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Chapter 1

Computing (Galois
representations attached to

elliptic curves

1.1 Introduction

Let K be a number field and K an algebraic closure of K. For an elliptic
curve E defined over K, denote by E[n| the kernel of the multiplication by n
map, that is, the set of elements P € E(K) such that nP = 0. This is known
to be a free Z/nZ-module of rank 2. If we let G := Gal(K/K) denote the
absolute Galois group of K, then G acts on E[n] by group automorphisms.

This gives rise to a representation
pEn : Gk — Aut(E[n]) ~ GLy(Z/nZ)

where the isomorphism on the right is obtained by choosing a basis for

E[n] over Z/nZ. Taking the inverse limit of this action over all n gives a
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continuous representation

pE : G — Aut(Es) ~ GLy(Z),

where E is the torsion subgroup of E(K).

We will be concerned with the question of determining the image of
pE in Aut(FEo) in the case where E is defined over the rationals and does
not have complex multiplication over Q. The image of pr encodes a lot of
information about the properties of E, both globally and locally, so it is of
interest to fully understand it. As we will see in Chapter 3 for instance,
many constants appearing in classical conjectures of elliptic curves over Q
can be described efficiently using the image of pg. Determining the image of
this representation is highly non-trivial, but considerable progress has been
made in this direction. The most important result is the following classical
theorem of Serre (see [Ser72]), which says that pp(G) is generically almost

surjective.

Theorem 1.1.1 (Serre’s open image theorem). Let E be an elliptic curve
over a number field K such that E does not have complex multiplication over
K. Then pg(Gg) is open in GLy(Z).

Recall that GLo (Z) is an inverse limit of finite groups, hence it is compact,
so it follows immediately from Serre’s open image theorem that pp(Gg) has
finite index in GLy(Z) for non-CM elliptic curves. This implies (see Lemma
1.2.1) that there exists an integer mp such that the image of pg can be
completely determined by mpg (or any multiple of it) and the reduction of
pe(Gk) modulo mp. This reduction is precisely the image pg m,(GKk).
It follows from this that we can completely describe the image of pgp by
determining an integer m which is a multiple of mg as well as the finite
image of pg m.

In this chapter we will develop and outline an algorithm which, given as

input an elliptic curve E over Q, outputs such an integer m and pg ,(Gq)

10



1.2. Background and notation

as a subgroup of GLg(Z/mZ). It is not clear a priori that such an algorithm
exists, given that even though the output of such an algorithm is ‘finite’,
the intermediate steps deal with ‘infinite’ objects such as GLg(Z) and its
(-adic projections GLgy(Zy). Several of these intermediate steps had already
been considered and dealt with successfully by various authors (see [Sut13],
[Zyw1lb], [Zywllal]), and we largely build upon this previous work. The
algorithm which we outline here is meant to serve, at least initially, mainly for
theoretical purposes, however we also look at some practical considerations
which can make this algorithm faster and we discuss some of them in the
last section.

For a prime ¢, denote by pg ¢~ the representation given by the action of
Gk on E[(>]. We call the image of pg ¢~ the (-adic image and denote it by
Gy. In Section 1.3 we consider first the so-called wvertical situation, which is
the problem of determining the ¢-adic image for a fixed prime £. In order to
do this we will consider the reductions of Gy modulo various powers of £.

In Section 1.4 we consider the horizontal situation, in which we vary the
prime ¢ and determine Gy for all £. The key result from this section is a
method of Zywina which allows one to quickly find a set of primes .S outside
of which the mod ¢ image is surjective. This together with Corollary 1.2.4
will allow us to determine Gy for all primes ¢. In Section 1.5 we consider the
entanglements between the various Gy. This amounts to determining the
intersections between the various £°°-torsion fields of E. It will be Proposi-
tion 1.5.3 that will allow us to do this. Finally, in the last section we discuss
some practical considerations that can make the algorithm outlined usable

in practice.

1.2 Background and notation

For the remainder of the chapter we fix our base field to be Q. For E/Q an

elliptic curve without complex multiplication, let E., denote the group of
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torsion points of E over Q, that is, E(Q)ors. Consider the Tate module

T(E): l%n E[n],
where the maps E[n] — E[m] are given by multiplication by n/m, whenever
m divides n. Then Gg acts continuously on T'(E). It is a classical result
([Sil09]) that T(E) is a free Z-module of rank 2, hence we may fix a basis
for T(E) so as to identify Aut(Es) with GLy(Z), and we denote by pg :
Gg — GLa (Z) the continuous representation given by this action. Also, set
G := pp(Gg). By Serre’s open image theorem G is a finite index subgroup
of GLg (2) For each positive integer m we let GG,,, denote the projection of

G onto the finite product

11 GL2(Z).

om
We then have G,, ~ Gal(K,,/Q), where K,, is the m-power torsion field,
that is, the infinite extension of Q obtained by adjoining the coordinates
of all m"-torsion points of E for all n. Let G(m) denote the image of G
under the reduction modulo m map GLy(Z) — GLa(Z/mZ), so that G(m) ~
Gal(Q(E[m])/Q). We denote by pg , the representation given by the action
of Gg on E[m].

We will say that m splits pg if we have an equality

G = Gm X HGLQ(Z[).
Um

Note that m splitting pp depends only on the prime factors dividing m and
not on the powers to which these primes occur in the factorisation of m. We
will also say that m is stable if it holds that

12



1.2. Background and notation

where 7, denotes the reduction map [[y, GLa(Z¢) — GL2(Z/mZ). In
what follows we will also use 7, to denote the reduction map GLQ(Z) —
GL2(Z/mZ).

Lemma 1.2.1. Keeping the notation above, there is an integer m which

splits pg and is stable.

Proof. Since G is open in GLQ(Z), it contains an open neighbourhood of the
identity. If we let U, be the set of all matrices in GLq (Z) whose reduction

modulo m is I, then {Uy, }», is a neighbourhood base of GL2(Z), so it follows
that U, C G for some m. Clearly this m satisfies

where here 7, denotes the reduction map GLy(Z) — GLy(Z/mZ). This
implies m splits pg and is stable. O

Given a stable integer m which also splits pg we see that G is completely
determined by G(m), hence can be described by finitely many conditions.
Note also that if m is stable and splits pg, then so does any integer m’ such
that m | m’. For an elliptic curve E, we will use mg to denote the minimal
stable integer that splits pr. Note that mg divides all other stable integers
which split pp. As we have stated, our primary goal is to give a description
of the image of Galois GG, and we do this by determining an integer m which
is a multiple of mp as well as the finite group G(m). In the remainder of
this section we state some results which will prove useful for computing such

an integer.

1.2.1 Group theory for GL,

We quickly recall some facts about the groups GL2(Z/NZ) and GLa(Zy) for
N an integer and ¢ a prime. Most of the material from this section can be
found in [Ser68], §IV.
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Lemma 1.2.2. PSLy(Z/lZ) is a simple group for { > 5. FEuvery proper
subgroup of PSLa(Z/lZ) is solvable or isomorphic to the alternating group
As, the last possibility occurring only if £ = +£1 (mod 5).

Lemma 1.2.3. Let ¢ > 5 be a prime and H be a closed subgroup of GLo(Zy)
whose projection mod £ contains SLa(Fy). Then H contains SLa(Zy).

Proof. This follows directly from Lemma 3, §IV-23 of [Ser68]. O

Corollary 1.2.4. Suppose £ > 5 is a prime and suppose G({) = GLo(Z /(7).
Then Gy = GLa(Zy).

Proof. This follows from Lemma 1.2.3 and the fact that the determinant
map det : Gy — Z; is surjective. O

For a profinite group Y we say that a finite simple group ® occurs in
Y if there exist closed subgroups Y7, Yo of Y such that Y7 is normal in Y5
and Ys/Y; ~ ®. We let Occ(Y) denote the set of finite simple non-abelian

groups occuring in Y. The following properties of Occ are easily checked.

(i) Y =1limY, and each Y — Y, is surjective then Occ(Y') = ,, Occ(Yy,).
—

n
(ii) If we have a short exact sequence of profinite groups
1 —Y —Y —Y"—1
then Occ(Y) = Oce(Y') U Oce(Y”).

Using these properties and Lemma 1.2.2 we obtain that

0 if0=23
PSLy(Z/5Z)} = {A if¢=5
ee(GLa(zy) - | (PIRE/E) = (s} =5,
{PSLy(Z/!Z)} if {=+2 (mod 5) and ¢ > 5,
{PSLy(Z/¢Z), As} if t=+1 (mod 5) and ¢ > 5.
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Lemma 1.2.5. Let ¢ be prime. Then GLa(Z/lZ) has no simple non-abelian

quotients.

Proof. Suppose the converse. Then there exists a simple non-abelian group

® and a surjective group homomorphism
¢ : GLo(Z/0Z) — .

Since @ is then a composition factor of GLa(Z/(Z), it follows that GLg(Z/(Z)
is not solvable, hence ¢ > 5. By Lemma 1.2.2 we have that PSLo(Z/(Z) is

simple. The exact sequence
1 — SLo(Z/0Z) — GLo(Z/IZ) — (ZJIZ)* — 1

shows that ® ~ PSLy(Z/¢Z), since it is the only non-abelian composition
factor of SLo(Z/lZ). Now the centres of GLg(Z/¢Z) and PSLy(Z/{Z) are
(Z/EZ)>< and the trivial group, respectively, hence ¢ induces a surjective
homomorphism

W : PGLy(Z/07) —> PSLy(Z/(7),

where PGLo(Z/07) = GLo(Z/VZ)/(Z/¢Z)*. By £ > 2 we have
|PGLo(Z/Z) : PSLo(Z/IZ)| = 2,

so |kerty| = 2. Let N be the subgroup of GLa(Z/¢Z) such that kervy =
N/(Z/¢Z)*. Then (Z/¢Z)™ has index 2 in N, hence N is abelian. Also, as
ker <PGL2(Z/lZ), we have N < GLo(Z/lZ), hence GLo(Z/lZ) acts on N
by restricting inner automorphisms. We now show that this action is trivial.

Consider the homomorphism

GL2(Z/0Z) — Aut(N) (1.2.1)
T — Qg (1.2.2)
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given by the action mentioned above. This map satisfies that ¢, is the trivial
action when restricted to (Z/¢Z)” for x € GLo(Z/(Z). Also, as (Z/¢Z)” is
the center of GLa(Z/(Z), we have that (1.2.1) factors through PGLo(Z/(Z).
Denote this map by

U : PGLy(Z/0Z) — Aut(N).

Note that ¥ is trivial when restricted to PSLo(Z/¢Z), as this group is simple
and non-abelian. Also, W is trivial on kert¢ = N/(Z/¢Z)* as N is abelian.
Finally, kert) ¢ PSLy(Z/¢Z), so (ker)PSLa(Z/VZ) = PGL2(Z/¢Z). Hence
U is trivial and it follows that N is contained in the center of GLy(Z/(Z),
which is absurd. O

Corollary 1.2.6. Let N be a positive integer and let ® be a simple quotient
of GLo(Z/NZ). Then ® is abelian.

Proof. Suppose this is not so, and write N =[], £;"*. Then @ is a composition
factor of GLo(Z/NZ). The exact sequences

1 — GLy(Z /0 Z) — GLy(Z/NZ) — GLy(Z/(N/E¥)Z) — 1,
1— I+ O My (Z)4,2) — GLo(Z) 0 Z) — GLo(Z/ 00 Z) — 1,

together with the fact that I+ £~ ' My(Z/0;Z) C GLy(Z/{Z) is an abelian
subgroup (n; > 2), show that ® ~ PSLy(Z/¢Z) for some ¢|N and ¢ > 5. It

follows from this that we may assume N = ¢. Now apply Lemma 1.2.5.
O

1.2.2 Fibered products of groups

Let Gy, G2 and @Q be groups, ¥1 : G1 — @, ¥2 : Go — @Q be surjective
homomorphisms, and let 1 denote the abbreviation for the ordered pair
(11,12). We define the fibered product of G1 and Go over 1), denoted G Xy
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G, to be the group

G1 xy G2 :={(91,92) € G1 x G2 : ¥1(g1) = 2(92)} (1.2.3)

Note that G xy Gz is a subdirect product of G; and G, that is, it is a
subgroup of G; x GGy which maps surjectively onto GG; and G5 under the
canonical projection homomorphisms. The following lemma tells us that the
converse of this also holds. We present the proof here since some elements

of it will be relevant later on in this and the next Chapter.

Lemma 1.2.7 (Goursat’s Lemma). Let Gy and G2 be groups and let G C
G1xGo be a subgroup such that the projections 1 : G — G1 and mg : G — G

are surjective. Then there exists a group QQ and surjective homomorphisms
P1: G — Q, Y2 : Go — Q such that G = Gy Xy, Ga. That is,

G ={(91,92) € G1 x G2 : ¥1(g1) = ¥2(92) }-

Proof. Let N1 = (G1 x {1}) NG and Ny = ({1} x G2) N G, where we use 1
to denote the identity elements of both G; and G3. Then Ny = ker my and
Ny = ker ;. Note that N1 <G as it is the kernel of ma. Hence 71 (N7)<m (G),
so it follows that 71(N7) < G;. Similarly we have mo(N2) < G2. Note that
mi(N;) =~ N; and hence (G; x {1})/N; ~ G;/m;(N;). Consider the map
f G — G1/Ny x G2/Ns defined by (g1, g2) — (91N1,92N2) where we have
written NV; in place of m;(N;). One can easily check that for (g1, g2) € G one
has
g1N1 = N1 <= gaNa = Ny

hence the image of f is the graph of a well-defined isomorphism G1/N; —
G2 /N;. The result now follows from setting @ := G3/N». O

We will refer to the N; in the proof as Goursat subgroups and to Q) as

the Goursat quotient associated to this fibered product.

17



Computing Galois representations attached to elliptic curves

Suppose now that L, /K, Ly /K are Galois extensions of fields, with G; =
Gal(L;/K) and G = Gal(L;Ls/K), where Li Ly denotes the compositum of
L1 and Lo. Then it is well known from Galois theory that

G ={(91,92) € G1 X G2 : g1 |11nL= 92 |L1nLo } < G1 X Ga.
Lemma 1.2.8. Keeping the above notation, we have that
G = G1 Xap G2

with ; : G; — Gal(L1 N Ly /K) the canonical restriction maps.

Proof. From the proof of Goursat’s lemma, N1 = (G x{1})NG and 7 (Vy) is
the subgroup of G which acts trivially on L1N Lo, and the result follows. [

1.2.3 Modular curves and maximal subgroups of GLy(Z/(Z)

In this section we briefly recall the modular curves associated to the maximal
subgroups of GLa(Z/¢Z) (for more details, see [DR73]). For a positive integer
n let X (n) denote the compactified modular curve which parametrizes ellip-
tic curves with full level n structure, and let H be a subgroup of GLa(Z/nZ)
such that det(H) = (Z/nZ)*. The corresponding modular curve Xy :=

X (n)/H is defined over Q and comes with a natural morphism
j: Xy — PL

Then for any = € P}(Q), we have that

3 an elliptic curve E over Q and a basis for E(Q)[n]

z € j(Xp(Q) = with j(E) =z and pgn(Gg) C H.

(1.2.4)
Now fix a prime £ > 3 and suppose that H is a maximal subgroup of
GL2(Z/0Z) with det(H) = (Z/¢Z)*. Then up to conjugation in GLy(Z/(Z),
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1.2. Background and notation

H must be one of the following;:

(i) A Borel subgroup, which is formed by the upper triangular matrices
in GLo(Z/07Z).

(ii) The normaliser of a split Cartan subgroup of GL2(Z/(Z).
(iii) The normaliser of a non-split Cartan subgroup of GLa(Z/lZ).

(iv) A subgroup of GLy(Z/¢Z) whose projective image is Ss, A4 or As (this

last occurring only for certain primes /).

We define more generally the split and non-split Cartan subgroups as follows.
Let A be an étale free commutative Z/¢"Z-algebra of rank 2. The Fy-algebra
A/l A is isomorphic either to FyxFy or Fy2, in which case we say that A is split
or non-split, respectively. The unit group A* acts on A by multiplication,
so a choice of Z/{"Z-basis for A gives an embedding A* — GLy(Z/("Z). A
Cartan subgroup of GLo2(Z/¢"Z), denoted C(¢™), is a subgroup that arises
as the image of such an embedding. We say that C(¢") is split or non-split
and write Cs(€™) or Cys(¢") if A is split or non-split, respectively. We will
denote the normaliser of a Cartan subgroup by either CJ (¢"), CL(¢™) or
simply C* (™).

If H is one of the groups from cases (i), (ii), (iii) or (iv) above, then we
will denote the corresponding modular curve by Xo(¢), Xs(¢), Xyns(¢) and
Xp (), respectively where D can be one of Sy, A4 or As. By 1.2.4 there is a
fundamental relation between rational points on the above modular curves
and the mod ¢ image of pg. Specifically, let ¢(F) be the smallest positive
integer such that pg, is surjective for all £ > ¢(E). In [Ser72]| Serre asked
whether one can bound ¢(F) independent of E. It is widely conjectured
that for all £/Q one can take c¢(E) = 37, a conjecture first posed by Serre
himself in [Ser81], and which has come to be known as Serre’s Uniformity
Conjecture. The problem of finding explicit upper bounds for ¢(E) has seen

much progress in recent years. We will call exceptional points those rational
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points on Xy which are non-cuspidal and do not arise from CM elliptic
curves. From 1.2.4 we see that an exceptional point on Xy for H one of
the groups (i), (ii), (iii) or (iv) gives rise to a non-CM elliptic curve over
the rationals with non-surjective mod ¢ image. It follows then that Serre’s
above mentioned conjecture is equivalent to saying that the modular curves
Xo(f), X5(¢), Xns(£) and X p(¢) have no exceptional points for £ > 37.
Mazur has shown in [Maz78] that the modular curve X (¢) has no excep-
tional points if £ > 17 and ¢ # 37. He has also shown that Xy(37) has two
exceptional points, so the value 37 in Serre’s Uniformity Conjecture would
be best possible. Serre himself in [Ser81] showed that Xp(¢) has no excep-
tional points for £ > 13 and D equal to Sy, A4 or As. Recent work of Bilu
and Parent gives that for £ > 7, ¢ # 13 the curve X(¢) has no exceptional
points (See [BP11], [BPR11]). In general, very little is known about the
curve Xpg(¢). The combination of all of these results implies that for £ > 37,
is the image of pg, if not surjective then it must be contained in the nor-
maliser of a non-split Cartan subgroup. This will be of crucial importance
in order to show there exists an algorithm guaranteed to terminate which

determines pg(G).

1.3 The vertical case

In this section we consider the problem of determining the f-adic image
Gy for a fixed prime ¢. We do this by determining an integer n such that
Gy =1, (G(f™)) as well as computing the finite group G(£").

1.3.1 Associated vector spaces

By successively adjoining to Q the ¢-power torsion of E we obtain a tower
of field extensions Q C Q(E[/]) C Q(E[f?]) C --- C Q(E[¢(*]). Let M :=
Ms(Zy) denote the set of all 2 x 2 matrices with coefficients in Z;, and for
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n > 1 let

Vo=IT+0"M

— keI‘ 7Tgn,
where 7y is defined as in Section 1.2. Also, let
Un = G¢ NV, = Gal(Q(E[¢]) /Q(E[L™])).

Note that we have G;/U,, ~ G({") ~ Gal(Q(E[¢"])/Q). We obtain in this
manner a filtration Gy D Uy D Us D ---. Consider now the map

MM — Vi, Vit
X mod /M +—I1+0"X mod V4

Since mod ("1 we have (I + (" X)(I+"Y)=1+("(X +Y) with X,Y €
M>5(Zy) and n > 1, this is a group isomorphism, and M /¢M ~ My(Fy) is a
vector space of dimension 4. If we look at the extension Q(E[¢("+1])/Q(E[¢]),

its Galois group is U, /Up+1 and we have an injective group homomorphism
Un/Upt1 — Ma(Fp), I+"A— A mod L.

It follows that [Q(E[("*!]) : Q(E£"])] divides ¢*. We will refer to U, /Up11
as the associated vector space to U,. It has dimension at most 4 over Fy.
Clearly if Gy = GL2(Zy) then G({™) = GLo(Z/¢"Z) for all n, hence
the associated vector space to U, has dimension 4 for all n > 1. It could
happen however that Gy C GL2a(Zy), for example if G(¢) C GLa(Fy). In such
cases the following lemma allows us to reduce the problem of determining
Gy to a finite computation, namely, that of determining the smallest n such
that U, /U,+1 has dimension 4. It is separated into two cases depending on

whether ¢ is even or odd.
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Lemma 1.3.1. (i) Let ¢ > 3. With the notation introduced above, let
n 2= 1 be such that the associated vector space to U, has dimension 4.
Then we have U, = V,,.

(i) Let £ = 2. Suppose that for some n > 2 the associated vector space to
U, has dimension 4. Then U, = V,. If the associated vector spaces to

Ui and Us each have dimension 4, then we have Uy = V7.

Proof. This is shown in [LT74], §6. O

Remark 1.3.2. From U, = V,, it follows that I + ¢"M C Gy, hence Gy =
T (G(£)), in other words, £ is stable.

1.3.2 Determining G,

The problem of computing G, can be reduced to computing G(£") for various
powers £". Firstly note that for any m, there is a deterministic algorithm
which computes (up to conjugacy) G(m). This consists in explicitly com-
puting the action of Gal(Q(E[m])/Q) on a chosen basis for E[m)].

Algorithm 1.3.3 (Computation of G(m) for a given m). Given a non-CM

curve E/Q and an integer m we can compute G(m) as follows.

1. Let f be the mth division polynomial of E. Construct the field Q(E[m])

as an (at most quadratic) extension of the splitting field of f.

2. Compute Gal(Q(E[m])/Q) as a subgroup of Sy, where d = [Q(E[m]) :
Q] (see for instance, [Coh93], §6.3).

3. Choose a basis P, @ for E[m| and determine the action of each ele-

ment of Gal(Q(E[m])/Q) on P and Q. Compute Gal(Q(E[m])/Q as a
subgroup of GLy(Z/mZ) with respect to the basis P, Q.

Using this it follows that we can compute the dimension of the associated

vector space to U, for all n. When this dimension is 4 (and when n > 2 if

22



1.8. The vertical case

¢ =2), by Lemma 1.3.1 we can recover Gy as the pullback of the reduction

mod ¢ map.

Algorithm 1.3.4 (Computation of Gy for a given £). Given a non-CM curve

E/Q and a prime £ we can compute Gy as follows.

1. For each n > 1, use Algorithm 1.3.3 to compute G(£").

2. If £ # 2, continue this until |G(¢"*1)|/|G(¢*)| = ¢4, in which case set
ng :=n. When ¢ = 2, if |G(4)|/|G(2)| = 2* and |G(8)|/|G(4)| = 2*
then set ny = 1. Otherwise, starting with n = 2 compute G(2") until
|G(2"1)]/|G(2™)| = 2*, in which case set ng == n.

3. Return Gy as the subgroup of GLg(Zy) whose reduction modulo ¢™¢
equals G (™).

Remark 1.3.5. In order to compute Gy it suffices to find any integer n such
that ¢™ is stable, however the above algorithm finds the smallest such integer.
Note also that when G(¢) = GL2(Z/¢Z) and £ > 5 one does not have to
compute G(¢?), since by Lemma 1.2.4 we have that ¢ is stable.

In practice this brute force computation of G(¢") using Algorithm 1.3.3
is computationally feasible only for very small ¢ and small n, as the degree
of Q(E[¢"]) is typically on the order of £4*. For the purposes of obtaining a
deterministic algorithm we content ourselves with this approach for now. In
section 1.7 we consider some of the practical considerations which can help
speed up computations.

When analysing Algorithm 1.3.4, a natural question which arises is how
many steps it takes to compute a stable power of . Note that since Gy is
an open subgroup of GLg(Zy), Algorithm 1.3.4 is guaranteed to terminate
after a finite number of steps. It would be of interest therefore, to have a
bound on the maximum number of iterations it takes to find a stable ¢"

for a given elliptic curve E. Let N, denote the smallest integer such that
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¢NeE s stable for E. For £ > 17 and ¢ # 37 we can obtain an upper bound
for Ny g as follows. If pg, is surjective, then by Corollary 1.2.4 we have
that Gy = GL2(Zy) so the integer ¢ is already stable. By the discussion
in Section 1.2.3, if pg is not surjective, then up to conjugation G(¢) must
lie in the normaliser of a non-split Cartan subgroup of GLy(Z/¢Z). Also in
[Zyw11a], Zywina shows that for £ in the above range, one has that for every
positive integer n, either G(¢") is contained in the normaliser of a Cartan
subgroup of GLo(Z/¢"Z), or I + ¢*"M C G,. In the same paper he also

shows (Proposition 3.3, (ii)) that there exists a positive integer
Mg < (68N(1 + loglog N)/2)“(M+!

such that if G(£™) is contained in the normaliser of a Cartan subgroup with
¢ > 17 and ¢ # 37, then ¢ | Mp. Here N is the product of primes for
which E has bad reduction and w(N) is the number of distinct prime factors
of N. It follows from both of these results that if we let Bg := (68N (1 +
log log ]\7)1/2)“)(]\7)Jrl

is stable. This gives an upper bound (albeit a very poor one for practical

and we take n such that n > log Bg/log/, then (4"

computations) on the number of iterations it takes for ¢ to be stable for
primes ¢ > 17, £ # 37.

The bound given above depends on the elliptic curve E, and no such
effective upper bounds are known when ¢ < 17 or £ = 37. However, using
Faltings’ Theorem Zywina shows (see [Zywlla], Lemma 5.1) that there is a
non-effective bound which depends only on ¢ and holds for all elliptic curves
over Q.

With this in mind, denote by N, the smallest integer such that ¢M¢ is
stable for all elliptic curves over Q. For ¢ = 2, in a recent paper [RZB14],
it is shown by classifying all possible 2-adic images of Gg that No = 5. In
theory it should be possible to do the same for other small primes ¢ > 3,

however as of yet there are no results as strong as this one. In numerical
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computations it is observed that Ny, is quite small, typically at most 2 for
¢ > 3. This is believed to be the case in particular for larger primes ¢. In

fact, as previously mentioned for £ > 37 it is believed that N, = 1.

1.4 The horizontal case

We now consider the problem of determining G, for all primes ¢. From the
previous section for any given ¢ we can compute Gy, however as there are
infinitely many primes, we must determine a finite subset of them outside
of which the f-adic image is surjective. Serre’s open image theorem implies
that this set exists for non-CM curves, and indeed by Corollary 1.2.4 for
¢ > 5, having G({) = GLy(Z/¢Z) implies Gy = GLa(Zy).

We now describe an algorithm of Zywina that allows one to find the set
of primes S for which pg, is not surjective. This uses the key fact that if
¢ > 37, then pg is either surjective or is contained in the normaliser C ()
of a Cartan subgroup of GLa(Z/VZ).

Let £ be a prime greater than 37. The first thing to note is that G(¢) is
not contained in the Cartan subgroup C(¢). If C'(¢) is split, then it consists
of the diagonal matrices which are contained in a Borel subgroup, hence it
follows from Mazur that G(¢) is not contained in C'(¢). Suppose that C(¥)
is non-split, and let w € Fy2 be such that w? = €, where € is a non-square in
F;. Then by the description given in subsection 1.2.3 it follows that if we
choose {1,w} to be an Fy-basis for Fj2, then we have that

{(Z eb) : a,b € ZJUZ, (a,b) # (0,0) (mod z)},

is a non-split Cartan subgroup of GLa(Z/¢Z). 1f we let A € GLy(Z/{Z) be
the image of complex conjugation under py, then it follows that A has order
2 and det(A) = —1 and hence is not contained in C'(¢). It follows then that
in both cases G(¢) does not lie in C(¥).
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Define the quadratic character
Wy GQ — C+(€)/C(£) ~ {:El}

which by the above discussion is non-trivial. Let Ng denote the conductor

of E, and define M to be the product of the following prime powers:
e 8 if 4 | Ng and orda(j — 1728) > 0,
e 3,if 9| Ng and ords(j — 1728) > 0,
e p,if p> | Ng, p > 5 and ord,(j — 1728) is odd.
In [Zyw11b], Zywina proves the following lemma.
Lemma 1.4.1. Keeping the above notation, we have that the following holds:

(i) The character vy is unramified at all primes p such that p { M or
p==~L.

(7t) If pt Ng and ve(Frob,) = —1, then a, =0 (mod ¢), where a, denotes

the trace of Frobenius.

The above lemma is useful because if p { Ng is a prime such that a, # 0
and ¢ (Froby,) = —1, then Lemma 1.4.1 implies that ¢ | a, (note that p { M)

and the Hasse bound then gives
< ap| < 24/p.

It follows that such a choice of p would give an upper bound for £. We now
describe how to use this to construct the set of primes S for which pg, is
not surjective.

Consider the group V' of characters (Z/MZ)* — Fa, which is a vector
space over Fo. Let x1,...xq be a basis of V' over Fy, which we can take

to be the characters (5) for each odd prime ¢ | M, the character x(a) =
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(—=1)@1/2 if M is even and the character y(a) = (—1)(@"~1/8 if 8|M.
Consider the sequence of primes p; < pa < p3 < ... such that p; 1 Ng
and ap, # 0. Note then that p; does not divide M. For each r > 1, define
the matrix over Fy given by A, := (Xj(pi))z‘,j with 1 <i<r, 1<) <d
By Dirichlet’s theorem and the fact that the set of primes of supersingular
reduction of a non-CM curve has density 0 ([Ser64]) we have that any vector
in F¢ is of the form (x1(p), ..., xa(p)) for some prime p { Ng with a, # 0. It
follows then that A, will have rank d for all sufficiently large r.

Lemma 1.4.2. Suppose the matrixz A, has rank d, and let £ > 11 be a prime
that does not divide [];_; ap,. Then G({) is not contained in the normaliser
of a Cartan subgroup. In particular, G(¢) = GLa(Z/lZ) for all £ > 37 that

do not divide [[;_; ap, .

Proof. See Lemma 3.1 of [Zyw11b]. O

Algorithm 1.4.3 (Finding the set of primes S for which the mod ¢ image

is not surjective). Keeping the notation above, we can compute S as follows.

1. Compute M, and for each i = 1,2,... compute the vector

(x1(Pi)s -+, xa(pi)) as well as the matriz A,.

2. Continue this until A, has rank d, in which case set S’ to be the set of

primes £ > 37 that divide [[;_; ap,.

3. For each prime £ € S, use Algorithm 1.3.3 to determine whether or
not pg g is surjective. Set S to be the subset of primes of S’ for which

the mod ¢ image is not surjective.

Algorithm 1.4.3 works quite well even in practice, and as we have seen
in Section 1.2.3, it is conjectured that any ¢ for which the mod ¢ image is
non-surjective will satisfy £ < 37. It should also be noted that in Algorithm
1.4.3 if A, has rank d with p, < 419, then pg/ is surjective for all primes
£ > 37. This follows since the Hasse bound implies that if A, has rank d,
then pg is surjective for all primes ¢ > max(37,2,/p;).
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1.5 Dealing with entanglements

From the previous two sections we have an algorithm to determine the set S
of primes ¢ for which pg/ is not surjective. In addition, by Corollary 1.2.4
we have that Gy = GLa(Zy) for ¢ outside of SU{2,3}, hence for every prime
¢ we are able to determine the f-adic image Gy. What remains is to compute

the possible entanglements between the torsion fields of E. Set

T:={2,3}USU{l : (| Ng},

m::HE.

LeT

Lemma 1.5.1. The integer m splits pg, that is,

G = Gm x [ GLa(Zy).
Um

Proof. The proof follows similar lines as that of Theorem 6.1 in [LT74], as

well as §IV, 3.4 of [Ser68]. Let £ := {¢ : ¢ ¢ T}, and let G, be the
projection of G onto [],c, GL2(Z,). We first show that

G = ] GL2(Zy). (1.5.1)
lel

For B a subset of £, denote by 7z g the projection

me5: | ] GL2(Zg) — ] GLa(Ze) (1.5.2)
lel leB

and let G, p denote the image of G under the map (1.5.2). We show
that if Gz p = [lyep GL2(Z¢) then for any prime ¢y € L — B we have
Gr.puftey = Ieepugey GL2(Ze). Since Gy = GLa(Zy), this implies G
is dense in [[,c, GL2(Z¢) and since it is closed by Serre’s open image the-
orem, (1.5.1) will then follow. Let then By := B U {{y}, and recall that
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we may view G p, as a subgroup of G p X G (1. Let Qo denote the
Goursat quotient associated to the fibered product given by the inclusion
Gr.By = G, X G g4y By Lemma 1.2.8 we have ()9 may be identified
with Gal(Kp N K{4,,/Q), where Kp is the compositum of the {-power tor-
sion fields Q(E[¢*°]) for ¢ € B. Note that () is a common finite quotient
of Gr.p = [lsep GLa(Z¢) and G 140y = GLa(Zy,). Suppose that Qg is non-
trivial. Replacing Qo by a quotient and KN Ky by a subfield if necessary,
we may assume that Qg is a simple quotient. But then there is an integer
N divisible by primes only in B and an integer n such that ¢ is a common
simple quotient of GLo(Z/NZ) and GL2(Z/¢3Z), hence it must be abelian
by Corollary 1.2.6. It follows that Kp N Ky, non-trivially intersects the
maximal abelian extensions of Q inside Q(E[N]) and Q(E[¢;]). Since both
N and ¢y are odd, these extensions are, respectively, Q({x) and Q(ng). We
conclude that Kp N K4, = Q, hence Qo is trivial and (1.5.1) holds.
Consider now the inclusion G — G,, X Gz and denote by @, the cor-
responding Goursat quotient. By the same reasoning as above, it suffices to
show that K,, N K = Q, where K,, is the compositum of the £*°-torsion
fields for ¢ | m. Suppose then that @, is non-trivial. By replacing @,, by
a quotient we may again assume @Q,, is simple. Then there is an integer
M divisible only by primes dividing m and an integer n coprime to m such
that @, is a common simple quotient of G(M) and GLa(Z/nZ), hence is
again abelian by Corollary 1.2.6. It follows that K, N K non-trivially in-
tersects Q(E[M]) N Q(¢,). However since m is divisible by all primes of bad
reduction, Q(E[M]) is unramified outside of primes dividing m, and Q(¢,)
is unramified outside of primes dividing n, we conclude K,, N Ky = Q and

Q. is trivial. This completes the proof. O

From the above lemma it follows that 7 contains all the prime divisors
of mg and that

G =G, x H GL2(Zy)
Um
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so in order to determine G it remains to compute G,,,. We will give a method

to determine an integer m such that

Gm = 11 (G(m)). (1.5.3)

m

There is a natural embedding G, < [[;c7 G, however this is in general
not surjective due to the fact that distinct ¢-power torsion fields can have
non-trivial intersection. From an algorithmic point of view, the problem is
that we need to determine intersections between fields of infinite degree over

Q. For this we will require the following lemma.

Lemma 1.5.2. Let N > 1 be a positive integer, £ > 2 a prime and A €
I+ ¢NM, where M = My(Zy). Then there exists Y € I +¢N"'M such that
Y¢=A. If ¢ =2 then we must take N > 2.

Proof. Suppose ¢ > 2. We inductively construct the sequence {4,} by
A1 =TI and
An+1 =Ap— -

for n > 1. Let e, be the largest integer such that
AL —A=0 (mod ¢°).
We show by induction that for n > 1 we have
(i) en = 1+2""1(N — 1), and further we may write

AL — A= N-Dp

n

where B,, € M commutes with A,, and A.

(ii) A, commutes with A.

(iii) A, =1 (mod ¢N—1).
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Note that at each step, by (i) and the fact that 14+ 2" 1(N — 1) > 1 for
every n we have 1/£(A% — A) is in M. Also, by (iii) we have A, € GLa(Z)
and hence A,11 is a well-defined element of M. We now proceed to show
(i), (ii) and (iii) for all n.

For n = 1, part (i) follows directly by assumption on A, and parts (ii)
and (iii) are clear. Now assume (i), (ii) and (iii) are true for n. We first

show (i) for n + 1. By (i) for n we have
AK _ A= €1+2"_1(N71)Bn

where B,, commutes with A,, and A. Then compute

n— V4
o A= (po 0 )
— AZ _ £1+2n71(N—1)Bn 4.

+ (_1)862"*1(N—l)éBﬁ(Agl)EQ—E _A
= (5) Ezn(N‘l)B%A,‘Ll 4.
+ (_1)££2"*1(N—1)£BZ (A—1)€2—€

= (2NN,

where in the second equality we have used the fact that A,, and B,, commute,

in the third one we have used that
A,ﬁ A= €1+2"71(N—1)Bn,

and in the last one we have used the fact that £ > 2, which gives 2" }(INV —
1) > 1+ 2"(N —1). Now note that A commutes with A, and B,, and
also A, commutes with B,,, hence both A,1; and A commute with B,1,

establishing (i). Part (ii) follows immediately from the fact that A commutes
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with A,. Finally, observe that 2"~'(N — 1) > N — 1, hence

Apy1 = A, — 62"—1(N71)Bn(A71)Z71

n

satisfies A,;1 = I (mod ¢N~1), establishing (iii), and this completes the
induction.
Observe now that this sequence satisfies

1 Ci—
An—i—l_An:_z(Aé _A)(A 1)K !

n n

=0 (mod ZQTL?l(N_l))

hence A,, converges to some limit Y € I+ ¢N~1M by (iii). Finally by (i), we
obtain Y¥ = A, as desired. The case ¢ = 2 is shown similarly, except here
the we obtain e, > 2 + 2" (N — 2), so we must take N > 2. O

Let ¢4 > £y > --- > £, be the primes in 7, where ¢, = 2. For B a subset
of {{1,...,4,} we denote by Gp the projection of Gy, onto the product of
primes in B. Also, for each 1 < k < nlet By := {¢1,02,...,0;}.

Proposition 1.5.3. Let k < n, let my, be such that Gg, = . (G(my)).
Let £;F | be the largest power of L1 dividing the order of G(¢y---£y), and

let t), > 1 be such that BZ’:_l 1s stable. Also, set

ty +ex if b1 > 3,
o=
3-max{tk+ek,2+ek} if€k+l =2

and myqy = L3, mg. Then Gp,,, = 7I';L£+1 (G(mg+1))-

Remark 1.5.4. Note that because G, = Gy, is known, then so is m;. Also
since Gp, = G, the above proposition allows us to determine m = m,, in

a finite number of steps. In particular we have that mg divides m,,.
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Proof. Recall that G, may be identified with Gal(Kp, /Q) where as before

Kp, is the compositum of the {-power torsion fields Q(E[¢>°]) for ¢ € By,.
Note that Gp,,, may be viewed as a subgroup of Gp, X Gy, whose

projections are surjective, so let Np, and Ny, , be the corresponding Goursat

subgroups. By Lemma 1.2.8 the isomorphic quotients
GBk/NBk — GZkH/NékH

may be identified with Gal(Kp, N Ky, ,/Q), which we will denote by .
We see that determining ® is equivalent to determining the intersection
K B, N K, lpsr

Suppose that f;11 > 2. Define Uy, to be

Uy ={Ae€Gp,:A=1 (mod{;---ly)}

and observe that the order of any finite quotient of Uy is divisible only by
primes in By, all of which are greater than fx1q. Then since any finite
quotient of Gy, is divisible only by primes dividing the product (fxy1 —
1)lkt1(€k1 + 1) and £i41 # 2 it follows that Uy maps to the identity in the
composite map

Uk — GBk/NBk L) ng+l/Ngk+1

and so Up C Np,. Also, since we have that U, may be identified with
Gal(Kp, /Q(E[ly ---£y])) it follows

KBk N ngJrl C Q(E[El .. fk])
Consider the subgroup of Gy, , given by
Q:= (A% Ae Gy, ) <Gy,

We claim that the map Gy, ,, — ® factors via Gy, /((I 4+ lp1 M) N Q).
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This is clear since for any A € (I 4,11 M)NQ, the image of A in & will have
order a power of ¢; 1, and will also itself be a product of £Z’f~_1-th powers.
But any such element of ® must be trivial since the highest power of £
dividing ® is not greater than £;% .

Note that I+ £, 7*M C Gy, ,,. If e, > 1 then a > 2 and so by repeated
application of Lemma 1.5.2 with « = N we obtain that for any A € I+£7, | M

there exists Y € T + Kz;ko such that Y51 = A. Tt follows that

T+ 62 M C (I+ Ll M) N Q. (1.5.4)

If e, = 0 then (1.5.4) is trivially true since in this case @ = Gy, .. We

conclude
Kp, N Ky, = Q(E[ly---L]) N Q(E[l4]).

Suppose now that £;,1 = 2, so that kK = n — 1. Note that in this case
I+4; -+ 0,1 M need not map to the identity in G2 /N3 since G5 has quotients
of order divisible by 3. We show however that

Ko N KBn—l - Q(E[?)H_lgl s fn_g}) (1.5.5)
where t > 1 is denoting an integer such that 3¢ is stable. Define
T := (A3 : A e G3) < Gs.

Since the order G2/Ny has at most one factor of 3, the map Gs — G2/Ny
factors via Gs/((I +3M)NTs). Note also that [ +3'M C Gg and t+1 > 2,

hence by Lemma 1.5.2 we have

(I+3"M) c (I+3M)NTs.
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It follows that if we define
U, _,={AcGp, ,:A=T (mod 3™ -0, 5)}

then U/ _; maps to the identity in Go/Na, hence (1.5.5) holds. Similarly as

before we can also show that
KynNKpg, , C Q(E[29)).

The result now follows. O

1.6 Algorithm to compute pp(Gg)

We now have all the ingredients necessary to give a deterministic algorithm
which, given an elliptic curve F/, determines the image of pg. We summarize

it below.

Algorithm 1.6.1 (Determining the image of pg). Given a non-CM elliptic

curve over Q, we may determine pg as follows.

1. Use Algorithm 1.4.3 to determine the set of primes S for which the

mod ¢ image is not surjective.
2. Define the set T :={2,3,5}USU{¢: (| Ng}.
3. For each £ € T, use Algorithm 1.3.4 to determine Gy.

4. For each k = 1,...,n — 1, use Proposition 1.5.3 to determine my41.
Note that this is possible as for each ¢ € T we have already computed
t such that ¢¢ is stable. Also, using Algorithm 1.3.3 we may determine
the largest power of ¢ dividing any of the finite groups G (¢ - - - {y).

5. Once determined m,, use Algorithm 1.3.3 to compute G(m,,).
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1.7 Practical considerations

As mentioned previously, Algorithm 1.6 is very slow in practice. Unless the
set T contains only primes less than 7 and the stable powers of those primes
are less than 2 this algorithm will take a very long time. There are several
steps throughout which can be made much faster if we sacrifice having an
unconditional algorithm. This is managed by instead at some steps having
a heuristic algorithm using Frobenius statistics. In this section we briefly
describe this approach.

The most time consuming step in our algorithm is the computation of
G(m) using Algorithm 1.3.3. If m = ¢ is prime, then there is a very fast
algorithm due to Sutherland ([Sut13]) which computes the image of pg ¢ up
to isomorphism, and usually up to conjugacy by using Frobenius statistics. If
pE,¢ is surjective, then the algorithm proves this unconditionally. Otherwise
its output is correct with a very high probability. This has been used to
compute the mod ¢ image for every curve in the Cremona and Stein-Watkins
databases for all ¢ < 60.

Recall the notation of Section 1.3.1. We have used the Algorithm 1.3.3
to compute the smallest n such that the associated vector space to U, has
dimension 4. This is also quite time consuming when using Algorithm 1.3.3.

Another way to do this would be to produce four elements Y; € Gy such that
Y;=T+/0"X; (mod (")

for 1 < i < 4, and such that the X; are linearly independent mod ¢, and
we can try to produce these elements via Frobenius elements at unramified
primes. To be precise, let p be a prime of good reduction and as usual a,
denote the trace of Frobenius. Then one way to try to achieve this is by

using the characteristic polynomial of Frob, which we know is

(X)) = X? — apX +p.
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This can be done easily using machine computation, and in this manner we
can explicitly write down reductions mod ¢" of matrices in Gy, for suitable
. If we are able to produce the four required elements Y; then this shows
unconditionally that £" is stable. This method however has the limitation
that it does not work so well if the mod ¢ image is ‘small’. See [LT74], §8 for
one example of this method being used effectively.

We can conditionally determine the power ny such that £™¢ is stable,
provided £™ is not too large. One method to do this is to use the density of
primes p { Ng which split completely in Q(E[¢"]) to determine the degree of
Q(E[¢™]) for different n, and increase n until [Q(E[("]) : Q(E[¢"~1])] = ¢*.

We illustrate this with an example.

1.7.1 Example: Y2+ XY +V = X3 +4X —6

Consider the elliptic curve E over Q given by Weierstrass equation Y2+ XY +
Y = X3+44X —6. The discriminant of this Weierstrass model is A = —2673.
Using Algorithm 1.4.3 and Sutherland’s algorithm for the mod ¢ image we
obtain that pg ¢ is surjective for all £ # 2,3 and G(2) ~ G(3) ~ {£1}. This
already implies that Gy = GL2a(Zy) for all £ > 3. The next step is to find
G5 and G3 by finding exponents n9 and ng such that 22 and 3™ are stable.
Here using Algorithm 1.3.3 is relatively fast for computing G(2) and G(4),
however it quickly becomes infeasible to compute the 2"-torsion for higher
powers of 2. Also, the mod 2 and mod 3 images are too small for the method
of Frobenius sampling outlined above to work.

Note that by Chebotarev, for each prime p { 14 the density of primes
splitting completely in Q(E[4]) is 1/|G(4)|. For each prime p 1 14 up to
a chosen bound B we compute the observed density of primes such that
the reduced curve E(F,) has full 4-torsion. The observed density of primes
p < 10000000 is 0.0311144 while 1/2° ~ 0.03125, so we can conditionally
conclude that [Q(E[22]) : Q(E[2])] = 2* In the same manner one can
determine that [Q(E[2%]) : Q(E[2%])] = 23 and [Q(E[2Y]) : Q(E[2%])] =
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24, hence 22 is stable. In the same way we can deduce that 3 is stable.
In principle we may do the same thing to determine the degrees of the
intersections between various torsion fields in such a way to determine |G/(23-
3 - 7)|, however this is quite time-consuming when the degrees of the fields
in question are large.

The information we have obtained on the various mod ¢ images of pg
is, in this particular situation, already sufficient for us to determine mpg,
using the same techniques we have used throughout this chapter. We first
determine G(8 - 7), which is equivalent to determining Q(E[8]) N Q(E[T7]).
Note first of all that

Q(E[2]) = Q(VA) C Q(¢r) € QEIT)).

Let L = Q(E[8]) N Q(E[7]). We claim that L = Q(v/—7). Suppose
otherwise that Q(v/—7) is strictly contained in L. As K is a pro-2 tower
of fields it follows that L/Q(1/—7) is a 2-power extension. Note that by the
computations above we know that G(7) ~ GLa(F7). Let Q(E[7];) be the
subfield of Q(E[7]) fixed by {£1}, so that

Gal(Q(E[7])2/Q(C7)) ~ PSLy(F7).

Since L is Galois over Q(v/=T7), it follows that L ¢ Q(E[7],), for if it were
then LQ(¢7) would be a non-trivial Galois extension of Q((7), and hence
it would correspond to a non-trivial normal subgroup of PSLs(F7), contra-
dicting the simplicity of PSLy(F,) for £ > 5. Finally, if L ¢ Q(E][7];), then
LQ(¢7) corresponds to a proper subgroup of SLy(F7) which maps surjec-
tively onto PSLa(FF7), contradicting Lemma 2, §3.4 in [Ser68]. This shows
that L = Q(v/—T7).

It remains then to compute the intersection K3 N (K2K7). Let @ be
the Goursat quotient corresponding to this intersection. That is, @ ~
Gal(M/Q) where M = K3 N K2K7. Note that since Q(E[3]) = Q((3) is
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totally ramified at 3, and K3/Q(E[3]) is pro-3, then @ is a 3- group. Let
U = Gal(K2K7/Q(EI7]). Then every finite quotient of U has order divisible
only by 2 and 7, hence U maps to the identity under U — @, and it follows
that M C Q(E[7]).

By replacing ) with a subgroup if necessary, we may assume () is simple.
By Lemma 1.2.6, the only simple non-abelian quotient of GLo(Z/7Z) is
PSLo(Z/7Z), hence it follows that ) must be abelian. We have then that
the only possibility is Q ~ (Z/7Z)* /{£1}.
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