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Chapter 1

Computing (Galois
representations attached to

elliptic curves

1.1 Introduction

Let K be a number field and K an algebraic closure of K. For an elliptic
curve E defined over K, denote by E[n| the kernel of the multiplication by n
map, that is, the set of elements P € E(K) such that nP = 0. This is known
to be a free Z/nZ-module of rank 2. If we let G := Gal(K/K) denote the
absolute Galois group of K, then G acts on E[n] by group automorphisms.

This gives rise to a representation
pEn : Gk — Aut(E[n]) ~ GLy(Z/nZ)

where the isomorphism on the right is obtained by choosing a basis for

E[n] over Z/nZ. Taking the inverse limit of this action over all n gives a



Computing Galois representations attached to elliptic curves

continuous representation

pE : G — Aut(Es) ~ GLy(Z),

where E is the torsion subgroup of E(K).

We will be concerned with the question of determining the image of
pE in Aut(FEo) in the case where E is defined over the rationals and does
not have complex multiplication over Q. The image of pr encodes a lot of
information about the properties of E, both globally and locally, so it is of
interest to fully understand it. As we will see in Chapter 3 for instance,
many constants appearing in classical conjectures of elliptic curves over Q
can be described efficiently using the image of pg. Determining the image of
this representation is highly non-trivial, but considerable progress has been
made in this direction. The most important result is the following classical
theorem of Serre (see [Ser72]), which says that pp(G) is generically almost

surjective.

Theorem 1.1.1 (Serre’s open image theorem). Let E be an elliptic curve
over a number field K such that E does not have complex multiplication over
K. Then pg(Gg) is open in GLy(Z).

Recall that GLo (Z) is an inverse limit of finite groups, hence it is compact,
so it follows immediately from Serre’s open image theorem that pp(Gg) has
finite index in GLy(Z) for non-CM elliptic curves. This implies (see Lemma
1.2.1) that there exists an integer mp such that the image of pg can be
completely determined by mpg (or any multiple of it) and the reduction of
pe(Gk) modulo mp. This reduction is precisely the image pg m,(GKk).
It follows from this that we can completely describe the image of pgp by
determining an integer m which is a multiple of mg as well as the finite
image of pg m.

In this chapter we will develop and outline an algorithm which, given as

input an elliptic curve E over Q, outputs such an integer m and pg ,(Gq)

10



1.2. Background and notation

as a subgroup of GLg(Z/mZ). It is not clear a priori that such an algorithm
exists, given that even though the output of such an algorithm is ‘finite’,
the intermediate steps deal with ‘infinite’ objects such as GLg(Z) and its
(-adic projections GLgy(Zy). Several of these intermediate steps had already
been considered and dealt with successfully by various authors (see [Sut13],
[Zyw1lb], [Zywllal]), and we largely build upon this previous work. The
algorithm which we outline here is meant to serve, at least initially, mainly for
theoretical purposes, however we also look at some practical considerations
which can make this algorithm faster and we discuss some of them in the
last section.

For a prime ¢, denote by pg ¢~ the representation given by the action of
Gk on E[(>]. We call the image of pg ¢~ the (-adic image and denote it by
Gy. In Section 1.3 we consider first the so-called wvertical situation, which is
the problem of determining the ¢-adic image for a fixed prime £. In order to
do this we will consider the reductions of Gy modulo various powers of £.

In Section 1.4 we consider the horizontal situation, in which we vary the
prime ¢ and determine Gy for all £. The key result from this section is a
method of Zywina which allows one to quickly find a set of primes .S outside
of which the mod ¢ image is surjective. This together with Corollary 1.2.4
will allow us to determine Gy for all primes ¢. In Section 1.5 we consider the
entanglements between the various Gy. This amounts to determining the
intersections between the various £°°-torsion fields of E. It will be Proposi-
tion 1.5.3 that will allow us to do this. Finally, in the last section we discuss
some practical considerations that can make the algorithm outlined usable

in practice.

1.2 Background and notation

For the remainder of the chapter we fix our base field to be Q. For E/Q an

elliptic curve without complex multiplication, let E., denote the group of

11



Computing Galois representations attached to elliptic curves

torsion points of E over Q, that is, E(Q)ors. Consider the Tate module

T(E): l%n E[n],
where the maps E[n] — E[m] are given by multiplication by n/m, whenever
m divides n. Then Gg acts continuously on T'(E). It is a classical result
([Sil09]) that T(E) is a free Z-module of rank 2, hence we may fix a basis
for T(E) so as to identify Aut(Es) with GLy(Z), and we denote by pg :
Gg — GLa (Z) the continuous representation given by this action. Also, set
G := pp(Gg). By Serre’s open image theorem G is a finite index subgroup
of GLg (2) For each positive integer m we let GG,,, denote the projection of

G onto the finite product

11 GL2(Z).

om
We then have G,, ~ Gal(K,,/Q), where K,, is the m-power torsion field,
that is, the infinite extension of Q obtained by adjoining the coordinates
of all m"-torsion points of E for all n. Let G(m) denote the image of G
under the reduction modulo m map GLy(Z) — GLa(Z/mZ), so that G(m) ~
Gal(Q(E[m])/Q). We denote by pg , the representation given by the action
of Gg on E[m].

We will say that m splits pg if we have an equality

G = Gm X HGLQ(Z[).
Um

Note that m splitting pp depends only on the prime factors dividing m and
not on the powers to which these primes occur in the factorisation of m. We
will also say that m is stable if it holds that

12



1.2. Background and notation

where 7, denotes the reduction map [[y, GLa(Z¢) — GL2(Z/mZ). In
what follows we will also use 7, to denote the reduction map GLQ(Z) —
GL2(Z/mZ).

Lemma 1.2.1. Keeping the notation above, there is an integer m which

splits pg and is stable.

Proof. Since G is open in GLQ(Z), it contains an open neighbourhood of the
identity. If we let U, be the set of all matrices in GLq (Z) whose reduction

modulo m is I, then {Uy, }», is a neighbourhood base of GL2(Z), so it follows
that U, C G for some m. Clearly this m satisfies

where here 7, denotes the reduction map GLy(Z) — GLy(Z/mZ). This
implies m splits pg and is stable. O

Given a stable integer m which also splits pg we see that G is completely
determined by G(m), hence can be described by finitely many conditions.
Note also that if m is stable and splits pg, then so does any integer m’ such
that m | m’. For an elliptic curve E, we will use mg to denote the minimal
stable integer that splits pr. Note that mg divides all other stable integers
which split pp. As we have stated, our primary goal is to give a description
of the image of Galois GG, and we do this by determining an integer m which
is a multiple of mp as well as the finite group G(m). In the remainder of
this section we state some results which will prove useful for computing such

an integer.

1.2.1 Group theory for GL,

We quickly recall some facts about the groups GL2(Z/NZ) and GLa(Zy) for
N an integer and ¢ a prime. Most of the material from this section can be
found in [Ser68], §IV.

13



Computing Galois representations attached to elliptic curves

Lemma 1.2.2. PSLy(Z/lZ) is a simple group for { > 5. FEuvery proper
subgroup of PSLa(Z/lZ) is solvable or isomorphic to the alternating group
As, the last possibility occurring only if £ = +£1 (mod 5).

Lemma 1.2.3. Let ¢ > 5 be a prime and H be a closed subgroup of GLo(Zy)
whose projection mod £ contains SLa(Fy). Then H contains SLa(Zy).

Proof. This follows directly from Lemma 3, §IV-23 of [Ser68]. O

Corollary 1.2.4. Suppose £ > 5 is a prime and suppose G({) = GLo(Z /(7).
Then Gy = GLa(Zy).

Proof. This follows from Lemma 1.2.3 and the fact that the determinant
map det : Gy — Z; is surjective. O

For a profinite group Y we say that a finite simple group ® occurs in
Y if there exist closed subgroups Y7, Yo of Y such that Y7 is normal in Y5
and Ys/Y; ~ ®. We let Occ(Y) denote the set of finite simple non-abelian

groups occuring in Y. The following properties of Occ are easily checked.

(i) Y =1limY, and each Y — Y, is surjective then Occ(Y') = ,, Occ(Yy,).
—

n
(ii) If we have a short exact sequence of profinite groups
1 —Y —Y —Y"—1
then Occ(Y) = Oce(Y') U Oce(Y”).

Using these properties and Lemma 1.2.2 we obtain that

0 if0=23
PSLy(Z/5Z)} = {A if¢=5
ee(GLa(zy) - | (PIRE/E) = (s} =5,
{PSLy(Z/!Z)} if {=+2 (mod 5) and ¢ > 5,
{PSLy(Z/¢Z), As} if t=+1 (mod 5) and ¢ > 5.

14



1.2. Background and notation

Lemma 1.2.5. Let ¢ be prime. Then GLa(Z/lZ) has no simple non-abelian

quotients.

Proof. Suppose the converse. Then there exists a simple non-abelian group

® and a surjective group homomorphism
¢ : GLo(Z/0Z) — .

Since @ is then a composition factor of GLa(Z/(Z), it follows that GLg(Z/(Z)
is not solvable, hence ¢ > 5. By Lemma 1.2.2 we have that PSLo(Z/(Z) is

simple. The exact sequence
1 — SLo(Z/0Z) — GLo(Z/IZ) — (ZJIZ)* — 1

shows that ® ~ PSLy(Z/¢Z), since it is the only non-abelian composition
factor of SLo(Z/lZ). Now the centres of GLg(Z/¢Z) and PSLy(Z/{Z) are
(Z/EZ)>< and the trivial group, respectively, hence ¢ induces a surjective
homomorphism

W : PGLy(Z/07) —> PSLy(Z/(7),

where PGLo(Z/07) = GLo(Z/VZ)/(Z/¢Z)*. By £ > 2 we have
|PGLo(Z/Z) : PSLo(Z/IZ)| = 2,

so |kerty| = 2. Let N be the subgroup of GLa(Z/¢Z) such that kervy =
N/(Z/¢Z)*. Then (Z/¢Z)™ has index 2 in N, hence N is abelian. Also, as
ker <PGL2(Z/lZ), we have N < GLo(Z/lZ), hence GLo(Z/lZ) acts on N
by restricting inner automorphisms. We now show that this action is trivial.

Consider the homomorphism

GL2(Z/0Z) — Aut(N) (1.2.1)
T — Qg (1.2.2)

15
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given by the action mentioned above. This map satisfies that ¢, is the trivial
action when restricted to (Z/¢Z)” for x € GLo(Z/(Z). Also, as (Z/¢Z)” is
the center of GLa(Z/(Z), we have that (1.2.1) factors through PGLo(Z/(Z).
Denote this map by

U : PGLy(Z/0Z) — Aut(N).

Note that ¥ is trivial when restricted to PSLo(Z/¢Z), as this group is simple
and non-abelian. Also, W is trivial on kert¢ = N/(Z/¢Z)* as N is abelian.
Finally, kert) ¢ PSLy(Z/¢Z), so (ker)PSLa(Z/VZ) = PGL2(Z/¢Z). Hence
U is trivial and it follows that N is contained in the center of GLy(Z/(Z),
which is absurd. O

Corollary 1.2.6. Let N be a positive integer and let ® be a simple quotient
of GLo(Z/NZ). Then ® is abelian.

Proof. Suppose this is not so, and write N =[], £;"*. Then @ is a composition
factor of GLo(Z/NZ). The exact sequences

1 — GLy(Z /0 Z) — GLy(Z/NZ) — GLy(Z/(N/E¥)Z) — 1,
1— I+ O My (Z)4,2) — GLo(Z) 0 Z) — GLo(Z/ 00 Z) — 1,

together with the fact that I+ £~ ' My(Z/0;Z) C GLy(Z/{Z) is an abelian
subgroup (n; > 2), show that ® ~ PSLy(Z/¢Z) for some ¢|N and ¢ > 5. It

follows from this that we may assume N = ¢. Now apply Lemma 1.2.5.
O

1.2.2 Fibered products of groups

Let Gy, G2 and @Q be groups, ¥1 : G1 — @, ¥2 : Go — @Q be surjective
homomorphisms, and let 1 denote the abbreviation for the ordered pair
(11,12). We define the fibered product of G1 and Go over 1), denoted G Xy

16



1.2. Background and notation

G, to be the group

G1 xy G2 :={(91,92) € G1 x G2 : ¥1(g1) = 2(92)} (1.2.3)

Note that G xy Gz is a subdirect product of G; and G, that is, it is a
subgroup of G; x GGy which maps surjectively onto GG; and G5 under the
canonical projection homomorphisms. The following lemma tells us that the
converse of this also holds. We present the proof here since some elements

of it will be relevant later on in this and the next Chapter.

Lemma 1.2.7 (Goursat’s Lemma). Let Gy and G2 be groups and let G C
G1xGo be a subgroup such that the projections 1 : G — G1 and mg : G — G

are surjective. Then there exists a group QQ and surjective homomorphisms
P1: G — Q, Y2 : Go — Q such that G = Gy Xy, Ga. That is,

G ={(91,92) € G1 x G2 : ¥1(g1) = ¥2(92) }-

Proof. Let N1 = (G1 x {1}) NG and Ny = ({1} x G2) N G, where we use 1
to denote the identity elements of both G; and G3. Then Ny = ker my and
Ny = ker ;. Note that N1 <G as it is the kernel of ma. Hence 71 (N7)<m (G),
so it follows that 71(N7) < G;. Similarly we have mo(N2) < G2. Note that
mi(N;) =~ N; and hence (G; x {1})/N; ~ G;/m;(N;). Consider the map
f G — G1/Ny x G2/Ns defined by (g1, g2) — (91N1,92N2) where we have
written NV; in place of m;(N;). One can easily check that for (g1, g2) € G one
has
g1N1 = N1 <= gaNa = Ny

hence the image of f is the graph of a well-defined isomorphism G1/N; —
G2 /N;. The result now follows from setting @ := G3/N». O

We will refer to the N; in the proof as Goursat subgroups and to Q) as

the Goursat quotient associated to this fibered product.

17



Computing Galois representations attached to elliptic curves

Suppose now that L, /K, Ly /K are Galois extensions of fields, with G; =
Gal(L;/K) and G = Gal(L;Ls/K), where Li Ly denotes the compositum of
L1 and Lo. Then it is well known from Galois theory that

G ={(91,92) € G1 X G2 : g1 |11nL= 92 |L1nLo } < G1 X Ga.
Lemma 1.2.8. Keeping the above notation, we have that
G = G1 Xap G2

with ; : G; — Gal(L1 N Ly /K) the canonical restriction maps.

Proof. From the proof of Goursat’s lemma, N1 = (G x{1})NG and 7 (Vy) is
the subgroup of G which acts trivially on L1N Lo, and the result follows. [

1.2.3 Modular curves and maximal subgroups of GLy(Z/(Z)

In this section we briefly recall the modular curves associated to the maximal
subgroups of GLa(Z/¢Z) (for more details, see [DR73]). For a positive integer
n let X (n) denote the compactified modular curve which parametrizes ellip-
tic curves with full level n structure, and let H be a subgroup of GLa(Z/nZ)
such that det(H) = (Z/nZ)*. The corresponding modular curve Xy :=

X (n)/H is defined over Q and comes with a natural morphism
j: Xy — PL

Then for any = € P}(Q), we have that

3 an elliptic curve E over Q and a basis for E(Q)[n]

z € j(Xp(Q) = with j(E) =z and pgn(Gg) C H.

(1.2.4)
Now fix a prime £ > 3 and suppose that H is a maximal subgroup of
GL2(Z/0Z) with det(H) = (Z/¢Z)*. Then up to conjugation in GLy(Z/(Z),

18



1.2. Background and notation

H must be one of the following;:

(i) A Borel subgroup, which is formed by the upper triangular matrices
in GLo(Z/07Z).

(ii) The normaliser of a split Cartan subgroup of GL2(Z/(Z).
(iii) The normaliser of a non-split Cartan subgroup of GLa(Z/lZ).

(iv) A subgroup of GLy(Z/¢Z) whose projective image is Ss, A4 or As (this

last occurring only for certain primes /).

We define more generally the split and non-split Cartan subgroups as follows.
Let A be an étale free commutative Z/¢"Z-algebra of rank 2. The Fy-algebra
A/l A is isomorphic either to FyxFy or Fy2, in which case we say that A is split
or non-split, respectively. The unit group A* acts on A by multiplication,
so a choice of Z/{"Z-basis for A gives an embedding A* — GLy(Z/("Z). A
Cartan subgroup of GLo2(Z/¢"Z), denoted C(¢™), is a subgroup that arises
as the image of such an embedding. We say that C(¢") is split or non-split
and write Cs(€™) or Cys(¢") if A is split or non-split, respectively. We will
denote the normaliser of a Cartan subgroup by either CJ (¢"), CL(¢™) or
simply C* (™).

If H is one of the groups from cases (i), (ii), (iii) or (iv) above, then we
will denote the corresponding modular curve by Xo(¢), Xs(¢), Xyns(¢) and
Xp (), respectively where D can be one of Sy, A4 or As. By 1.2.4 there is a
fundamental relation between rational points on the above modular curves
and the mod ¢ image of pg. Specifically, let ¢(F) be the smallest positive
integer such that pg, is surjective for all £ > ¢(E). In [Ser72]| Serre asked
whether one can bound ¢(F) independent of E. It is widely conjectured
that for all £/Q one can take c¢(E) = 37, a conjecture first posed by Serre
himself in [Ser81], and which has come to be known as Serre’s Uniformity
Conjecture. The problem of finding explicit upper bounds for ¢(E) has seen

much progress in recent years. We will call exceptional points those rational
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Computing Galois representations attached to elliptic curves

points on Xy which are non-cuspidal and do not arise from CM elliptic
curves. From 1.2.4 we see that an exceptional point on Xy for H one of
the groups (i), (ii), (iii) or (iv) gives rise to a non-CM elliptic curve over
the rationals with non-surjective mod ¢ image. It follows then that Serre’s
above mentioned conjecture is equivalent to saying that the modular curves
Xo(f), X5(¢), Xns(£) and X p(¢) have no exceptional points for £ > 37.
Mazur has shown in [Maz78] that the modular curve X (¢) has no excep-
tional points if £ > 17 and ¢ # 37. He has also shown that Xy(37) has two
exceptional points, so the value 37 in Serre’s Uniformity Conjecture would
be best possible. Serre himself in [Ser81] showed that Xp(¢) has no excep-
tional points for £ > 13 and D equal to Sy, A4 or As. Recent work of Bilu
and Parent gives that for £ > 7, ¢ # 13 the curve X(¢) has no exceptional
points (See [BP11], [BPR11]). In general, very little is known about the
curve Xpg(¢). The combination of all of these results implies that for £ > 37,
is the image of pg, if not surjective then it must be contained in the nor-
maliser of a non-split Cartan subgroup. This will be of crucial importance
in order to show there exists an algorithm guaranteed to terminate which

determines pg(G).

1.3 The vertical case

In this section we consider the problem of determining the f-adic image
Gy for a fixed prime ¢. We do this by determining an integer n such that
Gy =1, (G(f™)) as well as computing the finite group G(£").

1.3.1 Associated vector spaces

By successively adjoining to Q the ¢-power torsion of E we obtain a tower
of field extensions Q C Q(E[/]) C Q(E[f?]) C --- C Q(E[¢(*]). Let M :=
Ms(Zy) denote the set of all 2 x 2 matrices with coefficients in Z;, and for

20



1.8. The vertical case

n > 1 let

Vo=IT+0"M

— keI‘ 7Tgn,
where 7y is defined as in Section 1.2. Also, let
Un = G¢ NV, = Gal(Q(E[¢]) /Q(E[L™])).

Note that we have G;/U,, ~ G({") ~ Gal(Q(E[¢"])/Q). We obtain in this
manner a filtration Gy D Uy D Us D ---. Consider now the map

MM — Vi, Vit
X mod /M +—I1+0"X mod V4

Since mod ("1 we have (I + (" X)(I+"Y)=1+("(X +Y) with X,Y €
M>5(Zy) and n > 1, this is a group isomorphism, and M /¢M ~ My(Fy) is a
vector space of dimension 4. If we look at the extension Q(E[¢("+1])/Q(E[¢]),

its Galois group is U, /Up+1 and we have an injective group homomorphism
Un/Upt1 — Ma(Fp), I+"A— A mod L.

It follows that [Q(E[("*!]) : Q(E£"])] divides ¢*. We will refer to U, /Up11
as the associated vector space to U,. It has dimension at most 4 over Fy.
Clearly if Gy = GL2(Zy) then G({™) = GLo(Z/¢"Z) for all n, hence
the associated vector space to U, has dimension 4 for all n > 1. It could
happen however that Gy C GL2a(Zy), for example if G(¢) C GLa(Fy). In such
cases the following lemma allows us to reduce the problem of determining
Gy to a finite computation, namely, that of determining the smallest n such
that U, /U,+1 has dimension 4. It is separated into two cases depending on

whether ¢ is even or odd.
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Computing Galois representations attached to elliptic curves

Lemma 1.3.1. (i) Let ¢ > 3. With the notation introduced above, let
n 2= 1 be such that the associated vector space to U, has dimension 4.
Then we have U, = V,,.

(i) Let £ = 2. Suppose that for some n > 2 the associated vector space to
U, has dimension 4. Then U, = V,. If the associated vector spaces to

Ui and Us each have dimension 4, then we have Uy = V7.

Proof. This is shown in [LT74], §6. O

Remark 1.3.2. From U, = V,, it follows that I + ¢"M C Gy, hence Gy =
T (G(£)), in other words, £ is stable.

1.3.2 Determining G,

The problem of computing G, can be reduced to computing G(£") for various
powers £". Firstly note that for any m, there is a deterministic algorithm
which computes (up to conjugacy) G(m). This consists in explicitly com-
puting the action of Gal(Q(E[m])/Q) on a chosen basis for E[m)].

Algorithm 1.3.3 (Computation of G(m) for a given m). Given a non-CM

curve E/Q and an integer m we can compute G(m) as follows.

1. Let f be the mth division polynomial of E. Construct the field Q(E[m])

as an (at most quadratic) extension of the splitting field of f.

2. Compute Gal(Q(E[m])/Q) as a subgroup of Sy, where d = [Q(E[m]) :
Q] (see for instance, [Coh93], §6.3).

3. Choose a basis P, @ for E[m| and determine the action of each ele-

ment of Gal(Q(E[m])/Q) on P and Q. Compute Gal(Q(E[m])/Q as a
subgroup of GLy(Z/mZ) with respect to the basis P, Q.

Using this it follows that we can compute the dimension of the associated

vector space to U, for all n. When this dimension is 4 (and when n > 2 if
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¢ =2), by Lemma 1.3.1 we can recover Gy as the pullback of the reduction

mod ¢ map.

Algorithm 1.3.4 (Computation of Gy for a given £). Given a non-CM curve

E/Q and a prime £ we can compute Gy as follows.

1. For each n > 1, use Algorithm 1.3.3 to compute G(£").

2. If £ # 2, continue this until |G(¢"*1)|/|G(¢*)| = ¢4, in which case set
ng :=n. When ¢ = 2, if |G(4)|/|G(2)| = 2* and |G(8)|/|G(4)| = 2*
then set ny = 1. Otherwise, starting with n = 2 compute G(2") until
|G(2"1)]/|G(2™)| = 2*, in which case set ng == n.

3. Return Gy as the subgroup of GLg(Zy) whose reduction modulo ¢™¢
equals G (™).

Remark 1.3.5. In order to compute Gy it suffices to find any integer n such
that ¢™ is stable, however the above algorithm finds the smallest such integer.
Note also that when G(¢) = GL2(Z/¢Z) and £ > 5 one does not have to
compute G(¢?), since by Lemma 1.2.4 we have that ¢ is stable.

In practice this brute force computation of G(¢") using Algorithm 1.3.3
is computationally feasible only for very small ¢ and small n, as the degree
of Q(E[¢"]) is typically on the order of £4*. For the purposes of obtaining a
deterministic algorithm we content ourselves with this approach for now. In
section 1.7 we consider some of the practical considerations which can help
speed up computations.

When analysing Algorithm 1.3.4, a natural question which arises is how
many steps it takes to compute a stable power of . Note that since Gy is
an open subgroup of GLg(Zy), Algorithm 1.3.4 is guaranteed to terminate
after a finite number of steps. It would be of interest therefore, to have a
bound on the maximum number of iterations it takes to find a stable ¢"

for a given elliptic curve E. Let N, denote the smallest integer such that
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¢NeE s stable for E. For £ > 17 and ¢ # 37 we can obtain an upper bound
for Ny g as follows. If pg, is surjective, then by Corollary 1.2.4 we have
that Gy = GL2(Zy) so the integer ¢ is already stable. By the discussion
in Section 1.2.3, if pg is not surjective, then up to conjugation G(¢) must
lie in the normaliser of a non-split Cartan subgroup of GLy(Z/¢Z). Also in
[Zyw11a], Zywina shows that for £ in the above range, one has that for every
positive integer n, either G(¢") is contained in the normaliser of a Cartan
subgroup of GLo(Z/¢"Z), or I + ¢*"M C G,. In the same paper he also

shows (Proposition 3.3, (ii)) that there exists a positive integer
Mg < (68N(1 + loglog N)/2)“(M+!

such that if G(£™) is contained in the normaliser of a Cartan subgroup with
¢ > 17 and ¢ # 37, then ¢ | Mp. Here N is the product of primes for
which E has bad reduction and w(N) is the number of distinct prime factors
of N. It follows from both of these results that if we let Bg := (68N (1 +
log log ]\7)1/2)“)(]\7)Jrl

is stable. This gives an upper bound (albeit a very poor one for practical

and we take n such that n > log Bg/log/, then (4"

computations) on the number of iterations it takes for ¢ to be stable for
primes ¢ > 17, £ # 37.

The bound given above depends on the elliptic curve E, and no such
effective upper bounds are known when ¢ < 17 or £ = 37. However, using
Faltings’ Theorem Zywina shows (see [Zywlla], Lemma 5.1) that there is a
non-effective bound which depends only on ¢ and holds for all elliptic curves
over Q.

With this in mind, denote by N, the smallest integer such that ¢M¢ is
stable for all elliptic curves over Q. For ¢ = 2, in a recent paper [RZB14],
it is shown by classifying all possible 2-adic images of Gg that No = 5. In
theory it should be possible to do the same for other small primes ¢ > 3,

however as of yet there are no results as strong as this one. In numerical
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computations it is observed that Ny, is quite small, typically at most 2 for
¢ > 3. This is believed to be the case in particular for larger primes ¢. In

fact, as previously mentioned for £ > 37 it is believed that N, = 1.

1.4 The horizontal case

We now consider the problem of determining G, for all primes ¢. From the
previous section for any given ¢ we can compute Gy, however as there are
infinitely many primes, we must determine a finite subset of them outside
of which the f-adic image is surjective. Serre’s open image theorem implies
that this set exists for non-CM curves, and indeed by Corollary 1.2.4 for
¢ > 5, having G({) = GLy(Z/¢Z) implies Gy = GLa(Zy).

We now describe an algorithm of Zywina that allows one to find the set
of primes S for which pg, is not surjective. This uses the key fact that if
¢ > 37, then pg is either surjective or is contained in the normaliser C ()
of a Cartan subgroup of GLa(Z/VZ).

Let £ be a prime greater than 37. The first thing to note is that G(¢) is
not contained in the Cartan subgroup C(¢). If C'(¢) is split, then it consists
of the diagonal matrices which are contained in a Borel subgroup, hence it
follows from Mazur that G(¢) is not contained in C'(¢). Suppose that C(¥)
is non-split, and let w € Fy2 be such that w? = €, where € is a non-square in
F;. Then by the description given in subsection 1.2.3 it follows that if we
choose {1,w} to be an Fy-basis for Fj2, then we have that

{(Z eb) : a,b € ZJUZ, (a,b) # (0,0) (mod z)},

is a non-split Cartan subgroup of GLa(Z/¢Z). 1f we let A € GLy(Z/{Z) be
the image of complex conjugation under py, then it follows that A has order
2 and det(A) = —1 and hence is not contained in C'(¢). It follows then that
in both cases G(¢) does not lie in C(¥).
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Define the quadratic character
Wy GQ — C+(€)/C(£) ~ {:El}

which by the above discussion is non-trivial. Let Ng denote the conductor

of E, and define M to be the product of the following prime powers:
e 8 if 4 | Ng and orda(j — 1728) > 0,
e 3,if 9| Ng and ords(j — 1728) > 0,
e p,if p> | Ng, p > 5 and ord,(j — 1728) is odd.
In [Zyw11b], Zywina proves the following lemma.
Lemma 1.4.1. Keeping the above notation, we have that the following holds:

(i) The character vy is unramified at all primes p such that p { M or
p==~L.

(7t) If pt Ng and ve(Frob,) = —1, then a, =0 (mod ¢), where a, denotes

the trace of Frobenius.

The above lemma is useful because if p { Ng is a prime such that a, # 0
and ¢ (Froby,) = —1, then Lemma 1.4.1 implies that ¢ | a, (note that p { M)

and the Hasse bound then gives
< ap| < 24/p.

It follows that such a choice of p would give an upper bound for £. We now
describe how to use this to construct the set of primes S for which pg, is
not surjective.

Consider the group V' of characters (Z/MZ)* — Fa, which is a vector
space over Fo. Let x1,...xq be a basis of V' over Fy, which we can take

to be the characters (5) for each odd prime ¢ | M, the character x(a) =
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(—=1)@1/2 if M is even and the character y(a) = (—1)(@"~1/8 if 8|M.
Consider the sequence of primes p; < pa < p3 < ... such that p; 1 Ng
and ap, # 0. Note then that p; does not divide M. For each r > 1, define
the matrix over Fy given by A, := (Xj(pi))z‘,j with 1 <i<r, 1<) <d
By Dirichlet’s theorem and the fact that the set of primes of supersingular
reduction of a non-CM curve has density 0 ([Ser64]) we have that any vector
in F¢ is of the form (x1(p), ..., xa(p)) for some prime p { Ng with a, # 0. It
follows then that A, will have rank d for all sufficiently large r.

Lemma 1.4.2. Suppose the matrixz A, has rank d, and let £ > 11 be a prime
that does not divide [];_; ap,. Then G({) is not contained in the normaliser
of a Cartan subgroup. In particular, G(¢) = GLa(Z/lZ) for all £ > 37 that

do not divide [[;_; ap, .

Proof. See Lemma 3.1 of [Zyw11b]. O

Algorithm 1.4.3 (Finding the set of primes S for which the mod ¢ image

is not surjective). Keeping the notation above, we can compute S as follows.

1. Compute M, and for each i = 1,2,... compute the vector

(x1(Pi)s -+, xa(pi)) as well as the matriz A,.

2. Continue this until A, has rank d, in which case set S’ to be the set of

primes £ > 37 that divide [[;_; ap,.

3. For each prime £ € S, use Algorithm 1.3.3 to determine whether or
not pg g is surjective. Set S to be the subset of primes of S’ for which

the mod ¢ image is not surjective.

Algorithm 1.4.3 works quite well even in practice, and as we have seen
in Section 1.2.3, it is conjectured that any ¢ for which the mod ¢ image is
non-surjective will satisfy £ < 37. It should also be noted that in Algorithm
1.4.3 if A, has rank d with p, < 419, then pg/ is surjective for all primes
£ > 37. This follows since the Hasse bound implies that if A, has rank d,
then pg is surjective for all primes ¢ > max(37,2,/p;).
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1.5 Dealing with entanglements

From the previous two sections we have an algorithm to determine the set S
of primes ¢ for which pg/ is not surjective. In addition, by Corollary 1.2.4
we have that Gy = GLa(Zy) for ¢ outside of SU{2,3}, hence for every prime
¢ we are able to determine the f-adic image Gy. What remains is to compute

the possible entanglements between the torsion fields of E. Set

T:={2,3}USU{l : (| Ng},

m::HE.

LeT

Lemma 1.5.1. The integer m splits pg, that is,

G = Gm x [ GLa(Zy).
Um

Proof. The proof follows similar lines as that of Theorem 6.1 in [LT74], as

well as §IV, 3.4 of [Ser68]. Let £ := {¢ : ¢ ¢ T}, and let G, be the
projection of G onto [],c, GL2(Z,). We first show that

G = ] GL2(Zy). (1.5.1)
lel

For B a subset of £, denote by 7z g the projection

me5: | ] GL2(Zg) — ] GLa(Ze) (1.5.2)
lel leB

and let G, p denote the image of G under the map (1.5.2). We show
that if Gz p = [lyep GL2(Z¢) then for any prime ¢y € L — B we have
Gr.puftey = Ieepugey GL2(Ze). Since Gy = GLa(Zy), this implies G
is dense in [[,c, GL2(Z¢) and since it is closed by Serre’s open image the-
orem, (1.5.1) will then follow. Let then By := B U {{y}, and recall that
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we may view G p, as a subgroup of G p X G (1. Let Qo denote the
Goursat quotient associated to the fibered product given by the inclusion
Gr.By = G, X G g4y By Lemma 1.2.8 we have ()9 may be identified
with Gal(Kp N K{4,,/Q), where Kp is the compositum of the {-power tor-
sion fields Q(E[¢*°]) for ¢ € B. Note that () is a common finite quotient
of Gr.p = [lsep GLa(Z¢) and G 140y = GLa(Zy,). Suppose that Qg is non-
trivial. Replacing Qo by a quotient and KN Ky by a subfield if necessary,
we may assume that Qg is a simple quotient. But then there is an integer
N divisible by primes only in B and an integer n such that ¢ is a common
simple quotient of GLo(Z/NZ) and GL2(Z/¢3Z), hence it must be abelian
by Corollary 1.2.6. It follows that Kp N Ky, non-trivially intersects the
maximal abelian extensions of Q inside Q(E[N]) and Q(E[¢;]). Since both
N and ¢y are odd, these extensions are, respectively, Q({x) and Q(ng). We
conclude that Kp N K4, = Q, hence Qo is trivial and (1.5.1) holds.
Consider now the inclusion G — G,, X Gz and denote by @, the cor-
responding Goursat quotient. By the same reasoning as above, it suffices to
show that K,, N K = Q, where K,, is the compositum of the £*°-torsion
fields for ¢ | m. Suppose then that @, is non-trivial. By replacing @,, by
a quotient we may again assume @Q,, is simple. Then there is an integer
M divisible only by primes dividing m and an integer n coprime to m such
that @, is a common simple quotient of G(M) and GLa(Z/nZ), hence is
again abelian by Corollary 1.2.6. It follows that K, N K non-trivially in-
tersects Q(E[M]) N Q(¢,). However since m is divisible by all primes of bad
reduction, Q(E[M]) is unramified outside of primes dividing m, and Q(¢,)
is unramified outside of primes dividing n, we conclude K,, N Ky = Q and

Q. is trivial. This completes the proof. O

From the above lemma it follows that 7 contains all the prime divisors
of mg and that

G =G, x H GL2(Zy)
Um
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so in order to determine G it remains to compute G,,,. We will give a method

to determine an integer m such that

Gm = 11 (G(m)). (1.5.3)

m

There is a natural embedding G, < [[;c7 G, however this is in general
not surjective due to the fact that distinct ¢-power torsion fields can have
non-trivial intersection. From an algorithmic point of view, the problem is
that we need to determine intersections between fields of infinite degree over

Q. For this we will require the following lemma.

Lemma 1.5.2. Let N > 1 be a positive integer, £ > 2 a prime and A €
I+ ¢NM, where M = My(Zy). Then there exists Y € I +¢N"'M such that
Y¢=A. If ¢ =2 then we must take N > 2.

Proof. Suppose ¢ > 2. We inductively construct the sequence {4,} by
A1 =TI and
An+1 =Ap— -

for n > 1. Let e, be the largest integer such that
AL —A=0 (mod ¢°).
We show by induction that for n > 1 we have
(i) en = 1+2""1(N — 1), and further we may write

AL — A= N-Dp

n

where B,, € M commutes with A,, and A.

(ii) A, commutes with A.

(iii) A, =1 (mod ¢N—1).
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Note that at each step, by (i) and the fact that 14+ 2" 1(N — 1) > 1 for
every n we have 1/£(A% — A) is in M. Also, by (iii) we have A, € GLa(Z)
and hence A,11 is a well-defined element of M. We now proceed to show
(i), (ii) and (iii) for all n.

For n = 1, part (i) follows directly by assumption on A, and parts (ii)
and (iii) are clear. Now assume (i), (ii) and (iii) are true for n. We first

show (i) for n + 1. By (i) for n we have
AK _ A= €1+2"_1(N71)Bn

where B,, commutes with A,, and A. Then compute

n— V4
o A= (po 0 )
— AZ _ £1+2n71(N—1)Bn 4.

+ (_1)862"*1(N—l)éBﬁ(Agl)EQ—E _A
= (5) Ezn(N‘l)B%A,‘Ll 4.
+ (_1)££2"*1(N—1)£BZ (A—1)€2—€

= (2NN,

where in the second equality we have used the fact that A,, and B,, commute,

in the third one we have used that
A,ﬁ A= €1+2"71(N—1)Bn,

and in the last one we have used the fact that £ > 2, which gives 2" }(INV —
1) > 1+ 2"(N —1). Now note that A commutes with A, and B,, and
also A, commutes with B,,, hence both A,1; and A commute with B,1,

establishing (i). Part (ii) follows immediately from the fact that A commutes
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with A,. Finally, observe that 2"~'(N — 1) > N — 1, hence

Apy1 = A, — 62"—1(N71)Bn(A71)Z71

n

satisfies A,;1 = I (mod ¢N~1), establishing (iii), and this completes the
induction.
Observe now that this sequence satisfies

1 Ci—
An—i—l_An:_z(Aé _A)(A 1)K !

n n

=0 (mod ZQTL?l(N_l))

hence A,, converges to some limit Y € I+ ¢N~1M by (iii). Finally by (i), we
obtain Y¥ = A, as desired. The case ¢ = 2 is shown similarly, except here
the we obtain e, > 2 + 2" (N — 2), so we must take N > 2. O

Let ¢4 > £y > --- > £, be the primes in 7, where ¢, = 2. For B a subset
of {{1,...,4,} we denote by Gp the projection of Gy, onto the product of
primes in B. Also, for each 1 < k < nlet By := {¢1,02,...,0;}.

Proposition 1.5.3. Let k < n, let my, be such that Gg, = . (G(my)).
Let £;F | be the largest power of L1 dividing the order of G(¢y---£y), and

let t), > 1 be such that BZ’:_l 1s stable. Also, set

ty +ex if b1 > 3,
o=
3-max{tk+ek,2+ek} if€k+l =2

and myqy = L3, mg. Then Gp,,, = 7I';L£+1 (G(mg+1))-

Remark 1.5.4. Note that because G, = Gy, is known, then so is m;. Also
since Gp, = G, the above proposition allows us to determine m = m,, in

a finite number of steps. In particular we have that mg divides m,,.
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Proof. Recall that G, may be identified with Gal(Kp, /Q) where as before

Kp, is the compositum of the {-power torsion fields Q(E[¢>°]) for ¢ € By,.
Note that Gp,,, may be viewed as a subgroup of Gp, X Gy, whose

projections are surjective, so let Np, and Ny, , be the corresponding Goursat

subgroups. By Lemma 1.2.8 the isomorphic quotients
GBk/NBk — GZkH/NékH

may be identified with Gal(Kp, N Ky, ,/Q), which we will denote by .
We see that determining ® is equivalent to determining the intersection
K B, N K, lpsr

Suppose that f;11 > 2. Define Uy, to be

Uy ={Ae€Gp,:A=1 (mod{;---ly)}

and observe that the order of any finite quotient of Uy is divisible only by
primes in By, all of which are greater than fx1q. Then since any finite
quotient of Gy, is divisible only by primes dividing the product (fxy1 —
1)lkt1(€k1 + 1) and £i41 # 2 it follows that Uy maps to the identity in the
composite map

Uk — GBk/NBk L) ng+l/Ngk+1

and so Up C Np,. Also, since we have that U, may be identified with
Gal(Kp, /Q(E[ly ---£y])) it follows

KBk N ngJrl C Q(E[El .. fk])
Consider the subgroup of Gy, , given by
Q:= (A% Ae Gy, ) <Gy,

We claim that the map Gy, ,, — ® factors via Gy, /((I 4+ lp1 M) N Q).
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This is clear since for any A € (I 4,11 M)NQ, the image of A in & will have
order a power of ¢; 1, and will also itself be a product of £Z’f~_1-th powers.
But any such element of ® must be trivial since the highest power of £
dividing ® is not greater than £;% .

Note that I+ £, 7*M C Gy, ,,. If e, > 1 then a > 2 and so by repeated
application of Lemma 1.5.2 with « = N we obtain that for any A € I+£7, | M

there exists Y € T + Kz;ko such that Y51 = A. Tt follows that

T+ 62 M C (I+ Ll M) N Q. (1.5.4)

If e, = 0 then (1.5.4) is trivially true since in this case @ = Gy, .. We

conclude
Kp, N Ky, = Q(E[ly---L]) N Q(E[l4]).

Suppose now that £;,1 = 2, so that kK = n — 1. Note that in this case
I+4; -+ 0,1 M need not map to the identity in G2 /N3 since G5 has quotients
of order divisible by 3. We show however that

Ko N KBn—l - Q(E[?)H_lgl s fn_g}) (1.5.5)
where t > 1 is denoting an integer such that 3¢ is stable. Define
T := (A3 : A e G3) < Gs.

Since the order G2/Ny has at most one factor of 3, the map Gs — G2/Ny
factors via Gs/((I +3M)NTs). Note also that [ +3'M C Gg and t+1 > 2,

hence by Lemma 1.5.2 we have

(I+3"M) c (I+3M)NTs.
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It follows that if we define
U, _,={AcGp, ,:A=T (mod 3™ -0, 5)}

then U/ _; maps to the identity in Go/Na, hence (1.5.5) holds. Similarly as

before we can also show that
KynNKpg, , C Q(E[29)).

The result now follows. O

1.6 Algorithm to compute pp(Gg)

We now have all the ingredients necessary to give a deterministic algorithm
which, given an elliptic curve F/, determines the image of pg. We summarize

it below.

Algorithm 1.6.1 (Determining the image of pg). Given a non-CM elliptic

curve over Q, we may determine pg as follows.

1. Use Algorithm 1.4.3 to determine the set of primes S for which the

mod ¢ image is not surjective.
2. Define the set T :={2,3,5}USU{¢: (| Ng}.
3. For each £ € T, use Algorithm 1.3.4 to determine Gy.

4. For each k = 1,...,n — 1, use Proposition 1.5.3 to determine my41.
Note that this is possible as for each ¢ € T we have already computed
t such that ¢¢ is stable. Also, using Algorithm 1.3.3 we may determine
the largest power of ¢ dividing any of the finite groups G (¢ - - - {y).

5. Once determined m,, use Algorithm 1.3.3 to compute G(m,,).
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1.7 Practical considerations

As mentioned previously, Algorithm 1.6 is very slow in practice. Unless the
set T contains only primes less than 7 and the stable powers of those primes
are less than 2 this algorithm will take a very long time. There are several
steps throughout which can be made much faster if we sacrifice having an
unconditional algorithm. This is managed by instead at some steps having
a heuristic algorithm using Frobenius statistics. In this section we briefly
describe this approach.

The most time consuming step in our algorithm is the computation of
G(m) using Algorithm 1.3.3. If m = ¢ is prime, then there is a very fast
algorithm due to Sutherland ([Sut13]) which computes the image of pg ¢ up
to isomorphism, and usually up to conjugacy by using Frobenius statistics. If
pE,¢ is surjective, then the algorithm proves this unconditionally. Otherwise
its output is correct with a very high probability. This has been used to
compute the mod ¢ image for every curve in the Cremona and Stein-Watkins
databases for all ¢ < 60.

Recall the notation of Section 1.3.1. We have used the Algorithm 1.3.3
to compute the smallest n such that the associated vector space to U, has
dimension 4. This is also quite time consuming when using Algorithm 1.3.3.

Another way to do this would be to produce four elements Y; € Gy such that
Y;=T+/0"X; (mod (")

for 1 < i < 4, and such that the X; are linearly independent mod ¢, and
we can try to produce these elements via Frobenius elements at unramified
primes. To be precise, let p be a prime of good reduction and as usual a,
denote the trace of Frobenius. Then one way to try to achieve this is by

using the characteristic polynomial of Frob, which we know is

(X)) = X? — apX +p.
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This can be done easily using machine computation, and in this manner we
can explicitly write down reductions mod ¢" of matrices in Gy, for suitable
. If we are able to produce the four required elements Y; then this shows
unconditionally that £" is stable. This method however has the limitation
that it does not work so well if the mod ¢ image is ‘small’. See [LT74], §8 for
one example of this method being used effectively.

We can conditionally determine the power ny such that £™¢ is stable,
provided £™ is not too large. One method to do this is to use the density of
primes p { Ng which split completely in Q(E[¢"]) to determine the degree of
Q(E[¢™]) for different n, and increase n until [Q(E[("]) : Q(E[¢"~1])] = ¢*.

We illustrate this with an example.

1.7.1 Example: Y2+ XY +V = X3 +4X —6

Consider the elliptic curve E over Q given by Weierstrass equation Y2+ XY +
Y = X3+44X —6. The discriminant of this Weierstrass model is A = —2673.
Using Algorithm 1.4.3 and Sutherland’s algorithm for the mod ¢ image we
obtain that pg ¢ is surjective for all £ # 2,3 and G(2) ~ G(3) ~ {£1}. This
already implies that Gy = GL2a(Zy) for all £ > 3. The next step is to find
G5 and G3 by finding exponents n9 and ng such that 22 and 3™ are stable.
Here using Algorithm 1.3.3 is relatively fast for computing G(2) and G(4),
however it quickly becomes infeasible to compute the 2"-torsion for higher
powers of 2. Also, the mod 2 and mod 3 images are too small for the method
of Frobenius sampling outlined above to work.

Note that by Chebotarev, for each prime p { 14 the density of primes
splitting completely in Q(E[4]) is 1/|G(4)|. For each prime p 1 14 up to
a chosen bound B we compute the observed density of primes such that
the reduced curve E(F,) has full 4-torsion. The observed density of primes
p < 10000000 is 0.0311144 while 1/2° ~ 0.03125, so we can conditionally
conclude that [Q(E[22]) : Q(E[2])] = 2* In the same manner one can
determine that [Q(E[2%]) : Q(E[2%])] = 23 and [Q(E[2Y]) : Q(E[2%])] =
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24, hence 22 is stable. In the same way we can deduce that 3 is stable.
In principle we may do the same thing to determine the degrees of the
intersections between various torsion fields in such a way to determine |G/(23-
3 - 7)|, however this is quite time-consuming when the degrees of the fields
in question are large.

The information we have obtained on the various mod ¢ images of pg
is, in this particular situation, already sufficient for us to determine mpg,
using the same techniques we have used throughout this chapter. We first
determine G(8 - 7), which is equivalent to determining Q(E[8]) N Q(E[T7]).
Note first of all that

Q(E[2]) = Q(VA) C Q(¢r) € QEIT)).

Let L = Q(E[8]) N Q(E[7]). We claim that L = Q(v/—7). Suppose
otherwise that Q(v/—7) is strictly contained in L. As K is a pro-2 tower
of fields it follows that L/Q(1/—7) is a 2-power extension. Note that by the
computations above we know that G(7) ~ GLa(F7). Let Q(E[7];) be the
subfield of Q(E[7]) fixed by {£1}, so that

Gal(Q(E[7])2/Q(C7)) ~ PSLy(F7).

Since L is Galois over Q(v/=T7), it follows that L ¢ Q(E[7],), for if it were
then LQ(¢7) would be a non-trivial Galois extension of Q((7), and hence
it would correspond to a non-trivial normal subgroup of PSLs(F7), contra-
dicting the simplicity of PSLy(F,) for £ > 5. Finally, if L ¢ Q(E][7];), then
LQ(¢7) corresponds to a proper subgroup of SLy(F7) which maps surjec-
tively onto PSLa(FF7), contradicting Lemma 2, §3.4 in [Ser68]. This shows
that L = Q(v/—T7).

It remains then to compute the intersection K3 N (K2K7). Let @ be
the Goursat quotient corresponding to this intersection. That is, @ ~
Gal(M/Q) where M = K3 N K2K7. Note that since Q(E[3]) = Q((3) is
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totally ramified at 3, and K3/Q(E[3]) is pro-3, then @ is a 3- group. Let
U = Gal(K2K7/Q(EI7]). Then every finite quotient of U has order divisible
only by 2 and 7, hence U maps to the identity under U — @, and it follows
that M C Q(E[7]).

By replacing ) with a subgroup if necessary, we may assume () is simple.
By Lemma 1.2.6, the only simple non-abelian quotient of GLo(Z/7Z) is
PSLo(Z/7Z), hence it follows that ) must be abelian. We have then that
the only possibility is Q ~ (Z/7Z)* /{£1}.
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Chapter 2

Entanglement correction

factors as character sums

2.1 Introduction

The motivation for this chapter comes from the classical conjecture of Artin
from 1927 which predicts the density of primes p for which a given rational
number is a primitive root modulo p. More precisely, let g be an integer
different from +1, and let h be the largest integer such that g = g(})’ with
go € Z. The heuristic reasoning described by Artin was the following. If p
is a prime number coprime to g, then g is a primitive root modulo p if and
only if there is no prime £ dividing p — 1 such that g = y* (mod p) for some
1. Note that this congruence condition can be given as a splitting condition
on the prime p in the field Fy := Q((, /g). Indeed, the condition on p is
equivalent to p not splitting completely in the aforementioned field. In other
words, ¢ is a primitive root modulo p if and only if for every prime £ < p we
have that Frob, is not the identity element in Gal(F;/Q).

For a fixed ¢, the density of primes which do not split completely in Fj
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Entanglement correction factors as character sums

is equal to )

[Fy: Q)

and this equals 1 — ﬁ for ¢ | h and 1 — Z(Tl—n otherwise. If we assume

Op:=1—

the splitting conditions in the various fields Fy to be independent, then
it is reasonable to expect that the density of primes p for which g is a
primitive root modulo p is equal to [[,d,. This was the density originally
conjectured by Artin, however years later (see [Ste03]) he noticed that this
assumption of independence is not correct, as the fields Fy can have non-
trivial intersections. If F5 = Q(,/g) has discriminant D = 1 (mod 4), then
F; is contained in the compositum of the fields Fy; with ¢ | D. The corrected
version of the conjecture was proven by Hooley under the assumption of
the Generalized Riemann Hypothesis (GRH). He showed in [Hoo67] that,
conditional on GRH, the density of primes such that ¢ is a primitive root

modulo p equals
— A(n)
= 2.1.1
2 211

where F,, = Q((n, {/g) and g is the Mobius function. In the same paper

Hooley shows that (2.1.1) can be rewritten as

1
g_e:gH(1—m)H(1—m), (2.1.2)

tth

where €, is an entanglement correction factor, a rational number which

depends on g. In fact it is given explicitly by

He—z Hﬁ—z—l

‘D
é|h oh

One advantage of having Cj in the form given by (2.1.2) is that it makes it

easy to see when the density Cy vanishes. Vanishing of C; implies that, con-
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jecturally, there exist only finitely many primes p such that g is a primitive
root modulo p, and the multiplicative structure of Cy and €, allows one to
identify precisely what are the obstructions to this.

There are many interesting generalisations to Artin’s conjecture on prim-
itive roots. For instance, one could consider only primes p which lie in a pre-
scribed congruence class modulo some integer f. One could also study the
set of primes p such that g generates a subgroup of a given index in (Z/pZ)*.
As is shown in [Len77], in both of these cases one can again obtain a density
under GRH via a formula similar to (2.1.1). However, it is not clear how to
describe the non-vanishing criteria of such densities from such a sum.

In [LMS14], the authors develop an efficient method to compute entan-
glement correction factors €, for Artin’s original conjecture and several of its
generalisations. Their method consists in expressing €, as a sum of quadratic

characters. More precisely, they show that €, has the form
Cg =1+ H Ey
¢

where each Ejy is the average value of a character y, over an explicit set. One
crucial fact used to arrive at this form is that when D = 1 (mod 4), then

for n divisible by 2D we have that the subgroup

Gal(F,,/Q) = | [ Gal(F;/Q)

ln

is cut out by a quadratic character x measuring the nature of the entangle-
ment. The structure of C; as an Euler product and the description of €,
naturally lead to non-vanishing criteria.

In this chapter we attempt to generalize this method to the setting of
elliptic curves. There are many problems concerning the study of the set
of primes p such that the reduced curve E(Fp) satisfies a certain condi-

tion. Onme of these arises as a natural analogue of Artin’s conjecture on
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primitive roots. Namely, given an elliptic curve E over QQ, the problem is
to determine the density of primes p such that E(Fp) is cyclic. The first
thing to note is that the condition of E(Fp) being cyclic is completely de-
termined by the splitting behaviour of p in the various torsion fields Q(E[¢])
for different ¢. Given this, we can proceed similarly by defining local densi-
ties dy and attempting to find the entanglement correction factor €g, how-
ever one quickly runs into various difficulties which were not present in the
case of classical Artin. One of these is that it is not necessarily true that
Gal(Q(E[m])/Q) = IIyjm Gal(Q(E[(])/Q) is a normal subgroup and even if
so, the quotient need not be {£1} or even abelian for that matter.

This leads us to the study in Section 2.2 of so called abelian entangle-
ments. If G is a subgroup of G1 x --- x GG, such that the projection maps
m « G — G; are surjective for 1 < ¢ < n, then we give a necessary and suffi-
cient condition for G being normal in G1 X --- X GG, with abelian quotient.

In Section 2.3 we define elliptic curves with abelian entanglements to be
those elliptic curves with the property that G(mpg) has abelian entangle-
ments in the sense of Section 2.2. We show that this definition is equivalent
to Q(E[m1]) N Q(E[ms2]) being an abelian extension of Q for every coprime
m1,ms. It is for this class of curves that we will be able to apply our char-
acter sum method, with Theorem 2.3.4 being a crucial ingredient.

Section 2.4 applies Theorem 2.3.4 to the aforementioned problem of cyclic
reduction of elliptic curves. We explicitly evaluate the density Cr as an Euler
product [, ¢ times an entanglement correction factor €g. We then compute
€r in the case of Serre curves and give examples of a few other elliptic curves
with more complicated Galois Theory, as well as establishing non-vanishing
criteria for these conjectural densities.

In Section 2.5 we study a variant of the problem of cyclic reduction on
elliptic curves. Namely, we impose the additional condition that p lie in a
prescribed congruence class modulo some integer f. This introduces new

difficulties as the splitting conditions on p become more complicated, but it
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2.2. Abelian entanglements

also illustrates the way in which our method can be used to handle a variety
of different scenarios. In the end the computation of € is again reduced to
fairly mechanical local computations. Again Serre curves and several other
examples are treated in detail.

Section 2.6 we study a different type of problem. We look at a classical
conjecture of Koblitz on the asymptotic behaviour of the number of primes
p for which the cardinality of E(Fp) is prime. We see that the character
sum approach can also be applied to describe the constant appearing in
this asymptotic. In this case there are not even conditional results, and the
constant computed is purely conjectural. However the constant we compute
has previously been described via different methods by Zywina in [Zywllc],
where he provides some convincing numerical evidence for it.

The study of conjectural constants led us to investigate the class of elliptic
curves with abelian entanglements, and naturally leads to the question of
whether there exist elliptic curves with non-abelian entanglements. To be
precise, can one classify the triples (E, mi,m2) with E an elliptic curve over
Q and my,msy a pair of coprime integers for which the entanglement field
Q(E[mi1]) N Q(E[m2]) is non-abelian over Q7 In Chapter 3 we exhibit an
infinite family of elliptic curves for which this is the case, and in doing so
we obtain a complete set of modular curves which parametrize non-Serre

curves.

2.2 Abelian entanglements

In this section we study the following question: if G is a subgroup of G x

- X Gy such that the projection maps m; : G — G; are surjective for

1 < i < n, when does it happen that G is normal in G; x --- X G,, with
abelian quotient?

For a group G, we will denote by G’ the commutator subgroup of G, and

1

for z,y € G, [z,y] = 2~y toy will denote the commutator of z and y. For
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a non-empty subset S C {1,...,n} we write mg for the projection map

7T5':G1><'-‘XGn—>HGi
€S
and let Gg denote the image of G under this projection map. Note that for

each partition U;T; = {1,...,n} we have a canonical inclusion

G —— H GTj-
J
Let P :={S, T} be a partition of {1,...,n}, so that SUT ={1,...,n}.
Then G is a subdirect product of Gg x G so by Goursat’s lemma there is

a group @Qp and a pair of homomorphisms ¥p := (wg ),wg )) with

such that G = Gg Xy, Gr. We say that G has abelian entanglements
with respect to G1 X -+ x Gy, if Qp is abelian for each two-set partition P
of {1,...,n}. We will often write only that G has abelian entanglements,
omitting with respect to which direct product of groups if this is clear from
the context. The following proposition is the main result of this section and

provides an answer to the question posed at the start.

Proposition 2.2.1. Keeping the notation as above, G is a normal subgroup

of G1 X -+ X Gy, if and only if G has abelian entanglements.
The proof will use the following proposition, which is the case n = 2.

Proposition 2.2.2. Let G be a subgroup of G1 X Go such that the projection
maps w1 : G = G1 and mo : G — Go are surjective. Then G I Gy X Gy if

and only if G has abelian entanglements.
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2.2. Abelian entanglements

Proof. Suppose first that G has abelian entanglements, and let = := (x1,x2) €
G. We will show that for any a € Gy x {1} one has aza™! € G, and
similarly for every b € {1} x Ga2. The result will then follow. So take
a:= (a1,1) € Gy x {1}. Let Ny and Na be the corresponding Goursat sub-
groups associated to G, that is, N = (G1 x{1})NG and Ny = ({1} xG2)NG.
Then because G has abelian entanglements we have that (G1 x {1})/N; is
abelian, or equivalently (G x{1})" < Nj. It follows that [(a1,1), (z1,1)] € G,

however

[(a17 1)a (:L‘la 1)] = ((11, 1)($1a 1)((11’ 1)_1($1a 1)_1

= (al, 1)(.%1, mg)(al, 1)_1($1, IEQ)_l

Lis in G, hence (a1, 1)(z1,72)(a1,1)7! is also in G, as claimed.

and (z1,z2)”
Similarly one can show (1,b2)(z1,22)(1,b2)~! € G for any by € Go, and we
conclude G is normal in G1 x Gs.

For the converse, suppose that G I G x Ga. We will show that (G x
{1})" < Ny, from which it follows that G has abelian entanglements. Let
(1,1) and (y1,1) be arbitrary elements of G; x {1}. Because m; : G — G}
is surjective, there exists z € Gg such that (y1,2) € G. As G 4Gy x Ga, we
have (x1,1)(y1, 2)(z1,1)"! is in G and hence so is [(z1, 1), (y1, 2)]. Using the
fact that [(z1,1), (y1,1)] = [(z1,1), (y1, 2)], we obtain [(z1,1), (y1,1)] € G.
However [(z1,1), (y1,1)] = ([x1,¥1],1) € G1 x {1}, hence the result. O

Proof of Proposition 2.2.1. Again we suppose first that G has abelian en-
tanglements, and we proceed similarly as in the case n = 2. Let z :=
(z1,...,2,) € G, and for j € {1,...,n} let a := (1,...,1,a;,1,...,1) €
{1} x---x {1} x Gj x {1} x - - - x {1} where the a; is in the j-th position. Let
Sj = A{1,...,n}\{j}. Then G < G; x G, with surjective projection maps
and the corresponding quotient (G; x {1})/N; is abelian. By Proposition
2.2.2, G is a normal subgroup of G; x Gg,. But a is certainly an element

of Gj x Gg;, hence axa~' € G. Since j was chosen arbitrarily we conclude
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G<Gy x - x Gy

Conversely, suppose GGy X - - - X Gy, and let P := {5, T} be a partition
of {1,...,n}. Then note that Gg x Gp may be viewed as a subgroup of
G1 X --+x Gy and so G AGg x Gr. By Proposition 2.2.2 the corresponding
Goursat quotient @p is abelian, hence G has abelian entanglements. This

completes the proof. O

In the proof we used the subset S; := {1,...n}\{j} C {1,...,n}. Here
we have that G is a subdirect product of G; X Gg;, so by Goursat’s lemma
there is a group (); and a pair of homomorphisms v; := (@ij(l),q/JJ@)) such
that G = G; x4, Gg,. The following corollary tells us that these are all the
partitions we need to consider in order to determine whether or not G has

abelian entanglements.

Corollary 2.2.3. With the notation above, G has abelian entanglements if
and only if Q; is abelian for every j € {1,...,n}.

Proof. One implication is trivial. Suppose that ; is abelian for every
j € {1,...,n}. Then by the proof of Proposition 2.2.1, G is a normal
subgroup of G1 X - -+ x G, and again using Proposition 2.2.1, G has abelian

entanglements, as claimed. O

Proposition 2.2.4. Suppose that G is a normal subgroup of G1 X --- X Gy,
such that the projection maps m; : G — G; are surjective for all i. Then the
quotient (G1 x -+ X Gy)/G is abelian.

Proof. We will proceed by showing that (G7 x -+ x Gp) < G. Let = :=
(x1,... 2n) € (G1 X -+ x Gy)". By Proposition 2.2.1 G has abelian entan-
glements, so for each j, to the inclusion G — G; x Gg; there corresponds an
abelian quotient G;/7;(N;), where N; = (G x {1}) N G. The composition

Gl X X Gn ﬂ-—J> Gj —)Gj/ﬂ'j(Nj)
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2.8. Elliptic curves with abelian entanglements

gives an abelian quotient of G1 x --- x Gy, hence x; = mj(x1,...,2y,) is
contained in m;(Nj). It follows that (1,...,1,z;,1...,1) € G. As j was
arbitrary, and [];(1,...,1,2;,1...,1) =z, we conclude x € G. O

Proposition 2.2.5. Suppose G has abelian entanglements with respect to
Gy x -+ x Gy and let S C{l,...,n}. Then Gg has abelian entanglements
with respect to [[;cq Gi.

Proof. We will show that G'g is normal in [[;cg G;. Note that
G <75 (Gs) <G1x - x Gy

and by Proposition 2.2.4 the quotient (G x - - - X G},)/G is abelian. It follows
then that 75'(Gg) is normal in G x --- x Gy, and denote the quotient by
®g. Now kermg C ng(GS) so the map Gy x -+ x G, — ®g factors via
[l;cs Gi- Let 15 be such that the following diagram commutes

Gy x - x Gy

ﬂsl

ieS

It is easy to see that the kernel of vg is precisely Gg, hence Gg is normal in
[I;cs Gi and by Proposition 2.2.1 Gg has abelian entanglements with respect
to [[;cs Gi, as claimed. O]

2.3 Elliptic curves with abelian entanglements

We consider here a family of elliptic curves with the property that the inter-
sections of the different torsion fields of each curve in this family are abelian

extensions.
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We say that an elliptic curve F has abelian entanglements if the corre-
sponding group G(mpg) < G({]") x -+ x G(£%) has abelian entanglements
in the sense of section 2.2, where mg as usual denotes the smallest split and

stable integer for E, and has prime factorisation mpg = ¢7" ... 27,
Lemma 2.3.1. The following two conditions are equivalent:
(i) E has abelian entanglements.

(i) For each my,mq € N which are relatively prime, the intersection

Q([ma]) N Q([ma])

is an abelian extension of Q.

Proof. Suppose E has abelian entanglements, and let mq,mo be relatively
prime. If m; and mgy both divide mpg, then by Proposition 2.2.5 G(mims)
has abelian entanglements with respect to G(m;) x G(mg). This implies the
Goursat quotient @, m, is abelian, and by Lemma 1.2.8 Q([m1]) N Q([mz2])

is an abelian extension of Q. For general m1,ms, let

my = (m1,mg), mhH= (mg,mpg).

Then m) and m} are relatively prime integers dividing mpg so be the same
argument Q([m}])NQ([m4]) is an abelian extension of Q. From Serre’s open

image Theorem if n is any integer and d is coprime to nmg then
G(nd) = G(n) x GLo(Z/dZ).

It follows that @y, m, is isomorphic to erl my» hence the claim. O

Corollary 2.3.2. If E has abelian entanglements, then for any m :=I[; ¢;*
we have that G(m) < I[; G(¢;*) has abelian entanglements.

Proof. This follows immediately from Corollary 2.2.3 and Lemma 2.3.1. [
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2.8. Elliptic curves with abelian entanglements

Assume now that E is an elliptic curve over Q with abelian entangle-
ments, and let m be a positive integer with prime factorisation m = [], £*¢.
Since E has abelian entanglements, by Corollary 2.3.2 and Proposition 2.2.4
there are a map 1, and a finite abelian group ®,, that fit into the exact
sequence

1 — G(m) — [ Ger) 2 @, — 1. (2.3.1)

om
Note that the group ®,, measures the extent to which there are entan-
glements between the various ¢*¢-torsion fields. For instance ®,, is triv-
ial if and only if for any two coprime integers mq,mo dividing m one has
Q(E[m1])NQ(E[mz]) = Q. The following lemma tells us that ®,,, measures
the full extent to which the distinct torsion fields of F have any entangle-

ments.

Lemma 2.3.3. Let m be a positive integer and d be a positive integer co-

prime to mg. Then ®,q ~ P,y

Proof. Again there is a map ,,4 and an abelian group ®,,4 which fit into

the short exact sequence

1— Gimd) — [ G*) 2% @, — 1.
¢ ||lmd

As d is coprime to mp, by Serre’s open image Theorem we have that

G(md) = G(m) x [[ G(*) (2.3.2)
e||d

It follows that G(£*) is contained in the kernel of 1,4 for any ¢ | d, hence
B0~ D, 0
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For each prime ¢ | m, let S(¢) be a subset of G(£**), and define

Sm=[[500), Gm:=][GCU*).

£m £m

so that S, C G,,,. The following theorem allows us to compute the fraction
of elements in G(m) that belong to ]y, S(€). It will play a key role in
the method we will develop for computing entanglement correction factors
as character sums. If A is an abelian group, then A denotes the group of

characters x : A — C*.

Theorem 2.3.4. Assume E/Q has abelian entanglements, and let ®,, be as
in (2.3.1). For each x € ®,, a character of @, let x be the character of
Gm obtained by composing X with Y., and let x,p the restriction of x to the
component G(£*¢). Then

18,01 G(m)
et (LD SR | L

Xeq)'m_{l} Elm

where

Xe ()

Evi= Y :

RNEC
Proof. Let 1s,, be the indicator function of Sy, in G, and lg(y) that of
G(m). Also, to simplify notation we will use ® in place of ®,,. Then we

have that \S ﬁG( )|
= ] 2 Yo e @)

Iegm

By the orthogonality relations of characters (see for instance §VI.1 of [Ser73])
we have that if x € G,,,, then

[Gm : G(m)] if z € G(m)
(z) =
éx {O if x ¢ G(m).

52



2.4. Cyclic reduction of elliptic curves

This implies that
Lem) = [Qm Z X

xe@

so it follows that

ISmNG(m)| 1
G 1Gul (xegm Ls,, (@) + Egi AZ\{} Is,, <x>x<x>)
_ [Sml )x(x)
| ml(Hngm @Z ysm| )
:'Sm‘<1+ 3 (H > 15(@)”))
Gl ged\(1} " lmzEG(0) 15(0)]

:EZKH > (II XZ@)))

)265\{ 1} LmzeS(L

where the third equality follows from the fact that 1s,, and x are products
of functions 1g(;) and x, defined on the components G(£*¢). The result now
follows from letting E, , be the average value of x, on S(¢), that is

_ xe()
Be= 2 sy

zeS(0)

2.4 Cyclic reduction of elliptic curves

In this section we consider an elliptic curve analogue of Artin’s classical
conjecture on primitive roots. Recall that this conjecture predicts the density
of primes p such that a given rational number is a primitive root modulo p.
In [LT77], Lang and Trotter formulated an analogous conjecture for elliptic

curves over Q. Namely, if P is a point of F(Q) of infinite order, then the
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problem is to determine the density of primes p for which E (F,) is generated
by P, the reduction of P modulo p.

Note that for there to exist even one prime p of good reduction with
this property, a necessary condition is that the group E (F,) be cyclic, and
that is the question we consider here. In [Ser86], Serre showed assuming
the Generalized Riemann Hypothesis that the set of primes p such that
E(Fp) is cyclic has a density. He did this by adapting Hooley’s argument
of conditionally proving Artin’s conjecture on primitive roots. Namely, we

have the following:

Theorem 2.4.1 (Serre, 1976). Let E be an elliptic curve defined over Q
with conductor Ng. Assuming GRH we have that

x

{p < x prime: pt Ng, E(F,) is cyclic}| ~ CElog:v

as x — oo, where Cg := n%:l [QER) - Q"

We explicitly evaluate this density Cr as an Euler product. Note that
the condition of E(Fp) being cyclic is completely determined by pp(Gg).
Indeed, E(Fp) is cyclic if and only if p does not split completely in the field
Q(E[()) for any £ # p. Note that this condition is automatically satisfied
when ¢ > p, since p splitting completely in Q(E[¢]) implies p = 1 (mod ¢).
In other words, if for each prime ¢ we define the set S(¢) := G(¢) — {1}, then
for all p f Ng the group E(F,) is cyclic if and only if p,(Frob,) € S(¢) for
any ¢ < p, i.e. if p does not split completely in Q(E[¢]).

By the Chebotarev density theorem, the set of primes p that do not split
completely in Q(FE[¢]) has density equal to

1S(6)] 1

“=lowl =T ED - Q

If we assume that the various splitting conditions at each prime ¢ are in-
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2.4. Cyclic reduction of elliptic curves

dependent, then it is reasonable to expect that the density of primes p for
which E () is cyclic is equal to [], 6. However as we know, this assumption
of independence is not correct, as different torsion fields may have non-trivial

intersection. To be precise, for each square-free integer d let

Sa=[]50). Ga=][G).

0d 0ld

By Chebotarev, the density of primes p such that p { Ng and p,(Frob,) €
S(¢) for all £ | d and ¢ # p is equal to |SgNG(d)|/|G(d)|. If we let d increase
to infinity ranging over square-free integers, then Serre’s above result implies
that, assuming GRH,

(2.4.1)

where the limit will be seen to exist.
Now let m = HamEﬁ be the square-free part of mpg, and let d be a

square-free integer coprime to m. By (2.3.2) we have

[Sma NG(md)| _ |Sm N G(m)] I SO
|G (md)] |G (m)] '

For ¢ coprime to mp, we have that |S(¢)|/|G(¢)] is 1 + O(1/¢*) so the limit
in (2.4.1) does indeed exist. Letting d tend to infinity over the square-free

numbers then gives

 Sun G| 17 IS(O)
% =amy Wamr

The above discussion implies that if we do take into account entanglements,
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then assuming GRH we have
Ce=¢g]]d (2.4.2)
4

where Cp is an entanglement correction factor, and explicitly evaluating
such densities amounts to computing the correction factors €g. The en-
tanglement correction factor €g arises as the factor by which Cg differs
from the uncorrected value limg_,~ |S4|/|Gal = 1, 9¢. We will use Theorem
2.3.4 for evaluating €g as a character sum for elliptic curves with abelian

entanglements.

Theorem 2.4.2. Assume E/Q has abelian entanglements, and let ®,, be as
in (2.3.1). Let x € ®,, be a character of ®,, and let x be the character of
Gm obtained by composing X with 1y,. Define E, o by

1 if x s trivial on G(¢),
Ey¢= ) |
QEMQ-1 otherwise.
Then
Crg =g H Oy
)4

where the entanglement correction factor €g is given by

Cp=1+ Z HEX,K'

xed—{1}tm

Proof. By Theorem 2.3.4 we have that

S0 N G(m)| _ [Sn)
Gm)] ‘w(“ 2 HE’“)’

xed\{1} tim
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where Ey ¢ is the average value of x, on S(¢). By (2.4.2), we know that

 TLed
_ S 0 G(m)|/|G(m)]
|Sml/|Gm| '

Ck

Finally, notice that if x is non-trivial on G(¢) then x; is non-trivial, hence

> xelz) = ( > m(x)) —xe(1) = —1.

zeS(¢) z€G (L)
This completes the proof. O

Remark 2.4.3. Note that in the above theorem we may replace m by any
square-free multiple of it. Indeed, for any ¥, it follows from Lemma 2.3.3
that E, , = 1 for any ¢ { m, hence the product Hﬁlm E, ; does not change,
and the quotient of |S,,q N G(md)|/|G(md)| and |Spal/|Gmal is constant as
d tends to infinity.

In what follows we will use Theorem 2.4.2 to compute €g for various

elliptic curves over Q.

2.4.1 Serre curves

Consider the representation pr : Gg — GLy(Z) given by the action of Gg on
E(Q)tors- Serre has shown in [Ser72] that the image of pg is always contained
in a specific index 2 subgroup of GLQ(Z) and thus pp is never surjective.
Following Lang and Trotter, we define an elliptic curve £ over Q to be a
Serre curve if [GLa(Z) : G] = 2.

It follows from the result of Serre that Serre curves are elliptic curves over
@ whose Galois action on their torsion points is as large as possible. Jones
has shown in [Jon10] that “most” elliptic curves over Q are Serre curves (see

Section 3.1 for the more precise statement) . Thus they are prevalent over
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Entanglement correction factors as character sums

Q and we also have complete understanding of their Galois theory, and this
makes their entanglement factors particularly easy to handle in conjunction
with Theorem 2.4.2.

First we briefly describe the index 2 subgroup Hg of GLa(Z) (see [Ser72],
page 311 for more details). To this end let xa : Gg — {£1} be the character
associated to K := Q(v/A), where A is the discriminant of any Weierstrass
model of E over Q, and note that ya does not depend on the choice of
model. Let

e: GLo(Z)27) — {£1}

be the signature map under any isomorphism GLy(Z/2Z) ~ Ss. Then as
K C Q(E[2]), one can check that xyo =¢c o0 pga.

Note that K C Q((|p|), where D is the discriminant of Q(VA). Then
there exists a unique quadratic character « : (Z/|D|Z)* — {£1} such that
Xa = aodet pg p|. From this it follows that eopp 2 = aopg p|. If we then
define Mg =lem(|D|,2) and

Hypy, = {A € GLo(Z/MEZ) : (A mod 2) = a(det(A mod |D|))},

then it follows from the above discussion that Hjs, contains G(Mg). If we
let Hg be the inverse image of Hys, in GLQ(Z) under the reduction map,
then Hg is clearly an index 2 subgroup of GLg(z) which contains G. We
have then that G is a Serre curve if and only if pp(Gg) = Hg. It follows

from the above discussion that all Serre curves have abelian entanglements.

Proposition 2.4.4. Let E/Q be a Serre curve. Let D be the discriminant
of Q(vVA) where A is the discriminant of any Weierstrass model of E over
Q. Then

1
Co=cel] (- 7=5e=7)
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2.4. Cyclic reduction of elliptic curves

where the entanglement correction factor €g is given by

1 if D=0 (mod 4)
Cp = —1 e —
H}};(le)@ﬁ)l if D=1 (mod 4)

Proof. Since E is a Serre curve, we have that G(¢) = GLa(Z/¢Z) holds for
all £, hence [Q(E[/]) : Q] = (£2 — 1)(¢2 - ¢).
Now suppose first that D = 0 (mod 4). Then mg = |D| is divisible by

4, hence we have that

G(m) =[G
t\m
for all square-free m. It follows that ®,, ~ {1} hence its character group is
trivial and € = 1.

Now suppose D = 1 (mod 4). In this case mg = 2|D| is square-free,
hence G(mp) is an index 2 subgroup of ]y, G(¢) and ® ~ {+1}. For each
¢ > 2 dividing mpg, xy¢ is the character given by the composition G(¢) det,
(Z/0Z)" — {£1}, that is x, = (%), and y2 := ¢ is the signature map under
an isomorphism GLa(Z/2Z) ~ S3. If we let x := ][, x¢ then we have an

exact sequence

1— G(mp) — ] G(&) = {£1} — 1.

LmEg

Clearly each xy is non-trivial on G(¥) for each ¢ dividing mpg so the result
follows from Theorem 2.4.2 and using that ®,,, ~ {+1}. O

2.4.2 Example: Y?24+Y = X3 - X2 - 10X — 20

We now consider the elliptic curve over Q defined by the Weierstrass equation
Y24Y = X3 - X2 - 10X — 20. The Galois theory for this elliptic curve has
been worked out by Lang and Trotter in [LT74], and in particular they have
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shown that mp = 2- 52 - 11, and that the following properties hold:
o G(2) = GLy(Z/2Z).
e F has a rational 5-torsion point, and Q(E[5]) = Q((s).
e [Q(E[5%) : Q(E[5])] = 5%, hence 5 is stable.

e Q(E[5%) N Q(E[11]) = Q(¢11)™, where Q(¢11)T is the real quadratic
subfield of @Q(¢y1). This implies there is a map

b5 : G(5%) — (ZJ11Z)” J{+£1}.

We make this map explicit. There is a basis for E[5%] over Z/25Z

under which we have

1+5a 5b
G(52):{< j5Lca u) ta,b,c,d € 2257, u € (Z/25Z)X}.

Define the (surjective) homomorphism

Y : G(5%) — Z/5Z
(1 +5a 5b

5c U

)Ha mod 5.

Then ¢5 is given by
A (£2)¥A)
where we note that £2 is a generator of (Z/11Z)* /{+£1}.

e Q(ER2]) NQ(ENM]) = Q(v—11).
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2.4. Cyclic reduction of elliptic curves

From this we conclude that E has abelian entanglements and

G(2-52-11) = {(gg,g25,gn) € G(2) x G(5?) x G(11) :

e(g2) = (detl(fn)> , ¢5(g5) = ¢11(911)}-

Proposition 2.4.5. Let E/Q be the elliptic curve given by Weierstrass equa-
tion Y2 +Y = X3 — X2 — 10X —20. Then we have

3 1
Co=jgerll (- 7==)

~ 0.611597,

where Cg is given by

1
— 14—
Ce =14 55995

Proof. As before we take m = 2-5- 11 to be the square-free part of mg.

Because E has abelian entanglements there is an exact sequence
1— G((2-5-11) — G(2) x G(5) x G(11) =5 &g — 1

From the description of G(2-52-11) it follows that G(2-5-11) = G(22) x G(5),
hence @119 ~ {£1}. It follows that if we set x2 equal to the sign character
€, X11 to (%) and x5 be trivial, then x = x2x5Xx11-

By Theorem 2.4.2 we have

Cg = Q:EHCSZ-
l
where
Cp=1+ EXzEX5EX11-

From the description of G(¢) it is then straightforward to compute &, as well

as E,, for every /. O
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Remark 2.4.6. Note that in this example, even though the Galois theory
of E was considerably more complicated than that of a Serre curve, at the
‘square-free’ torsion level it was still very similar. Indeed, the subgroup
G(110) < G(2) xG(5) x G(11) was still cut out only by a quadratic character.

2.5 Cyclic reduction for primes in an arithmetic

progression

We now consider a variant of the problem on cyclic reduction of elliptic
curves. We have been looking at the density of primes p for which the
reduction E(F,) is cyclic. Here we impose the additional requirement that
p lie in a prescribed residue class modulo some integer f. This is just one
of many possible generalizations one could consider, and in many of them
one should still obtain a density assuming GRH. One of the difficulties that
arises however, is the explicit computation of the density as an Euler product.
The character sum method we have given allows us to do this in a relatively
simple manner.

If we keep the same setup as in Theorem 2.4.2, then note that the condi-
tion we are imposing on p being satisfied is again completely determined by
pe(Gg). In this case however, it is not necessarily enough to consider only
the ‘square-free’ torsion fields Q(E[¢]). Suppose then that we are interested

in primes p such that
(i) E(F,) is cyclic,
(ii) p=a (mod f).

For each prime power ¢, define

DoY) :={A € GLo(Z/t*Z) : det A=a (mod (%)},
(I +(Mo(Z/0°7))" = {A € GLo(Z/0*Z) : A% T (mod £)}.
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2.5. Cyclic reduction for primes in an arithmetic progression

Let f =TI, ¢ be the prime factorisation of f, and for each ¢ | f set

o (09) : = Dy (£) N (I + LMo(Z/ 1 7))"
={A e GLo(Z/t7) : AZ£T (mod {), det A=a (mod £*)}.

Then set
S(l) := G) N, ()
for those ¢ dividing f, and just as in the case of the previous subsection,
set S(¢) := G(¢) — {1} for all other ¢. Then it follows that p { Ng satisfies
conditions (i) and (ii) above if and only if for any ¢ { p one has
(i) pe(Froby) € S(¢) if L1 f,
(ii) peec (Frob,) € S(0) if £ f.

Then the density of p having the ‘right’ local behaviour at ¢ equals

5 {rsw/aw if (1 f
S@I/IGe] ] f

and the naive density of primes satisfying conditions (i) and (ii) equals [, dp.
To account for entanglements, we proceed more or less along the same
line as the case without the condition of p lying in a prescribed residue class,

with some slight modifications. That is, let

wie T =11
Zl(fsz) €|mE
uf

For any square-free d coprime to m, define

Smai=[] S0, Gma:= ] Gu=) ] G0).
Lmd L) (f,m) ZZ}}d
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By Corollary 2.3.2

has abelian entanglements, hence we have an exact sequence

1 — G(md) — Gmg —22% By — 1

for some abelian group @,,4. We again have by (2.3.2) that ®,,4 ~ ®,, for

any square-free d coprime to m, and the density we are looking for is then

(S N G(md)| S mG |H e

iSse  |Gmd)]  |G(m

Theorem 2.5.1. Let x € ®,, be a character of ®,,, and let x be the character
of G obtained by composing X with Vy,. Define E, o by

B xe()
Bre= 2 sy

Then
CE(CL, f) = CE(a, f) H 5(

14

where the entanglement correction factor €g(a, f) is given by

¢pla, f)=1+ > [IExe

€D, —{1} tIm

Proof. The proof is exactly as that of Theorem 2.3.4 with the obvious mod-

ifications. O

It follows from the previous theorem that in order to evaluate the cor-
rection factors €g(a, f) it suffices to compute the order of S(¢) as well as

the average value of the x, on S(¥).
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2.5. Cyclic reduction for primes in an arithmetic progression

2.5.1 Serre curves

In what follows we again consider the example of Serre curves. To simplify
the following proofs we will henceforth assume ¢ and f are coprime integers.
If not, then for a prime ¢ dividing (a, f) we obtain |¥,(¢*)] = 0 hence
|S(¢)| = 0 and Cg(a, f) = 0, which we take to mean the conditions imposed

are satisfied for only finitely many p.

Lemma 2.5.2. Let E/Q be a Serre curve, and let a and f be coprime positive
integers. Let D be the discriminant of Q(v/A) where A is the discriminant
of any Weierstrass model of E over Q. Suppose that |D| # 4,8. Then

¢(51€4) ifa#1 (mod/{) and (| f
0 = d>(€1€4’) (1 - Z(Lﬁ(ul)) ifa=1 (mod¥)and | f
L= Wl(gz,g) if et f.

Proof. If £ 1 f then as before we obtain the local density 6, = 1 — 1/({? —
1)(¢£?2 —¢). At £ | f we consider the two cases. If a # 1 (mod /) then

S(€) = Da (%)

since any element with determinant a # 1 cannot be trivial mod ¢. It
follows that for such ¢ one has 6y = 1/¢(¢%¢). If a = 1 (mod ¥¢) then we
need to count the fraction of elements of D,(¢%*) which are non-trivial mod
¢. There is a surjective map G(¢) — (Z/(Z)" of degree £(£ — 1)(¢ + 1), and
Q(EN]) NQ(Cpee) = Q(¢r) (since |D| # 4,8) so it follows that this fraction is
precisely 1 — 1/¢(¢ — 1)(¢£ + 1), as desired. O

Lemma 2.5.3. Let E, a and f be as in Lemma 2.5.2. Suppose further that
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|D| = 4. Then
ﬁ ifa=3 (mod4) and 4| f
5y = ﬁ(l_%) ifa=1 (mod4) and 4| f
5 ifatf.

Proof. The assumption on D implies that Q(v/A) = Q(i) and mp = 4.
Recall that 2¢2||f is the highest power of 2 dividing f. If ea > 2 then a is
odd, hence is 1 or 3 mod 4. Note that Q({2e2) N Q(E[2]) = Q(i). Now the
fraction of elements A € G(2°?) such that A € D,(2°?) equals 1/¢(2°?). If
a =3 (mod 4) then any such A € D,(2°?) acts non-trivially on Q(7), hence
is non-trivial mod 2. It follows that S(2) = D,(2°?) and do = 1/¢(2%?). If
a = 1 (mod 4), then because [Q(E[2]) : Q(i)] = 3 exactly 1 — 1/3 of the
elements in A € D,(2°?) are in S(2). Finally suppose ez < 2. Then the only

condition at 2 is being non-trivial mod 2, and the conclusion follows. O

Lemma 2.5.4. Let E, a and f be as in Lemma 2.5.2. Suppose further that
|D| =8. Then

(i) If Q(VA) = Q(v2) then

=

ifa=3or5 (mod8) and 8| f
ifa=1or7 (mod8) and8]| f
if8tf.

~
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(i) Q(VA) = Q(v/=2) then

=

ifa=5o0r7 (mod8) and 8| f
ifa=1or3 (mod8) and8]| f
if8tf.
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2.5. Cyclic reduction for primes in an arithmetic progression

Proof. We proceed similarly to Lemma 2.5.3. The assumption on D implies
that Q(v/A) = Q(v/E2). If ey > 3 then in this case Q(Coez) N Q(E[2]) =
Q(v/%2). In case (i), elements in D, (2°2) act non-trivially on Q(v/2) if and
only if @ = 3 or 5 (mod 8), hence the conclusion. Case (ii) follows from the

same argument. [

In what remains of this section we will deduce the correction factor
Cg(a, f). In the following lemmas we compute the local factors E; for the
different primes ¢ dividing mp. As is often the case, the prime 2 requires
special consideration and we split the computation of the local correction
factor Fo into various cases. Keep the same notation for F,a, f and D, and
suppose further that |D| # 4,8. Then mpg contains at least one odd prime

factor and we have an exact sequence

1—Gm)— ][] Gu=) [ G = {+1} — 1
A(fm) tmp
uf

where x = ][, x¢ is a product of characters x,. Here x; is given by the
composition G(£°¢) — G(f) <& (Z/0Z)" — {£1} and x2 is the character
corresponding to the quadratic extension Q(E[2%?]) N Q(E[m/2%?]), where
2°2||m. When ey = 1 for instance, x2 is the signature map GLo(Z/2Z) —

{#£1}, corresponding to the quadratic extension Q(v/A).
Lemma 2.5.5. Suppose orda(D) = 0. Then Ey = —1/5.

Proof. Since D =1 (mod 4) it follows that mg = 2|D| and x2 is the signa-
ture map. Let 2°2||f be the largest power of 2 dividing f. If e; < 0 then
Ey = —1/5 by the same argument as in Proposition 2.4.1. If ez > 1, then
S(2) C G(e®?) consists of the elements of D, (2?) which are non-trivial mod
2.

Because mp = 2|D| with D odd, x2 is the signature map, hence it
factors through the surjection G(2°?) — Gal(Q(E[2]),(2¢2), so we have a

67



Entanglement correction factors as character sums

commutative diagram

G(2°2) — {£1)

lx'z

Gal(Q(E[2], Cze2 )

Let S’(2) be the image of S(2) under the surjection G(2°2) — Gal(Q(E[2]), (ae2 ).
Then note that because Q({2¢2) N Q(E[2]) = Q, for each o € G(2) there is a
unique o’ € Gal(Q(E[2]), (ae2) such that o(Cae2) = (5, and ¢/ = o (mod 2).

It follows that
> X(@)=-1
z€S'(2)

and the conclusion follows. O
Lemma 2.5.6. Suppose ords(D) = 2. We have

(i) If |D| # 4 and 4 | f then

(i) If |D| =4 or 41t f then
Ey=0.

Proof. 1f 41 f then because mg = |D| it follows that mg { m, hence

G(m) = H G(e°) H G(0)
4 (fmEe) flg);}E

and ®,, >~ {1}, so By = 0. Similarly if |D| = 4 then mg has no odd prime

factors and we again conclude Es = 0.
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2.5. Cyclic reduction for primes in an arithmetic progression

Now suppose |D| # 4 and 4 | f. If we let Ay denote the square-free part
of A, then the assumption on ords(D) implies that Ay =3 (mod 4). Also,
because 4 | f, we have that Q(i) C Q(E[2°?), hence

Q(Vids) = Q(E[2%]) N Q(E[m/2%])

and o is the character corresponding to this quadratic extension. If we
define
Xi: G(2%) = {£1}, xa:G(2%) = {£1}

to be the characters corresponding to the quadratic extensions Q(i) and
Q(\/E), respectively, then x2 = xixa. Now x; has constant value equal to

(Z) on S(2), and by the same argument as in Lemma 2.5.5 xa has average
value —1/5 on S(2). It follows then that

1

oy D Xe(@
S(z) z€S5(2)

1

oy > Xil@
S( mGS(2

>l

2
To deal with the case of ords(D) = 3, we establish the following notation.

Note that if orda(D) = 3 then we must have that 2 | Ag. Let A’ be such
that Ag = 2A.

O]

Lemma 2.5.7. Suppose orda(D) = 3, and keep the notation above. We have

(i) If |ID| # 8, 8| f and A’ =1 (mod 4) then

I 1/5 ifa=1or7 (mod8)
’ —-1/5 ifa=3o0r5 (mod8) .
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(i) If D] # 8, 8| f and A’ =3 (mod 4) then

B 1/5 ifa=1or3 (mod38)
2 —1/5 ifa=5o0r7 (mod38).

(iii) If |D| =8 or 81 f then
Ey=0.

Proof. 1If |[D| = 8 or 81 f then by the same reasoning as in Lemma 2.5.6 we
conclude Fy = 0. Assume then that |D| # 8 and 8 | f. Because 8 | f, we
have that Q(v/£2) C Q(E[2%?]). Let

Xyz:G2%) = {£1}, X y=: G2%) = {£1}, xa:G(2%) = {£1}

to be the characters corresponding to the quadratic extensions Q(v/2), Q(v/—2)
and Q(V/A), respectively. If A’ =1 (mod 4) then

Q(VA') = Q(E[2]) N Q(E[m/2°2))

and 2 is the quadratic character corresponding to this extension, with xs =
X zXxa- If A”=3 (mod 4) then

Q(v-4") = Q(E[2%]) N Q(E[m/27])

and Y2 is the quadratic character corresponding to this extension, with ys =
Xy—axa- Now note that x5 has constant value on S(2) equal to lifa=1
or 7 (mod 8), and —1 if a =3 or 5 (mod 8), and x /= has constant value
on S(2) equal to 1if a =1 or 3 (mod 8), and —1 if a =5 or 7 (mod 8) We

conclude exactly as in Lemma 2.5.6. 0

Proposition 2.5.8. Let E/Q be a Serre curve, and let a and f be coprime
positive integers. Let D be the discriminant of Q(\/Z) where A is the dis-
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2.5. Cyclic reduction for primes in an arithmetic progression

criminant of any Weierstrass model of E over Q. Suppose that |D| # 4,8.
Then

1

1 1
Celo-f) =l gy 1 (7= D) 1 (-#—@)

where the entanglement correction factor €g(a, f) is given by

a -1
ecta =145 11 () @@ gt
o N gp (B DE =0 =1
0#2 H2f

Here E5 is given by Lemmas 2.5.5, 2.5.6 and 2.5.7,

Proof. Since |D| # 4,8, the equality involving Cg(a, f) follows from using
Lemma 2.5.2 for all . The form of the entanglement correction factor at 2
follows from Lemmas 2.5.5, 2.5.6 and 2.5.7. It remains to consider ¢ # 2.
By Theorem 2.5.1 if £ f and ¢ | D then S(¢) = G(¢) — {1} and so

-1

Ee=p—nwe—p-1

Ir ¢ | (D, f) then because Q(E[¢]) N Q({ree) = Q((r) we have that y, has

constant value (%) on S(¢) and the result follows. O

Corollary 2.5.9. For any (a, f) coprime integers, we have Cg(a, f) > 0.

Proof. 1t is clear that the naive density [], d; does not vanish, hence in order
for Cg(a, f) to be zero, we would need the correction factor €g(a, f) to be
zero, which happens if and only if [[, £y = —1. This is impossible as Ej5 is
always +1/5 or 0. O

Corollary 2.5.10. The correction factor €g(a, f) equals 1 if and only if
orda(D) > orda(f).

Proof. From the form of the correction factor it follows that €g(a, f) =1 if
and only if Fs = 0, and the result follows. O
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2.5.2 Example: Y? = X3+ X2 +4X +4

We look now at an example of a non-Serre curve where the constant Cg(a, f)
can vanish. This implies that conjecturally, there should only exist finitely
many primes p such that E(F,) is cyclic and p = a (mod f). Let E be the
elliptic curve over Q given by the Weierstrass equation Y? = X3 + X2 +
4X + 4. In [Bra09], a description of the Galois theory of E is worked out.
In particular, for this curve we have that mg = 120, and the following

properties hold:
e E has a rational 3-torsion point, and G(3) ~ Sj.
e E has a rational two-torsion point, and Q(E[2]) = Q(3).
e ((4) has order 16, and Q(E[4]) N Q(E[5]) = Q(\/5).
e G(8) has order 128, and Q(E[8]) NQ(E[5]) = Q(Cs).
o G(5) = GLy(Z/5Z)
e Q(E[3]) N Q(E[40]) = Q, hence G(120) = G(3) x G(40).

From all of this we conclude that
G(120) = {(g5.93.95) € G(8) x G(3) x G(5) : gs(s) = G}
hence F has abelian entanglements and G(120) fits into the exact sequence
1 — G(120) — G(8) x G(3) x G(5) — P190 —> 1,

where ®199 ~ (Z/5Z)*. Also, given coprime integers a and f = [], (% we

m = H gt H /.
0(f,120) €120
uf

again set
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Lemma 2.5.11. For any ¥ € ®,, — {1} we have E,,=0.

Proof. Suppose first that 4 1 f. Then m is square-free, and because
G(30) = G(2) x G(3) x G(5)

it follows that ®,, ~ {1}, hence E, » = 0. Suppose now that 4 | f, and let 7
be a generator of ®q9. If 8 | f, then 120 | m, hence ®,, ~ ®199 ~ (Z/5Z)*.
Any Y € ®,, — {1} is equal to 7’ for some j € {1,2,3} and x> is equal to 77%,
where

Ny : G(2%%) — (Z/5Z)"

is the character corresponding to the subfield Q(¢5) C Q(E[2?]). Now be-
cause Q(F[2]) = Q(i) C Q((ae2) it follows that Q(E[2], (2e2) N Q(¢5) = Q,

hence

Sonlo= Y @

geS(2) x€(Z,/57) %

We conclude that E, o = 0. If 4[|f, then ®,, ~ {+1} and we can use the
same argument given that Q(i) N Q(¢s) = Q. This proves the claim. O

Proposition 2.5.12. For any coprime (a, f) we have that €g(a, f) = 1.
Further,
Cpla,f)=0<=4|fanda=1 (mod 4).

Proof. That €g(a, f) = 1 follows directly from Theorem 2.5.1 and Lemma
2.5.11. It follows from this that
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For ¢ # 2 we have that §; # 0. Indeed,

ﬁ ifa=2 (mod3)and3]|f
03 = ﬁ(l—%) ifa=1 (mod3)and3]|f,
2 if 3¢ f
and
% ifaz1l (mod/)and?| f
_ 1 1 P
b= 577 (1~ i) fa=1 (mod¢)and (| f
1 .
Finally, given that Q(E[2]) = Q(¢), it follows that do = 0 if and only if 4 | f
and a =1 (mod 4), and the conclusion follows. O
Remark 2.5.13. Suppose a and f are coprime integers such that ¢ = 1

(mod 4). The above proposition is saying that the only obstruction to the
existence of infinitely many primes p such that E(FP) is cyclic and p = a
(mod f) is a local one at the prime 2. Meaning, for any prime p it is im-
possible for it to satisfy the required condition at the prime 2, that is, for
Frob,, to lie in the set S(2), which is the empty set. Note also that even
when f is divisible by 4, we still have E, > = 0 and hence €g(a, f) = 1.
What this is encoding is the fact that Q({2e2) NQ(¢5) = Q for any es. The
only entanglement of E occurs in the subfield Q((5), and this field is disjoint

from Q(a).

2.5.3 Example: Y2+ XY +Y = X3 — X2 - 91X — 310

So far we have only considered examples where the constant Cg(a, f) either
does not vanish, or vanishes because there is a condition at some prime /¢

which cannot be satisfied. Another interesting possibility is when all d, are
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2.5. Cyclic reduction for primes in an arithmetic progression

non-zero, yet the constant Cg(a, f) still vanishes. This occurs if and only
if the entanglement correction factor €z (a, f) vanishes and its expression as
a product of local correction factors makes it easy to determine when this
happens. The entanglement correction factor being zero means there is an
obstruction coming from the entanglement fields which prevent there being
infinitely many primes p satisfying the imposed conditions. We will now
analyse an example when this occurs.

Consider the elliptic curve E over Q given by Weierstrass equation Y2 +
XY +Y = X3 - X? - 91X — 310. The discriminant of our Weierstrass
model is A = 17. This curve has one rational torsion point of order 2 and
Q(E[2]) = Q(v/17). In fact, machine computation shows that m = 34, where

m is the square-free part of mpg, and

G(34) = {(92,917) € G(2) x GLo(Z/17Z) : e(g2) = 617 o det(g17)}

where as usual ¢ denotes the signature map and 617 : (Z/172)* — {£1}
denotes the unique quadratic character of (Z/17Z)*.
If we let D denote the discriminant of Q(v/A), then D = 17 = 1 (mod 4),

hence by a similar argument to Lemma 2.5.2 we obtain that

1 1 1 1
o =550, 11 (e ) (- @)

042 142

which is non-zero for all ¢ and f. By Theorem 2.5.1 we have that

11 1
Crla, f) = Q:E(a’f)mﬁ(f)e'(n (1_6(6—1)(“1)) 11 (1‘@2 —0)( -

a—1,f)
042 02

with
¢pla, f) =1+ ][] Ee

034
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We conclude then the following.

Proposition 2.5.14. For the above elliptic curve we have that Cg(a, f) =0

if and only if 17 | f and a is a quadratic residue modulo 17.

Proof. The naive density [],d¢ is non-vanishing, hence Cg(a, f) = 0 if and
only if €g(a, f) = 0. Using the same argument as in Lemma 2.5.5, we deduce
FEy = —1 for all a, f. We have then that

QﬁE(a, f) =0« Fi7=1.

If 174 f then E17 = —1/78335. If 17 | f then E17 = (%) and the conclusion
follows. O]

Remark 2.5.15. Note that if 17 | f and a is a quadratic residue mod 17, then
for any prime p = a (mod f) we have that p splits in Q(v/17) = Q(E[2]),
so Frob, would not satisfy the condition at the prime 2. The obstruction to
the existence of infinitely many primes p such that E(F,) is cyclic and p = a
(mod f) is precisely the entanglement between the 2 and 17 torsion fields.

The above proposition is saying that this the only obstruction that exists.

2.6 Koblitz’s conjecture

In [Kob88], N. Koblitz made a conjecture on the asymptotic behaviour of the
number of primes p for which the cardinality of the group F (Fp) is prime.
In this section we use our character sum method to give a description of the

constants appearing in this asymptotic.

Conjecture 2.6.1 (Koblitz). Let E/Q be a non-CM curve and let A be the
discriminant of any Weierstrass model of E over Q. Suppose that E is not

Q-isogenous to a curve with non-trivial Q-torsion. Then

X

[{primes p <z : pt A, |E(Fy)| is prime}| ~ CEW
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2.6. Koblitz’s conjecture

as x — oo where Cg is an explicit positive constant.

In [Zywllc], Zywina shows that the description of the constant C'g given
by Koblitz is not always correct, and he gives a corrected description of the
constant along with providing several interesting examples and numerical
evidence for the refined conjecture. In particular the constant described
by Zywina is not necessarily positive. The reason the original constant is
not always correct is that it does not take into account that divisibility
conditions modulo distinct primes need not be independent. Put another
way, it could occur that there are non-trivial intersections between distinct
{-power torsion fields of E. The following is the refined Koblitz conjecture

given by Zywina, which here we state restricted to non-CM curves over Q.

Conjecture 2.6.2. Let E/Q be a non-CM elliptic curve of discriminant A,
and let t be a positive integer. Then there is an explicit constant Cgy = 0
such that

X
(log 2)?

[{primes p < x: pt A, |E(Fp)|/t is prime}| ~ Cry

as r — 0.

The condition on p that |E(F,)|/t be prime can be given as a splitting
condition in the various /-torsion fields, so the character sum method we have
developed again seems well suited to compute Cg;. In his paper Zywina
computes the constants Cg; via a different method than the one we use
here, both in the CM and non-CM cases. Here we will restrict ourselves to
non-CM curves with abelian entanglements over the rationals.

For each prime power £, define
U, (%) = {A € GLo(Z/0°Z) : det (I - A) € t- (2/°2)" }.

For a prime p { Ngf note that E(F,)/t is invertible modulo £*/(£*,t) if and
only if pga (Frob,) € G(£%) N W (£*). Suppose that ¢ has prime factorisation
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Entanglement correction factors as character sums

t = [, £°. With this in mind, define the set of ‘good’ Frobenius elements to
be

0 Gty A W, (oY) iE g |t
e ne ifOrt

We now give a description of the constant Cr; in terms of our sets
Si(¢) as well as a crude heuristic of justifying it. This heuristic follows
the same lines as that of Koblitz and Zywina. The key argument relies
on the Cramer’s model which asserts that, roughly speaking, the primes
behave as if every random integer n is prime with probability 1/logn. If
the sequence {|E(F,)|/ t}prny, were assumed to behave like random integers,
then the proability that |E(FF,)|/t is prime would be

1 1
log (|E(F,)|/t) “log(p+1) —logt’

The last approximation uses the fact that by Hasse’s bound, F (Fp) is close
top+ 1.

It is not true however, that the |E(F,)|/t behave like random integers
with respect to congruences, and in order to get a better approximation we
need to take these congruences into account. If we fix a prime ¢, then for all
but finitely many p. if |E(F,)|/t is prime then it is invertible modulo ¢. If
¢ does not divide ¢, then by Chebotarev, the density of primes p { Ng such
that E(F,)/t is invertible modulo ¢ is |Sy(¢)|/|G(£)|. If £ | t, then similarly
the density of primes p { Ng such that E(F,) is divisible by £ and E(F,)/t
is invertible modulo £ equals |S;(¢)|/|G(¢¢¢*1)|. Meanwhile the density of
natural numbers that are invertible mod ¢ is (1 — 1/¢). If we let d be a

square-free integer coprime to ¢, then

|S¢(£) |5 (€)] 1
g1—1/£H|G geetl |H (0)] log(p+1)

—logt
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2.6. Koblitz’s conjecture

should constitute a better approximation to the probability that |E(F,)|/t
is prime, as it takes into account the congruences modulo all primes ¢ | td.
Taking into account all congruences amounts to letting d tend to infinity,
hence this model suggests that for a randomly chosen p, |E (Fp)|/t is prime

with probability
Y, 1

1;[ 1—1/0 log(p+1) —logt

where
. {rstw/aw if 01t
SOI/IGEeD] L]t

This is the constant that was given by Koblitz with ¢ = 1 and later refined
by Zywina. The problem that still remained with the approximation given
by Koblitz, is that while it does take into account congruences modulo /, is
assumes that divisibility conditions modulo distinct primes are independent.
In order to deal with this we take a similar approach as in the previous

sections. That is, we let

m= ]t ] ¢

€|t E\mE
Ut

and for each square-free d coprime to m, let

Smd = H St(g)v Omd = HG(EEN_I) H G(E)
£lmd ot fmd
ot

By Corollary 2.3.2

has abelian entanglements, hence we have an exact sequence

1 — G(md) —> Gpg —25 B,y — 1
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for some abelian group ®,,4. By (2.3.2) we have that ®,,q ~ ®,, for any
square-free d coprime to m. Note now that |S,,q N G(md)|/|G(md)| is the
density of p for which |E(F,)|/t is an integer and invertible modulo md,
hence by letting d tend to infinity over the square free integers coprime to

m, the refined constant is

|Sma N G(md)|/|G(md)|
1—-1/¢

B 1 S mG ) 5
() SEer T

CEt = lim
d—o0

It follows by the prime number theorem that the expected number of primes
p such that |E(F,)|/t is prime is asymptotic to Cg; - 2/(log x)2.
Applying Theorem 2.3.4 with m defined as above we obtain

Cet=Cpy 1;[ 1 _(Sél/é (2.6.1)
where the entanglement correction factor €g; is given by
Cei=1+ > [[Ewe
RED,—{1} LM
2.6.1 Serre curves

In this section we compute the constants Cr,1 in Conjecture 2.6.2 for Serre
curves. This will amount to finding the average value of various quadratic
characters on S(¢). In the case of Serre curves, the sets S(¢) are particularly

easy to treat.

Proposition 2.6.3. Let E/Q be a Serre curve. Let D be the discriminant
of Q(vVA) where A is the discriminant of any Weierstrass model of E over
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Q. Then
2 —r—1
Cpg1=¢€ || 1-—
Bl Bl ; ( (E—I)S(é—i-l))

where the entanglement correction factor Cg 1 is given by

1 if D=0 (mod 4)

Cep1= 1 ey
1+H£3_2£2_€+3 if D=1 (mod 4)

Proof. We begin by noting that, for Serre curves,
$1(0) = {A € GLy(2/02) : det (I - A) € (z/02)"}.

‘We have then that

_ 1510

"= G0)

[151(0)°

= [GL. /i)

where S1(0)¢ = {A € GL2(Z/VZ) : det (I — A) =0}. Thus S;(¢)¢ consists
of those matrices whose eigenvalues are 1 and A for some \ € (Z/lZ)*.
It follows from Table 12.4 in §12, Chapter XVIII of [Lan02], that there
are % elements of GLo(Z/{Z) with both eigenvalues equal to 1, and ¢ + ¢
elements with eigenvalues 1 and A # 1. We obtain then that [S;(¢)¢| =
02 4 (¢ —2)(#2 + ¢), hence we have that

24 (0—-2)(2+0)
NGCENICEN

5 =1

and a calculation yields that

N 201
1—-1/¢ = (=130 +1)
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From (2.6.1) it rests only to compute €g ;. Because t = 1, m equals the
square-free part of mp, and we may proceed just as in the proof of Proposi-
tion 2.4.4. That is, when D =0 (mod 4) then €g; =1. If D =1 (mod 4),
then for each ¢ | 2D it suffices to compute the average value of x; on S1(¢).

Note that since the x; are non-trivial, then 3~ ) xe(z) = 0. For £ > 2
recall that y, = (%), hence given an element x € S1(¢)¢ with eigenvalues
1 and A, we have that y,(z) = (%) There are an equal number of squares

and non-squares in (Z/lZ)*, so we conclude then

> oxe@) == > xiz)

z€S1(0) z€S1(0)°
=-(¢(;)re+0 ¥ (7))
! !
AE(Z/07)
0#£1
= (= (2 +20)
= /.
From this we obtain
4
Ep=—
TGO - 15:(0)]
B /
(2 —0)(2 1) — (2 +0)(0 —2) — 2
1
B 22—+ 3

For ¢ = 2 one can directly compute S;(2). It consists of the 2 matrices (1 (1])

and ((1’ i) both of which have order 3 and hence are even permutations.
Since x2 is the signature character we conclude E2 = 1, and this completes
the proof. O
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Chapter 3

Non-Serre curves

3.1 Introduction

Let E be a non-CM elliptic curve over a number field K. As we have seen
in chapters 1 and 2, understanding the image of pg in GLQ(Z) amounts to
understanding the (-adic images pg g (Gk) for every prime ¢ as well as the

entanglement fields

K(E[m]) 0 K(E[ma])

for each pair mi,mo € N which are relatively prime. We have also seen
such entanglement fields appear prominently in Chapter 2. Indeed, using
Lemma 2.3.1 we see that the character sum method for the study of con-
jectural constants can only be applied to the class of elliptic curves whose
entanglement fields are abelian extensions of K. This naturally leads to the
question: given a number field K, can one classify the triples (E,mq,ms)
with E an elliptic curve over K and mqy, me a pair of coprime integers for
which the entanglement field K (E[m,]) N K (E[ms]) is non-abelian over K7
The study of correction factors done in Chapter 2 illustrates why it would
be of interest to obtain a complete classification of such examples.

In this chapter we show that there does indeed exist at least one infi-
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Non-Serre curves

nite family of curves such that the curves in it do not satisfy the abelian
entanglements property. The character sum method as we have developed
it cannot be applied to the curves in this family, however we will see that
with some additional restrictions it still can be. The family of curves we
have found appears to be of a very idiosyncratic nature.

Let us restrict our attention now to elliptic curves over Q. With respect
to understanding the entanglement fields, the case K = Q, although it is
usually the first case considered, has a complication which doesn’t arise over
any other number field. Indeed, when the base field is QQ, the Kronecker-
Weber theorem, together with the containment Q((,) C Q(E[n]), forces the
occurrence of non-trivial entanglement fields. Recall from Section 2.4.1 that

for any elliptic curve E over Q one has

Q(VAg) € Q(E[2]) N Q%) (3.1.1)

where n = 4|Ag/|, and that a Serre curve is one whose Galois action on its
torsion points is as large as possible. That is, it satisfies that [GL2(2) :
pe(Gqg)] = 2. These are precisely the curves E over Q for which the entan-
glement (3.1.1) is the only obstruction to surjectivity of pg. It is also shown
in Section 2.4 that Serre curves have abelian entanglements.

Let E, ; denote the curve given by the equation

E.:Y?’=X34+7rX +s.

)

For a varying parameter = let R(z) and S(z) be a given length and width
that grow with x and define

C(x) :={E,4: (r,s) € Z* |r| < R(x),|s| < S(z) and 4r® + 27s% # 0}.

In [Jon10] Nathan Jones proves a theorem bounding the mean-square error

in the Chebotarev theorem for division fields of elliptic curves and uses this
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to count the elliptic curves over Q which are Serre curves. More precisely,

he proves the following theorem (Theorem 4 in [Jon10]).

Theorem 3.1.1 (Jones). Let Cgerre(x) denote the set
{E,s € C(x): E,  is a Serre curve}.

Assuming that min{R(z), S(x)} > 22, one has

B
‘C(.%‘) - CSerre(x)‘ < Wa}()gxa

where B is an explicit constant. Thus, in particular,

lim ‘ OSerre (37) |

=1.

The main algebraic ingredient used by Jones in his proof is the following
lemma (Lemma 5 in [Jon10]) which gives a sufficient condition for an elliptic

curve E to be a Serre curve.

Lemma 3.1.2 (Jones). Suppose E is an elliptic curve over Q such that:
1. For all primes £ we have that pg (Gq) = GL2(Z/(Z),
2. pp2(Go) = GLa(Z/727).

Then E is a Serre curve.

In [Zyw10], Zywina generalizes Theorem 3.1.1 to the case K # Q (see
also [Rad08], which sharpens the upper bound to an asymptotic formula).
In [GJ11], different ideas are used to deduce stronger upper bounds for
the number of elliptic curves in one-parameter families which are not Serre
curves. These results are obtained by viewing non-Serre curves as coming

from rational points on modular curves. More precisely, there is a family
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X ={Xj, Xo,...} of modular curves with the property that, for each elliptic

curve F, one has

E is not a Serre curve <= j(F) € U J(X(Q)), (3.1.2)
Xex

where j denotes the natural projection followed by the usual j-map:
j: X — X(1) — PL

In [GJ11], the authors use (3.1.2) together with geometric methods to bound
the number of non-Serre curves in a given one-parameter family. This brings
us to the following question, which serves as additional motivation for the

present chapter.

Question 3.1.3. What is an explicit list of modular curves in a family
X ={X1, Xo,...} satisfying (3.1.2)7

In order to answer this question it will be essential to have a necessary
and sufficient condition for an elliptic curve to be a Serre curve. Lemma
3.1.2 above gives a sufficient condition, and this was furthered strengthened

by Jones (Corollary 2.12 in [Jon]) to provide a necessary condition as well.

Proposition 3.1.4 (Jones). Let E be an elliptic curve over Q. Then E is

a Serre curve if and only if the following two conditions hold.
1. For each prime ¢ > 5, pp(Gq) = GL2(Z/(Z).
2. One has [,OE,36(GQ), pE’gﬁ(GQ)] = [GLQ(Z/36Z), GLQ(Z/36Z)]

Let & be the set of modular curves whose rational points correspond to
Jj-invariants of elliptic curves E for which pg, is not surjective. Then we

have seen in Section 1.2.3 that

€ € {X0(0), Xyt (0 Xyl pis (0 Xa,(0), X, (0), Xag (0} (3.1.3)

» “*split non-split
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where each of the modular curves X 4,(¢), Xg,(¢), and X 4, (¢) corresponding
to the exceptional groups A4, Sy and As only occurs for certain primes /.
We have then

U &ca.

¢ prime

If pg ¢ is surjective for all primes ¢ and E is not a Serre curve then by Propo-
sition 3.1.4 the obstruction must be coming from the mod 36 representation.
By Corollary 1.2.4 we have that if pg, is surjective then so is the f-adic
representation pg oo, however this is not necessarily true for £ = 2,3. These
obstructions are described by two other modular curves X'(4) and X" (4) of
level 4, and another X’(9) of level 9, which have been considered in [DD12]
and [Elk06], respectively.

Here we consider a modular curve X'(6) of level 6 which, taken together
with those listed above, completes the set X of modular curves occurring in
(3.1.2), answering Question 3.1.3. Let X (n) denote the complete modular
curve of level n, and let H C GL2(Z/nZ) be a subgroup containing —I for

which the determinant map
det: H — (Z/nZ)*

is surjective. Recall from Section 1.2.3 that for any = € P}(Q), we have that

3 an elliptic curve E over Q and 3¢9 € GLa(Z/nZ)
with j(E) = z and pp,(Gal(Q/Q)) € g~ Hy.
(3.1.4)
Thus, to describe X'(6), it suffices to describe the corresponding subgroup
H C GLo(Z/61Z).
There is exactly one index 6 normal subgroup N' C GL2(Z/3Z), defined

T € j(Xu(Q) <
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This subgroup fits into an exact sequence
1— N — GLy(Z/3Z) — GL2(Z/27) — 1, (3.1.6)
and we denote by
0: GLo(Z/37) — GLo(Z/27Z) (3.1.7)

the (non-canonical) surjective map in the above sequence. We take H C
GL2(Z/2Z) x GLa(Z/3Z) to be the graph of 6, viewed as a subgroup of
GL2(Z/67Z) via the Chinese Remainder Theorem. The modular curve X'(6)
is then defined by

X'(6) := Xp;, where H{ .= {(g92,93) € GLa(Z/27) x GLo(Z/37Z) :
g2 = 0(g3)} € GLy(Z/67Z). (3.1.8)

Unravelling (3.1.4) in this case, we find that, for every elliptic curve E over

Q,

Ji(E) € j(X'(6)(Q)
E~g5 E" for some E’ over Q for which Q(E'[2]) C Q(E'[3]). (3.1.9)

By considering the geometry of the natural map X'(6) — X (1), the curve

X'(6) is seen to have genus zero and one cusp. Since Gal(Q/Q) acts on the
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cusps, the single cusp must be defined over Q, thus endowing X’(6) with
a rational point. Therefore X'(6) ~q P'. We prove the following theorem,
which gives an explicit model of X'(6).

Theorem 3.1.5. There exists a parameter t: X'(6) — P, whose inverse

is a uniformizer at the cusp, and which has the property that
§ =219333(1 — 413),

where j: X' (6) — X (1) ~ P! is the usual j-map.

Remark 3.1.6. By (3.1.9), Theorem 3.1.5 is equivalent to the following state-
ment: for any elliptic curve E over Q, E is isomorphic over Q to an elliptic
curve F’ satisfying
Q(E'2]) € Q(E'[3])
if and only if j(F) = 21033t3(1 — 4t3) for some t € Q.
Furthermore, we prove the following theorem, which answers Question

3.1.3. For each prime ¢, consider the set Gy max of maximal proper subgroups
of GLo(Z/¢Z), which surject via determinant onto (Z/(Z)*:

Grmax = {H C GLo(Z/lZ) : det(H) = (Z/(Z)™

and #1H; with H C Hy C GLo(Z/¢Z)}. (3.1.10)

The group GL2(Z/{Z) acts on Gy max by conjugation, and let Ry be a set
of representatives of Gy max modulo this action. By (3.1.4), the collection X

occurring in (3.1.2) must contain as a subset
& ={Xug: H e Ry}, (3.1.11)

the set of modular curves attached to subgroups H € Ry (this gives a more
precise description of the set & in (3.1.3)). Furthermore, the previously men-
tioned modular curves X'(4), X" (4), and X'(9) correspond to the following
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subgroups. Let ¢ : GL2(Z/2Z) — {£1} denote the unique non-trivial char-
acter, and we will view det: GLo(Z/4Z) — (Z/4Z)* ~ {£1} as taking the

values +1.

X'(4) = Xpy, where Hj :={g € GLa(Z/AZ) :
det g = e(g mod 2)} C GLo(Z/4Z),

X"(4) = Xpy where HY = <<2 é) < >> Lo(Z/4AZ),

0 2 1
X'(9) = X4+ where H, ::<
9) = X = ((; 0)(34

2 0 -1 0
, C GL2(Z/9Z).
(3.1.12)
For more details on these modular curves, see [DD12] and [EIk06].

Theorem 3.1.7. Let X be defined by

X ={X'(4),X"(4),Xx'09,xX'6)}u U &,

£ prime

where X'(4), X"(4) and X'(9) are defined by (3.1.12), X'(6) is defined by
(3.1.8), and & is as in (3.1.11). Then, for any elliptic curve E over Q,

E is not a Serre curve <= j(E) € U J(X(Q)).
Xex

3.2 Proofs

We now prove Theorems 3.1.5 and 3.1.7.
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Proof of Theorem 3.1.5. Consider the elliptic curve E over Q(¢) given by

E:y?=a®+3t(1-46%) 2 + (1 - 4%) (;4153),

with discriminant and j-invariant Ag, j(E) € Q(t) given, respectively, by
Ap = —2633(1 — 4t%)?  and j(E) = 2193331 — 4¢3). (3.2.1)

For every t € Q, the specialization E; is an elliptic curve over Q whose
discriminant Ag, € Q and j-invariant j(E;) € Q are given by evaluating
(3.2.1) at t. We will show that, for any ¢t € Q, one has

Q(E¢[2]) € Q(E[3)). (3.2.2)
By (3.1.9) and (3.2.1), it then follows that
vteQ, 219333(1 —4¢3) € j(X'(6)(Q)).

Since the natural j-map j: X’(6) — P! and the map ¢ — 21933#3(1 — 4¢3)
both have degree 6, Theorem 3.1.5 will then follow. To verify (3.2.2), we

will show that, for every t € QQ, one has

Q(E[2]) € QG AFY). (3.2.3)
It is a classical fact that, for any elliptic curve E over Q, one has Q((3, Agg) C
Q(E13]) (for details, see for instance [LT74, p. 181] and the references given
there). Thus, the containment (3.2.2) follows from (3.2.3). Finally, (3.2.3)

follows immediately from the factorization

(¢~ e1(t) (@ — ea(t)) (& — es(t) = a*+3t (1 — 46%) at (1 — 48°) (; - 4t3>
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1
of the 2-division polynomial 23+ 3t (1 — 4t3) T+ (1 — 4753) (2 — 4t3>, where

1y 2/3

) = gAL" + g A8
(34173 (3t 2/3

ea(t) := GAEt + 18(1—4t3)AEf , and

G A3 €Y 2/3
63(t) = EA]Et + WAI& .

This finishes the proof of Theorem 3.1.5. O

Remark 3.2.1. Our proof shows that, viewing E; as an elliptic curve over

Q(t), we have a containment of function fields

Q(#)(E+[2]) < Q(¢)(E4[3))-

We will now turn to Theorem 3.1.7, whose proof employs the following
group theoretic lemma. Recall from Section 1.2.2 that if ¢ is the abbreviation

for the ordered pair (19, 11), then the group G given by

G1 Xy Go:={(g1,92) € G1 X G2 : 1(g1) = 2(g2) } (3.2.4)

is called the fibered product of Gy and G1 over 1, and is commonly denoted
by G % G1. Notice that, for a surjective group homomorphism f: @ — @1,
if f o1 denotes the ordered pair (f oy, f o) and Go X oy G1 denotes the

corresponding fibered product, then one has
GO Xap G1 - Go X for Gl. (3.2.5)

Lemma 3.2.2. Let Go and G1 be groups, let ¥o: Gy — @ and 1: G1 — Q
be a pair of surjective homomorphisms onto a common quotient group @,
and let H = Gy xy G be the associated fibered product. If Q is cyclic, then
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3.2. Proofs

one has the following equality of commutator subgroups:
[H) H] = [GoaGO] X [leGl]'

Proof. See [LT74, Lemma 1, p. 174] (the hypothesis of this lemma is readily
verified when @ is cyclic). O

Proof of Theorem 3.1.7. Using Proposition 3.1.4 one has

d a prime ¢ > 5 with
p,(Gal(@/Q)) € GLa(Z/0Z),
or [pp,36(Gal(Q/Q)), pr 36(Gal(Q/Q))]
C [GLy(Z/367Z), GLo(Z/36Z)].

F is not a Serre curve <=

For each divisor d of 36, let
T36,d - GLQ(Z/362) — GLQ(Z/dZ) (3.2.6)

denote the canonical projection. One checks that, for ¢ € {2,3}, any proper
subgroup H C GLo(Z/¢Z) for which det(H) = (Z/¢Z)* must satisfy [H, H] C
(GL2(Z/0Z), GL2(Z/¢Z)]. We then define

vd € {2,3}, m36,4(H) = GL2(Z/dZ),
Gsg:= ¢ H C GLy(Z/362Z) : det(H) = (Z/367Z)*, )
and [H, H| C [GLy(Z/36Z), GLa(Z/36Z)]
(3.2.7)
and note that

J a prime £ and H € Gy ax for which
pe(Gal(Q/Q)) C H,
or 3H € Gsp for which
pE36(Gal(Q/Q)) C H.

FE is not a Serre curve <—

(3.2.8)
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Non-Serre curves

As in the prime level case, we need only consider mazimal subgroups H €
Gse, and because of (3.1.4), only up to conjugation by GLy(Z/36Z). Thus,

we put
G36.max := {H € G36 : #1H; € Gsg with H C Hy € GLo(Z/36Z)},

we let R36 C G36 max be a set of representatives of G3g max modulo GL(Z/367Z)-

conjugation, and we set
Es36 := {XH : H e R36}.
The equivalence (3.2.8) now becomes (see (3.1.11))

Ja prime £ and Xy € & for which
E is not a Serre curve <= j(F) € j(Xy(Q)),or Xy € &6 for which

J(E) € j(Xu(Q)).
Thus, Theorem 3.1.7 will follow from the next proposition.

Proposition 3.2.3. With the above notation, one may take
-1 —1 —1 —1
Rae = {7736,4(H1/1)77736,4(Hz/1/)77736,9(H£;)7W36,6(Hé)}7

where w36 4 s as in (3.2.6) and the groups Hy, HJ, Hy and Hg are given by
(3.1.12) and (3.1.8).

Proof. Let H € G3gmax. If m364(H) # GL2(Z/4Z), then [DD12] shows
that ms64(H) C Hj or m3s4(H) C HJ, up to conjugation in GLo(Z/4Z). If
736,9(H ) # GL2(Z/97Z), then [Elk06] shows that, up to GL2(Z/9Z)-conjugation,
one has 36 9(H) C H). Thus, we may now assume that msg 4(H) = GL2(Z/4Z)
and m369(H) = GL2(Z/9Z). By Lemma 1.2.7, this implies that there exists
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a group () and a pair of surjective homomorphisms

for which H = GL2(Z/4Z) x GL(Z/9Z). We will now show that in this
case, up to GLy(Z/36Z)-conjugation, we have

H C {(g4,99) € GLo(Z/AZ) x GL2(Z/9Z) : (g9 mod 3) = g4 mod 2},
(3.2.9)
where 0: GL2(Z/3Z) — GL2(Z/2Z) is the map given in (3.1.7), whose
graph determines the level 6 structure defining the modular curve X'(6).
This will finish the proof of Proposition 3.2.3.

Let us make the following definitions:

N4 = kerw4 g GLQ(Z/4Z), Ng = ker¢9 g GLQ(Z/QZ)
Ny :=m42(Ny) € GLo(Z/2Z), N3 := mg3(Ng) C GLo(Z/3Z)
Q2 := GLo(Z/2Z) /Ny, Q3 := GL2(Z/3Z) /N3,

where T4,2: GLQ (Z/4Z) — GLQ(Z/QZ) and 79,3: GLQ(Z/QZ) — GLQ (Z/?)Z)

denote the canonical projections. We then have the following exact se-

quences:
1 — Ng — GL2(Z/9Z) — Q — 1
1 — Ny — GLo(Z/4Z) — Q — 1
4 2(Z/AL) — Q (3:2.10)
1 — N3 — GLy(Z/3Z) — Q3 — 1
1 — Ny — GL2(Z/2Z) — Q2 — 1,
as well as
1 —Ky— Q — — 1
2 @@ (3.2.11)

1— K3 — Q — Q3 — 1,
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kermpe, o GLy(Z /PPZL)
NZQ ﬂkeI‘ﬂ'p’g B N@Q o
@ is evidently abelian (since ker 72 4 is), and has order dividing ¢* = |ker mp2 ).

where for each ¢ € {2, 3}, the kernel Ky ~

We will proceed to prove that

Q2 ~ GL2(Z/2Z) and Q3 ~Q, (3.2.12)
which is equivalent to

Ny Ckermyo and  kermgz C Ny.

Writing g : GLa(Z/4Z) — Q — Q2 ~ GLy(Z/27Z) and tpg: GLy(Z/9Z) —
Q — Q2 ~ GL2(Z/2Z), we then see by (3.2.5) that

H = GLQ(Z/4Z) Xw GLQ(Z/9Z) - GLQ(Z/4Z) X'J; GLQ(Z/QZ)

Furthermore, it follows from Q ~ Q3 that vy factors through the projec-
tion GLo(Z/9Z) — GLo(Z/37Z). This, together with the uniqueness of N
in (3.1.6) and the fact that every automorphism of GLy(Z/2Z) is inner, im-
plies that (3.2.9) holds, up to GL2(Z/367Z)-conjugation. Thus, the proof of
Proposition 3.2.3 is reduced to showing that (3.2.12) holds.

We will first show that Qo ~ GLy(Z/2Z). Suppose on the contrary that
Q2 € GLo(Z/2Z). Looking at the first exact sequence in (3.2.11), we see
that @ must then be a 2-group, and since K3 has order a power of 3 (possibly
1), we see that @ ~ @3, and the third exact sequence in (3.2.10) becomes

1 — N3 — GL2(Z/3Z) — Q — 1.

The kernel N3 must contain an element o of order 3, and by considering
GL2(Z/37Z)-conjugates of o, we find that |N3| > 8. Since 3 also divides | N3],
we see that |N3| > 12, and so Q must be abelian, having order at most 4.
Furthermore, since [GL2(Z/3Z), GL2(Z/37Z)] = SL2(Z/3Z), we find that Q

96



3.2. Proofs

has order at most 2, and thus is cyclic. Applying Lemma 3.2.2, we find that
[H,H| = [GL2(Z/36Z),GL2(Z/367Z)], contradicting (3.2.7). Thus, we must
have that Qo ~ GLy(Z/27).

We will now show that @3 ~ @. To do this, we will first take a more
detailed look at the structure of the group GL2(Z/4Z). Note the embedding
of groups GLo(Z/2Z) < GL2(Z) given by

10 10 11 -1 -1 0 1 0 1
— , — ) — ,
A K 13 O Y S i N (Y I G
0 1 0 1 11 -1 -1 10 1 0
— , — ) — :
R0 I VY B P S e O Y Y Y
This embedding, followed by reduction modulo 4, splits the exact sequence

1— ker7r4,2 — GLQ(Z/4Z) — GLQ(Z/2Z) — 1.

Also note the isomorphism (kermso,) — (Max2(Z/2Z),+) given by I +
2A — A (mod 2). These two observations realize GLo(Z/47Z) as a semi-
direct product

where the right-hand factor is an additive group and the action of GLo(Z/2Z)
on Msy2(Z/27Z) is by conjugation. Since Q2 ~ GL2(Z/2Z), we see that,
under (3.2.13), one has

Ny C Max2(Z/27),

and since it is a normal subgroup of GL2(Z/4Z), we see that Ny must be
a Z/27Z-subspace which is invariant under GLy(Z/2Z)-conjugation. This
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implies that we must be in one of the following 5 cases.

| %

|

Q

Mosy2(7,/27.)

GLo(Z/22)

{A S M2><2(Z/2Z) :

trA =0}

GLo(Z/2Z) x {£1}

o o) (0 2]

1\ /0 1
0/’ \1 1

)

GLo(Z/27) % (Z.)27.)?

{0

)

1 1\ (1
0 1) \1

0 0 1
1/°\1 0

)

GL2(Z/27) % (Z./27,)?

{

0 0\ (1
0 0/ \o

)

PGLy(Z/AZ)

(We have omitted from the table the case that Ny is trivial, since then
Q ~ GL2(Z/AZ), which has order 2° - 3 and thus cannot be a quotient
of GL2(Z/9Z).) In the third row of the table, the action of GL2(Z/2Z)
on (Z/27)?* defining the semi-direct product is the usual action by matrix

multiplication on column vectors, while in the fourth row of the table, the

WIEES (RN R W 1
) {606}

Since 9 does not divide |@Q|, the degree of the projection @) — Qs is either 1 or
3. Inspecting the table above, we see that in all cases except QQ = GLo(Z/2Z),
either @ has no normal subgroup of order 3, or for each normal subgroup
K3 <4Q of order 3, Q3 ~ Q/K3 has Z/27 x 7./27 as a quotient group. Since
(GL2(Z/3Z),GL2(Z/3Z)) = SLa(Z/3Z), the group GL2(Z/3Z) cannot have
Z]27. x 7.J]27 as a quotient group, and so we must have () ~ Q3 in these

action is defined via
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cases, as desired.

When @ = GL2(Z/27Z), we must proceed differently. Suppose that @ =
GL2(Z/2Z) and (for the sake of contradiction) that @ # @3, so that the
projection @ — Q3 has degree 3. Then @3 ~ Z/27Z, which implies that
N3 = SLo(Z/3Z), so that

Ny C 75 5(SL2(Z/3Z)) € GLa(Z/9Z).

Furthermore, the quotient group 779_731,(SL2(Z/3Z))/N9 ~ 7/37, and in par-

ticular is abelian. A commutator calculation shows that
[m9.3(SLa(Z/3Z)), 74 5(SLa(Z/3Z))] = g 3(N) N SLy(Z/9Z),
(see (3.1.5)) and that the corresponding quotient group satisfies
75.3(SLa(Z/32Z))/[mg 5(SL2(Z/3Z)), 74 5(SL2(Z/3Z))] ~ Z/3Z x /3.

Furthermore, fixing a pair of isomorphisms

() e

n2: (1 +3- Z/QZ, ) — (Z/327+>7
and defining the characters

X1: 74.3(SLa(Z/3Z)) — Z/3Z,
X2: 7 3(SLa(Z/3Z)) — Z/3Z

by x1 = m o0 omg3 and x2 = 72 o det, we have that every homomorphism
X: 7T977§(SL2(Z/3Z)) — 7Z/37 must satisfy

X = ai1x1 + az2x2,
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Non-Serre curves

for appropriately chosen aj,ay € Z/37Z. In particular,
Ny = ker(a1x1 + a2x2) (3.2.14)
for some choice of a1, as € Z/37Z. One checks that
dg € GLo(Z/9Z), x € ﬂié(SLg(Z/i&Z)) for which x1(gzg™') # x1(x),

whereas Y2(grg~!) = xo(x) for any such choice of g and 2. Since Ny
is a normal subgroup of GL2(Z/9Z), it follows that a; = 0,a2 # 0 in
(3.2.14). This implies that N9 = SLy(Z/9Z), which contradicts the fact
that GLo(Z/9Z)/Ng ~ @Q ~ GLy(Z/27Z) is non-abelian. This contradiction
shows that we must have @ ~ @3, and this verifies (3.2.12), completing the
proof of Proposition 3.2.3. O

As already observed, the proof of Proposition 3.2.3 completes the proof
of Theorem 3.1.7. O

3.3 Elliptic curves without abelian entanglements

Let us study in more detail one example coming from the family of curves
in Theorem 3.1.5. Consider the curve E/Q given by minimal Weierstrass
equation Y2 = X3 — 63504X + 6223392. This curve has j(E) = —2'03% as
well as A = —2431176, Machine computation shows that G(¢) = GL(Z/¢Z)
and Q(E[2]) C Q(E[3]). We also have that Q(vA) = Q(v/—=3), which
is what we expect since the maximal abelian extension inside Q(E[3]) is
precisely Q(v/—3).

Suppose we wish to compute the conjectural density of primes p such
that E(F,) is cyclic. As we have seen, the naive density of this is [, dr,

however a correction factor is needed. As the only critical primes are 2,3
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and 7, the density we are looking for is

‘G(42 ﬁ 842|

Cr = G(42)]

H 5@7
042,37
where we are using the notation of Section 2.4. Now GLy(Z/37Z) and GL2(Z/77Z)
have no simple non-abelian quotients, hence any entanglement between the
fields Q(E[3]) and Q(E[7]) would have to contain a non-trivial abelian sub-
field. However the maximal abelian extensions of Q(E[3]) and Q(E[7]) are

Q(¢3) and Q((7), hence we conclude Q(E[3]) N Q(E[7]) = Q. This implies
that G(42) = G(6) x G(7), hence
‘ (#2,3

Finally, note that because G(6) = G(3) and G(2) is a quotient of G(6), then

G(6) N S| _ 1S(2)]
EOIEOL

Using machine computation we find that the observed density of primes
p < 100000000 is 0.831069 while our computation yields

Cr =[]

0#£3
~ 0.831066.

As mentioned in the introduction, another natural question which arises
from this is whether one can one classify the triples (F,mj,mo) with E
an elliptic curve over Q and mq, mg a pair of coprime integers for which
the entanglement field Q(E[m1]) N Q(E[mz]) is non-abelian over Q. We are
not sure if any other families exist, however one systematic way one could

possibly rule out other examples is via the following steps.
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Non-Serre curves

(i) Classify the non-abelian groups which arise as common quotients of
subgroups H,,, and H,,,, where H,,,, C GLa(Z/m;Z) and det(H,,,) =
(Z)m;Z)* for i =1,2.

(ii) For each example in step (i), compute the genus of the associated

modular curve.

(iii) For each modular curve in step (ii), decide whether or not it has any

rational points.

For each of these families of curves it would also be of interest to find a
systematic way to compute their entanglement correction factors. For the
family we have described here this is easy to do because one of the torsion
fields is fully contained in another one. It may occur however, at least
in theory, that a curve could have many non-abelian intersections between
various of its torsion fields. However it seems unlikely many examples of this

type exist.
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Summary

This thesis deals primarily with the study of Galois representa-
tions attached to torsion points on elliptic curves. In the first
chapter we consider the problem of determining the image of the
Galois representation pp attached to a non-CM elliptic curve
over the rational number field Q. We give a deterministic algo-
rithm that determines the image of pg as a subgroup of GLo (2),
where the output is given as an integer m together with a finite
subgroup G(m) C GL3(Z/mZ). The image of pg is then the
subgroup of all elements of GLa (2) whose reduction modulo m
belongs to G(m).

In the second part we develop a method using character sums
that uses the image of pg to describe densities of sets of primes
p for which E(IFP) has certain prescribed properties. If E is
an elliptic curve over Q, then it follows by work of Serre and
Hooley that, under the assumption of the Generalized Riemann
Hypothesis, the density of primes p such that the group of IF,-
rational points of the reduced curve E(TF,) is cyclic can be written
as an infinite product [] d, of local factors d, reflecting the degree
of the f-torsion fields, multiplied by a factor that corrects for
the entanglements between the various torsion fields. We show
that this correction factor can be interpreted as a character sum,
and the resulting description allows us to easily determine non-
vanishing criteria for it. We apply our character sum method
to a variety of other settings. Among these, we consider the

aforementioned problem with the additional condition that the



primes p lie in a given arithmetic progression. We also study
the conjectural constants appearing in Koblitz’s conjecture, a
conjecture which relates to the density of primes p for which the
cardinality of the group of IF,-points of £ is prime. The unifying
theme in all these settings is that the constants we are interested

in are completely determined by the image of pg.

The final chapter deals with the classification of non-Serre curves.
An elliptic curve over Q is a Serre curve if its attached Galois
representation is as large as possible, and it is known that most
elliptic curves over Q are of this type. We exhibit a modular
curve of level 6 that completes a set of modular curves which
parametrise non-Serre curves. This modular curve also gives an
infinite family of elliptic curves with non-abelian "entanglement
fields". Exhibiting such a family is naturally motivated by ques-
tions arising in the previous chapter regarding the classification
of elliptic curves to which we can apply the character sum method

described above.



Samenvatting

Dit proefschrift richt zich in hoofdzaak op de studie van Galois-
representaties geassocieerd met de torsiepunten van elliptische
krommen. In het eerste hoofdstuk beschouwen we het probleem
om het beeld te bepalen van de Galoisrepresentatie pp van een
elliptische kromme zonder CM over het lichaam van de ratio-
nale getallen Q. We geven een deterministische algoritme dat
het beeld van pg bepaalt als ondergroep van GLQ(Z), waarbij de
output gegeven wordt als een geheel getal m tesamen met een
eindige ondergroep. Het beeld van pg is dan de ondergroep van
alle elementen van GLy(Z) waarvan de reductie modulo m to
G(m) behoort.

In het tweede deel ontwikkelen we een methode die van karak-
tersommen gebruik maakt om uitgaande van het beeld van pg
dichtheden te beschrijven van verzamelingen van priemen p waar-
voor zekere voorgeschreven eigenschappen heeft. Als I een el-
liptische kromme over Q is, dan volgt uit werk van Serre en
Hooley dat, onder aanname van de Gegeneraliseerde Riemannhy-
pothese, de dichtheid van de verzameling priemen p waarvoor de
groep van [F,-rationale punten van de gereduceerde kromme cy-
clisch is, geschreven kan worden als een oneindig product []d,
van locale factoren §; die de graad van de f-torsielichamen re-
flecteren, vermenigvuldigd met met een factor die corrigeert voor
de verstrengeling tussen de torsielichamen. We laten zien dat
deze correctiefactor geinterpreteerd kan worden als een karak-

tersom, en de resulterende beschrijving stelt ons in staat om



op eenvoudige wijze criteria voor het verdwijnen van de correc-
tiefactor te bepalen. We passen onze karaktersommethode toe in
een aantal andere situaties. Hieronder is het hiervoor genoemde
probleem met de aanvullende voorwaarde dat de priemen in een
gegeven meetkundige reeks liggen. We bestuderen ook de ver-
moede constanten die voorkomen in een vermoeden van Koblitz
betreffende de dichtheid van priemen waarvoor de cardinaliteit
van de groep van [F)-punten van E een priemgetal is. Het unifi-
cerende thema in al deze situaties is dat de constanten waarin

we geinteresseerd zijn, geheel bepaald worden door het beeld van
PE-

Het laatste hoofdstuk gaat in op de classificatie van niet-Serre-
krommen. Een elliptische kromme over Q is een Serre-kromme
als de ermee geassocieerde Galoisrepresentatie zo groot mogelijk
is, en het is bekend dat de meeste elliptische krommen over Q van
dit type zijn. We presenteren een modulaire kromme van niveau
6 die een verzameling van modulaire krommen die niet-Serre-
krommen parmetriseren completeert. Deze modulaire kromme
geeft ook een oneindige familie van elliptische krommen met niet-
abelse "verstrengelingslichamen". Het aangeven van zo’n familie
komt op natuurlijke wijze naar voren in relatie tot de vragen
in het vorige hoofstuk met betrekking tot de classificatie van
elliptische krommen waarvoor we de karaktersommethode toe

kunnen passen.



Resume

Cette theése étudie principalement les représentations galoisiennes
attachées aux points de torsion des courbes elliptiques. Dans le
premier chapitre, nous considérons le probleme de déterminer
I'image de la représentation pp attachée a une courbe elliptique
FE définie sur Q, sans multiplication complexe. Nous donnons
un algorithme déterministe qui calcule I'image de pgp comme
sous-groupe de GLQ(Z), dont la sortie est un entier m et un
sous-groupe fini G(m) C GL2(Z/mZ). L’image de pg est le
sous-groupe des éléments de GLQ(Z) dont la réduction modulo

m appartient & G(m).

Dans une seconde partie, nous développons une méthode util-
isant des sommes de caracteres, qui exploite I'image de pg pour
décrire les densités d’ensembles de premiers p pour lesquels la
courbe réduite £ (F,) a certaines propriétés. Si E est une courbe
elliptique définie sur Q, il suit des travaux de Serre et Hooley que,
sous I’'Hypothese de Riemann Généralisée, la densité des premiers
p tels que le groupe des points [F)-rationnels de la courbe réduite
E(F,) est cyclique s’écrit comme un produit infini [8, de fac-
teurs locaux d, liés au degré du corps contenant la ¢-torsion,
multiplié par un facteur correctif prenant en compte 'intrication
de ces différents corps. Nous montrons que ce facteur correctif
s’interprete comme somme de caracteres et cette description nous
permet de déterminer facilement s’il s’annule ou non. Nous ap-
pliquons notre méthode a d’autres situations, par exemple en re-

streignant p a une progression arithmétique fixée. Nous étudions



aussi les constantes apparaissant dans la conjecture de Koblitz,
liée a la densité des p pour lesquels le groupe des F),-points de £
est un nombre premier. Dans toutes ces applications, le theme
unificateur sous-jacent est que les densités étudiées sont entiere-

ment déterminées par 'image de pg.

Une courbe elliptique sur Q est une courbe de Serre si 'image de
la représentation galoisienne associée est aussi grande que pos-
sible, et la plupart des courbes elliptiques définies sur QQ sont
de ce type. Notre dernier chapitre se préoccupe de la classi-
fication des courbes qui ne sont pas courbes de Serre : nous
exhibons une courbe modulaire de niveau 6 qui complete la liste
des courbes modulaires paramétrant ces courbes. Cette courbe
modulaire définit aussi une famille infinie de courbes elliptiques
dont les «corps d’intrication» sont non abéliens. Les questions
en suspens apres le chapitre précédent, sur la classification des
courbes elliptiques auxquelles nous pouvons appliquer la méth-
ode des sommes de caracteres, fournissent une motivation sup-

plémentaire pour cette famille.
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