that of Koblitz and Zywina. The key argument relies
on the Cramer’s model which asserts that, roughly speaking, the primes
behave as if every random integer n is prime with probability 1/logn. If
the sequence {|E(F,)|/ t}prny, were assumed to behave like random integers,
then the proability that |E(FF,)|/t is prime would be

1 1
log (|E(F,)|/t) “log(p+1) —logt’

The last approximation uses the fact that by Hasse’s bound, F (Fp) is close
top+ 1.

It is not true however, that the |E(F,)|/t behave like random integers
with respect to congruences, and in order to get a better approximation we
need to take these congruences into account. If we fix a prime ¢, then for all
but finitely many p. if |E(F,)|/t is prime then it is invertible modulo ¢. If
¢ does not divide ¢, then by Chebotarev, the density of primes p { Ng such
that E(F,)/t is invertible modulo ¢ is |Sy(¢)|/|G(£)|. If £ | t, then similarly
the density of primes p { Ng such that E(F,) is divisible by £ and E(F,)/t
is invertible modulo £ equals |S;(¢)|/|G(¢¢¢*1)|. Meanwhile the density of
natural numbers that are invertible mod ¢ is (1 — 1/¢). If we let d be a

square-free integer coprime to ¢, then

|S¢(£) |5 (€)] 1
g1—1/£H|G geetl |H (0)] log(p+1)

—logt
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2.6. Koblitz’s conjecture

should constitute a better approximation to the probability that |E(F,)|/t
is prime, as it takes into account the congruences modulo all primes ¢ | td.
Taking into account all congruences amounts to letting d tend to infinity,
hence this model suggests that for a randomly chosen p, |E (Fp)|/t is prime

with probability
Y, 1

1;[ 1—1/0 log(p+1) —logt

where
. {rstw/aw if 01t
SOI/IGEeD] L]t

This is the constant that was given by Koblitz with ¢ = 1 and later refined
by Zywina. The problem that still remained with the approximation given
by Koblitz, is that while it does take into account congruences modulo /, is
assumes that divisibility conditions modulo distinct primes are independent.
In order to deal with this we take a similar approach as in the previous

sections. That is, we let

m= ]t ] ¢

€|t E\mE
Ut

and for each square-free d coprime to m, let

Smd = H St(g)v Omd = HG(EEN_I) H G(E)
£lmd ot fmd
ot

By Corollary 2.3.2

has abelian entanglements, hence we have an exact sequence

1 — G(md) —> Gpg —25 B,y — 1
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for some abelian group ®,,4. By (2.3.2) we have that ®,,q ~ ®,, for any
square-free d coprime to m. Note now that |S,,q N G(md)|/|G(md)| is the
density of p for which |E(F,)|/t is an integer and invertible modulo md,
hence by letting d tend to infinity over the square free integers coprime to

m, the refined constant is

|Sma N G(md)|/|G(md)|
1—-1/¢

B 1 S mG ) 5
() SEer T

CEt = lim
d—o0

It follows by the prime number theorem that the expected number of primes
p such that |E(F,)|/t is prime is asymptotic to Cg; - 2/(log x)2.
Applying Theorem 2.3.4 with m defined as above we obtain

Cet=Cpy 1;[ 1 _(Sél/é (2.6.1)
where the entanglement correction factor €g; is given by
Cei=1+ > [[Ewe
RED,—{1} LM
2.6.1 Serre curves

In this section we compute the constants Cr,1 in Conjecture 2.6.2 for Serre
curves. This will amount to finding the average value of various quadratic
characters on S(¢). In the case of Serre curves, the sets S(¢) are particularly

easy to treat.

Proposition 2.6.3. Let E/Q be a Serre curve. Let D be the discriminant
of Q(vVA) where A is the discriminant of any Weierstrass model of E over
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Q. Then
2 —r—1
Cpg1=¢€ || 1-—
Bl Bl ; ( (E—I)S(é—i-l))

where the entanglement correction factor Cg 1 is given by

1 if D=0 (mod 4)

Cep1= 1 ey
1+H£3_2£2_€+3 if D=1 (mod 4)

Proof. We begin by noting that, for Serre curves,
$1(0) = {A € GLy(2/02) : det (I - A) € (z/02)"}.

‘We have then that

_ 1510

"= G0)

[151(0)°

= [GL. /i)

where S1(0)¢ = {A € GL2(Z/VZ) : det (I — A) =0}. Thus S;(¢)¢ consists
of those matrices whose eigenvalues are 1 and A for some \ € (Z/lZ)*.
It follows from Table 12.4 in §12, Chapter XVIII of [Lan02], that there
are % elements of GLo(Z/{Z) with both eigenvalues equal to 1, and ¢ + ¢
elements with eigenvalues 1 and A # 1. We obtain then that [S;(¢)¢| =
02 4 (¢ —2)(#2 + ¢), hence we have that

24 (0—-2)(2+0)
NGCENICEN

5 =1

and a calculation yields that

N 201
1—-1/¢ = (=130 +1)
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From (2.6.1) it rests only to compute €g ;. Because t = 1, m equals the
square-free part of mp, and we may proceed just as in the proof of Proposi-
tion 2.4.4. That is, when D =0 (mod 4) then €g; =1. If D =1 (mod 4),
then for each ¢ | 2D it suffices to compute the average value of x; on S1(¢).

Note that since the x; are non-trivial, then 3~ ) xe(z) = 0. For £ > 2
recall that y, = (%), hence given an element x € S1(¢)¢ with eigenvalues
1 and A, we have that y,(z) = (%) There are an equal number of squares

and non-squares in (Z/lZ)*, so we conclude then

> oxe@) == > xiz)

z€S1(0) z€S1(0)°
=-(¢(;)re+0 ¥ (7))
! !
AE(Z/07)
0#£1
= (= (2 +20)
= /.
From this we obtain
4
Ep=—
TGO - 15:(0)]
B /
(2 —0)(2 1) — (2 +0)(0 —2) — 2
1
B 22—+ 3

For ¢ = 2 one can directly compute S;(2). It consists of the 2 matrices (1 (1])

and ((1’ i) both of which have order 3 and hence are even permutations.
Since x2 is the signature character we conclude E2 = 1, and this completes
the proof. O
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