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Chapter 1

Computing Galois
representations attached to
elliptic curves

1.1 Introduction

Let K be a number field and K̄ an algebraic closure of K. For an elliptic
curve E defined over K, denote by E[n] the kernel of the multiplication by n

map, that is, the set of elements P œ E(K̄) such that nP = 0. This is known
to be a free Z/nZ-module of rank 2. If we let GK := Gal(K̄/K) denote the
absolute Galois group of K, then GK acts on E[n] by group automorphisms.
This gives rise to a representation

flE,n : GK ≠æ Aut(E[n]) ƒ GL
2

(Z/nZ)

where the isomorphism on the right is obtained by choosing a basis for
E[n] over Z/nZ. Taking the inverse limit of this action over all n gives a
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Computing Galois representations attached to elliptic curves

continuous representation

flE : GK ≠æ Aut(EŒ) ƒ GL
2

(Ẑ),

where EŒ is the torsion subgroup of E(K̄).
We will be concerned with the question of determining the image of

flE in Aut(EŒ) in the case where E is defined over the rationals and does
not have complex multiplication over Q. The image of flE encodes a lot of
information about the properties of E, both globally and locally, so it is of
interest to fully understand it. As we will see in Chapter 3 for instance,
many constants appearing in classical conjectures of elliptic curves over Q
can be described e�ciently using the image of flE . Determining the image of
this representation is highly non-trivial, but considerable progress has been
made in this direction. The most important result is the following classical
theorem of Serre (see [Ser72]), which says that flE(G) is generically almost
surjective.

Theorem 1.1.1 (Serre’s open image theorem). Let E be an elliptic curve
over a number field K such that E does not have complex multiplication over
K̄. Then flE(GK) is open in GL

2

(Ẑ).

Recall that GL
2

(Ẑ) is an inverse limit of finite groups, hence it is compact,
so it follows immediately from Serre’s open image theorem that flE(GK) has
finite index in GL

2

(Ẑ) for non-CM elliptic curves. This implies (see Lemma
1.2.1) that there exists an integer mE such that the image of flE can be
completely determined by mE (or any multiple of it) and the reduction of
flE(GK) modulo mE . This reduction is precisely the image flE,mE (GK).
It follows from this that we can completely describe the image of flE by
determining an integer m which is a multiple of mE as well as the finite
image of flE,m.

In this chapter we will develop and outline an algorithm which, given as
input an elliptic curve E over Q, outputs such an integer m and flE,m(GQ)
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1.2. Background and notation

as a subgroup of GL
2

(Z/mZ). It is not clear a priori that such an algorithm
exists, given that even though the output of such an algorithm is ‘finite’,
the intermediate steps deal with ‘infinite’ objects such as GL

2

(Ẑ) and its
¸-adic projections GL

2

(Z¸). Several of these intermediate steps had already
been considered and dealt with successfully by various authors (see [Sut13],
[Zyw11b], [Zyw11a]), and we largely build upon this previous work. The
algorithm which we outline here is meant to serve, at least initially, mainly for
theoretical purposes, however we also look at some practical considerations
which can make this algorithm faster and we discuss some of them in the
last section.

For a prime ¸, denote by flE,¸Œ the representation given by the action of
GK on E[¸Œ]. We call the image of flE,¸Œ the ¸-adic image and denote it by
G¸. In Section 1.3 we consider first the so-called vertical situation, which is
the problem of determining the ¸-adic image for a fixed prime ¸. In order to
do this we will consider the reductions of G¸ modulo various powers of ¸.

In Section 1.4 we consider the horizontal situation, in which we vary the
prime ¸ and determine G¸ for all ¸. The key result from this section is a
method of Zywina which allows one to quickly find a set of primes S outside
of which the mod ¸ image is surjective. This together with Corollary 1.2.4
will allow us to determine G¸ for all primes ¸. In Section 1.5 we consider the
entanglements between the various G¸. This amounts to determining the
intersections between the various ¸Œ-torsion fields of E. It will be Proposi-
tion 1.5.3 that will allow us to do this. Finally, in the last section we discuss
some practical considerations that can make the algorithm outlined usable
in practice.

1.2 Background and notation

For the remainder of the chapter we fix our base field to be Q. For E/Q an
elliptic curve without complex multiplication, let EŒ denote the group of
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torsion points of E over Q, that is, E(Q)
tors

. Consider the Tate module

T (E) := limΩ
n

E[n],

where the maps E[n] æ E[m] are given by multiplication by n/m, whenever
m divides n. Then GQ acts continuously on T (E). It is a classical result
([Sil09]) that T (E) is a free ‚Z-module of rank 2, hence we may fix a basis
for T (E) so as to identify Aut(EŒ) with GL

2

(‚Z), and we denote by flE :
GQ æ GL

2

(‚Z) the continuous representation given by this action. Also, set
G := flE(GQ). By Serre’s open image theorem G is a finite index subgroup
of GL

2

(‚Z). For each positive integer m we let Gm denote the projection of
G onto the finite product Ÿ

¸|m
GL

2

(Z¸).

We then have Gm ƒ Gal(Km/Q), where Km is the m-power torsion field,
that is, the infinite extension of Q obtained by adjoining the coordinates
of all mn-torsion points of E for all n. Let G(m) denote the image of G

under the reduction modulo m map GL
2

(‚Z) æ GL
2

(Z/mZ), so that G(m) ƒ
Gal(Q(E[m])/Q). We denote by flE,m the representation given by the action
of GQ on E[m].

We will say that m splits flE if we have an equality

G = Gm ◊
Ÿ

¸-m
GL

2

(Z¸).

Note that m splitting flE depends only on the prime factors dividing m and
not on the powers to which these primes occur in the factorisation of m. We
will also say that m is stable if it holds that

Gm = fi≠1

m

!
G(m)

"
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1.2. Background and notation

where fim denotes the reduction map
r

¸|m GL
2

(Z¸) æ GL
2

(Z/mZ). In
what follows we will also use fim to denote the reduction map GL

2

(‚Z) æ
GL

2

(Z/mZ).

Lemma 1.2.1. Keeping the notation above, there is an integer m which
splits flE and is stable.

Proof. Since G is open in GL
2

(‚Z), it contains an open neighbourhood of the
identity. If we let Um be the set of all matrices in GL

2

(‚Z) whose reduction
modulo m is I, then {Um}m is a neighbourhood base of GL

2

(‚Z), so it follows
that Um µ G for some m. Clearly this m satisfies

G = fi≠1

m

!
G(m)

"

where here fim denotes the reduction map GL
2

(‚Z) æ GL
2

(Z/mZ). This
implies m splits flE and is stable.

Given a stable integer m which also splits flE we see that G is completely
determined by G(m), hence can be described by finitely many conditions.
Note also that if m is stable and splits flE , then so does any integer mÕ such
that m | mÕ. For an elliptic curve E, we will use mE to denote the minimal
stable integer that splits flE . Note that mE divides all other stable integers
which split flE . As we have stated, our primary goal is to give a description
of the image of Galois G, and we do this by determining an integer m which
is a multiple of mE as well as the finite group G(m). In the remainder of
this section we state some results which will prove useful for computing such
an integer.

1.2.1 Group theory for GL

2

We quickly recall some facts about the groups GL
2

(Z/NZ) and GL
2

(Z¸) for
N an integer and ¸ a prime. Most of the material from this section can be
found in [Ser68], §IV.
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Lemma 1.2.2. PSL
2

(Z/¸Z) is a simple group for ¸ > 5. Every proper
subgroup of PSL

2

(Z/¸Z) is solvable or isomorphic to the alternating group
A

5

, the last possibility occurring only if ¸ © ±1 (mod 5).

Lemma 1.2.3. Let ¸ > 5 be a prime and H be a closed subgroup of GL
2

(Z¸)
whose projection mod ¸ contains SL

2

(F¸). Then H contains SL
2

(Z¸).

Proof. This follows directly from Lemma 3, §IV-23 of [Ser68].

Corollary 1.2.4. Suppose ¸ > 5 is a prime and suppose G(¸) = GL
2

(Z/¸Z).
Then G¸ = GL

2

(Z¸).

Proof. This follows from Lemma 1.2.3 and the fact that the determinant
map det : G¸ æ Z◊

¸ is surjective.

For a profinite group Y we say that a finite simple group � occurs in
Y if there exist closed subgroups Y

1

, Y
2

of Y such that Y
1

is normal in Y
2

and Y
2

/Y
1

ƒ �. We let Occ(Y ) denote the set of finite simple non-abelian
groups occuring in Y . The following properties of Occ are easily checked.

(i) If Y = limΩ≠
n

Yn and each Y æ Yn is surjective then Occ(Y ) =
t

n Occ(Yn).

(ii) If we have a short exact sequence of profinite groups

1 ≠æ Y Õ ≠æ Y ≠æ Y ÕÕ ≠æ 1

then Occ(Y ) = Occ(Y Õ) fi Occ(Y ÕÕ).

Using these properties and Lemma 1.2.2 we obtain that

Occ
!
GL

2

(Z¸)
"

=

Y
_______]

_______[

ÿ if ¸ = 2, 3,

{PSL
2

(Z/5Z)} = {A
5

} if ¸ = 5,

{PSL
2

(Z/¸Z)} if ¸ © ±2 (mod 5) and ¸ > 5,

{PSL
2

(Z/¸Z), A
5

} if ¸ © ±1 (mod 5) and ¸ > 5.
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Lemma 1.2.5. Let ¸ be prime. Then GL
2

(Z/¸Z) has no simple non-abelian
quotients.

Proof. Suppose the converse. Then there exists a simple non-abelian group
� and a surjective group homomorphism

Ï : GL
2

(Z/¸Z) ≠æ �.

Since � is then a composition factor of GL
2

(Z/¸Z), it follows that GL
2

(Z/¸Z)
is not solvable, hence ¸ > 5. By Lemma 1.2.2 we have that PSL

2

(Z/¸Z) is
simple. The exact sequence

1 ≠æ SL
2

(Z/¸Z) ≠æ GL
2

(Z/¸Z) ≠æ !
Z/¸Z

"◊ ≠æ 1

shows that � ƒ PSL
2

(Z/¸Z), since it is the only non-abelian composition
factor of SL

2

(Z/¸Z). Now the centres of GL
2

(Z/¸Z) and PSL
2

(Z/¸Z) are
!
Z/¸Z

"◊ and the trivial group, respectively, hence Ï induces a surjective
homomorphism

Â : PGL
2

(Z/¸Z) ≠æ PSL
2

(Z/¸Z),

where PGL
2

(Z/¸Z) = GL
2

(Z/¸Z)/(Z/¸Z)◊. By ¸ > 2 we have

|PGL
2

(Z/¸Z) : PSL
2

(Z/¸Z)| = 2,

so | ker Â| = 2. Let N be the subgroup of GL
2

(Z/¸Z) such that ker Â =
N/(Z/¸Z)◊. Then

!
Z/¸Z

"◊ has index 2 in N , hence N is abelian. Also, as
ker Â � PGL

2

(Z/¸Z), we have N � GL
2

(Z/¸Z), hence GL
2

(Z/¸Z) acts on N

by restricting inner automorphisms. We now show that this action is trivial.
Consider the homomorphism

GL
2

(Z/¸Z) ≠æ Aut(N) (1.2.1)

x ‘≠æ Ïx (1.2.2)
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given by the action mentioned above. This map satisfies that Ïx is the trivial
action when restricted to

!
Z/¸Z

"◊ for x œ GL
2

(Z/¸Z). Also, as
!
Z/¸Z

"◊ is
the center of GL

2

(Z/¸Z), we have that (1.2.1) factors through PGL
2

(Z/¸Z).
Denote this map by

� : PGL
2

(Z/¸Z) ≠æ Aut(N).

Note that � is trivial when restricted to PSL
2

(Z/¸Z), as this group is simple
and non-abelian. Also, � is trivial on ker Â = N/(Z/¸Z)◊ as N is abelian.
Finally, ker Â ”µ PSL

2

(Z/¸Z), so (ker Â)PSL
2

(Z/¸Z) = PGL
2

(Z/¸Z). Hence
� is trivial and it follows that N is contained in the center of GL

2

(Z/¸Z),
which is absurd.

Corollary 1.2.6. Let N be a positive integer and let � be a simple quotient
of GL

2

(Z/NZ). Then � is abelian.

Proof. Suppose this is not so, and write N =
r

i ¸ni
i . Then � is a composition

factor of GL
2

(Z/NZ). The exact sequences

1 ≠æ GL
2

(Z/¸ni
i Z) ≠æ GL

2

(Z/NZ) ≠æ GL
2

(Z/
!
N/¸ni

i

"
Z) ≠æ 1,

1 ≠æ I + ¸ni≠1

i M
2

(Z/¸iZ) ≠æ GL
2

(Z/¸ni
i Z) ≠æ GL

2

(Z/¸ni≠1

i Z) ≠æ 1,

together with the fact that I +¸ni≠1

i M
2

(Z/¸iZ) µ GL
2

(Z/¸ni
i Z) is an abelian

subgroup (ni > 2), show that � ƒ PSL
2

(Z/¸Z) for some ¸|N and ¸ > 5. It
follows from this that we may assume N = ¸. Now apply Lemma 1.2.5.

1.2.2 Fibered products of groups

Let G
1

, G
2

and Q be groups, Â
1

: G
1

æ Q, Â
2

: G
2

æ Q be surjective
homomorphisms, and let Â denote the abbreviation for the ordered pair
(Â

1

, Â
2

). We define the fibered product of G
1

and G
2

over Â, denoted G
1

◊Â
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G
2

, to be the group

G
1

◊Â G
2

:= {(g
1

, g
2

) œ G
1

◊ G
2

: Â
1

(g
1

) = Â
2

(g
2

)} (1.2.3)

Note that G
1

◊Â G
2

is a subdirect product of G
1

and G
2

, that is, it is a
subgroup of G

1

◊ G
2

which maps surjectively onto G
1

and G
2

under the
canonical projection homomorphisms. The following lemma tells us that the
converse of this also holds. We present the proof here since some elements
of it will be relevant later on in this and the next Chapter.

Lemma 1.2.7 (Goursat’s Lemma). Let G
1

and G
2

be groups and let G ™
G

1

◊G
2

be a subgroup such that the projections fi
1

: G æ G
1

and fi
2

: G æ G
2

are surjective. Then there exists a group Q and surjective homomorphisms
Â

1

: G
1

æ Q, Â
2

: G
2

æ Q such that G = G
1

◊Â G
2

. That is,

G = {(g
1

, g
2

) œ G
1

◊ G
2

: Â
1

(g
1

) = Â
2

(g
2

)}.

Proof. Let N
1

= (G
1

◊ {1}) fl G and N
2

= ({1} ◊ G
2

) fl G, where we use 1
to denote the identity elements of both G

1

and G
2

. Then N
1

= ker fi
2

and
N

2

= ker fi
1

. Note that N
1

⇥G as it is the kernel of fi
2

. Hence fi
1

(N
1

)⇥fi
1

(G),
so it follows that fi

1

(N
1

) ⇥ G
1

. Similarly we have fi
2

(N
2

) ⇥ G
2

. Note that
fii(Ni) ƒ Ni and hence (Gi ◊ {1})/Ni ƒ Gi/fii(Ni). Consider the map
f : G æ G

1

/N
1

◊ G
2

/N
2

defined by (g
1

, g
2

) ‘æ (g
1

N
1

, g
2

N
2

) where we have
written Ni in place of fii(Ni). One can easily check that for (g

1

, g
2

) œ G one
has

g
1

N
1

= N
1

≈∆ g
2

N
2

= N
2

hence the image of f is the graph of a well-defined isomorphism G
1

/N
1

≥≠æ
G

2

/N
2

. The result now follows from setting Q := G
2

/N
2

.

We will refer to the Ni in the proof as Goursat subgroups and to Q as
the Goursat quotient associated to this fibered product.
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Suppose now that L
1

/K, L
2

/K are Galois extensions of fields, with Gi =
Gal(Li/K) and G = Gal(L

1

L
2

/K), where L
1

L
2

denotes the compositum of
L

1

and L
2

. Then it is well known from Galois theory that

G = {(g
1

, g
2

) œ G
1

◊ G
2

: g
1

|L1flL2= g
2

|L1flL2} 6 G
1

◊ G
2

.

Lemma 1.2.8. Keeping the above notation, we have that

G = G
1

◊Â G
2

with Âi : Gi æ Gal(L
1

fl L
2

/K) the canonical restriction maps.

Proof. From the proof of Goursat’s lemma, N
1

= (G
1

◊{1})flG and fi
1

(N
1

) is
the subgroup of G

1

which acts trivially on L
1

flL
2

, and the result follows.

1.2.3 Modular curves and maximal subgroups of GL
2

(Z/¸Z)

In this section we briefly recall the modular curves associated to the maximal
subgroups of GL

2

(Z/¸Z) (for more details, see [DR73]). For a positive integer
n let X(n) denote the compactified modular curve which parametrizes ellip-
tic curves with full level n structure, and let H be a subgroup of GL

2

(Z/nZ)
such that det(H) = (Z/nZ)◊. The corresponding modular curve XH :=
X(n)/H is defined over Q and comes with a natural morphism

j : XH ≠æ P1.

Then for any x œ P1(Q), we have that

x œ j(XH(Q)) ≈∆ ÷ an elliptic curve E over Q and a basis for E(Q)[n]
with j(E) = x and flE,n(GQ) ™ H.

(1.2.4)
Now fix a prime ¸ > 3 and suppose that H is a maximal subgroup of

GL
2

(Z/¸Z) with det(H) = (Z/¸Z)◊. Then up to conjugation in GL
2

(Z/¸Z),
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H must be one of the following:

(i) A Borel subgroup, which is formed by the upper triangular matrices
in GL

2

(Z/¸Z).

(ii) The normaliser of a split Cartan subgroup of GL
2

(Z/¸Z).

(iii) The normaliser of a non-split Cartan subgroup of GL
2

(Z/¸Z).

(iv) A subgroup of GL
2

(Z/¸Z) whose projective image is S
4

, A
4

or A
5

(this
last occurring only for certain primes ¸).

We define more generally the split and non-split Cartan subgroups as follows.
Let A be an étale free commutative Z/¸nZ-algebra of rank 2. The F¸-algebra
A/¸A is isomorphic either to F¸◊F¸ or F¸2 , in which case we say that A is split
or non-split, respectively. The unit group A◊ acts on A by multiplication,
so a choice of Z/¸nZ-basis for A gives an embedding A◊ Òæ GL

2

(Z/¸nZ). A
Cartan subgroup of GL

2

(Z/¸nZ), denoted C(¸n), is a subgroup that arises
as the image of such an embedding. We say that C(¸n) is split or non-split
and write C

s

(¸n) or C
ns

(¸n) if A is split or non-split, respectively. We will
denote the normaliser of a Cartan subgroup by either C+

s

(¸n), C+

ns

(¸n) or
simply C+(¸n).

If H is one of the groups from cases (i), (ii), (iii) or (iv) above, then we
will denote the corresponding modular curve by X

0

(¸), X
s

(¸), X
ns

(¸) and
XD(¸), respectively where D can be one of S

4

, A
4

or A
5

. By 1.2.4 there is a
fundamental relation between rational points on the above modular curves
and the mod ¸ image of flE . Specifically, let c(E) be the smallest positive
integer such that flE,¸ is surjective for all ¸ > c(E). In [Ser72] Serre asked
whether one can bound c(E) independent of E. It is widely conjectured
that for all E/Q one can take c(E) = 37, a conjecture first posed by Serre
himself in [Ser81], and which has come to be known as Serre’s Uniformity
Conjecture. The problem of finding explicit upper bounds for c(E) has seen
much progress in recent years. We will call exceptional points those rational

19
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points on XH which are non-cuspidal and do not arise from CM elliptic
curves. From 1.2.4 we see that an exceptional point on XH for H one of
the groups (i), (ii), (iii) or (iv) gives rise to a non-CM elliptic curve over
the rationals with non-surjective mod ¸ image. It follows then that Serre’s
above mentioned conjecture is equivalent to saying that the modular curves
X

0

(¸), X
s

(¸), X
ns

(¸) and XD(¸) have no exceptional points for ¸ > 37.
Mazur has shown in [Maz78] that the modular curve X

0

(¸) has no excep-
tional points if ¸ > 17 and ¸ ”= 37. He has also shown that X

0

(37) has two
exceptional points, so the value 37 in Serre’s Uniformity Conjecture would
be best possible. Serre himself in [Ser81] showed that XD(¸) has no excep-
tional points for ¸ > 13 and D equal to S

4

, A
4

or A
5

. Recent work of Bilu
and Parent gives that for ¸ > 7, ¸ ”= 13 the curve X

s

(¸) has no exceptional
points (See [BP11], [BPR11]). In general, very little is known about the
curve X

ns

(¸). The combination of all of these results implies that for ¸ > 37,
is the image of flE,¸ if not surjective then it must be contained in the nor-
maliser of a non-split Cartan subgroup. This will be of crucial importance
in order to show there exists an algorithm guaranteed to terminate which
determines flE(G).

1.3 The vertical case

In this section we consider the problem of determining the ¸-adic image
G¸ for a fixed prime ¸. We do this by determining an integer n such that
G¸ = fi≠1

¸ (G(¸n)) as well as computing the finite group G(¸n).

1.3.1 Associated vector spaces

By successively adjoining to Q the ¸-power torsion of E we obtain a tower
of field extensions Q µ Q(E[¸]) µ Q(E[¸2]) µ · · · µ Q(E[¸Œ]). Let M :=
M

2

(Z¸) denote the set of all 2 ◊ 2 matrices with coe�cients in Z¸, and for
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1.3. The vertical case

n > 1 let

Vn = I + ¸nM

= ker fi¸n ,

where fi¸n is defined as in Section 1.2. Also, let

Un = G¸ fl Vn = Gal(Q(E[¸Œ])/Q(E[¸n])).

Note that we have G¸/Un ƒ G(¸n) ƒ Gal(Q(E[¸n])/Q). We obtain in this
manner a filtration G¸ ∏ U

1

∏ U
2

∏ · · · . Consider now the map

M/¸M ≠æ Vn/Vn+1

X mod ¸M ‘≠æ I + ¸nX mod Vn+1

Since mod ¸n+1 we have (I + ¸nX)(I + ¸nY ) © I + ¸n(X + Y ) with X, Y œ
M

2

(Z¸) and n > 1, this is a group isomorphism, and M/¸M ƒ M
2

(F¸) is a
vector space of dimension 4. If we look at the extension Q(E[¸n+1])/Q(E[¸n]),
its Galois group is Un/Un+1

and we have an injective group homomorphism

Un/Un+1

Òæ M
2

(F¸), I + ¸nA ‘æ A mod ¸.

It follows that [Q(E[¸n+1]) : Q(E
[

¸n])] divides ¸4. We will refer to Un/Un+1

as the associated vector space to Un. It has dimension at most 4 over F¸.
Clearly if G¸ = GL

2

(Z¸) then G(¸n) = GL
2

(Z/¸nZ) for all n, hence
the associated vector space to Un has dimension 4 for all n > 1. It could
happen however that G¸ ( GL

2

(Z¸), for example if G(¸) ( GL
2

(F¸). In such
cases the following lemma allows us to reduce the problem of determining
G¸ to a finite computation, namely, that of determining the smallest n such
that Un/Un+1

has dimension 4. It is separated into two cases depending on
whether ¸ is even or odd.
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Lemma 1.3.1. (i) Let ¸ > 3. With the notation introduced above, let
n > 1 be such that the associated vector space to Un has dimension 4.
Then we have Un = Vn.

(ii) Let ¸ = 2. Suppose that for some n > 2 the associated vector space to
Un has dimension 4. Then Un = Vn. If the associated vector spaces to
U

1

and U
2

each have dimension 4, then we have U
1

= V
1

.

Proof. This is shown in [LT74], §6.

Remark 1.3.2. From Un = Vn it follows that I + ¸nM µ G¸, hence G¸ =
fi≠1

¸n (G(¸n)), in other words, ¸n is stable.

1.3.2 Determining G¸

The problem of computing G¸ can be reduced to computing G(¸n) for various
powers ¸n. Firstly note that for any m, there is a deterministic algorithm
which computes (up to conjugacy) G(m). This consists in explicitly com-
puting the action of Gal(Q(E[m])/Q) on a chosen basis for E[m].

Algorithm 1.3.3 (Computation of G(m) for a given m). Given a non-CM
curve E/Q and an integer m we can compute G(m) as follows.

1. Let f be the mth division polynomial of E. Construct the field Q(E[m])
as an (at most quadratic) extension of the splitting field of f .

2. Compute Gal(Q(E[m])/Q) as a subgroup of Sd, where d = [Q(E[m]) :
Q] (see for instance, [Coh93], §6.3).

3. Choose a basis P, Q for E[m] and determine the action of each ele-
ment of Gal(Q(E[m])/Q) on P and Q. Compute Gal(Q(E[m])/Q as a
subgroup of GL

2

(Z/mZ) with respect to the basis P, Q.

Using this it follows that we can compute the dimension of the associated
vector space to Un for all n. When this dimension is 4 (and when n > 2 if
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1.3. The vertical case

¸ = 2), by Lemma 1.3.1 we can recover G¸ as the pullback of the reduction
mod ¸n map.

Algorithm 1.3.4 (Computation of G¸ for a given ¸). Given a non-CM curve
E/Q and a prime ¸ we can compute G¸ as follows.

1. For each n > 1, use Algorithm 1.3.3 to compute G(¸n).

2. If ¸ ”= 2, continue this until |G(¸n+1)|/|G(¸n)| = ¸4, in which case set
n¸ := n. When ¸ = 2, if |G(4)|/|G(2)| = 24 and |G(8)|/|G(4)| = 24

then set n
2

= 1. Otherwise, starting with n = 2 compute G(2n) until
|G(2n+1)|/|G(2n)| = 24, in which case set n

2

:= n.

3. Return G¸ as the subgroup of GL
2

(Z¸) whose reduction modulo ¸n¸

equals G(¸n¸).

Remark 1.3.5. In order to compute G¸ it su�ces to find any integer n such
that ¸n is stable, however the above algorithm finds the smallest such integer.
Note also that when G(¸) = GL

2

(Z/¸Z) and ¸ > 5 one does not have to
compute G(¸2), since by Lemma 1.2.4 we have that ¸ is stable.

In practice this brute force computation of G(¸n) using Algorithm 1.3.3
is computationally feasible only for very small ¸ and small n, as the degree
of Q(E[¸n]) is typically on the order of ¸4n. For the purposes of obtaining a
deterministic algorithm we content ourselves with this approach for now. In
section 1.7 we consider some of the practical considerations which can help
speed up computations.

When analysing Algorithm 1.3.4, a natural question which arises is how
many steps it takes to compute a stable power of ¸. Note that since G¸ is
an open subgroup of GL

2

(Z¸), Algorithm 1.3.4 is guaranteed to terminate
after a finite number of steps. It would be of interest therefore, to have a
bound on the maximum number of iterations it takes to find a stable ¸n

for a given elliptic curve E. Let N¸,E denote the smallest integer such that
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¸N¸,E is stable for E. For ¸ > 17 and ¸ ”= 37 we can obtain an upper bound
for N¸,E as follows. If flE,¸ is surjective, then by Corollary 1.2.4 we have
that G¸ = GL

2

(Z¸) so the integer ¸ is already stable. By the discussion
in Section 1.2.3, if flE,¸ is not surjective, then up to conjugation G(¸) must
lie in the normaliser of a non-split Cartan subgroup of GL

2

(Z/¸Z). Also in
[Zyw11a], Zywina shows that for ¸ in the above range, one has that for every
positive integer n, either G(¸n) is contained in the normaliser of a Cartan
subgroup of GL

2

(Z/¸nZ), or I + ¸4nM µ G¸. In the same paper he also
shows (Proposition 3.3, (ii)) that there exists a positive integer

ME 6 !
68N(1 + log log N)1/2

"Ê(N)+1

such that if G(¸n) is contained in the normaliser of a Cartan subgroup with
¸ > 17 and ¸ ”= 37, then ¸n | ME . Here N is the product of primes for
which E has bad reduction and Ê(N) is the number of distinct prime factors
of N . It follows from both of these results that if we let BE :=

!
68N(1 +

log log N)1/2

"Ê(N)+1 and we take n such that n > log BE/ log ¸, then ¸4n

is stable. This gives an upper bound (albeit a very poor one for practical
computations) on the number of iterations it takes for ¸n to be stable for
primes ¸ > 17, ¸ ”= 37.

The bound given above depends on the elliptic curve E, and no such
e�ective upper bounds are known when ¸ 6 17 or ¸ = 37. However, using
Faltings’ Theorem Zywina shows (see [Zyw11a], Lemma 5.1) that there is a
non-e�ective bound which depends only on ¸ and holds for all elliptic curves
over Q.

With this in mind, denote by N¸ the smallest integer such that ¸N¸ is
stable for all elliptic curves over Q. For ¸ = 2, in a recent paper [RZB14],
it is shown by classifying all possible 2-adic images of GQ that N

2

= 5. In
theory it should be possible to do the same for other small primes ¸ > 3,
however as of yet there are no results as strong as this one. In numerical
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computations it is observed that N¸ is quite small, typically at most 2 for
¸ > 3. This is believed to be the case in particular for larger primes ¸. In
fact, as previously mentioned for ¸ > 37 it is believed that N¸ = 1.

1.4 The horizontal case

We now consider the problem of determining G¸ for all primes ¸. From the
previous section for any given ¸ we can compute G¸, however as there are
infinitely many primes, we must determine a finite subset of them outside
of which the ¸-adic image is surjective. Serre’s open image theorem implies
that this set exists for non-CM curves, and indeed by Corollary 1.2.4 for
¸ > 5, having G(¸) = GL

2

(Z/¸Z) implies G¸ = GL
2

(Z¸).
We now describe an algorithm of Zywina that allows one to find the set

of primes S for which flE,¸ is not surjective. This uses the key fact that if
¸ > 37, then flE,¸ is either surjective or is contained in the normaliser C+(¸)
of a Cartan subgroup of GL

2

(Z/¸Z).
Let ¸ be a prime greater than 37. The first thing to note is that G(¸) is

not contained in the Cartan subgroup C(¸). If C(¸) is split, then it consists
of the diagonal matrices which are contained in a Borel subgroup, hence it
follows from Mazur that G(¸) is not contained in C(¸). Suppose that C(¸)
is non-split, and let Ê œ F¸2 be such that Ê2 = ‘, where ‘ is a non-square in
F◊

¸ . Then by the description given in subsection 1.2.3 it follows that if we
choose {1, Ê} to be an F¸-basis for F¸2 , then we have that

IA
a ‘b

b a

B

: a, b œ Z/¸Z, (a, b) ”© (0, 0) (mod ¸)
J

.

is a non-split Cartan subgroup of GL
2

(Z/¸Z). If we let A œ GL
2

(Z/¸Z) be
the image of complex conjugation under fl¸, then it follows that A has order
2 and det(A) = ≠1 and hence is not contained in C(¸). It follows then that
in both cases G(¸) does not lie in C(¸).
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Define the quadratic character

Â¸ : GQ ≠æ C+(¸)/C(¸) ƒ {±1}

which by the above discussion is non-trivial. Let NE denote the conductor
of E, and define M to be the product of the following prime powers:

• 8, if 4 | NE and ord
2

(j ≠ 1728) > 0,

• 3, if 9 | NE and ord
3

(j ≠ 1728) > 0,

• p, if p2 | NE , p > 5 and ordp(j ≠ 1728) is odd.

In [Zyw11b], Zywina proves the following lemma.

Lemma 1.4.1. Keeping the above notation, we have that the following holds:

(i) The character Â¸ is unramified at all primes p such that p - M or
p = ¸.

(ii) If p - NE and Â¸(Frobp) = ≠1, then ap © 0 (mod ¸), where ap denotes
the trace of Frobenius.

The above lemma is useful because if p - NE is a prime such that ap ”= 0
and Â¸(Frobp) = ≠1, then Lemma 1.4.1 implies that ¸ | ap (note that p - M)
and the Hasse bound then gives

¸ 6 |ap| 6 2Ô
p.

It follows that such a choice of p would give an upper bound for ¸. We now
describe how to use this to construct the set of primes S for which flE,¸ is
not surjective.

Consider the group V of characters (Z/MZ)◊ æ F
2

, which is a vector
space over F

2

. Let ‰
1

, . . . ‰d be a basis of V over F
2

, which we can take
to be the characters

1
·
q

2
for each odd prime q | M , the character ‰(a) =
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1.4. The horizontal case

(≠1)(a≠1)/2 if M is even and the character ‰(a) = (≠1)(a2≠1)/8 if 8|M .
Consider the sequence of primes p

1

< p
2

< p
3

< . . . such that pi - NE

and api ”= 0. Note then that pi does not divide M . For each r > 1, define
the matrix over F

2

given by Ar :=
!
‰j(pi)

"
i,j

with 1 6 i 6 r, 1 6 j 6 d.
By Dirichlet’s theorem and the fact that the set of primes of supersingular
reduction of a non-CM curve has density 0 ([Ser64]) we have that any vector
in Fd

2

is of the form (‰
1

(p), . . . , ‰d(p)) for some prime p - NE with ap ”= 0. It
follows then that Ar will have rank d for all su�ciently large r.

Lemma 1.4.2. Suppose the matrix Ar has rank d, and let ¸ > 11 be a prime
that does not divide

rr
i=1

api. Then G(¸) is not contained in the normaliser
of a Cartan subgroup. In particular, G(¸) = GL

2

(Z/¸Z) for all ¸ > 37 that
do not divide

rr
i=1

api.

Proof. See Lemma 3.1 of [Zyw11b].

Algorithm 1.4.3 (Finding the set of primes S for which the mod ¸ image
is not surjective). Keeping the notation above, we can compute S as follows.

1. Compute M , and for each i = 1, 2, . . . compute the vector
(‰

1

(pi), . . . , ‰d(pi)) as well as the matrix Ar.

2. Continue this until Ar has rank d, in which case set SÕ to be the set of
primes ¸ > 37 that divide

rr
i=1

api.

3. For each prime ¸ œ SÕ, use Algorithm 1.3.3 to determine whether or
not flE,¸ is surjective. Set S to be the subset of primes of SÕ for which
the mod ¸ image is not surjective.

Algorithm 1.4.3 works quite well even in practice, and as we have seen
in Section 1.2.3, it is conjectured that any ¸ for which the mod ¸ image is
non-surjective will satisfy ¸ 6 37. It should also be noted that in Algorithm
1.4.3 if Ar has rank d with pr 6 419, then flE,¸ is surjective for all primes
¸ > 37. This follows since the Hasse bound implies that if Ar has rank d,
then flE,¸ is surjective for all primes ¸ > max(37, 2Ô

pr).
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1.5 Dealing with entanglements

From the previous two sections we have an algorithm to determine the set S

of primes ¸ for which flE,¸ is not surjective. In addition, by Corollary 1.2.4
we have that G¸ = GL

2

(Z¸) for ¸ outside of S fi {2, 3}, hence for every prime
¸ we are able to determine the ¸-adic image G¸. What remains is to compute
the possible entanglements between the torsion fields of E. Set

T := {2, 3} fi S fi {¸ : ¸ | NE},

m :=
Ÿ

¸œT
¸.

Lemma 1.5.1. The integer m splits flE, that is,

G = Gm ◊
Ÿ

¸-m
GL

2

(Z¸).

Proof. The proof follows similar lines as that of Theorem 6.1 in [LT74], as
well as §IV, 3.4 of [Ser68]. Let L := {¸ : ¸ /œ T }, and let GL be the
projection of G onto

r
¸œL GL

2

(Z¸). We first show that

GL =
Ÿ

¸œL
GL

2

(Z¸). (1.5.1)

For B a subset of L, denote by fiL,B the projection

fiL,B :
Ÿ

¸œL
GL

2

(Z¸) ≠æ
Ÿ

¸œB

GL
2

(Z¸) (1.5.2)

and let GL,B denote the image of GL under the map (1.5.2). We show
that if GL,B =

r
¸œB GL

2

(Z¸) then for any prime ¸
0

œ L ≠ B we have
GL,Bfi{¸0} =

r
¸œBfi{¸0} GL

2

(Z¸). Since G{¸} = GL
2

(Z¸), this implies GL

is dense in
r

¸œL GL
2

(Z¸) and since it is closed by Serre’s open image the-
orem, (1.5.1) will then follow. Let then B

0

:= B fi {¸
0

}, and recall that
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1.5. Dealing with entanglements

we may view GL,B0 as a subgroup of GL,B ◊ GL,{¸0}. Let Q
0

denote the
Goursat quotient associated to the fibered product given by the inclusion
GL,B0 Òæ GL,B ◊ GL,{¸0}. By Lemma 1.2.8 we have Q

0

may be identified
with Gal(KB fl K{¸0}/Q), where KB is the compositum of the ¸-power tor-
sion fields Q(E[¸Œ]) for ¸ œ B. Note that Q

0

is a common finite quotient
of GL,B =

r
¸œB GL

2

(Z¸) and GL,{¸0} = GL
2

(Z¸0). Suppose that Q
0

is non-
trivial. Replacing Q

0

by a quotient and KB flK{¸0} by a subfield if necessary,
we may assume that Q

0

is a simple quotient. But then there is an integer
N divisible by primes only in B and an integer n such that Q

0

is a common
simple quotient of GL

2

(Z/NZ) and GL
2

(Z/¸n
0

Z), hence it must be abelian
by Corollary 1.2.6. It follows that KB fl K{¸0} non-trivially intersects the
maximal abelian extensions of Q inside Q(E[N ]) and Q(E[¸n

0

]). Since both
N and ¸

0

are odd, these extensions are, respectively, Q(’N ) and Q(’¸n
0
). We

conclude that KB fl K{¸0} = Q, hence Q
0

is trivial and (1.5.1) holds.
Consider now the inclusion G Òæ Gm ◊ GL and denote by Qm the cor-

responding Goursat quotient. By the same reasoning as above, it su�ces to
show that Km fl KL = Q, where Km is the compositum of the ¸Œ-torsion
fields for ¸ | m. Suppose then that Qm is non-trivial. By replacing Qm by
a quotient we may again assume Qm is simple. Then there is an integer
M divisible only by primes dividing m and an integer n coprime to m such
that Qm is a common simple quotient of G(M) and GL

2

(Z/nZ), hence is
again abelian by Corollary 1.2.6. It follows that Km fl KL non-trivially in-
tersects Q(E[M ]) flQ(’n). However since m is divisible by all primes of bad
reduction, Q(E[M ]) is unramified outside of primes dividing m, and Q(’n)
is unramified outside of primes dividing n, we conclude Km fl KL = Q and
Qm is trivial. This completes the proof.

From the above lemma it follows that T contains all the prime divisors
of mE and that

G = Gm ◊
Ÿ

¸-m
GL

2

(Z¸)

29



Computing Galois representations attached to elliptic curves

so in order to determine G it remains to compute Gm. We will give a method
to determine an integer m̃ such that

Gm = fi≠1

m̃

!
G(m̃)

"
. (1.5.3)

There is a natural embedding Gm Òæ r
¸œT G¸, however this is in general

not surjective due to the fact that distinct ¸-power torsion fields can have
non-trivial intersection. From an algorithmic point of view, the problem is
that we need to determine intersections between fields of infinite degree over
Q. For this we will require the following lemma.

Lemma 1.5.2. Let N > 1 be a positive integer, ¸ > 2 a prime and A œ
I + ¸N M , where M = M

2

(Z¸). Then there exists Y œ I + ¸N≠1M such that
Y ¸ = A. If ¸ = 2 then we must take N > 2.

Proof. Suppose ¸ > 2. We inductively construct the sequence {An} by
A

1

= I and
An+1

= An ≠ 1
¸

(A¸
n ≠ A)(A≠1

n )¸≠1

for n > 1. Let en be the largest integer such that

A¸
n ≠ A © 0 (mod ¸en).

We show by induction that for n > 1 we have

(i) en > 1 + 2n≠1(N ≠ 1), and further we may write

A¸
n ≠ A = ¸1+2

n≠1
(N≠1)Bn,

where Bn œ M commutes with An and A.

(ii) An commutes with A.

(iii) An © I (mod ¸N≠1).
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Note that at each step, by (i) and the fact that 1 + 2n≠1(N ≠ 1) > 1 for
every n we have 1/¸(A¸

n ≠ A) is in M . Also, by (iii) we have An œ GL
2

(Z¸)
and hence An+1

is a well-defined element of M . We now proceed to show
(i), (ii) and (iii) for all n.

For n = 1, part (i) follows directly by assumption on A, and parts (ii)
and (iii) are clear. Now assume (i), (ii) and (iii) are true for n. We first
show (i) for n + 1. By (i) for n we have

A¸
n ≠ A = ¸1+2

n≠1
(N≠1)Bn,

where Bn commutes with An and A. Then compute

A¸
n+1

≠ A =
1
An ≠ ¸2

n≠1
(N≠1)Bn(A≠1

n )¸≠1

2¸ ≠ A

= A¸
n ≠ ¸1+2

n≠1
(N≠1)Bn + · · ·

+ (≠1)¸¸2

n≠1
(N≠1)¸B¸

n(A≠1

n )¸2≠¸ ≠ A

=
A

¸

2

B

¸2

n
(N≠1)B2

nA≠1

n + · · ·

+ (≠1)¸¸2

n≠1
(N≠1)¸B¸

n(A≠1

n )¸2≠¸

= ¸1+2

n
(N≠1)Bn+1

,

where in the second equality we have used the fact that An and Bn commute,
in the third one we have used that

A¸
n ≠ A = ¸1+2

n≠1
(N≠1)Bn,

and in the last one we have used the fact that ¸ > 2, which gives 2n≠1(N ≠
1)¸ > 1 + 2n(N ≠ 1). Now note that A commutes with An and Bn, and
also An commutes with Bn, hence both An+1

and A commute with Bn+1

,
establishing (i). Part (ii) follows immediately from the fact that A commutes

31



Computing Galois representations attached to elliptic curves

with An. Finally, observe that 2n≠1(N ≠ 1) > N ≠ 1, hence

An+1

= An ≠ ¸2

n≠1
(N≠1)Bn(A≠1

n )¸≠1

satisfies An+1

© I (mod ¸N≠1), establishing (iii), and this completes the
induction.

Observe now that this sequence satisfies

An+1

≠ An = ≠1
¸

(A¸
n ≠ A)(A≠1

n )¸≠1

© 0 (mod ¸2

n≠1
(N≠1))

hence An converges to some limit Y œ I + ¸N≠1M by (iii). Finally by (i), we
obtain Y ¸ = A, as desired. The case ¸ = 2 is shown similarly, except here
the we obtain en > 2 + 2n≠1(N ≠ 2), so we must take N > 2.

Let ¸
1

> ¸
2

> · · · > ¸n be the primes in T , where ¸n = 2. For B a subset
of {¸

1

, . . . , ¸n} we denote by GB the projection of Gm onto the product of
primes in B. Also, for each 1 6 k 6 n let Bk := {¸

1

, ¸
2

, . . . , ¸k}.

Proposition 1.5.3. Let k < n, let mk be such that GBk = fi≠1

mk

!
G(mk)

"
.

Let ¸ek
k+1

be the largest power of ¸k+1

dividing the order of G(¸
1

· · · ¸k), and
let tk > 1 be such that ¸tk

k+1

is stable. Also, set

– :=

Y
]

[
tk + ek if ¸k+1

> 3,

3 · max{tk + ek, 2 + ek} if ¸k+1

= 2

and mk+1

:= ¸–
k+1

mk. Then GBk+1 = fi≠1

mk+1

!
G(mk+1

)
"
.

Remark 1.5.4. Note that because GB1 = G¸1 is known, then so is m
1

. Also
since GBn = Gm, the above proposition allows us to determine m̃ = mn in
a finite number of steps. In particular we have that mE divides mn.
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Proof. Recall that GBk may be identified with Gal(KBk/Q) where as before
KBk is the compositum of the ¸-power torsion fields Q(E[¸Œ]) for ¸ œ Bk.

Note that GBk+1 may be viewed as a subgroup of GBk ◊ G¸k+1 whose
projections are surjective, so let NBk and N¸k+1 be the corresponding Goursat
subgroups. By Lemma 1.2.8 the isomorphic quotients

GBk/NBk

≥≠æ G¸k+1/N¸k+1

may be identified with Gal(KBk fl K¸k+1/Q), which we will denote by �.
We see that determining � is equivalent to determining the intersection
KBk fl K¸k+1 .

Suppose that ¸k+1

> 2. Define Uk to be

Uk := {A œ GBk : A © I (mod ¸
1

· · · ¸k)}

and observe that the order of any finite quotient of Uk is divisible only by
primes in Bk, all of which are greater than ¸k+1

. Then since any finite
quotient of G¸k+1 is divisible only by primes dividing the product (¸k+1

≠
1)¸k+1

(¸k+1

+ 1) and ¸k+1

”= 2 it follows that Uk maps to the identity in the
composite map

Uk ≠æ GBk/NBk

≥≠æ G¸k+1/N¸k+1

and so Uk µ NBk . Also, since we have that Uk may be identified with
Gal(KBk/Q(E[¸

1

· · · ¸k])) it follows

KBk fl K¸k+1 µ Q(E[¸
1

· · · ¸k]).

Consider the subgroup of G¸k+1 given by

Q := ÈA¸
ek
k+1 : A œ G¸k+1Í 6 G¸k+1 .

We claim that the map G¸k+1 æ � factors via G¸k+1/
!
(I + ¸k+1

M) fl Q
"
.
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This is clear since for any A œ (I +¸k+1

M)flQ, the image of A in � will have
order a power of ¸k+1

, and will also itself be a product of ¸ek
k+1

-th powers.
But any such element of � must be trivial since the highest power of ¸k+1

dividing � is not greater than ¸ek
k+1

.
Note that I + ¸–≠ek

k+1

M µ G¸k+1 . If ek > 1 then – > 2 and so by repeated
application of Lemma 1.5.2 with – = N we obtain that for any A œ I+¸–

k+1

M

there exists Y œ I + ¸–≠ek
k+1

M such that Y ¸
ek
k+1 = A. It follows that

I + ¸–
k+1

M µ (I + ¸k+1

M) fl Q. (1.5.4)

If ek = 0 then (1.5.4) is trivially true since in this case Q = G¸k+1 . We
conclude

KBk fl K¸k+1 = Q(E[¸
1

· · · ¸k]) fl Q(E[¸–
k+1

]).

Suppose now that ¸k+1

= 2, so that k = n ≠ 1. Note that in this case
I+¸

1

· · · ¸n≠1

M need not map to the identity in G
2

/N
2

since G
2

has quotients
of order divisible by 3. We show however that

K
2

fl KBn≠1 µ Q(E[3t+1¸
1

· · · ¸n≠2

]) (1.5.5)

where t > 1 is denoting an integer such that 3t is stable. Define

T
3

:= ÈA3 : A œ G
3

Í 6 G
3

.

Since the order G
2

/N
2

has at most one factor of 3, the map G
3

æ G
2

/N
2

factors via G
3

/
!
(I + 3M) fl T

3

"
. Note also that I + 3tM µ G

3

and t + 1 > 2,
hence by Lemma 1.5.2 we have

(I + 3t+1M) µ (I + 3M) fl T
3

.
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It follows that if we define

U Õ
n≠1

= {A œ GBn≠1 : A © I (mod 3t+1¸
1

· · · ¸n≠2

)}

then U Õ
n≠1

maps to the identity in G
2

/N
2

, hence (1.5.5) holds. Similarly as
before we can also show that

K
2

fl KBn≠1 µ Q(E[2–]).

The result now follows.

1.6 Algorithm to compute flE(GQ)

We now have all the ingredients necessary to give a deterministic algorithm
which, given an elliptic curve E, determines the image of flE . We summarize
it below.

Algorithm 1.6.1 (Determining the image of flE). Given a non-CM elliptic
curve over Q, we may determine flE as follows.

1. Use Algorithm 1.4.3 to determine the set of primes S for which the
mod ¸ image is not surjective.

2. Define the set T := {2, 3, 5} fi S fi {¸ : ¸ | NE}.

3. For each ¸ œ T , use Algorithm 1.3.4 to determine G¸.

4. For each k = 1, . . . , n ≠ 1, use Proposition 1.5.3 to determine mk+1

.
Note that this is possible as for each ¸ œ T we have already computed
t such that ¸t is stable. Also, using Algorithm 1.3.3 we may determine
the largest power of ¸ dividing any of the finite groups G(¸

1

· · · ¸k).

5. Once determined mn use Algorithm 1.3.3 to compute G(mn).
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1.7 Practical considerations

As mentioned previously, Algorithm 1.6 is very slow in practice. Unless the
set T contains only primes less than 7 and the stable powers of those primes
are less than 2 this algorithm will take a very long time. There are several
steps throughout which can be made much faster if we sacrifice having an
unconditional algorithm. This is managed by instead at some steps having
a heuristic algorithm using Frobenius statistics. In this section we briefly
describe this approach.

The most time consuming step in our algorithm is the computation of
G(m) using Algorithm 1.3.3. If m = ¸ is prime, then there is a very fast
algorithm due to Sutherland ([Sut13]) which computes the image of flE,¸ up
to isomorphism, and usually up to conjugacy by using Frobenius statistics. If
flE,¸ is surjective, then the algorithm proves this unconditionally. Otherwise
its output is correct with a very high probability. This has been used to
compute the mod ¸ image for every curve in the Cremona and Stein-Watkins
databases for all ¸ < 60.

Recall the notation of Section 1.3.1. We have used the Algorithm 1.3.3
to compute the smallest n such that the associated vector space to Un has
dimension 4. This is also quite time consuming when using Algorithm 1.3.3.
Another way to do this would be to produce four elements Yi œ G¸ such that

Yi © I + ¸nXi (mod ¸n+1)

for 1 6 i 6 4, and such that the Xi are linearly independent mod ¸, and
we can try to produce these elements via Frobenius elements at unramified
primes. To be precise, let p be a prime of good reduction and as usual ap

denote the trace of Frobenius. Then one way to try to achieve this is by
using the characteristic polynomial of Frobp which we know is

�p(X) = X2 ≠ apX + p.
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This can be done easily using machine computation, and in this manner we
can explicitly write down reductions mod ¸n of matrices in G¸, for suitable
¸n. If we are able to produce the four required elements Yi then this shows
unconditionally that ¸n is stable. This method however has the limitation
that it does not work so well if the mod ¸ image is ‘small’. See [LT74], §8 for
one example of this method being used e�ectively.

We can conditionally determine the power n¸ such that ¸n¸ is stable,
provided ¸n¸ is not too large. One method to do this is to use the density of
primes p - NE which split completely in Q(E[¸n]) to determine the degree of
Q(E[¸n]) for di�erent n, and increase n until [Q(E[¸n]) : Q(E[¸n≠1])] = ¸4.
We illustrate this with an example.

1.7.1 Example: Y 2

+ XY + Y = X3

+ 4X ≠ 6

Consider the elliptic curve E over Q given by Weierstrass equation Y 2+XY +
Y = X3 +4X ≠6. The discriminant of this Weierstrass model is � = ≠2673.
Using Algorithm 1.4.3 and Sutherland’s algorithm for the mod ¸ image we
obtain that flE,¸ is surjective for all ¸ ”= 2, 3 and G(2) ƒ G(3) ƒ {±1}. This
already implies that G¸ = GL

2

(Z¸) for all ¸ > 3. The next step is to find
G

2

and G
3

by finding exponents n
2

and n
3

such that 2n2 and 3n3 are stable.
Here using Algorithm 1.3.3 is relatively fast for computing G(2) and G(4),
however it quickly becomes infeasible to compute the 2n-torsion for higher
powers of 2. Also, the mod 2 and mod 3 images are too small for the method
of Frobenius sampling outlined above to work.

Note that by Chebotarev, for each prime p - 14 the density of primes
splitting completely in Q(E[4]) is 1/|G(4)|. For each prime p - 14 up to
a chosen bound B we compute the observed density of primes such that
the reduced curve Ẽ(Fp) has full 4-torsion. The observed density of primes
p 6 10000000 is 0.0311144 while 1/25 ƒ 0.03125, so we can conditionally
conclude that [Q(E[22]) : Q(E[2])] = 24. In the same manner one can
determine that [Q(E[23]) : Q(E[22])] = 23 and [Q(E[24]) : Q(E[23])] =
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24, hence 23 is stable. In the same way we can deduce that 3 is stable.
In principle we may do the same thing to determine the degrees of the
intersections between various torsion fields in such a way to determine |G(23 ·
3 · 7)|, however this is quite time-consuming when the degrees of the fields
in question are large.

The information we have obtained on the various mod ¸ images of flE

is, in this particular situation, already su�cient for us to determine mE ,
using the same techniques we have used throughout this chapter. We first
determine G(8 · 7), which is equivalent to determining Q(E[8]) fl Q(E[7]).
Note first of all that

Q(E[2]) = Q(
Ô

�) µ Q(’
7

) µ Q(E[7]).

Let L = Q(E[8]) fl Q(E[7]). We claim that L = Q(
Ô≠7). Suppose

otherwise that Q(
Ô≠7) is strictly contained in L. As K

2

is a pro-2 tower
of fields it follows that L/Q(

Ô≠7) is a 2-power extension. Note that by the
computations above we know that G(7) ƒ GL

2

(F
7

). Let Q(E[7]x) be the
subfield of Q(E[7]) fixed by {±1}, so that

Gal(Q(E[7])x/Q(’
7

)) ƒ PSL
2

(F
7

).

Since L is Galois over Q(
Ô≠7), it follows that L ”µ Q(E[7]x), for if it were

then LQ(’
7

) would be a non-trivial Galois extension of Q(’
7

), and hence
it would correspond to a non-trivial normal subgroup of PSL

2

(F
7

), contra-
dicting the simplicity of PSL

2

(F¸) for ¸ > 5. Finally, if L ”µ Q(E[7]x), then
LQ(’

7

) corresponds to a proper subgroup of SL
2

(F
7

) which maps surjec-
tively onto PSL

2

(F
7

), contradicting Lemma 2, §3.4 in [Ser68]. This shows
that L = Q(

Ô≠7).
It remains then to compute the intersection K

3

fl (K
2

K
7

). Let Q be
the Goursat quotient corresponding to this intersection. That is, Q ƒ
Gal(M/Q) where M = K

3

fl K
2

K
7

. Note that since Q(E[3]) = Q(’
3

) is
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totally ramified at 3, and K
3

/Q(E[3]) is pro-3, then Q is a 3- group. Let
U = Gal(K

2

K
7

/Q(E[7]). Then every finite quotient of U has order divisible
only by 2 and 7, hence U maps to the identity under U æ Q, and it follows
that M µ Q(E[7]).

By replacing Q with a subgroup if necessary, we may assume Q is simple.
By Lemma 1.2.6, the only simple non-abelian quotient of GL

2

(Z/7Z) is
PSL

2

(Z/7Z), hence it follows that Q must be abelian. We have then that
the only possibility is Q ƒ (Z/7Z)◊/{±1}.
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