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Chapter 1

Computing Galois
representations attached to
elliptic curves

1.1 Introduction

Let K be a number field and K̄ an algebraic closure of K. For an elliptic
curve E defined over K, denote by E[n] the kernel of the multiplication by n

map, that is, the set of elements P œ E(K̄) such that nP = 0. This is known
to be a free Z/nZ-module of rank 2. If we let GK := Gal(K̄/K) denote the
absolute Galois group of K, then GK acts on E[n] by group automorphisms.
This gives rise to a representation

flE,n : GK ≠æ Aut(E[n]) ƒ GL
2

(Z/nZ)

where the isomorphism on the right is obtained by choosing a basis for
E[n] over Z/nZ. Taking the inverse limit of this action over all n gives a

9



Computing Galois representations attached to elliptic curves

continuous representation

flE : GK ≠æ Aut(EŒ) ƒ GL
2

(Ẑ),

where EŒ is the torsion subgroup of E(K̄).
We will be concerned with the question of determining the image of

flE in Aut(EŒ) in the case where E is defined over the rationals and does
not have complex multiplication over Q. The image of flE encodes a lot of
information about the properties of E, both globally and locally, so it is of
interest to fully understand it. As we will see in Chapter 3 for instance,
many constants appearing in classical conjectures of elliptic curves over Q
can be described e�ciently using the image of flE . Determining the image of
this representation is highly non-trivial, but considerable progress has been
made in this direction. The most important result is the following classical
theorem of Serre (see [Ser72]), which says that flE(G) is generically almost
surjective.

Theorem 1.1.1 (Serre’s open image theorem). Let E be an elliptic curve
over a number field K such that E does not have complex multiplication over
K̄. Then flE(GK) is open in GL

2

(Ẑ).

Recall that GL
2

(Ẑ) is an inverse limit of finite groups, hence it is compact,
so it follows immediately from Serre’s open image theorem that flE(GK) has
finite index in GL

2

(Ẑ) for non-CM elliptic curves. This implies (see Lemma
1.2.1) that there exists an integer mE such that the image of flE can be
completely determined by mE (or any multiple of it) and the reduction of
flE(GK) modulo mE . This reduction is precisely the image flE,mE (GK).
It follows from this that we can completely describe the image of flE by
determining an integer m which is a multiple of mE as well as the finite
image of flE,m.

In this chapter we will develop and outline an algorithm which, given as
input an elliptic curve E over Q, outputs such an integer m and flE,m(GQ)

10



1.2. Background and notation

as a subgroup of GL
2

(Z/mZ). It is not clear a priori that such an algorithm
exists, given that even though the output of such an algorithm is ‘finite’,
the intermediate steps deal with ‘infinite’ objects such as GL

2

(Ẑ) and its
¸-adic projections GL

2

(Z¸). Several of these intermediate steps had already
been considered and dealt with successfully by various authors (see [Sut13],
[Zyw11b], [Zyw11a]), and we largely build upon this previous work. The
algorithm which we outline here is meant to serve, at least initially, mainly for
theoretical purposes, however we also look at some practical considerations
which can make this algorithm faster and we discuss some of them in the
last section.

For a prime ¸, denote by flE,¸Œ the representation given by the action of
GK on E[¸Œ]. We call the image of flE,¸Œ the ¸-adic image and denote it by
G¸. In Section 1.3 we consider first the so-called vertical situation, which is
the problem of determining the ¸-adic image for a fixed prime ¸. In order to
do this we will consider the reductions of G¸ modulo various powers of ¸.

In Section 1.4 we consider the horizontal situation, in which we vary the
prime ¸ and determine G¸ for all ¸. The key result from this section is a
method of Zywina which allows one to quickly find a set of primes S outside
of which the mod ¸ image is surjective. This together with Corollary 1.2.4
will allow us to determine G¸ for all primes ¸. In Section 1.5 we consider the
entanglements between the various G¸. This amounts to determining the
intersections between the various ¸Œ-torsion fields of E. It will be Proposi-
tion 1.5.3 that will allow us to do this. Finally, in the last section we discuss
some practical considerations that can make the algorithm outlined usable
in practice.

1.2 Background and notation

For the remainder of the chapter we fix our base field to be Q. For E/Q an
elliptic curve without complex multiplication, let EŒ denote the group of

11



Computing Galois representations attached to elliptic curves

torsion points of E over Q, that is, E(Q)
tors

. Consider the Tate module

T (E) := limΩ
n

E[n],

where the maps E[n] æ E[m] are given by multiplication by n/m, whenever
m divides n. Then GQ acts continuously on T (E). It is a classical result
([Sil09]) that T (E) is a free ‚Z-module of rank 2, hence we may fix a basis
for T (E) so as to identify Aut(EŒ) with GL

2

(‚Z), and we denote by flE :
GQ æ GL

2

(‚Z) the continuous representation given by this action. Also, set
G := flE(GQ). By Serre’s open image theorem G is a finite index subgroup
of GL

2

(‚Z). For each positive integer m we let Gm denote the projection of
G onto the finite product Ÿ

¸|m
GL

2

(Z¸).

We then have Gm ƒ Gal(Km/Q), where Km is the m-power torsion field,
that is, the infinite extension of Q obtained by adjoining the coordinates
of all mn-torsion points of E for all n. Let G(m) denote the image of G

under the reduction modulo m map GL
2

(‚Z) æ GL
2

(Z/mZ), so that G(m) ƒ
Gal(Q(E[m])/Q). We denote by flE,m the representation given by the action
of GQ on E[m].

We will say that m splits flE if we have an equality

G = Gm ◊
Ÿ

¸-m
GL

2

(Z¸).

Note that m splitting flE depends only on the prime factors dividing m and
not on the powers to which these primes occur in the factorisation of m. We
will also say that m is stable if it holds that

Gm = fi≠1

m

!
G(m)

"

12



1.2. Background and notation

where fim denotes the reduction map
r

¸|m GL
2

(Z¸) æ GL
2

(Z/mZ). In
what follows we will also use fim to denote the reduction map GL

2

(‚Z) æ
GL

2

(Z/mZ).

Lemma 1.2.1. Keeping the notation above, there is an integer m which
splits flE and is stable.

Proof. Since G is open in GL
2

(‚Z), it contains an open neighbourhood of the
identity. If we let Um be the set of all matrices in GL

2

(‚Z) whose reduction
modulo m is I, then {Um}m is a neighbourhood base of GL

2

(‚Z), so it follows
that Um µ G for some m. Clearly this m satisfies

G = fi≠1

m

!
G(m)

"

where here fim denotes the reduction map GL
2

(‚Z) æ GL
2

(Z/mZ). This
implies m splits flE and is stable.

Given a stable integer m which also splits flE we see that G is completely
determined by G(m), hence can be described by finitely many conditions.
Note also that if m is stable and splits flE , then so does any integer mÕ such
that m | mÕ. For an elliptic curve E, we will use mE to denote the minimal
stable integer that splits flE . Note that mE divides all other stable integers
which split flE . As we have stated, our primary goal is to give a description
of the image of Galois G, and we do this by determining an integer m which
is a multiple of mE as well as the finite group G(m). In the remainder of
this section we state some results which will prove useful for computing such
an integer.

1.2.1 Group theory for GL

2

We quickly recall some facts about the groups GL
2

(Z/NZ) and GL
2

(Z¸) for
N an integer and ¸ a prime. Most of the material from this section can be
found in [Ser68], §IV.

13



Computing Galois representations attached to elliptic curves

Lemma 1.2.2. PSL
2

(Z/¸Z) is a simple group for ¸ > 5. Every proper
subgroup of PSL

2

(Z/¸Z) is solvable or isomorphic to the alternating group
A

5

, the last possibility occurring only if ¸ © ±1 (mod 5).

Lemma 1.2.3. Let ¸ > 5 be a prime and H be a closed subgroup of GL
2

(Z¸)
whose projection mod ¸ contains SL

2

(F¸). Then H contains SL
2

(Z¸).

Proof. This follows directly from Lemma 3, §IV-23 of [Ser68].

Corollary 1.2.4. Suppose ¸ > 5 is a prime and suppose G(¸) = GL
2

(Z/¸Z).
Then G¸ = GL

2

(Z¸).

Proof. This follows from Lemma 1.2.3 and the fact that the determinant
map det : G¸ æ Z◊

¸ is surjective.

For a profinite group Y we say that a finite simple group � occurs in
Y if there exist closed subgroups Y

1

, Y
2

of Y such that Y
1

is normal in Y
2

and Y
2

/Y
1

ƒ �. We let Occ(Y ) denote the set of finite simple non-abelian
groups occuring in Y . The following properties of Occ are easily checked.

(i) If Y = limΩ≠
n

Yn and each Y æ Yn is surjective then Occ(Y ) =
t

n Occ(Yn).

(ii) If we have a short exact sequence of profinite groups

1 ≠æ Y Õ ≠æ Y ≠æ Y ÕÕ ≠æ 1

then Occ(Y ) = Occ(Y Õ) fi Occ(Y ÕÕ).

Using these properties and Lemma 1.2.2 we obtain that

Occ
!
GL

2

(Z¸)
"

=

Y
_______]

_______[

ÿ if ¸ = 2, 3,

{PSL
2

(Z/5Z)} = {A
5

} if ¸ = 5,

{PSL
2

(Z/¸Z)} if ¸ © ±2 (mod 5) and ¸ > 5,

{PSL
2

(Z/¸Z), A
5

} if ¸ © ±1 (mod 5) and ¸ > 5.

14



1.2. Background and notation

Lemma 1.2.5. Let ¸ be prime. Then GL
2

(Z/¸Z) has no simple non-abelian
quotients.

Proof. Suppose the converse. Then there exists a simple non-abelian group
� and a surjective group homomorphism

Ï : GL
2

(Z/¸Z) ≠æ �.

Since � is then a composition factor of GL
2

(Z/¸Z), it follows that GL
2

(Z/¸Z)
is not solvable, hence ¸ > 5. By Lemma 1.2.2 we have that PSL

2

(Z/¸Z) is
simple. The exact sequence

1 ≠æ SL
2

(Z/¸Z) ≠æ GL
2

(Z/¸Z) ≠æ !
Z/¸Z

"◊ ≠æ 1

shows that � ƒ PSL
2

(Z/¸Z), since it is the only non-abelian composition
factor of SL

2

(Z/¸Z). Now the centres of GL
2

(Z/¸Z) and PSL
2

(Z/¸Z) are
!
Z/¸Z

"◊ and the trivial group, respectively, hence Ï induces a surjective
homomorphism

Â : PGL
2

(Z/¸Z) ≠æ PSL
2

(Z/¸Z),

where PGL
2

(Z/¸Z) = GL
2

(Z/¸Z)/(Z/¸Z)◊. By ¸ > 2 we have

|PGL
2

(Z/¸Z) : PSL
2

(Z/¸Z)| = 2,

so | ker Â| = 2. Let N be the subgroup of GL
2

(Z/¸Z) such that ker Â =
N/(Z/¸Z)◊. Then

!
Z/¸Z

"◊ has index 2 in N , hence N is abelian. Also, as
ker Â � PGL

2

(Z/¸Z), we have N � GL
2

(Z/¸Z), hence GL
2

(Z/¸Z) acts on N

by restricting inner automorphisms. We now show that this action is trivial.
Consider the homomorphism

GL
2

(Z/¸Z) ≠æ Aut(N) (1.2.1)

x ‘≠æ Ïx (1.2.2)

15



Computing Galois representations attached to elliptic curves

given by the action mentioned above. This map satisfies that Ïx is the trivial
action when restricted to

!
Z/¸Z

"◊ for x œ GL
2

(Z/¸Z). Also, as
!
Z/¸Z

"◊ is
the center of GL

2

(Z/¸Z), we have that (1.2.1) factors through PGL
2

(Z/¸Z).
Denote this map by

� : PGL
2

(Z/¸Z) ≠æ Aut(N).

Note that � is trivial when restricted to PSL
2

(Z/¸Z), as this group is simple
and non-abelian. Also, � is trivial on ker Â = N/(Z/¸Z)◊ as N is abelian.
Finally, ker Â ”µ PSL

2

(Z/¸Z), so (ker Â)PSL
2

(Z/¸Z) = PGL
2

(Z/¸Z). Hence
� is trivial and it follows that N is contained in the center of GL

2

(Z/¸Z),
which is absurd.

Corollary 1.2.6. Let N be a positive integer and let � be a simple quotient
of GL

2

(Z/NZ). Then � is abelian.

Proof. Suppose this is not so, and write N =
r

i ¸ni
i . Then � is a composition

factor of GL
2

(Z/NZ). The exact sequences

1 ≠æ GL
2

(Z/¸ni
i Z) ≠æ GL

2

(Z/NZ) ≠æ GL
2

(Z/
!
N/¸ni

i

"
Z) ≠æ 1,

1 ≠æ I + ¸ni≠1

i M
2

(Z/¸iZ) ≠æ GL
2

(Z/¸ni
i Z) ≠æ GL

2

(Z/¸ni≠1

i Z) ≠æ 1,

together with the fact that I +¸ni≠1

i M
2

(Z/¸iZ) µ GL
2

(Z/¸ni
i Z) is an abelian

subgroup (ni > 2), show that � ƒ PSL
2

(Z/¸Z) for some ¸|N and ¸ > 5. It
follows from this that we may assume N = ¸. Now apply Lemma 1.2.5.

1.2.2 Fibered products of groups

Let G
1

, G
2

and Q be groups, Â
1

: G
1

æ Q, Â
2

: G
2

æ Q be surjective
homomorphisms, and let Â denote the abbreviation for the ordered pair
(Â

1

, Â
2

). We define the fibered product of G
1

and G
2

over Â, denoted G
1

◊Â

16



1.2. Background and notation

G
2

, to be the group

G
1

◊Â G
2

:= {(g
1

, g
2

) œ G
1

◊ G
2

: Â
1

(g
1

) = Â
2

(g
2

)} (1.2.3)

Note that G
1

◊Â G
2

is a subdirect product of G
1

and G
2

, that is, it is a
subgroup of G

1

◊ G
2

which maps surjectively onto G
1

and G
2

under the
canonical projection homomorphisms. The following lemma tells us that the
converse of this also holds. We present the proof here since some elements
of it will be relevant later on in this and the next Chapter.

Lemma 1.2.7 (Goursat’s Lemma). Let G
1

and G
2

be groups and let G ™
G

1

◊G
2

be a subgroup such that the projections fi
1

: G æ G
1

and fi
2

: G æ G
2

are surjective. Then there exists a group Q and surjective homomorphisms
Â

1

: G
1

æ Q, Â
2

: G
2

æ Q such that G = G
1

◊Â G
2

. That is,

G = {(g
1

, g
2

) œ G
1

◊ G
2

: Â
1

(g
1

) = Â
2

(g
2

)}.

Proof. Let N
1

= (G
1

◊ {1}) fl G and N
2

= ({1} ◊ G
2

) fl G, where we use 1
to denote the identity elements of both G

1

and G
2

. Then N
1

= ker fi
2

and
N

2

= ker fi
1

. Note that N
1

⇥G as it is the kernel of fi
2

. Hence fi
1

(N
1

)⇥fi
1

(G),
so it follows that fi

1

(N
1

) ⇥ G
1

. Similarly we have fi
2

(N
2

) ⇥ G
2

. Note that
fii(Ni) ƒ Ni and hence (Gi ◊ {1})/Ni ƒ Gi/fii(Ni). Consider the map
f : G æ G

1

/N
1

◊ G
2

/N
2

defined by (g
1

, g
2

) ‘æ (g
1

N
1

, g
2

N
2

) where we have
written Ni in place of fii(Ni). One can easily check that for (g

1

, g
2

) œ G one
has

g
1

N
1

= N
1

≈∆ g
2

N
2

= N
2

hence the image of f is the graph of a well-defined isomorphism G
1

/N
1

≥≠æ
G

2

/N
2

. The result now follows from setting Q := G
2

/N
2

.

We will refer to the Ni in the proof as Goursat subgroups and to Q as
the Goursat quotient associated to this fibered product.

17



Computing Galois representations attached to elliptic curves

Suppose now that L
1

/K, L
2

/K are Galois extensions of fields, with Gi =
Gal(Li/K) and G = Gal(L

1

L
2

/K), where L
1

L
2

denotes the compositum of
L

1

and L
2

. Then it is well known from Galois theory that

G = {(g
1

, g
2

) œ G
1

◊ G
2

: g
1

|L1flL2= g
2

|L1flL2} 6 G
1

◊ G
2

.

Lemma 1.2.8. Keeping the above notation, we have that

G = G
1

◊Â G
2

with Âi : Gi æ Gal(L
1

fl L
2

/K) the canonical restriction maps.

Proof. From the proof of Goursat’s lemma, N
1

= (G
1

◊{1})flG and fi
1

(N
1

) is
the subgroup of G

1

which acts trivially on L
1

flL
2

, and the result follows.

1.2.3 Modular curves and maximal subgroups of GL
2

(Z/¸Z)

In this section we briefly recall the modular curves associated to the maximal
subgroups of GL

2

(Z/¸Z) (for more details, see [DR73]). For a positive integer
n let X(n) denote the compactified modular curve which parametrizes ellip-
tic curves with full level n structure, and let H be a subgroup of GL

2

(Z/nZ)
such that det(H) = (Z/nZ)◊. The corresponding modular curve XH :=
X(n)/H is defined over Q and comes with a natural morphism

j : XH ≠æ P1.

Then for any x œ P1(Q), we have that

x œ j(XH(Q)) ≈∆ ÷ an elliptic curve E over Q and a basis for E(Q)[n]
with j(E) = x and flE,n(GQ) ™ H.

(1.2.4)
Now fix a prime ¸ > 3 and suppose that H is a maximal subgroup of

GL
2

(Z/¸Z) with det(H) = (Z/¸Z)◊. Then up to conjugation in GL
2

(Z/¸Z),

18



1.2. Background and notation

H must be one of the following:

(i) A Borel subgroup, which is formed by the upper triangular matrices
in GL

2

(Z/¸Z).

(ii) The normaliser of a split Cartan subgroup of GL
2

(Z/¸Z).

(iii) The normaliser of a non-split Cartan subgroup of GL
2

(Z/¸Z).

(iv) A subgroup of GL
2

(Z/¸Z) whose projective image is S
4

, A
4

or A
5

(this
last occurring only for certain primes ¸).

We define more generally the split and non-split Cartan subgroups as follows.
Let A be an étale free commutative Z/¸nZ-algebra of rank 2. The F¸-algebra
A/¸A is isomorphic either to F¸◊F¸ or F¸2 , in which case we say that A is split
or non-split, respectively. The unit group A◊ acts on A by multiplication,
so a choice of Z/¸nZ-basis for A gives an embedding A◊ Òæ GL

2

(Z/¸nZ). A
Cartan subgroup of GL

2

(Z/¸nZ), denoted C(¸n), is a subgroup that arises
as the image of such an embedding. We say that C(¸n) is split or non-split
and write C

s

(¸n) or C
ns

(¸n) if A is split or non-split, respectively. We will
denote the normaliser of a Cartan subgroup by either C+

s

(¸n), C+

ns

(¸n) or
simply C+(¸n).

If H is one of the groups from cases (i), (ii), (iii) or (iv) above, then we
will denote the corresponding modular curve by X

0

(¸), X
s

(¸), X
ns

(¸) and
XD(¸), respectively where D can be one of S

4

, A
4

or A
5

. By 1.2.4 there is a
fundamental relation between rational points on the above modular curves
and the mod ¸ image of flE . Specifically, let c(E) be the smallest positive
integer such that flE,¸ is surjective for all ¸ > c(E). In [Ser72] Serre asked
whether one can bound c(E) independent of E. It is widely conjectured
that for all E/Q one can take c(E) = 37, a conjecture first posed by Serre
himself in [Ser81], and which has come to be known as Serre’s Uniformity
Conjecture. The problem of finding explicit upper bounds for c(E) has seen
much progress in recent years. We will call exceptional points those rational

19



Computing Galois representations attached to elliptic curves

points on XH which are non-cuspidal and do not arise from CM elliptic
curves. From 1.2.4 we see that an exceptional point on XH for H one of
the groups (i), (ii), (iii) or (iv) gives rise to a non-CM elliptic curve over
the rationals with non-surjective mod ¸ image. It follows then that Serre’s
above mentioned conjecture is equivalent to saying that the modular curves
X

0

(¸), X
s

(¸), X
ns

(¸) and XD(¸) have no exceptional points for ¸ > 37.
Mazur has shown in [Maz78] that the modular curve X

0

(¸) has no excep-
tional points if ¸ > 17 and ¸ ”= 37. He has also shown that X

0

(37) has two
exceptional points, so the value 37 in Serre’s Uniformity Conjecture would
be best possible. Serre himself in [Ser81] showed that XD(¸) has no excep-
tional points for ¸ > 13 and D equal to S

4

, A
4

or A
5

. Recent work of Bilu
and Parent gives that for ¸ > 7, ¸ ”= 13 the curve X

s

(¸) has no exceptional
points (See [BP11], [BPR11]). In general, very little is known about the
curve X

ns

(¸). The combination of all of these results implies that for ¸ > 37,
is the image of flE,¸ if not surjective then it must be contained in the nor-
maliser of a non-split Cartan subgroup. This will be of crucial importance
in order to show there exists an algorithm guaranteed to terminate which
determines flE(G).

1.3 The vertical case

In this section we consider the problem of determining the ¸-adic image
G¸ for a fixed prime ¸. We do this by determining an integer n such that
G¸ = fi≠1

¸ (G(¸n)) as well as computing the finite group G(¸n).

1.3.1 Associated vector spaces

By successively adjoining to Q the ¸-power torsion of E we obtain a tower
of field extensions Q µ Q(E[¸]) µ Q(E[¸2]) µ · · · µ Q(E[¸Œ]). Let M :=
M

2

(Z¸) denote the set of all 2 ◊ 2 matrices with coe�cients in Z¸, and for
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1.3. The vertical case

n > 1 let

Vn = I + ¸nM

= ker fi¸n ,

where fi¸n is defined as in Section 1.2. Also, let

Un = G¸ fl Vn = Gal(Q(E[¸Œ])/Q(E[¸n])).

Note that we have G¸/Un ƒ G(¸n) ƒ Gal(Q(E[¸n])/Q). We obtain in this
manner a filtration G¸ ∏ U

1

∏ U
2

∏ · · · . Consider now the map

M/¸M ≠æ Vn/Vn+1

X mod ¸M ‘≠æ I + ¸nX mod Vn+1

Since mod ¸n+1 we have (I + ¸nX)(I + ¸nY ) © I + ¸n(X + Y ) with X, Y œ
M

2

(Z¸) and n > 1, this is a group isomorphism, and M/¸M ƒ M
2

(F¸) is a
vector space of dimension 4. If we look at the extension Q(E[¸n+1])/Q(E[¸n]),
its Galois group is Un/Un+1

and we have an injective group homomorphism

Un/Un+1

Òæ M
2

(F¸), I + ¸nA ‘æ A mod ¸.

It follows that [Q(E[¸n+1]) : Q(E
[

¸n])] divides ¸4. We will refer to Un/Un+1

as the associated vector space to Un. It has dimension at most 4 over F¸.
Clearly if G¸ = GL

2

(Z¸) then G(¸n) = GL
2

(Z/¸nZ) for all n, hence
the associated vector space to Un has dimension 4 for all n > 1. It could
happen however that G¸ ( GL

2

(Z¸), for example if G(¸) ( GL
2

(F¸). In such
cases the following lemma allows us to reduce the problem of determining
G¸ to a finite computation, namely, that of determining the smallest n such
that Un/Un+1

has dimension 4. It is separated into two cases depending on
whether ¸ is even or odd.
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Lemma 1.3.1. (i) Let ¸ > 3. With the notation introduced above, let
n > 1 be such that the associated vector space to Un has dimension 4.
Then we have Un = Vn.

(ii) Let ¸ = 2. Suppose that for some n > 2 the associated vector space to
Un has dimension 4. Then Un = Vn. If the associated vector spaces to
U

1

and U
2

each have dimension 4, then we have U
1

= V
1

.

Proof. This is shown in [LT74], §6.

Remark 1.3.2. From Un = Vn it follows that I + ¸nM µ G¸, hence G¸ =
fi≠1

¸n (G(¸n)), in other words, ¸n is stable.

1.3.2 Determining G¸

The problem of computing G¸ can be reduced to computing G(¸n) for various
powers ¸n. Firstly note that for any m, there is a deterministic algorithm
which computes (up to conjugacy) G(m). This consists in explicitly com-
puting the action of Gal(Q(E[m])/Q) on a chosen basis for E[m].

Algorithm 1.3.3 (Computation of G(m) for a given m). Given a non-CM
curve E/Q and an integer m we can compute G(m) as follows.

1. Let f be the mth division polynomial of E. Construct the field Q(E[m])
as an (at most quadratic) extension of the splitting field of f .

2. Compute Gal(Q(E[m])/Q) as a subgroup of Sd, where d = [Q(E[m]) :
Q] (see for instance, [Coh93], §6.3).

3. Choose a basis P, Q for E[m] and determine the action of each ele-
ment of Gal(Q(E[m])/Q) on P and Q. Compute Gal(Q(E[m])/Q as a
subgroup of GL

2

(Z/mZ) with respect to the basis P, Q.

Using this it follows that we can compute the dimension of the associated
vector space to Un for all n. When this dimension is 4 (and when n > 2 if
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¸ = 2), by Lemma 1.3.1 we can recover G¸ as the pullback of the reduction
mod ¸n map.

Algorithm 1.3.4 (Computation of G¸ for a given ¸). Given a non-CM curve
E/Q and a prime ¸ we can compute G¸ as follows.

1. For each n > 1, use Algorithm 1.3.3 to compute G(¸n).

2. If ¸ ”= 2, continue this until |G(¸n+1)|/|G(¸n)| = ¸4, in which case set
n¸ := n. When ¸ = 2, if |G(4)|/|G(2)| = 24 and |G(8)|/|G(4)| = 24

then set n
2

= 1. Otherwise, starting with n = 2 compute G(2n) until
|G(2n+1)|/|G(2n)| = 24, in which case set n

2

:= n.

3. Return G¸ as the subgroup of GL
2

(Z¸) whose reduction modulo ¸n¸

equals G(¸n¸).

Remark 1.3.5. In order to compute G¸ it su�ces to find any integer n such
that ¸n is stable, however the above algorithm finds the smallest such integer.
Note also that when G(¸) = GL

2

(Z/¸Z) and ¸ > 5 one does not have to
compute G(¸2), since by Lemma 1.2.4 we have that ¸ is stable.

In practice this brute force computation of G(¸n) using Algorithm 1.3.3
is computationally feasible only for very small ¸ and small n, as the degree
of Q(E[¸n]) is typically on the order of ¸4n. For the purposes of obtaining a
deterministic algorithm we content ourselves with this approach for now. In
section 1.7 we consider some of the practical considerations which can help
speed up computations.

When analysing Algorithm 1.3.4, a natural question which arises is how
many steps it takes to compute a stable power of ¸. Note that since G¸ is
an open subgroup of GL

2

(Z¸), Algorithm 1.3.4 is guaranteed to terminate
after a finite number of steps. It would be of interest therefore, to have a
bound on the maximum number of iterations it takes to find a stable ¸n

for a given elliptic curve E. Let N¸,E denote the smallest integer such that
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¸N¸,E is stable for E. For ¸ > 17 and ¸ ”= 37 we can obtain an upper bound
for N¸,E as follows. If flE,¸ is surjective, then by Corollary 1.2.4 we have
that G¸ = GL

2

(Z¸) so the integer ¸ is already stable. By the discussion
in Section 1.2.3, if flE,¸ is not surjective, then up to conjugation G(¸) must
lie in the normaliser of a non-split Cartan subgroup of GL

2

(Z/¸Z). Also in
[Zyw11a], Zywina shows that for ¸ in the above range, one has that for every
positive integer n, either G(¸n) is contained in the normaliser of a Cartan
subgroup of GL

2

(Z/¸nZ), or I + ¸4nM µ G¸. In the same paper he also
shows (Proposition 3.3, (ii)) that there exists a positive integer

ME 6 !
68N(1 + log log N)1/2

"Ê(N)+1

such that if G(¸n) is contained in the normaliser of a Cartan subgroup with
¸ > 17 and ¸ ”= 37, then ¸n | ME . Here N is the product of primes for
which E has bad reduction and Ê(N) is the number of distinct prime factors
of N . It follows from both of these results that if we let BE :=

!
68N(1 +

log log N)1/2

"Ê(N)+1 and we take n such that n > log BE/ log ¸, then ¸4n

is stable. This gives an upper bound (albeit a very poor one for practical
computations) on the number of iterations it takes for ¸n to be stable for
primes ¸ > 17, ¸ ”= 37.

The bound given above depends on the elliptic curve E, and no such
e�ective upper bounds are known when ¸ 6 17 or ¸ = 37. However, using
Faltings’ Theorem Zywina shows (see [Zyw11a], Lemma 5.1) that there is a
non-e�ective bound which depends only on ¸ and holds for all elliptic curves
over Q.

With this in mind, denote by N¸ the smallest integer such that ¸N¸ is
stable for all elliptic curves over Q. For ¸ = 2, in a recent paper [RZB14],
it is shown by classifying all possible 2-adic images of GQ that N

2

= 5. In
theory it should be possible to do the same for other small primes ¸ > 3,
however as of yet there are no results as strong as this one. In numerical
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computations it is observed that N¸ is quite small, typically at most 2 for
¸ > 3. This is believed to be the case in particular for larger primes ¸. In
fact, as previously mentioned for ¸ > 37 it is believed that N¸ = 1.

1.4 The horizontal case

We now consider the problem of determining G¸ for all primes ¸. From the
previous section for any given ¸ we can compute G¸, however as there are
infinitely many primes, we must determine a finite subset of them outside
of which the ¸-adic image is surjective. Serre’s open image theorem implies
that this set exists for non-CM curves, and indeed by Corollary 1.2.4 for
¸ > 5, having G(¸) = GL

2

(Z/¸Z) implies G¸ = GL
2

(Z¸).
We now describe an algorithm of Zywina that allows one to find the set

of primes S for which flE,¸ is not surjective. This uses the key fact that if
¸ > 37, then flE,¸ is either surjective or is contained in the normaliser C+(¸)
of a Cartan subgroup of GL

2

(Z/¸Z).
Let ¸ be a prime greater than 37. The first thing to note is that G(¸) is

not contained in the Cartan subgroup C(¸). If C(¸) is split, then it consists
of the diagonal matrices which are contained in a Borel subgroup, hence it
follows from Mazur that G(¸) is not contained in C(¸). Suppose that C(¸)
is non-split, and let Ê œ F¸2 be such that Ê2 = ‘, where ‘ is a non-square in
F◊

¸ . Then by the description given in subsection 1.2.3 it follows that if we
choose {1, Ê} to be an F¸-basis for F¸2 , then we have that

IA
a ‘b

b a

B

: a, b œ Z/¸Z, (a, b) ”© (0, 0) (mod ¸)
J

.

is a non-split Cartan subgroup of GL
2

(Z/¸Z). If we let A œ GL
2

(Z/¸Z) be
the image of complex conjugation under fl¸, then it follows that A has order
2 and det(A) = ≠1 and hence is not contained in C(¸). It follows then that
in both cases G(¸) does not lie in C(¸).
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Define the quadratic character

Â¸ : GQ ≠æ C+(¸)/C(¸) ƒ {±1}

which by the above discussion is non-trivial. Let NE denote the conductor
of E, and define M to be the product of the following prime powers:

• 8, if 4 | NE and ord
2

(j ≠ 1728) > 0,

• 3, if 9 | NE and ord
3

(j ≠ 1728) > 0,

• p, if p2 | NE , p > 5 and ordp(j ≠ 1728) is odd.

In [Zyw11b], Zywina proves the following lemma.

Lemma 1.4.1. Keeping the above notation, we have that the following holds:

(i) The character Â¸ is unramified at all primes p such that p - M or
p = ¸.

(ii) If p - NE and Â¸(Frobp) = ≠1, then ap © 0 (mod ¸), where ap denotes
the trace of Frobenius.

The above lemma is useful because if p - NE is a prime such that ap ”= 0
and Â¸(Frobp) = ≠1, then Lemma 1.4.1 implies that ¸ | ap (note that p - M)
and the Hasse bound then gives

¸ 6 |ap| 6 2Ô
p.

It follows that such a choice of p would give an upper bound for ¸. We now
describe how to use this to construct the set of primes S for which flE,¸ is
not surjective.

Consider the group V of characters (Z/MZ)◊ æ F
2

, which is a vector
space over F

2

. Let ‰
1

, . . . ‰d be a basis of V over F
2

, which we can take
to be the characters

1
·
q

2
for each odd prime q | M , the character ‰(a) =
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(≠1)(a≠1)/2 if M is even and the character ‰(a) = (≠1)(a2≠1)/8 if 8|M .
Consider the sequence of primes p

1

< p
2

< p
3

< . . . such that pi - NE

and api ”= 0. Note then that pi does not divide M . For each r > 1, define
the matrix over F

2

given by Ar :=
!
‰j(pi)

"
i,j

with 1 6 i 6 r, 1 6 j 6 d.
By Dirichlet’s theorem and the fact that the set of primes of supersingular
reduction of a non-CM curve has density 0 ([Ser64]) we have that any vector
in Fd

2

is of the form (‰
1

(p), . . . , ‰d(p)) for some prime p - NE with ap ”= 0. It
follows then that Ar will have rank d for all su�ciently large r.

Lemma 1.4.2. Suppose the matrix Ar has rank d, and let ¸ > 11 be a prime
that does not divide

rr
i=1

api. Then G(¸) is not contained in the normaliser
of a Cartan subgroup. In particular, G(¸) = GL

2

(Z/¸Z) for all ¸ > 37 that
do not divide

rr
i=1

api.

Proof. See Lemma 3.1 of [Zyw11b].

Algorithm 1.4.3 (Finding the set of primes S for which the mod ¸ image
is not surjective). Keeping the notation above, we can compute S as follows.

1. Compute M , and for each i = 1, 2, . . . compute the vector
(‰

1

(pi), . . . , ‰d(pi)) as well as the matrix Ar.

2. Continue this until Ar has rank d, in which case set SÕ to be the set of
primes ¸ > 37 that divide

rr
i=1

api.

3. For each prime ¸ œ SÕ, use Algorithm 1.3.3 to determine whether or
not flE,¸ is surjective. Set S to be the subset of primes of SÕ for which
the mod ¸ image is not surjective.

Algorithm 1.4.3 works quite well even in practice, and as we have seen
in Section 1.2.3, it is conjectured that any ¸ for which the mod ¸ image is
non-surjective will satisfy ¸ 6 37. It should also be noted that in Algorithm
1.4.3 if Ar has rank d with pr 6 419, then flE,¸ is surjective for all primes
¸ > 37. This follows since the Hasse bound implies that if Ar has rank d,
then flE,¸ is surjective for all primes ¸ > max(37, 2Ô

pr).
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1.5 Dealing with entanglements

From the previous two sections we have an algorithm to determine the set S

of primes ¸ for which flE,¸ is not surjective. In addition, by Corollary 1.2.4
we have that G¸ = GL

2

(Z¸) for ¸ outside of S fi {2, 3}, hence for every prime
¸ we are able to determine the ¸-adic image G¸. What remains is to compute
the possible entanglements between the torsion fields of E. Set

T := {2, 3} fi S fi {¸ : ¸ | NE},

m :=
Ÿ

¸œT
¸.

Lemma 1.5.1. The integer m splits flE, that is,

G = Gm ◊
Ÿ

¸-m
GL

2

(Z¸).

Proof. The proof follows similar lines as that of Theorem 6.1 in [LT74], as
well as §IV, 3.4 of [Ser68]. Let L := {¸ : ¸ /œ T }, and let GL be the
projection of G onto

r
¸œL GL

2

(Z¸). We first show that

GL =
Ÿ

¸œL
GL

2

(Z¸). (1.5.1)

For B a subset of L, denote by fiL,B the projection

fiL,B :
Ÿ

¸œL
GL

2

(Z¸) ≠æ
Ÿ

¸œB

GL
2

(Z¸) (1.5.2)

and let GL,B denote the image of GL under the map (1.5.2). We show
that if GL,B =

r
¸œB GL

2

(Z¸) then for any prime ¸
0

œ L ≠ B we have
GL,Bfi{¸0} =

r
¸œBfi{¸0} GL

2

(Z¸). Since G{¸} = GL
2

(Z¸), this implies GL

is dense in
r

¸œL GL
2

(Z¸) and since it is closed by Serre’s open image the-
orem, (1.5.1) will then follow. Let then B

0

:= B fi {¸
0

}, and recall that
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we may view GL,B0 as a subgroup of GL,B ◊ GL,{¸0}. Let Q
0

denote the
Goursat quotient associated to the fibered product given by the inclusion
GL,B0 Òæ GL,B ◊ GL,{¸0}. By Lemma 1.2.8 we have Q

0

may be identified
with Gal(KB fl K{¸0}/Q), where KB is the compositum of the ¸-power tor-
sion fields Q(E[¸Œ]) for ¸ œ B. Note that Q

0

is a common finite quotient
of GL,B =

r
¸œB GL

2

(Z¸) and GL,{¸0} = GL
2

(Z¸0). Suppose that Q
0

is non-
trivial. Replacing Q

0

by a quotient and KB flK{¸0} by a subfield if necessary,
we may assume that Q

0

is a simple quotient. But then there is an integer
N divisible by primes only in B and an integer n such that Q

0

is a common
simple quotient of GL

2

(Z/NZ) and GL
2

(Z/¸n
0

Z), hence it must be abelian
by Corollary 1.2.6. It follows that KB fl K{¸0} non-trivially intersects the
maximal abelian extensions of Q inside Q(E[N ]) and Q(E[¸n

0

]). Since both
N and ¸

0

are odd, these extensions are, respectively, Q(’N ) and Q(’¸n
0
). We

conclude that KB fl K{¸0} = Q, hence Q
0

is trivial and (1.5.1) holds.
Consider now the inclusion G Òæ Gm ◊ GL and denote by Qm the cor-

responding Goursat quotient. By the same reasoning as above, it su�ces to
show that Km fl KL = Q, where Km is the compositum of the ¸Œ-torsion
fields for ¸ | m. Suppose then that Qm is non-trivial. By replacing Qm by
a quotient we may again assume Qm is simple. Then there is an integer
M divisible only by primes dividing m and an integer n coprime to m such
that Qm is a common simple quotient of G(M) and GL

2

(Z/nZ), hence is
again abelian by Corollary 1.2.6. It follows that Km fl KL non-trivially in-
tersects Q(E[M ]) flQ(’n). However since m is divisible by all primes of bad
reduction, Q(E[M ]) is unramified outside of primes dividing m, and Q(’n)
is unramified outside of primes dividing n, we conclude Km fl KL = Q and
Qm is trivial. This completes the proof.

From the above lemma it follows that T contains all the prime divisors
of mE and that

G = Gm ◊
Ÿ

¸-m
GL

2

(Z¸)
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so in order to determine G it remains to compute Gm. We will give a method
to determine an integer m̃ such that

Gm = fi≠1

m̃

!
G(m̃)

"
. (1.5.3)

There is a natural embedding Gm Òæ r
¸œT G¸, however this is in general

not surjective due to the fact that distinct ¸-power torsion fields can have
non-trivial intersection. From an algorithmic point of view, the problem is
that we need to determine intersections between fields of infinite degree over
Q. For this we will require the following lemma.

Lemma 1.5.2. Let N > 1 be a positive integer, ¸ > 2 a prime and A œ
I + ¸N M , where M = M

2

(Z¸). Then there exists Y œ I + ¸N≠1M such that
Y ¸ = A. If ¸ = 2 then we must take N > 2.

Proof. Suppose ¸ > 2. We inductively construct the sequence {An} by
A

1

= I and
An+1

= An ≠ 1
¸

(A¸
n ≠ A)(A≠1

n )¸≠1

for n > 1. Let en be the largest integer such that

A¸
n ≠ A © 0 (mod ¸en).

We show by induction that for n > 1 we have

(i) en > 1 + 2n≠1(N ≠ 1), and further we may write

A¸
n ≠ A = ¸1+2

n≠1
(N≠1)Bn,

where Bn œ M commutes with An and A.

(ii) An commutes with A.

(iii) An © I (mod ¸N≠1).
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Note that at each step, by (i) and the fact that 1 + 2n≠1(N ≠ 1) > 1 for
every n we have 1/¸(A¸

n ≠ A) is in M . Also, by (iii) we have An œ GL
2

(Z¸)
and hence An+1

is a well-defined element of M . We now proceed to show
(i), (ii) and (iii) for all n.

For n = 1, part (i) follows directly by assumption on A, and parts (ii)
and (iii) are clear. Now assume (i), (ii) and (iii) are true for n. We first
show (i) for n + 1. By (i) for n we have

A¸
n ≠ A = ¸1+2

n≠1
(N≠1)Bn,

where Bn commutes with An and A. Then compute

A¸
n+1

≠ A =
1
An ≠ ¸2

n≠1
(N≠1)Bn(A≠1

n )¸≠1

2¸ ≠ A

= A¸
n ≠ ¸1+2

n≠1
(N≠1)Bn + · · ·

+ (≠1)¸¸2

n≠1
(N≠1)¸B¸

n(A≠1

n )¸2≠¸ ≠ A

=
A

¸

2

B

¸2

n
(N≠1)B2

nA≠1

n + · · ·

+ (≠1)¸¸2

n≠1
(N≠1)¸B¸

n(A≠1

n )¸2≠¸

= ¸1+2

n
(N≠1)Bn+1

,

where in the second equality we have used the fact that An and Bn commute,
in the third one we have used that

A¸
n ≠ A = ¸1+2

n≠1
(N≠1)Bn,

and in the last one we have used the fact that ¸ > 2, which gives 2n≠1(N ≠
1)¸ > 1 + 2n(N ≠ 1). Now note that A commutes with An and Bn, and
also An commutes with Bn, hence both An+1

and A commute with Bn+1

,
establishing (i). Part (ii) follows immediately from the fact that A commutes
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with An. Finally, observe that 2n≠1(N ≠ 1) > N ≠ 1, hence

An+1

= An ≠ ¸2

n≠1
(N≠1)Bn(A≠1

n )¸≠1

satisfies An+1

© I (mod ¸N≠1), establishing (iii), and this completes the
induction.

Observe now that this sequence satisfies

An+1

≠ An = ≠1
¸

(A¸
n ≠ A)(A≠1

n )¸≠1

© 0 (mod ¸2

n≠1
(N≠1))

hence An converges to some limit Y œ I + ¸N≠1M by (iii). Finally by (i), we
obtain Y ¸ = A, as desired. The case ¸ = 2 is shown similarly, except here
the we obtain en > 2 + 2n≠1(N ≠ 2), so we must take N > 2.

Let ¸
1

> ¸
2

> · · · > ¸n be the primes in T , where ¸n = 2. For B a subset
of {¸

1

, . . . , ¸n} we denote by GB the projection of Gm onto the product of
primes in B. Also, for each 1 6 k 6 n let Bk := {¸

1

, ¸
2

, . . . , ¸k}.

Proposition 1.5.3. Let k < n, let mk be such that GBk = fi≠1

mk

!
G(mk)

"
.

Let ¸ek
k+1

be the largest power of ¸k+1

dividing the order of G(¸
1

· · · ¸k), and
let tk > 1 be such that ¸tk

k+1

is stable. Also, set

– :=

Y
]

[
tk + ek if ¸k+1

> 3,

3 · max{tk + ek, 2 + ek} if ¸k+1

= 2

and mk+1

:= ¸–
k+1

mk. Then GBk+1 = fi≠1

mk+1

!
G(mk+1

)
"
.

Remark 1.5.4. Note that because GB1 = G¸1 is known, then so is m
1

. Also
since GBn = Gm, the above proposition allows us to determine m̃ = mn in
a finite number of steps. In particular we have that mE divides mn.
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Proof. Recall that GBk may be identified with Gal(KBk/Q) where as before
KBk is the compositum of the ¸-power torsion fields Q(E[¸Œ]) for ¸ œ Bk.

Note that GBk+1 may be viewed as a subgroup of GBk ◊ G¸k+1 whose
projections are surjective, so let NBk and N¸k+1 be the corresponding Goursat
subgroups. By Lemma 1.2.8 the isomorphic quotients

GBk/NBk

≥≠æ G¸k+1/N¸k+1

may be identified with Gal(KBk fl K¸k+1/Q), which we will denote by �.
We see that determining � is equivalent to determining the intersection
KBk fl K¸k+1 .

Suppose that ¸k+1

> 2. Define Uk to be

Uk := {A œ GBk : A © I (mod ¸
1

· · · ¸k)}

and observe that the order of any finite quotient of Uk is divisible only by
primes in Bk, all of which are greater than ¸k+1

. Then since any finite
quotient of G¸k+1 is divisible only by primes dividing the product (¸k+1

≠
1)¸k+1

(¸k+1

+ 1) and ¸k+1

”= 2 it follows that Uk maps to the identity in the
composite map

Uk ≠æ GBk/NBk

≥≠æ G¸k+1/N¸k+1

and so Uk µ NBk . Also, since we have that Uk may be identified with
Gal(KBk/Q(E[¸

1

· · · ¸k])) it follows

KBk fl K¸k+1 µ Q(E[¸
1

· · · ¸k]).

Consider the subgroup of G¸k+1 given by

Q := ÈA¸
ek
k+1 : A œ G¸k+1Í 6 G¸k+1 .

We claim that the map G¸k+1 æ � factors via G¸k+1/
!
(I + ¸k+1

M) fl Q
"
.
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This is clear since for any A œ (I +¸k+1

M)flQ, the image of A in � will have
order a power of ¸k+1

, and will also itself be a product of ¸ek
k+1

-th powers.
But any such element of � must be trivial since the highest power of ¸k+1

dividing � is not greater than ¸ek
k+1

.
Note that I + ¸–≠ek

k+1

M µ G¸k+1 . If ek > 1 then – > 2 and so by repeated
application of Lemma 1.5.2 with – = N we obtain that for any A œ I+¸–

k+1

M

there exists Y œ I + ¸–≠ek
k+1

M such that Y ¸
ek
k+1 = A. It follows that

I + ¸–
k+1

M µ (I + ¸k+1

M) fl Q. (1.5.4)

If ek = 0 then (1.5.4) is trivially true since in this case Q = G¸k+1 . We
conclude

KBk fl K¸k+1 = Q(E[¸
1

· · · ¸k]) fl Q(E[¸–
k+1

]).

Suppose now that ¸k+1

= 2, so that k = n ≠ 1. Note that in this case
I+¸

1

· · · ¸n≠1

M need not map to the identity in G
2

/N
2

since G
2

has quotients
of order divisible by 3. We show however that

K
2

fl KBn≠1 µ Q(E[3t+1¸
1

· · · ¸n≠2

]) (1.5.5)

where t > 1 is denoting an integer such that 3t is stable. Define

T
3

:= ÈA3 : A œ G
3

Í 6 G
3

.

Since the order G
2

/N
2

has at most one factor of 3, the map G
3

æ G
2

/N
2

factors via G
3

/
!
(I + 3M) fl T

3

"
. Note also that I + 3tM µ G

3

and t + 1 > 2,
hence by Lemma 1.5.2 we have

(I + 3t+1M) µ (I + 3M) fl T
3

.
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It follows that if we define

U Õ
n≠1

= {A œ GBn≠1 : A © I (mod 3t+1¸
1

· · · ¸n≠2

)}

then U Õ
n≠1

maps to the identity in G
2

/N
2

, hence (1.5.5) holds. Similarly as
before we can also show that

K
2

fl KBn≠1 µ Q(E[2–]).

The result now follows.

1.6 Algorithm to compute flE(GQ)

We now have all the ingredients necessary to give a deterministic algorithm
which, given an elliptic curve E, determines the image of flE . We summarize
it below.

Algorithm 1.6.1 (Determining the image of flE). Given a non-CM elliptic
curve over Q, we may determine flE as follows.

1. Use Algorithm 1.4.3 to determine the set of primes S for which the
mod ¸ image is not surjective.

2. Define the set T := {2, 3, 5} fi S fi {¸ : ¸ | NE}.

3. For each ¸ œ T , use Algorithm 1.3.4 to determine G¸.

4. For each k = 1, . . . , n ≠ 1, use Proposition 1.5.3 to determine mk+1

.
Note that this is possible as for each ¸ œ T we have already computed
t such that ¸t is stable. Also, using Algorithm 1.3.3 we may determine
the largest power of ¸ dividing any of the finite groups G(¸

1

· · · ¸k).

5. Once determined mn use Algorithm 1.3.3 to compute G(mn).
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1.7 Practical considerations

As mentioned previously, Algorithm 1.6 is very slow in practice. Unless the
set T contains only primes less than 7 and the stable powers of those primes
are less than 2 this algorithm will take a very long time. There are several
steps throughout which can be made much faster if we sacrifice having an
unconditional algorithm. This is managed by instead at some steps having
a heuristic algorithm using Frobenius statistics. In this section we briefly
describe this approach.

The most time consuming step in our algorithm is the computation of
G(m) using Algorithm 1.3.3. If m = ¸ is prime, then there is a very fast
algorithm due to Sutherland ([Sut13]) which computes the image of flE,¸ up
to isomorphism, and usually up to conjugacy by using Frobenius statistics. If
flE,¸ is surjective, then the algorithm proves this unconditionally. Otherwise
its output is correct with a very high probability. This has been used to
compute the mod ¸ image for every curve in the Cremona and Stein-Watkins
databases for all ¸ < 60.

Recall the notation of Section 1.3.1. We have used the Algorithm 1.3.3
to compute the smallest n such that the associated vector space to Un has
dimension 4. This is also quite time consuming when using Algorithm 1.3.3.
Another way to do this would be to produce four elements Yi œ G¸ such that

Yi © I + ¸nXi (mod ¸n+1)

for 1 6 i 6 4, and such that the Xi are linearly independent mod ¸, and
we can try to produce these elements via Frobenius elements at unramified
primes. To be precise, let p be a prime of good reduction and as usual ap

denote the trace of Frobenius. Then one way to try to achieve this is by
using the characteristic polynomial of Frobp which we know is

�p(X) = X2 ≠ apX + p.
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This can be done easily using machine computation, and in this manner we
can explicitly write down reductions mod ¸n of matrices in G¸, for suitable
¸n. If we are able to produce the four required elements Yi then this shows
unconditionally that ¸n is stable. This method however has the limitation
that it does not work so well if the mod ¸ image is ‘small’. See [LT74], §8 for
one example of this method being used e�ectively.

We can conditionally determine the power n¸ such that ¸n¸ is stable,
provided ¸n¸ is not too large. One method to do this is to use the density of
primes p - NE which split completely in Q(E[¸n]) to determine the degree of
Q(E[¸n]) for di�erent n, and increase n until [Q(E[¸n]) : Q(E[¸n≠1])] = ¸4.
We illustrate this with an example.

1.7.1 Example: Y 2

+ XY + Y = X3

+ 4X ≠ 6

Consider the elliptic curve E over Q given by Weierstrass equation Y 2+XY +
Y = X3 +4X ≠6. The discriminant of this Weierstrass model is � = ≠2673.
Using Algorithm 1.4.3 and Sutherland’s algorithm for the mod ¸ image we
obtain that flE,¸ is surjective for all ¸ ”= 2, 3 and G(2) ƒ G(3) ƒ {±1}. This
already implies that G¸ = GL

2

(Z¸) for all ¸ > 3. The next step is to find
G

2

and G
3

by finding exponents n
2

and n
3

such that 2n2 and 3n3 are stable.
Here using Algorithm 1.3.3 is relatively fast for computing G(2) and G(4),
however it quickly becomes infeasible to compute the 2n-torsion for higher
powers of 2. Also, the mod 2 and mod 3 images are too small for the method
of Frobenius sampling outlined above to work.

Note that by Chebotarev, for each prime p - 14 the density of primes
splitting completely in Q(E[4]) is 1/|G(4)|. For each prime p - 14 up to
a chosen bound B we compute the observed density of primes such that
the reduced curve Ẽ(Fp) has full 4-torsion. The observed density of primes
p 6 10000000 is 0.0311144 while 1/25 ƒ 0.03125, so we can conditionally
conclude that [Q(E[22]) : Q(E[2])] = 24. In the same manner one can
determine that [Q(E[23]) : Q(E[22])] = 23 and [Q(E[24]) : Q(E[23])] =
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24, hence 23 is stable. In the same way we can deduce that 3 is stable.
In principle we may do the same thing to determine the degrees of the
intersections between various torsion fields in such a way to determine |G(23 ·
3 · 7)|, however this is quite time-consuming when the degrees of the fields
in question are large.

The information we have obtained on the various mod ¸ images of flE

is, in this particular situation, already su�cient for us to determine mE ,
using the same techniques we have used throughout this chapter. We first
determine G(8 · 7), which is equivalent to determining Q(E[8]) fl Q(E[7]).
Note first of all that

Q(E[2]) = Q(
Ô

�) µ Q(’
7

) µ Q(E[7]).

Let L = Q(E[8]) fl Q(E[7]). We claim that L = Q(
Ô≠7). Suppose

otherwise that Q(
Ô≠7) is strictly contained in L. As K

2

is a pro-2 tower
of fields it follows that L/Q(

Ô≠7) is a 2-power extension. Note that by the
computations above we know that G(7) ƒ GL

2

(F
7

). Let Q(E[7]x) be the
subfield of Q(E[7]) fixed by {±1}, so that

Gal(Q(E[7])x/Q(’
7

)) ƒ PSL
2

(F
7

).

Since L is Galois over Q(
Ô≠7), it follows that L ”µ Q(E[7]x), for if it were

then LQ(’
7

) would be a non-trivial Galois extension of Q(’
7

), and hence
it would correspond to a non-trivial normal subgroup of PSL

2

(F
7

), contra-
dicting the simplicity of PSL

2

(F¸) for ¸ > 5. Finally, if L ”µ Q(E[7]x), then
LQ(’

7

) corresponds to a proper subgroup of SL
2

(F
7

) which maps surjec-
tively onto PSL

2

(F
7

), contradicting Lemma 2, §3.4 in [Ser68]. This shows
that L = Q(

Ô≠7).
It remains then to compute the intersection K

3

fl (K
2

K
7

). Let Q be
the Goursat quotient corresponding to this intersection. That is, Q ƒ
Gal(M/Q) where M = K

3

fl K
2

K
7

. Note that since Q(E[3]) = Q(’
3

) is
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totally ramified at 3, and K
3

/Q(E[3]) is pro-3, then Q is a 3- group. Let
U = Gal(K

2

K
7

/Q(E[7]). Then every finite quotient of U has order divisible
only by 2 and 7, hence U maps to the identity under U æ Q, and it follows
that M µ Q(E[7]).

By replacing Q with a subgroup if necessary, we may assume Q is simple.
By Lemma 1.2.6, the only simple non-abelian quotient of GL

2

(Z/7Z) is
PSL

2

(Z/7Z), hence it follows that Q must be abelian. We have then that
the only possibility is Q ƒ (Z/7Z)◊/{±1}.
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Chapter 2

Entanglement correction
factors as character sums

2.1 Introduction

The motivation for this chapter comes from the classical conjecture of Artin
from 1927 which predicts the density of primes p for which a given rational
number is a primitive root modulo p. More precisely, let g be an integer
di�erent from ±1, and let h be the largest integer such that g = gh

0

with
g

0

œ Z. The heuristic reasoning described by Artin was the following. If p

is a prime number coprime to g, then g is a primitive root modulo p if and
only if there is no prime ¸ dividing p ≠ 1 such that g © y¸ (mod p) for some
y. Note that this congruence condition can be given as a splitting condition
on the prime p in the field F¸ := Q(’¸,

Ô̧
g). Indeed, the condition on p is

equivalent to p not splitting completely in the aforementioned field. In other
words, g is a primitive root modulo p if and only if for every prime ¸ < p we
have that Frobp is not the identity element in Gal(F¸/Q).

For a fixed ¸, the density of primes which do not split completely in F¸

41



Entanglement correction factors as character sums

is equal to
”¸ := 1 ≠ 1

[F¸ : Q] ,

and this equals 1 ≠ 1

¸≠1

for ¸ | h and 1 ≠ 1

¸(¸≠1)

otherwise. If we assume
the splitting conditions in the various fields F¸ to be independent, then
it is reasonable to expect that the density of primes p for which g is a
primitive root modulo p is equal to

r
¸ ”¸. This was the density originally

conjectured by Artin, however years later (see [Ste03]) he noticed that this
assumption of independence is not correct, as the fields F¸ can have non-
trivial intersections. If F

2

= Q(Ôg) has discriminant D © 1 (mod 4), then
F

2

is contained in the compositum of the fields F¸ with ¸ | D. The corrected
version of the conjecture was proven by Hooley under the assumption of
the Generalized Riemann Hypothesis (GRH). He showed in [Hoo67] that,
conditional on GRH, the density of primes such that g is a primitive root
modulo p equals

Cg =
Œÿ

n=1

µ(n)
[Fn : Q] (2.1.1)

where Fn = Q(’n, n
Ô

g) and µ is the Möbius function. In the same paper
Hooley shows that (2.1.1) can be rewritten as

Cg = Cg

Ÿ

¸|h

1
1 ≠ 1

¸ ≠ 1
2 Ÿ

¸-h

1
1 ≠ 1

¸(¸ ≠ 1)
2
, (2.1.2)

where Cg is an entanglement correction factor, a rational number which
depends on g. In fact it is given explicitly by

Cg := 1 ≠
Ÿ

¸|D
¸|h

≠1
¸ ≠ 2 ·

Ÿ

¸|D
¸-h

≠1
¸2 ≠ ¸ ≠ 1 .

One advantage of having Cg in the form given by (2.1.2) is that it makes it
easy to see when the density Cg vanishes. Vanishing of Cg implies that, con-
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jecturally, there exist only finitely many primes p such that g is a primitive
root modulo p, and the multiplicative structure of Cg and Cg allows one to
identify precisely what are the obstructions to this.

There are many interesting generalisations to Artin’s conjecture on prim-
itive roots. For instance, one could consider only primes p which lie in a pre-
scribed congruence class modulo some integer f . One could also study the
set of primes p such that g generates a subgroup of a given index in (Z/pZ)◊.
As is shown in [Len77], in both of these cases one can again obtain a density
under GRH via a formula similar to (2.1.1). However, it is not clear how to
describe the non-vanishing criteria of such densities from such a sum.

In [LMS14], the authors develop an e�cient method to compute entan-
glement correction factors Cg for Artin’s original conjecture and several of its
generalisations. Their method consists in expressing Cg as a sum of quadratic
characters. More precisely, they show that Cg has the form

Cg = 1 +
Ÿ

¸

E¸

where each E¸ is the average value of a character ‰¸ over an explicit set. One
crucial fact used to arrive at this form is that when D © 1 (mod 4), then
for n divisible by 2D we have that the subgroup

Gal(Fn/Q) Òæ
Ÿ

¸|n
Gal(F¸/Q)

is cut out by a quadratic character ‰ measuring the nature of the entangle-
ment. The structure of Cg as an Euler product and the description of Cg

naturally lead to non-vanishing criteria.
In this chapter we attempt to generalize this method to the setting of

elliptic curves. There are many problems concerning the study of the set
of primes p such that the reduced curve Ẽ(Fp) satisfies a certain condi-
tion. One of these arises as a natural analogue of Artin’s conjecture on
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primitive roots. Namely, given an elliptic curve E over Q, the problem is
to determine the density of primes p such that Ẽ(Fp) is cyclic. The first
thing to note is that the condition of Ẽ(Fp) being cyclic is completely de-
termined by the splitting behaviour of p in the various torsion fields Q(E[¸])
for di�erent ¸. Given this, we can proceed similarly by defining local densi-
ties ”¸ and attempting to find the entanglement correction factor CE , how-
ever one quickly runs into various di�culties which were not present in the
case of classical Artin. One of these is that it is not necessarily true that
Gal(Q(E[m])/Q) Òæ r

¸|m Gal(Q(E[¸])/Q) is a normal subgroup and even if
so, the quotient need not be {±1} or even abelian for that matter.

This leads us to the study in Section 2.2 of so called abelian entangle-
ments. If G is a subgroup of G

1

◊ · · · ◊ Gn such that the projection maps
fii : G æ Gi are surjective for 1 6 i 6 n, then we give a necessary and su�-
cient condition for G being normal in G

1

◊ · · · ◊ Gn with abelian quotient.
In Section 2.3 we define elliptic curves with abelian entanglements to be

those elliptic curves with the property that G(mE) has abelian entangle-
ments in the sense of Section 2.2. We show that this definition is equivalent
to Q(E[m

1

]) fl Q(E[m
2

]) being an abelian extension of Q for every coprime
m

1

, m
2

. It is for this class of curves that we will be able to apply our char-
acter sum method, with Theorem 2.3.4 being a crucial ingredient.

Section 2.4 applies Theorem 2.3.4 to the aforementioned problem of cyclic
reduction of elliptic curves. We explicitly evaluate the density CE as an Euler
product

r
¸ ”¸ times an entanglement correction factor CE . We then compute

CE in the case of Serre curves and give examples of a few other elliptic curves
with more complicated Galois Theory, as well as establishing non-vanishing
criteria for these conjectural densities.

In Section 2.5 we study a variant of the problem of cyclic reduction on
elliptic curves. Namely, we impose the additional condition that p lie in a
prescribed congruence class modulo some integer f . This introduces new
di�culties as the splitting conditions on p become more complicated, but it
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also illustrates the way in which our method can be used to handle a variety
of di�erent scenarios. In the end the computation of CE is again reduced to
fairly mechanical local computations. Again Serre curves and several other
examples are treated in detail.

Section 2.6 we study a di�erent type of problem. We look at a classical
conjecture of Koblitz on the asymptotic behaviour of the number of primes
p for which the cardinality of Ẽ(Fp) is prime. We see that the character
sum approach can also be applied to describe the constant appearing in
this asymptotic. In this case there are not even conditional results, and the
constant computed is purely conjectural. However the constant we compute
has previously been described via di�erent methods by Zywina in [Zyw11c],
where he provides some convincing numerical evidence for it.

The study of conjectural constants led us to investigate the class of elliptic
curves with abelian entanglements, and naturally leads to the question of
whether there exist elliptic curves with non-abelian entanglements. To be
precise, can one classify the triples (E, m

1

, m
2

) with E an elliptic curve over
Q and m

1

, m
2

a pair of coprime integers for which the entanglement field
Q(E[m

1

]) fl Q(E[m
2

]) is non-abelian over Q? In Chapter 3 we exhibit an
infinite family of elliptic curves for which this is the case, and in doing so
we obtain a complete set of modular curves which parametrize non-Serre
curves.

2.2 Abelian entanglements

In this section we study the following question: if G is a subgroup of G
1

◊
· · · ◊ Gn such that the projection maps fii : G æ Gi are surjective for
1 6 i 6 n, when does it happen that G is normal in G

1

◊ · · · ◊ Gn with
abelian quotient?

For a group G, we will denote by GÕ the commutator subgroup of G, and
for x, y œ G, [x, y] = x≠1y≠1xy will denote the commutator of x and y. For
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a non-empty subset S µ {1, . . . , n} we write fiS for the projection map

fiS : G
1

◊ · · · ◊ Gn ≠æ
Ÿ

iœS

Gi

and let GS denote the image of G under this projection map. Note that for
each partition ÛjTj = {1, . . . , n} we have a canonical inclusion

G Ò≠≠≠æ
Ÿ

j

GTj .

Let P := {S, T} be a partition of {1, . . . , n}, so that S Û T = {1, . . . , n}.
Then G is a subdirect product of GS ◊ GT so by Goursat’s lemma there is
a group QP and a pair of homomorphisms ÂP := (Â(1)

P , Â
(2)

P ) with

Â
(1)

P : GS ≠æ QP

Â
(2)

P : GT ≠æ QP

such that G = GS ◊ÂP GT . We say that G has abelian entanglements
with respect to G

1

◊ · · · ◊ Gn if QP is abelian for each two-set partition P
of {1, . . . , n}. We will often write only that G has abelian entanglements,
omitting with respect to which direct product of groups if this is clear from
the context. The following proposition is the main result of this section and
provides an answer to the question posed at the start.

Proposition 2.2.1. Keeping the notation as above, G is a normal subgroup
of G

1

◊ · · · ◊ Gn if and only if G has abelian entanglements.

The proof will use the following proposition, which is the case n = 2.

Proposition 2.2.2. Let G be a subgroup of G
1

◊G
2

such that the projection
maps fi

1

: G æ G
1

and fi
2

: G æ G
2

are surjective. Then G ⇥ G
1

◊ G
2

if
and only if G has abelian entanglements.
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Proof. Suppose first that G has abelian entanglements, and let x := (x
1

, x
2

) œ
G. We will show that for any a œ G

1

◊ {1} one has axa≠1 œ G, and
similarly for every b œ {1} ◊ G

2

. The result will then follow. So take
a := (a

1

, 1) œ G
1

◊ {1}. Let N
1

and N
2

be the corresponding Goursat sub-
groups associated to G, that is, N

1

= (G
1

◊{1})flG and N
2

= ({1}◊G
2

)flG.
Then because G has abelian entanglements we have that (G

1

◊ {1})/N
1

is
abelian, or equivalently (G

1

◊{1})Õ 6 N
1

. It follows that [(a
1

, 1), (x
1

, 1)] œ G,
however

[(a
1

, 1), (x
1

, 1)] = (a
1

, 1)(x
1

, 1)(a
1

, 1)≠1(x
1

, 1)≠1

= (a
1

, 1)(x
1

, x
2

)(a
1

, 1)≠1(x
1

, x
2

)≠1

and (x
1

, x
2

)≠1 is in G, hence (a
1

, 1)(x
1

, x
2

)(a
1

, 1)≠1 is also in G, as claimed.
Similarly one can show (1, b

2

)(x
1

, x
2

)(1, b
2

)≠1 œ G for any b
2

œ G
2

, and we
conclude G is normal in G

1

◊ G
2

.
For the converse, suppose that G ⇥ G

1

◊ G
2

. We will show that (G
1

◊
{1})Õ 6 N

1

, from which it follows that G has abelian entanglements. Let
(x

1

, 1) and (y
1

, 1) be arbitrary elements of G
1

◊ {1}. Because fi
1

: G æ G
1

is surjective, there exists z œ G
2

such that (y
1

, z) œ G. As G ⇥ G
1

◊ G
2

, we
have (x

1

, 1)(y
1

, z)(x
1

, 1)≠1 is in G and hence so is [(x
1

, 1), (y
1

, z)]. Using the
fact that [(x

1

, 1), (y
1

, 1)] = [(x
1

, 1), (y
1

, z)], we obtain [(x
1

, 1), (y
1

, 1)] œ G.
However [(x

1

, 1), (y
1

, 1)] = ([x
1

, y
1

], 1) œ G
1

◊ {1}, hence the result.

Proof of Proposition 2.2.1. Again we suppose first that G has abelian en-
tanglements, and we proceed similarly as in the case n = 2. Let x :=
(x

1

, . . . , xn) œ G, and for j œ {1, . . . , n} let a := (1, . . . , 1, aj , 1, . . . , 1) œ
{1}◊ · · ·◊{1}◊Gj ◊{1}◊ · · ·◊{1} where the aj is in the j-th position. Let
Sj := {1, . . . , n}\{j}. Then G 6 Gj ◊ GSj with surjective projection maps
and the corresponding quotient (Gj ◊ {1})/Nj is abelian. By Proposition
2.2.2, G is a normal subgroup of Gj ◊ GSj . But a is certainly an element
of Gj ◊ GSj , hence axa≠1 œ G. Since j was chosen arbitrarily we conclude
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G ⇥ G
1

◊ · · · ◊ Gn.
Conversely, suppose G⇥G

1

◊ · · ·◊Gn, and let P := {S, T} be a partition
of {1, . . . , n}. Then note that GS ◊ GT may be viewed as a subgroup of
G

1

◊ · · · ◊ Gn and so G ⇥ GS ◊ GT . By Proposition 2.2.2 the corresponding
Goursat quotient QP is abelian, hence G has abelian entanglements. This
completes the proof.

In the proof we used the subset Sj := {1, . . . n}\{j} µ {1, . . . , n}. Here
we have that G is a subdirect product of Gj ◊ GSj , so by Goursat’s lemma
there is a group Qj and a pair of homomorphisms Âj := (Â(1)

j , Â
(2)

j ) such
that G = Gj ◊Âj GSj . The following corollary tells us that these are all the
partitions we need to consider in order to determine whether or not G has
abelian entanglements.

Corollary 2.2.3. With the notation above, G has abelian entanglements if
and only if Qj is abelian for every j œ {1, . . . , n}.

Proof. One implication is trivial. Suppose that Qj is abelian for every
j œ {1, . . . , n}. Then by the proof of Proposition 2.2.1, G is a normal
subgroup of G

1

◊ · · · ◊ Gn, and again using Proposition 2.2.1, G has abelian
entanglements, as claimed.

Proposition 2.2.4. Suppose that G is a normal subgroup of G
1

◊ · · · ◊ Gn

such that the projection maps fii : G æ Gi are surjective for all i. Then the
quotient (G

1

◊ · · · ◊ Gn)/G is abelian.

Proof. We will proceed by showing that (G
1

◊ · · · ◊ Gn)Õ 6 G. Let x :=
(x

1

, . . . xn) œ (G
1

◊ · · · ◊ Gn)Õ. By Proposition 2.2.1 G has abelian entan-
glements, so for each j, to the inclusion G Òæ Gj ◊ GSj there corresponds an
abelian quotient Gj/fij(Nj), where Nj = (Gj ◊ {1}) fl G. The composition

G
1

◊ · · · ◊ Gn
fij≠æ Gj ≠æ Gj/fij(Nj)
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2.3. Elliptic curves with abelian entanglements

gives an abelian quotient of G
1

◊ · · · ◊ Gn, hence xj = fij(x
1

, . . . , xn) is
contained in fij(Nj). It follows that (1, . . . , 1, xj , 1 . . . , 1) œ G. As j was
arbitrary, and

r
j(1, . . . , 1, xj , 1 . . . , 1) = x, we conclude x œ G.

Proposition 2.2.5. Suppose G has abelian entanglements with respect to
G

1

◊ · · · ◊ Gn and let S ™ {1, . . . , n}. Then GS has abelian entanglements
with respect to

r
iœS Gi.

Proof. We will show that GS is normal in
r

iœS Gi. Note that

G 6 fi≠1

S (GS) 6 G
1

◊ · · · ◊ Gn

and by Proposition 2.2.4 the quotient (G
1

◊· · ·◊Gn)/G is abelian. It follows
then that fi≠1

S (GS) is normal in G
1

◊ · · · ◊ Gn, and denote the quotient by
�S . Now ker fiS µ fi≠1

S (GS) so the map G
1

◊ · · · ◊ Gn æ �S factors via
r

iœS Gi. Let ÂS be such that the following diagram commutes

G
1

◊ · · · ◊ Gn

Ÿ

iœS

Gi �S

fiS

ÂS

.

It is easy to see that the kernel of ÂS is precisely GS , hence GS is normal in
r

iœS Gi and by Proposition 2.2.1 GS has abelian entanglements with respect
to

r
iœS Gi, as claimed.

2.3 Elliptic curves with abelian entanglements

We consider here a family of elliptic curves with the property that the inter-
sections of the di�erent torsion fields of each curve in this family are abelian
extensions.
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We say that an elliptic curve E has abelian entanglements if the corre-
sponding group G(mE) 6 G(¸–1

1

) ◊ · · · ◊ G(¸–n
n ) has abelian entanglements

in the sense of section 2.2, where mE as usual denotes the smallest split and
stable integer for E, and has prime factorisation mE = ¸–1

1

. . . ¸–n
n .

Lemma 2.3.1. The following two conditions are equivalent:

(i) E has abelian entanglements.

(ii) For each m
1

, m
2

œ N which are relatively prime, the intersection

Q([m
1

]) fl Q([m
2

])

is an abelian extension of Q.

Proof. Suppose E has abelian entanglements, and let m
1

, m
2

be relatively
prime. If m

1

and m
2

both divide mE , then by Proposition 2.2.5 G(m
1

m
2

)
has abelian entanglements with respect to G(m

1

) ◊ G(m
2

). This implies the
Goursat quotient Qm1m2 is abelian, and by Lemma 1.2.8 Q([m

1

]) fl Q([m
2

])
is an abelian extension of Q. For general m

1

, m
2

, let

mÕ
1

= (m
1

, mE), mÕ
2

= (m
2

, mE).

Then mÕ
1

and mÕ
2

are relatively prime integers dividing mE so be the same
argument Q([mÕ

1

])flQ([mÕ
2

]) is an abelian extension of Q. From Serre’s open
image Theorem if n is any integer and d is coprime to nmE then

G(nd) = G(n) ◊ GL
2

(Z/dZ).

It follows that Qm1m2 is isomorphic to QmÕ
1mÕ

2
, hence the claim.

Corollary 2.3.2. If E has abelian entanglements, then for any m :=
r

i qsi
i

we have that G(m) 6 r
i G(qsi

i ) has abelian entanglements.

Proof. This follows immediately from Corollary 2.2.3 and Lemma 2.3.1.
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2.3. Elliptic curves with abelian entanglements

Assume now that E is an elliptic curve over Q with abelian entangle-
ments, and let m be a positive integer with prime factorisation m =

r
¸ ¸–¸ .

Since E has abelian entanglements, by Corollary 2.3.2 and Proposition 2.2.4
there are a map Âm and a finite abelian group �m that fit into the exact
sequence

1 ≠æ G(m) ≠æ
Ÿ

¸|m
G(¸–¸) Âm≠≠≠æ �m ≠æ 1. (2.3.1)

Note that the group �m measures the extent to which there are entan-
glements between the various ¸–¸-torsion fields. For instance �m is triv-
ial if and only if for any two coprime integers m

1

, m
2

dividing m one has
Q(E[m

1

])flQ(E[m
2

]) = Q. The following lemma tells us that �mE measures
the full extent to which the distinct torsion fields of E have any entangle-
ments.

Lemma 2.3.3. Let m be a positive integer and d be a positive integer co-
prime to mE. Then �md ƒ �m.

Proof. Again there is a map Âmd and an abelian group �md which fit into
the short exact sequence

1 ≠æ G(md) ≠æ
Ÿ

¸–¸ ||md

G(¸–¸) Âmd≠≠≠≠æ �md ≠æ 1.

As d is coprime to mE , by Serre’s open image Theorem we have that

G(md) = G(m) ◊
Ÿ

¸–¸ ||d
G(¸–¸) (2.3.2)

It follows that G(¸–¸) is contained in the kernel of Âmd for any ¸ | d, hence
�md ƒ �m.
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Entanglement correction factors as character sums

For each prime ¸ | m, let S(¸) be a subset of G(¸–¸), and define

Sm :=
Ÿ

¸|m
S(¸), Gm :=

Ÿ

¸|m
G(¸–¸).

so that Sm µ Gm. The following theorem allows us to compute the fraction
of elements in G(m) that belong to

r
¸|m S(¸). It will play a key role in

the method we will develop for computing entanglement correction factors
as character sums. If A is an abelian group, then ‚A denotes the group of
characters ‰ : A æ C◊.

Theorem 2.3.4. Assume E/Q has abelian entanglements, and let �m be as
in (2.3.1). For each ‰̃ œ ‚�m a character of �m, let ‰ be the character of
Gm obtained by composing ‰̃ with Âm, and let ‰¸ the restriction of ‰ to the
component G(¸–¸). Then

|Sm fl G(m)|
|G(m)| =

3
1 +

ÿ

‰̃œ‚
�m≠{1}

Ÿ

¸|m
E‰,¸

4 |Sm|
|Gm| ,

where
E‰,¸ =

ÿ

xœS(¸)

‰¸(x)
|S(¸)| .

Proof. Let Sm be the indicator function of Sm in Gm, and G(m)

that of
G(m). Also, to simplify notation we will use � in place of �m. Then we
have that |Sm fl G(m)|

|G(m)| = 1
|G(m)|

ÿ

xœGm

Sm(x) G(m)

(x).

By the orthogonality relations of characters (see for instance §VI.1 of [Ser73])
we have that if x œ Gm, then

ÿ

‰̃œ‚
�

‰(x) =

Y
]

[
[Gm : G(m)] if x œ G(m)

0 if x /œ G(m).
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2.4. Cyclic reduction of elliptic curves

This implies that
G(m)

= 1
[Gm : G(m)]

ÿ

‰̃œ‚
�

‰,

so it follows that

|Sm fl G(m)|
|G(m)| = 1

|Gm|
3 ÿ

xœGm

Sm(x) +
ÿ

xœGm

ÿ

‰̃œ‚
�\{1}

Sm(x)‰(x)
4

= |Sm|
|Gm|

3
1 +

ÿ

xœGm

ÿ

‰̃œ‚
�\{1}

Sm(x)‰(x)
|Sm|

4

= |Sm|
|Gm|

A

1 +
ÿ

‰̃œ‚
�\{1}

3 Ÿ

¸|m

ÿ

xœG(¸)

S(¸)

(x)‰¸(x)
|S(¸)|

4B

= |Sm|
|Gm|

A

1 +
ÿ

‰̃œ‚
�\{1}

3 Ÿ

¸|m

ÿ

xœS(¸)

‰¸(x)
|S(¸)|

4B

where the third equality follows from the fact that Sm and ‰ are products
of functions S(¸)

and ‰¸ defined on the components G(¸–¸). The result now
follows from letting E‰,¸ be the average value of ‰¸ on S(¸), that is

E‰,¸ =
ÿ

xœS(¸)

‰¸(x)
|S(¸)| .

2.4 Cyclic reduction of elliptic curves

In this section we consider an elliptic curve analogue of Artin’s classical
conjecture on primitive roots. Recall that this conjecture predicts the density
of primes p such that a given rational number is a primitive root modulo p.
In [LT77], Lang and Trotter formulated an analogous conjecture for elliptic
curves over Q. Namely, if P is a point of E(Q) of infinite order, then the
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Entanglement correction factors as character sums

problem is to determine the density of primes p for which Ẽ(Fp) is generated
by P̃ , the reduction of P modulo p.

Note that for there to exist even one prime p of good reduction with
this property, a necessary condition is that the group Ẽ(Fp) be cyclic, and
that is the question we consider here. In [Ser86], Serre showed assuming
the Generalized Riemann Hypothesis that the set of primes p such that
Ẽ(Fp) is cyclic has a density. He did this by adapting Hooley’s argument
of conditionally proving Artin’s conjecture on primitive roots. Namely, we
have the following:

Theorem 2.4.1 (Serre, 1976). Let E be an elliptic curve defined over Q
with conductor NE. Assuming GRH we have that

|{p 6 x prime : p - NE , Ẽ(Fp) is cyclic}| ≥ CE
x

log x

as x æ Œ, where CE :=
ÿ

n>1

µ(n)
[Q(E[n]) : Q] .

We explicitly evaluate this density CE as an Euler product. Note that
the condition of Ẽ(Fp) being cyclic is completely determined by flE(GQ).
Indeed, Ẽ(Fp) is cyclic if and only if p does not split completely in the field
Q(E[¸]) for any ¸ ”= p. Note that this condition is automatically satisfied
when ¸ > p, since p splitting completely in Q(E[¸]) implies p © 1 (mod ¸).
In other words, if for each prime ¸ we define the set S(¸) := G(¸) ≠ {1}, then
for all p - NE the group Ẽ(Fp) is cyclic if and only if fl¸(Frobp) œ S(¸) for
any ¸ < p, i.e. if p does not split completely in Q(E[¸]).

By the Chebotarev density theorem, the set of primes p that do not split
completely in Q(E[¸]) has density equal to

”¸ := |S(¸)|
|G(¸)| = 1 ≠ 1

[Q(E[¸]) : Q] .

If we assume that the various splitting conditions at each prime ¸ are in-
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2.4. Cyclic reduction of elliptic curves

dependent, then it is reasonable to expect that the density of primes p for
which Ẽ(Fp) is cyclic is equal to

r
¸ ”¸. However as we know, this assumption

of independence is not correct, as di�erent torsion fields may have non-trivial
intersection. To be precise, for each square-free integer d let

Sd :=
Ÿ

¸|d
S(¸), Gd :=

Ÿ

¸|d
G(¸).

By Chebotarev, the density of primes p such that p - NE and fl¸(Frobp) œ
S(¸) for all ¸ | d and ¸ ”= p is equal to |Sd fl G(d)|/|G(d)|. If we let d increase
to infinity ranging over square-free integers, then Serre’s above result implies
that, assuming GRH,

CE = lim
dæŒ

|Sd fl G(d)|
|G(d)| (2.4.1)

where the limit will be seen to exist.
Now let m =

r
¸|mE

¸ be the square-free part of mE , and let d be a
square-free integer coprime to m. By (2.3.2) we have

|Smd fl G(md)|
|G(md)| = |Sm fl G(m)|

|G(m)|
Ÿ

¸|d

|S(¸)|
|G(¸)| .

For ¸ coprime to mE , we have that |S(¸)|/|G(¸)| is 1 + O(1/¸4) so the limit
in (2.4.1) does indeed exist. Letting d tend to infinity over the square-free
numbers then gives

CE = |Sm fl G(m)|
|G(m)|

Ÿ

¸-m

|S(¸)|
|G(¸)| .

The above discussion implies that if we do take into account entanglements,
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Entanglement correction factors as character sums

then assuming GRH we have

CE = CE

Ÿ

¸

”¸ (2.4.2)

where CE is an entanglement correction factor, and explicitly evaluating
such densities amounts to computing the correction factors CE . The en-
tanglement correction factor CE arises as the factor by which CE di�ers
from the uncorrected value limdæŒ |Sd|/|Gd| =

r
¸ ”¸. We will use Theorem

2.3.4 for evaluating CE as a character sum for elliptic curves with abelian
entanglements.

Theorem 2.4.2. Assume E/Q has abelian entanglements, and let �m be as
in (2.3.1). Let ‰̃ œ ‚�m be a character of �m and let ‰ be the character of
Gm obtained by composing ‰̃ with Âm. Define E‰,¸ by

E‰,¸ =

Y
]

[
1 if ‰ is trivial on G(¸),

≠1

[Q(E[¸]):Q]≠1

otherwise.

Then
CE = CE

Ÿ

¸

”¸

where the entanglement correction factor CE is given by

CE = 1 +
ÿ

‰̃œ‚
�≠{1}

Ÿ

¸|m
E‰,¸.

Proof. By Theorem 2.3.4 we have that

|Sm fl G(m)|
|G(m)| = |Sm|

|Gm|

A

1 +
ÿ

‰̃œ‚
�\{1}

Ÿ

¸|m
E‰,¸

B

,
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where E‰̃,¸ is the average value of ‰¸ on S(¸). By (2.4.2), we know that

CE = CEr
¸ ”¸

= |Sm fl G(m)|/|G(m)|
|Sm|/|Gm| .

Finally, notice that if ‰ is non-trivial on G(¸) then ‰¸ is non-trivial, hence

ÿ

xœS(¸)

‰¸(x) =
3 ÿ

xœG(¸)

‰¸(x)
4

≠ ‰¸(1) = ≠1.

This completes the proof.

Remark 2.4.3. Note that in the above theorem we may replace m by any
square-free multiple of it. Indeed, for any ‰̃, it follows from Lemma 2.3.3
that E‰,¸ = 1 for any ¸ - m, hence the product

r
¸|m E‰,¸ does not change,

and the quotient of |Smd fl G(md)|/|G(md)| and |Smd|/|Gmd| is constant as
d tends to infinity.

In what follows we will use Theorem 2.4.2 to compute CE for various
elliptic curves over Q.

2.4.1 Serre curves

Consider the representation flE : GQ æ GL
2

(‚Z) given by the action of GQ on
E(Q)

tors

. Serre has shown in [Ser72] that the image of flE is always contained
in a specific index 2 subgroup of GL

2

(‚Z) and thus flE is never surjective.
Following Lang and Trotter, we define an elliptic curve E over Q to be a
Serre curve if [GL

2

(‚Z) : G] = 2.
It follows from the result of Serre that Serre curves are elliptic curves over

Q whose Galois action on their torsion points is as large as possible. Jones
has shown in [Jon10] that “most” elliptic curves over Q are Serre curves (see
Section 3.1 for the more precise statement) . Thus they are prevalent over
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Q and we also have complete understanding of their Galois theory, and this
makes their entanglement factors particularly easy to handle in conjunction
with Theorem 2.4.2.

First we briefly describe the index 2 subgroup HE of GL
2

(‚Z) (see [Ser72],
page 311 for more details). To this end let ‰

�

: GQ æ {±1} be the character
associated to K := Q(

Ô
�), where � is the discriminant of any Weierstrass

model of E over Q, and note that ‰
�

does not depend on the choice of
model. Let

Á : GL
2

(Z/2Z) ≠æ {±1}

be the signature map under any isomorphism GL
2

(Z/2Z) ƒ S
3

. Then as
K µ Q(E[2]), one can check that ‰

�

= Á ¶ flE,2.
Note that K µ Q(’|D|), where D is the discriminant of Q(

Ô
�). Then

there exists a unique quadratic character – : (Z/|D|Z)◊ æ {±1} such that
‰

�

= – ¶ det flE,|D|. From this it follows that Á ¶ flE,2 = – ¶ flE,|D|. If we then
define ME = lcm(|D|, 2) and

HME :=
)
A œ GL

2

(Z/MEZ) : Á(A mod 2) = –
!

det(A mod |D|)"*
,

then it follows from the above discussion that HME contains G(ME). If we
let HE be the inverse image of HME in GL

2

(‚Z) under the reduction map,
then HE is clearly an index 2 subgroup of GL

2

(‚Z) which contains G. We
have then that G is a Serre curve if and only if flE(GQ) = HE . It follows
from the above discussion that all Serre curves have abelian entanglements.

Proposition 2.4.4. Let E/Q be a Serre curve. Let D be the discriminant
of Q(

Ô
�) where � is the discriminant of any Weierstrass model of E over

Q. Then
CE = CE

Ÿ

¸

3
1 ≠ 1

(¸2 ≠ 1)(¸2 ≠ ¸)

4
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where the entanglement correction factor CE is given by

CE =

Y
__]

__[

1 if D © 0 (mod 4)

1 +
Ÿ

¸|2D

≠1
(¸2 ≠ 1)(¸2 ≠ ¸) ≠ 1 if D © 1 (mod 4)

Proof. Since E is a Serre curve, we have that G(¸) = GL
2

(Z/¸Z) holds for
all ¸, hence [Q(E[¸]) : Q] = (¸2 ≠ 1)(¸2 ≠ ¸).

Now suppose first that D © 0 (mod 4). Then mE = |D| is divisible by
4, hence we have that

G(m) =
Ÿ

¸|m
G(¸)

for all square-free m. It follows that �m ƒ {1} hence its character group is
trivial and CE = 1.

Now suppose D © 1 (mod 4). In this case mE = 2|D| is square-free,
hence G(mE) is an index 2 subgroup of

r
¸|mE

G(¸) and � ƒ {±1}. For each
¸ > 2 dividing mE , ‰¸ is the character given by the composition G(¸) det≠≠æ
!
Z/¸Z

"ú æ {±1}, that is ‰¸ =
1

det

¸

2
, and ‰

2

:= Á is the signature map under
an isomorphism GL

2

(Z/2Z) ƒ S
3

. If we let ‰ :=
r

¸|mE
‰¸ then we have an

exact sequence

1 ≠æ G(mE) ≠æ
Ÿ

¸|mE

G(¸) ‰≠≠æ {±1} ≠æ 1.

Clearly each ‰¸ is non-trivial on G(¸) for each ¸ dividing mE so the result
follows from Theorem 2.4.2 and using that �mE ƒ {±1}.

2.4.2 Example: Y 2

+ Y = X3 ≠ X2 ≠ 10X ≠ 20

We now consider the elliptic curve over Q defined by the Weierstrass equation
Y 2 + Y = X3 ≠ X2 ≠ 10X ≠ 20. The Galois theory for this elliptic curve has
been worked out by Lang and Trotter in [LT74], and in particular they have
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shown that mE = 2 · 52 · 11, and that the following properties hold:

• G(2) = GL
2

(Z/2Z).

• E has a rational 5-torsion point, and Q(E[5]) = Q(’
5

).

• [Q(E[52]) : Q(E[5])] = 54, hence 5 is stable.

• Q(E[52]) fl Q(E[11]) = Q(’
11

)+, where Q(’
11

)+ is the real quadratic
subfield of Q(’

11

). This implies there is a map

„
5

: G(52) ≠æ !
Z/11Z

"◊
/{±1}.

We make this map explicit. There is a basis for E[52] over Z/25Z
under which we have

G(52) =
IA

1 + 5a 5b

5c u

B

: a, b, c, d œ Z/25Z, u œ !
Z/25Z

"◊
J

.

Define the (surjective) homomorphism

Â : G(52) ≠æ Z/5Z
A

1 + 5a 5b

5c u

B

‘≠æ a mod 5.

Then „
5

is given by
A ‘≠æ (±2)Â(A),

where we note that ±2 is a generator of (Z/11Z)◊/{±1}.

• Q(E[2]) fl Q(E[11]) = Q(
Ô≠11).
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From this we conclude that E has abelian entanglements and

G(2 · 52 · 11) =
Ó

(g
2

, g
25

, g
11

) œ G(2) ◊ G(52) ◊ G(11) :

Á(g
2

) =
3det(g

11

)
11

4
, „

5

(g
5

) = „
11

(g
11

)
Ô

.

Proposition 2.4.5. Let E/Q be the elliptic curve given by Weierstrass equa-
tion Y 2 + Y = X3 ≠ X2 ≠ 10X ≠ 20. Then we have

CE = 3
4CE

Ÿ

”̧=5

3
1 ≠ 1

(¸2 ≠ ¸)(¸2 ≠ 1)

4

¥ 0.611597,

where CE is given by
CE = 1 + 1

65995 .

Proof. As before we take m = 2 · 5 · 11 to be the square-free part of mE .
Because E has abelian entanglements there is an exact sequence

1 ≠æ G(2 · 5 · 11) ≠æ G(2) ◊ G(5) ◊ G(11) ‰≠≠æ �
110

≠æ 1

From the description of G(2·52 ·11) it follows that G(2·5·11) = G(22)◊G(5),
hence �

110

ƒ {±1}. It follows that if we set ‰
2

equal to the sign character
Á, ‰

11

to
1

det(g11)

11

2
and ‰

5

be trivial, then ‰ = ‰
2

‰
5

‰
11

.
By Theorem 2.4.2 we have

CE = CE

Ÿ

¸

”¸.

where
CE = 1 + E‰2E‰5E‰11 .

From the description of G(¸) it is then straightforward to compute ”¸ as well
as E‰¸ for every ¸.
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Remark 2.4.6. Note that in this example, even though the Galois theory
of E was considerably more complicated than that of a Serre curve, at the
‘square-free’ torsion level it was still very similar. Indeed, the subgroup
G(110) 6 G(2)◊G(5)◊G(11) was still cut out only by a quadratic character.

2.5 Cyclic reduction for primes in an arithmetic
progression

We now consider a variant of the problem on cyclic reduction of elliptic
curves. We have been looking at the density of primes p for which the
reduction Ẽ(Fp) is cyclic. Here we impose the additional requirement that
p lie in a prescribed residue class modulo some integer f . This is just one
of many possible generalizations one could consider, and in many of them
one should still obtain a density assuming GRH. One of the di�culties that
arises however, is the explicit computation of the density as an Euler product.
The character sum method we have given allows us to do this in a relatively
simple manner.

If we keep the same setup as in Theorem 2.4.2, then note that the condi-
tion we are imposing on p being satisfied is again completely determined by
flE(GQ). In this case however, it is not necessarily enough to consider only
the ‘square-free’ torsion fields Q(E[¸]). Suppose then that we are interested
in primes p such that

(i) Ẽ(Fp) is cyclic,

(ii) p © a (mod f).

For each prime power ¸–, define

Da(¸–) := {A œ GL
2

(Z/¸–Z) : det A © a (mod ¸–)},
!
I + ¸M

2

(Z/¸–Z)
"c := {A œ GL

2

(Z/¸–Z) : A ”© I (mod ¸)}.
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2.5. Cyclic reduction for primes in an arithmetic progression

Let f =
r

¸ ¸e¸ be the prime factorisation of f , and for each ¸ | f set

�a(¸e¸) : = Da(¸e¸) fl !
I + ¸M

2

(Z/¸e¸Z)
"c

= {A œ GL
2

(Z/¸e¸Z) : A ”© I (mod ¸), det A © a (mod ¸e¸)}.

Then set
S(¸) := G(¸e¸) fl �a(¸e¸)

for those ¸ dividing f , and just as in the case of the previous subsection,
set S(¸) := G(¸) ≠ {1} for all other ¸. Then it follows that p - NE satisfies
conditions (i) and (ii) above if and only if for any ¸ - p one has

(i) fl¸(Frobp) œ S(¸) if ¸ - f ,

(ii) fl¸e¸ (Frobp) œ S(¸) if ¸ | f .

Then the density of p having the ‘right’ local behaviour at ¸ equals

”¸ =

Y
]

[
|S(¸)|/|G(¸)| if ¸ - f

|S(¸)|/|G(¸e¸)| if ¸ | f

and the naive density of primes satisfying conditions (i) and (ii) equals
r

¸ ”¸.
To account for entanglements, we proceed more or less along the same

line as the case without the condition of p lying in a prescribed residue class,
with some slight modifications. That is, let

m :=
Ÿ

¸|(f,mE)

¸e¸
Ÿ

¸|mE
¸-f

¸

For any square-free d coprime to m, define

Smd :=
Ÿ

¸|md

S(¸), Gmd :=
Ÿ

¸|(f,m)

G(¸e¸)
Ÿ

¸|md
¸-f

G(¸).
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By Corollary 2.3.2
G(md) 6 Gmd

has abelian entanglements, hence we have an exact sequence

1 ≠æ G(md) ≠æ Gmd
Âmd≠≠≠≠æ �md ≠æ 1

for some abelian group �md. We again have by (2.3.2) that �md ƒ �m for
any square-free d coprime to m, and the density we are looking for is then

CE(a, f) = lim
dæŒ

|Smd fl G(md)|
|G(md)| = |Sm fl G(m)|

|G(m)|
Ÿ

¸-m

|S(¸)|
|G(¸)| .

Theorem 2.5.1. Let ‰̃ œ ‚�m be a character of �m and let ‰ be the character
of Gm obtained by composing ‰̃ with Âm. Define E‰,¸ by

E‰̃,¸ =
ÿ

xœS(¸)

‰¸(x)
|S(¸)| .

Then
CE(a, f) = CE(a, f)

Ÿ

¸

”¸

where the entanglement correction factor CE(a, f) is given by

CE(a, f) = 1 +
ÿ

‰̃œ‚
�m≠{1}

Ÿ

¸|m
E‰,¸.

Proof. The proof is exactly as that of Theorem 2.3.4 with the obvious mod-
ifications.

It follows from the previous theorem that in order to evaluate the cor-
rection factors CE(a, f) it su�ces to compute the order of S(¸) as well as
the average value of the ‰¸ on S(¸).
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2.5.1 Serre curves

In what follows we again consider the example of Serre curves. To simplify
the following proofs we will henceforth assume a and f are coprime integers.
If not, then for a prime ¸ dividing (a, f) we obtain |�a(¸e¸)| = 0 hence
|S(¸)| = 0 and CE(a, f) = 0, which we take to mean the conditions imposed
are satisfied for only finitely many p.

Lemma 2.5.2. Let E/Q be a Serre curve, and let a and f be coprime positive
integers. Let D be the discriminant of Q(

Ô
�) where � is the discriminant

of any Weierstrass model of E over Q. Suppose that |D| ”= 4, 8. Then

”¸ =

Y
____]

____[

1

„(¸e¸
)

if a ”© 1 (mod ¸) and ¸ | f

1

„(¸e¸
)

1
1 ≠ 1

¸(¸≠1)(¸+1)

2
if a © 1 (mod ¸) and ¸ | f

1 ≠ 1

(¸2≠1)(¸2≠¸)

if ¸ - f .

Proof. If ¸ - f then as before we obtain the local density ”¸ = 1 ≠ 1/(¸2 ≠
1)(¸2 ≠ ¸). At ¸ | f we consider the two cases. If a ”© 1 (mod ¸) then

S(¸) = Da(¸e¸)

since any element with determinant a ”© 1 cannot be trivial mod ¸. It
follows that for such ¸ one has ”¸ = 1/„(¸e¸). If a © 1 (mod ¸) then we
need to count the fraction of elements of Da(¸e¸) which are non-trivial mod
¸. There is a surjective map G(¸) æ !

Z/¸Z
"ú of degree ¸(¸ ≠ 1)(¸ + 1), and

Q(E[¸]) flQ(’¸e¸ ) = Q(’¸) (since |D| ”= 4, 8) so it follows that this fraction is
precisely 1 ≠ 1/¸(¸ ≠ 1)(¸ + 1), as desired.

Lemma 2.5.3. Let E, a and f be as in Lemma 2.5.2. Suppose further that
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Entanglement correction factors as character sums

|D| = 4. Then

”
2

=

Y
____]

____[

1

„(2

e2
)

if a © 3 (mod 4) and 4 | f

1

„(2

e2
)

!
1 ≠ 1

3

"
if a © 1 (mod 4) and 4 | f

5

6

if 4 - f.

Proof. The assumption on D implies that Q(
Ô

�) = Q(i) and mE = 4.
Recall that 2e2 ||f is the highest power of 2 dividing f . If e

2

> 2 then a is
odd, hence is 1 or 3 mod 4. Note that Q(’

2

e2 ) fl Q(E[2]) = Q(i). Now the
fraction of elements A œ G(2e2) such that A œ Da(2e2) equals 1/„(2e2). If
a © 3 (mod 4) then any such A œ Da(2e2) acts non-trivially on Q(i), hence
is non-trivial mod 2. It follows that S(2) = Da(2e2) and ”

2

= 1/„(2e2). If
a © 1 (mod 4), then because [Q(E[2]) : Q(i)] = 3 exactly 1 ≠ 1/3 of the
elements in A œ Da(2e2) are in S(2). Finally suppose e

2

< 2. Then the only
condition at 2 is being non-trivial mod 2, and the conclusion follows.

Lemma 2.5.4. Let E, a and f be as in Lemma 2.5.2. Suppose further that
|D| = 8. Then

(i) If Q(
Ô

�) = Q(
Ô

2) then

”
2

=

Y
____]

____[

1

„(2

e2
)

if a © 3 or 5 (mod 8) and 8 | f

1

„(2

e2
)

!
1 ≠ 1

3

"
if a © 1 or 7 (mod 8) and 8 | f

5

6

if 8 - f.

(ii) Q(
Ô

�) = Q(
Ô≠2) then

”
2

=

Y
____]

____[

1

„(2

e2
)

if a © 5 or 7 (mod 8) and 8 | f

1

„(2

e2
)

!
1 ≠ 1

3

"
if a © 1 or 3 (mod 8) and 8 | f

5

6

if 8 - f.
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2.5. Cyclic reduction for primes in an arithmetic progression

Proof. We proceed similarly to Lemma 2.5.3. The assumption on D implies
that Q(

Ô
�) = Q(

Ô±2). If e
2

> 3 then in this case Q(’
2

e2 ) fl Q(E[2]) =
Q(

Ô±2). In case (i), elements in Da(2e2) act non-trivially on Q(
Ô

2) if and
only if a © 3 or 5 (mod 8), hence the conclusion. Case (ii) follows from the
same argument.

In what remains of this section we will deduce the correction factor
CE(a, f). In the following lemmas we compute the local factors E¸ for the
di�erent primes ¸ dividing mE . As is often the case, the prime 2 requires
special consideration and we split the computation of the local correction
factor E

2

into various cases. Keep the same notation for E, a, f and D, and
suppose further that |D| ”= 4, 8. Then mE contains at least one odd prime
factor and we have an exact sequence

1 ≠æ G(m) ≠æ
Ÿ

¸|(f,mE)

G(¸e¸)
Ÿ

¸|mE
¸-f

G(¸) ‰≠≠æ {±1} ≠æ 1

where ‰ =
r

¸ ‰¸ is a product of characters ‰¸. Here ‰¸ is given by the
composition G(¸e¸) æ G(¸) det≠≠æ !

Z/¸Z
"ú æ {±1} and ‰

2

is the character
corresponding to the quadratic extension Q(E[2–2 ]) fl Q(E[m/2–2 ]), where
2–2 ||m. When e

2

= 1 for instance, ‰
2

is the signature map GL
2

(Z/2Z) æ
{±1}, corresponding to the quadratic extension Q(

Ô
�).

Lemma 2.5.5. Suppose ord
2

(D) = 0. Then E
2

= ≠1/5.

Proof. Since D © 1 (mod 4) it follows that mE = 2|D| and ‰
2

is the signa-
ture map. Let 2e2 ||f be the largest power of 2 dividing f . If e

2

6 0 then
E

2

= ≠1/5 by the same argument as in Proposition 2.4.1. If e
2

> 1, then
S(2) µ G(ee2) consists of the elements of Da(2e2) which are non-trivial mod
2.

Because mE = 2|D| with D odd, ‰
2

is the signature map, hence it
factors through the surjection G(2e2) æ Gal(Q(E[2]), ’

2

e2 ), so we have a
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commutative diagram

G(2e2)

Gal(Q(E[2], ’
2

e2 )

{±1}
‰Õ

2

.

Let SÕ(2) be the image of S(2) under the surjection G(2e2) æ Gal(Q(E[2]), ’
2

e2 ).
Then note that because Q(’

2

e2 ) flQ(E[2]) = Q, for each ‡ œ G(2) there is a
unique ‡Õ œ Gal(Q(E[2]), ’

2

e2 ) such that ‡(’
2

e2 ) = ’a
2

e2 and ‡Õ © ‡ (mod 2).
It follows that ÿ

xœSÕ
(2)

‰Õ(x) = ≠1

and the conclusion follows.

Lemma 2.5.6. Suppose ord
2

(D) = 2. We have

(i) If |D| ”= 4 and 4 | f then

E
2

= ≠
3

a

4

4 1
5 .

(ii) If |D| = 4 or 4 - f then
E

2

= 0.

Proof. If 4 - f then because mE = |D| it follows that mE - m, hence

G(m) =
Ÿ

¸|(f,mE)

G(¸e¸)
Ÿ

¸|mE
¸-f

G(¸)

and �m ƒ {1}, so E
2

= 0. Similarly if |D| = 4 then mE has no odd prime
factors and we again conclude E

2

= 0.
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2.5. Cyclic reduction for primes in an arithmetic progression

Now suppose |D| ”= 4 and 4 | f . If we let �
sf

denote the square-free part
of �, then the assumption on ord

2

(D) implies that �
sf

© 3 (mod 4). Also,
because 4 | f , we have that Q(i) µ Q(E[2e2), hence

Q(


i�
sf

) = Q(E[2e2 ]) fl Q(E[m/2e2 ])

and ‰
2

is the character corresponding to this quadratic extension. If we
define

‰i : G(2e2) æ {±1}, ‰
�

: G(2e2) æ {±1}

to be the characters corresponding to the quadratic extensions Q(i) and
Q(

Ô
�), respectively, then ‰

2

= ‰i‰
�

. Now ‰i has constant value equal to
!

a
4

"
on S(2), and by the same argument as in Lemma 2.5.5 ‰

�

has average
value ≠1/5 on S(2). It follows then that

E
2

= 1
S(2)

ÿ

xœS(2)

‰
2

(x)

= 1
S(2)

ÿ

xœS(2)

‰i(x)‰
�

(x)

= ≠
3

a

4

4 1
5 .

To deal with the case of ord
2

(D) = 3, we establish the following notation.
Note that if ord

2

(D) = 3 then we must have that 2 | �
sf

. Let �Õ be such
that �

sf

= 2�Õ.

Lemma 2.5.7. Suppose ord
2

(D) = 3, and keep the notation above. We have

(i) If |D| ”= 8, 8 | f and �Õ © 1 (mod 4) then

E
2

=

Y
]

[
1/5 if a © 1 or 7 (mod 8)

≠1/5 if a © 3 or 5 (mod 8) .
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(ii) If |D| ”= 8, 8 | f and �Õ © 3 (mod 4) then

E
2

=

Y
]

[
1/5 if a © 1 or 3 (mod 8)

≠1/5 if a © 5 or 7 (mod 8) .

(iii) If |D| = 8 or 8 - f then
E

2

= 0.

Proof. If |D| = 8 or 8 - f then by the same reasoning as in Lemma 2.5.6 we
conclude E

2

= 0. Assume then that |D| ”= 8 and 8 | f . Because 8 | f , we
have that Q(

Ô±2) µ Q(E[2e2 ]). Let

‰Ô
2

: G(2e2) æ {±1}, ‰Ô
≠2

: G(2e2) æ {±1}, ‰
�

: G(2e2) æ {±1}

to be the characters corresponding to the quadratic extensions Q(
Ô

2), Q(
Ô≠2)

and Q(
Ô

�), respectively. If �Õ © 1 (mod 4) then

Q(
Ô

�Õ) = Q(E[2e2 ]) fl Q(E[m/2e2 ])

and ‰
2

is the quadratic character corresponding to this extension, with ‰
2

=
‰Ô

2

‰
�

. If �Õ © 3 (mod 4) then

Q(
Ô

≠�Õ) = Q(E[2e2 ]) fl Q(E[m/2e2 ])

and ‰
2

is the quadratic character corresponding to this extension, with ‰
2

=
‰Ô

≠2

‰
�

. Now note that ‰Ô
2

has constant value on S(2) equal to 1 if a © 1
or 7 (mod 8), and ≠1 if a © 3 or 5 (mod 8), and ‰Ô

≠2

has constant value
on S(2) equal to 1 if a © 1 or 3 (mod 8), and ≠1 if a © 5 or 7 (mod 8) We
conclude exactly as in Lemma 2.5.6.

Proposition 2.5.8. Let E/Q be a Serre curve, and let a and f be coprime
positive integers. Let D be the discriminant of Q(

Ô
�) where � is the dis-
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2.5. Cyclic reduction for primes in an arithmetic progression

criminant of any Weierstrass model of E over Q. Suppose that |D| ”= 4, 8.
Then

CE(a, f) = CE(a, f) 1
„(f)

Ÿ

¸|(a≠1,f)

3
1≠ 1

¸(¸ ≠ 1)(¸ + 1)

4 Ÿ

¸-f

3
1≠ 1

(¸2 ≠ 1)(¸2 ≠ ¸)

4

where the entanglement correction factor CE(a, f) is given by

CE(a, f) = 1 + E
2

Ÿ

¸|(D,f)

¸ ”=2

3
a

¸

4 Ÿ

¸|D
¸-2f

≠1
(¸2 ≠ 1)(¸2 ≠ ¸) ≠ 1 .

Here E
2

is given by Lemmas 2.5.5, 2.5.6 and 2.5.7,

Proof. Since |D| ”= 4, 8, the equality involving CE(a, f) follows from using
Lemma 2.5.2 for all ¸. The form of the entanglement correction factor at 2
follows from Lemmas 2.5.5, 2.5.6 and 2.5.7. It remains to consider ¸ ”= 2.
By Theorem 2.5.1 if ¸ - f and ¸ | D then S(¸) = G(¸) ≠ {1} and so

E¸ = ≠1
(¸2 ≠ 1)(¸2 ≠ ¸) ≠ 1 .

Ir ¸ | (D, f) then because Q(E[¸]) fl Q(’¸e¸ ) = Q(’¸) we have that ‰¸ has
constant value

!
a
¸

"
on S(¸) and the result follows.

Corollary 2.5.9. For any (a, f) coprime integers, we have CE(a, f) > 0.

Proof. It is clear that the naive density
r

¸ ”¸ does not vanish, hence in order
for CE(a, f) to be zero, we would need the correction factor CE(a, f) to be
zero, which happens if and only if

r
¸ E¸ = ≠1. This is impossible as E

2

is
always ±1/5 or 0.

Corollary 2.5.10. The correction factor CE(a, f) equals 1 if and only if
ord

2

(D) > ord
2

(f).

Proof. From the form of the correction factor it follows that CE(a, f) = 1 if
and only if E

2

= 0, and the result follows.
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2.5.2 Example: Y 2

= X3

+ X2

+ 4X + 4

We look now at an example of a non-Serre curve where the constant CE(a, f)
can vanish. This implies that conjecturally, there should only exist finitely
many primes p such that Ẽ(Fp) is cyclic and p © a (mod f). Let E be the
elliptic curve over Q given by the Weierstrass equation Y 2 = X3 + X2 +
4X + 4. In [Bra09], a description of the Galois theory of E is worked out.
In particular, for this curve we have that mE = 120, and the following
properties hold:

• E has a rational 3-torsion point, and G(3) ƒ S
3

.

• E has a rational two-torsion point, and Q(E[2]) = Q(i).

• G(4) has order 16, and Q(E[4]) fl Q(E[5]) = Q(
Ô

5).

• G(8) has order 128, and Q(E[8]) fl Q(E[5]) = Q(’
5

).

• G(5) = GL
2

(Z/5Z)

• Q(E[3]) fl Q(E[40]) = Q, hence G(120) = G(3) ◊ G(40).

From all of this we conclude that

G(120) = {(g
8

, g
3

, g
5

) œ G(8) ◊ G(3) ◊ G(5) : g
8

(’
5

) = ’det g5
5

}

hence E has abelian entanglements and G(120) fits into the exact sequence

1 ≠æ G(120) ≠æ G(8) ◊ G(3) ◊ G(5) ≠æ �
120

≠æ 1,

where �
120

ƒ (Z/5Z)◊. Also, given coprime integers a and f =
r

¸ ¸e¸ we
again set

m :=
Ÿ

¸|(f,120)

¸e¸
Ÿ

¸|120

¸-f

¸.
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Lemma 2.5.11. For any ‰̃ œ ‚�m ≠ {1} we have E‰,2 = 0.

Proof. Suppose first that 4 - f . Then m is square-free, and because

G(30) = G(2) ◊ G(3) ◊ G(5)

it follows that �m ƒ {1}, hence E‰,2 = 0. Suppose now that 4 | f , and let ÷̃

be a generator of �̃
120

. If 8 | f , then 120 | m, hence �m ƒ �
120

ƒ (Z/5Z)◊.
Any ‰̃ œ ‚�m ≠ {1} is equal to ÷̃j for some j œ {1, 2, 3} and ‰

2

is equal to ÷j
2

,
where

÷
2

: G(2e2) ≠æ (Z/5Z)◊

is the character corresponding to the subfield Q(’
5

) µ Q(E[2e2 ]). Now be-
cause Q(E[2]) = Q(i) µ Q(’

2

e2 ) it follows that Q(E[2], ’
2

e2 ) fl Q(’
5

) = Q,
hence

ÿ

gœS(2)

÷j
2

(g) =
ÿ

xœ(Z/5Z)

◊

x

= 0.

We conclude that E‰,2 = 0. If 4||f , then �m ƒ {±1} and we can use the
same argument given that Q(i) fl Q(’

5

) = Q. This proves the claim.

Proposition 2.5.12. For any coprime (a, f) we have that CE(a, f) = 1.
Further,

CE(a, f) = 0 ≈∆ 4 | f and a © 1 (mod 4).

Proof. That CE(a, f) = 1 follows directly from Theorem 2.5.1 and Lemma
2.5.11. It follows from this that

CE(a, f) =
Ÿ

¸

”¸.
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For ¸ ”= 2 we have that ”¸ ”= 0. Indeed,

”
3

=

Y
____]

____[

1

„(3

e3
)

if a © 2 (mod 3) and 3 | f

1

„(3

e3
)

!
1 ≠ 1

3

"
if a © 1 (mod 3) and 3 | f

5

6

if 3 - f

,

and

”¸ =

Y
____]

____[

1

„(¸e¸
)

if a ”© 1 (mod ¸) and ¸ | f

1

„(¸e¸
)

1
1 ≠ 1

¸(¸≠1)(¸+1)

2
if a © 1 (mod ¸) and ¸ | f

1 ≠ 1

(¸2≠1)(¸2≠¸)

if ¸ - f .

Finally, given that Q(E[2]) = Q(i), it follows that ”
2

= 0 if and only if 4 | f

and a © 1 (mod 4), and the conclusion follows.

Remark 2.5.13. Suppose a and f are coprime integers such that a © 1
(mod 4). The above proposition is saying that the only obstruction to the
existence of infinitely many primes p such that Ẽ(Fp) is cyclic and p © a

(mod f) is a local one at the prime 2. Meaning, for any prime p it is im-
possible for it to satisfy the required condition at the prime 2, that is, for
Frobp to lie in the set S(2), which is the empty set. Note also that even
when f is divisible by 4, we still have E‰,2 = 0 and hence CE(a, f) = 1.
What this is encoding is the fact that Q(’

2

e2 ) fl Q(’
5

) = Q for any e
2

. The
only entanglement of E occurs in the subfield Q(’

5

), and this field is disjoint
from Q(’

2

Œ).

2.5.3 Example: Y 2

+ XY + Y = X3 ≠ X2 ≠ 91X ≠ 310

So far we have only considered examples where the constant CE(a, f) either
does not vanish, or vanishes because there is a condition at some prime ¸

which cannot be satisfied. Another interesting possibility is when all ”¸ are
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non-zero, yet the constant CE(a, f) still vanishes. This occurs if and only
if the entanglement correction factor CE(a, f) vanishes and its expression as
a product of local correction factors makes it easy to determine when this
happens. The entanglement correction factor being zero means there is an
obstruction coming from the entanglement fields which prevent there being
infinitely many primes p satisfying the imposed conditions. We will now
analyse an example when this occurs.

Consider the elliptic curve E over Q given by Weierstrass equation Y 2 +
XY + Y = X3 ≠ X2 ≠ 91X ≠ 310. The discriminant of our Weierstrass
model is � = 17. This curve has one rational torsion point of order 2 and
Q(E[2]) = Q(

Ô
17). In fact, machine computation shows that m = 34, where

m is the square-free part of mE , and

G(34) = {(g
2

, g
17

) œ G(2) ◊ GL
2

(Z/17Z) : Á(g
2

) = ◊
17

¶ det(g
17

)}

where as usual Á denotes the signature map and ◊
17

: (Z/17Z)ú æ {±1}
denotes the unique quadratic character of (Z/17Z)ú.

If we let D denote the discriminant of Q(
Ô

�), then D = 17 © 1 (mod 4),
hence by a similar argument to Lemma 2.5.2 we obtain that

Ÿ

¸

”¸ = 1
2

1
„(f)

Ÿ

¸|(a≠1,f)

”̧=2

3
1 ≠ 1

¸(¸ ≠ 1)(¸ + 1)

4 Ÿ

¸-f
¸”=2

3
1 ≠ 1

(¸2 ≠ ¸)(¸2 ≠ 1)

4

which is non-zero for all a and f . By Theorem 2.5.1 we have that

CE(a, f) = CE(a, f)1
2

1
„(f)

Ÿ

¸|(a≠1,f)

¸ ”=2

3
1≠ 1

¸(¸ ≠ 1)(¸ + 1)

4 Ÿ

¸-f
¸”=2

3
1≠ 1

(¸2 ≠ ¸)(¸2 ≠ 1)

4

with
EE(a, f) = 1 +

Ÿ

¸|34

E¸.
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We conclude then the following.

Proposition 2.5.14. For the above elliptic curve we have that CE(a, f) = 0
if and only if 17 | f and a is a quadratic residue modulo 17.

Proof. The naive density
r

¸ ”¸ is non-vanishing, hence CE(a, f) = 0 if and
only if CE(a, f) = 0. Using the same argument as in Lemma 2.5.5, we deduce
E

2

= ≠1 for all a, f . We have then that

CE(a, f) = 0 ≈∆ E
17

= 1.

If 17 - f then E
17

= ≠1/78335. If 17 | f then E
17

=
!

a
17

"
and the conclusion

follows.

Remark 2.5.15. Note that if 17 | f and a is a quadratic residue mod 17, then
for any prime p © a (mod f) we have that p splits in Q(

Ô
17) = Q(E[2]),

so Frobp would not satisfy the condition at the prime 2. The obstruction to
the existence of infinitely many primes p such that Ẽ(Fp) is cyclic and p © a

(mod f) is precisely the entanglement between the 2 and 17 torsion fields.
The above proposition is saying that this the only obstruction that exists.

2.6 Koblitz’s conjecture

In [Kob88], N. Koblitz made a conjecture on the asymptotic behaviour of the
number of primes p for which the cardinality of the group Ẽ(Fp) is prime.
In this section we use our character sum method to give a description of the
constants appearing in this asymptotic.

Conjecture 2.6.1 (Koblitz). Let E/Q be a non-CM curve and let � be the
discriminant of any Weierstrass model of E over Q. Suppose that E is not
Q-isogenous to a curve with non-trivial Q-torsion. Then

|{primes p 6 x : p - �, |Ẽ(Fp)| is prime}| ≥ CE
x

(log x)2
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2.6. Koblitz’s conjecture

as x æ Œ where CE is an explicit positive constant.

In [Zyw11c], Zywina shows that the description of the constant CE given
by Koblitz is not always correct, and he gives a corrected description of the
constant along with providing several interesting examples and numerical
evidence for the refined conjecture. In particular the constant described
by Zywina is not necessarily positive. The reason the original constant is
not always correct is that it does not take into account that divisibility
conditions modulo distinct primes need not be independent. Put another
way, it could occur that there are non-trivial intersections between distinct
¸-power torsion fields of E. The following is the refined Koblitz conjecture
given by Zywina, which here we state restricted to non-CM curves over Q.

Conjecture 2.6.2. Let E/Q be a non-CM elliptic curve of discriminant �,
and let t be a positive integer. Then there is an explicit constant CE,t > 0
such that

|{primes p 6 x : p - �, |Ẽ(Fp)|/t is prime}| ≥ CE,t
x

(log x)2

as x æ Œ.

The condition on p that |Ẽ(Fp)|/t be prime can be given as a splitting
condition in the various ¸-torsion fields, so the character sum method we have
developed again seems well suited to compute CE,t. In his paper Zywina
computes the constants CE,t via a di�erent method than the one we use
here, both in the CM and non-CM cases. Here we will restrict ourselves to
non-CM curves with abelian entanglements over the rationals.

For each prime power ¸–, define

�t(¸–) :=
Ó

A œ GL
2

(Z/¸–Z) : det (I ≠ A) œ t · !
Z/¸–Z

"◊Ô
.

For a prime p - NE¸ note that Ẽ(Fp)/t is invertible modulo ¸–/(¸–, t) if and
only if fl¸–(Frobp) œ G(¸–) fl �t(¸–). Suppose that t has prime factorisation
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Entanglement correction factors as character sums

t =
r

¸ ¸e¸ . With this in mind, define the set of ‘good’ Frobenius elements to
be

St(¸) =

Y
]

[
G(¸e¸+1) fl �t(¸e¸+1) if ¸ | t

G(¸) fl �t(¸) if ¸ - t .

We now give a description of the constant CE,t in terms of our sets
St(¸) as well as a crude heuristic of justifying it. This heuristic follows
the same lines as that of Koblitz and Zywina. The key argument relies
on the Cramer’s model which asserts that, roughly speaking, the primes
behave as if every random integer n is prime with probability 1/ log n. If
the sequence {|Ẽ(Fp)|/t}p-NE

were assumed to behave like random integers,
then the proability that |Ẽ(Fp)|/t is prime would be

1
log

!|Ẽ(Fp)|/t
" ¥ 1

log(p + 1) ≠ log t
.

The last approximation uses the fact that by Hasse’s bound, Ẽ(Fp) is close
to p + 1.

It is not true however, that the |Ẽ(Fp)|/t behave like random integers
with respect to congruences, and in order to get a better approximation we
need to take these congruences into account. If we fix a prime ¸, then for all
but finitely many p. if |Ẽ(Fp)|/t is prime then it is invertible modulo ¸. If
¸ does not divide t, then by Chebotarev, the density of primes p - NE such
that Ẽ(Fp)/t is invertible modulo ¸ is |St(¸)|/|G(¸)|. If ¸ | t, then similarly
the density of primes p - NE such that Ẽ(Fp) is divisible by ¸e¸ and Ẽ(Fp)/t

is invertible modulo ¸ equals |St(¸)|/|G(¸e¸+1)|. Meanwhile the density of
natural numbers that are invertible mod ¸ is (1 ≠ 1/¸). If we let d be a
square-free integer coprime to t, then

Ÿ

¸|td

1
1 ≠ 1/¸

Ÿ

¸|t

|St(¸)|
|G(¸e¸+1)|

Ÿ

¸|d

|St(¸)|
|G(¸)| · 1

log(p + 1) ≠ log t
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should constitute a better approximation to the probability that |Ẽ(Fp)|/t

is prime, as it takes into account the congruences modulo all primes ¸ | td.
Taking into account all congruences amounts to letting d tend to infinity,
hence this model suggests that for a randomly chosen p, |Ẽ(Fp)|/t is prime
with probability

Ÿ

¸

”¸

1 ≠ 1/¸
· 1

log(p + 1) ≠ log t

where

”¸ =

Y
]

[
|St(¸)|/|G(¸)| if ¸ - t

|St(¸)|/|G(¸e¸+1)| if ¸ | t .

This is the constant that was given by Koblitz with t = 1 and later refined
by Zywina. The problem that still remained with the approximation given
by Koblitz, is that while it does take into account congruences modulo ¸, is
assumes that divisibility conditions modulo distinct primes are independent.
In order to deal with this we take a similar approach as in the previous
sections. That is, we let

m :=
Ÿ

¸|t
¸e¸+1

Ÿ

¸|mE
¸-t

¸

and for each square-free d coprime to m, let

Smd :=
Ÿ

¸|md

St(¸), Gmd :=
Ÿ

¸|t
G(¸e¸+1)

Ÿ

¸|md
¸-t

G(¸).

By Corollary 2.3.2
G(md) 6 Gmd

has abelian entanglements, hence we have an exact sequence

1 ≠æ G(md) ≠æ Gmd
Âmd≠≠≠≠æ �md ≠æ 1
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Entanglement correction factors as character sums

for some abelian group �md. By (2.3.2) we have that �md ƒ �m for any
square-free d coprime to m. Note now that |Smd fl G(md)|/|G(md)| is the
density of p for which |Ẽ(Fp)|/t is an integer and invertible modulo md,
hence by letting d tend to infinity over the square free integers coprime to
m, the refined constant is

CE,t = lim
dæŒ

|Smd fl G(md)|/|G(md)|
1 ≠ 1/¸

=

Q

a
Ÿ

¸|m

1
1 ≠ 1/¸

R

b · |Sm fl G(m)|
|G(m)|

Ÿ

¸-m

”¸

1 ≠ 1/¸
.

It follows by the prime number theorem that the expected number of primes
p such that |Ẽ(Fp)|/t is prime is asymptotic to CE,t · x/(log x)2.

Applying Theorem 2.3.4 with m defined as above we obtain

CE,t = CE,t

Ÿ

¸

”¸

1 ≠ 1/¸
(2.6.1)

where the entanglement correction factor CE,t is given by

CE,t = 1 +
ÿ

‰̃œ‚
�m≠{1}

Ÿ

¸|m
E‰,¸.

2.6.1 Serre curves

In this section we compute the constants CE,1 in Conjecture 2.6.2 for Serre
curves. This will amount to finding the average value of various quadratic
characters on S(¸). In the case of Serre curves, the sets S(¸) are particularly
easy to treat.

Proposition 2.6.3. Let E/Q be a Serre curve. Let D be the discriminant
of Q(

Ô
�) where � is the discriminant of any Weierstrass model of E over
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Q. Then

CE,1 = CE,1

Ÿ

¸

3
1 ≠ ¸2 ≠ ¸ ≠ 1

(¸ ≠ 1)3(¸ + 1)

4

where the entanglement correction factor CE,1 is given by

CE,1 =

Y
__]

__[

1 if D © 0 (mod 4)

1 +
Ÿ

¸|D

1
¸3 ≠ 2¸2 ≠ ¸ + 3 if D © 1 (mod 4)

Proof. We begin by noting that, for Serre curves,

S
1

(¸) =
Ó

A œ GL
2

(Z/¸Z) : det (I ≠ A) œ !
Z/¸Z

"◊Ô
.

We have then that

”¸ = |S
1

(¸)|
|G(¸)|

= 1 ≠ |S
1

(¸)c|
|GL

2

(Z/¸Z)|

where S
1

(¸)c = {A œ GL
2

(Z/¸Z) : det (I ≠ A) = 0}. Thus S
1

(¸)c consists
of those matrices whose eigenvalues are 1 and ⁄ for some ⁄ œ (Z/¸Z)◊.
It follows from Table 12.4 in §12, Chapter XVIII of [Lan02], that there
are ¸2 elements of GL

2

(Z/¸Z) with both eigenvalues equal to 1, and ¸2 + ¸

elements with eigenvalues 1 and ⁄ ”= 1. We obtain then that |S
1

(¸)c| =
¸2 + (¸ ≠ 2)(¸2 + ¸), hence we have that

”¸ = 1 ≠ ¸2 + (¸ ≠ 2)(¸2 + ¸)
(¸2 ≠ ¸)(¸2 ≠ 1)

and a calculation yields that

”¸

1 ≠ 1/¸
= 1 ≠ ¸2 ≠ ¸ ≠ 1

(¸ ≠ 1)3(¸ + 1) .
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From (2.6.1) it rests only to compute CE,1. Because t = 1, m equals the
square-free part of mE , and we may proceed just as in the proof of Proposi-
tion 2.4.4. That is, when D © 0 (mod 4) then CE,1 = 1. If D © 1 (mod 4),
then for each ¸ | 2D it su�ces to compute the average value of ‰¸ on S

1

(¸).
Note that since the ‰¸ are non-trivial, then

q
xœG(¸)

‰¸(x) = 0. For ¸ > 2
recall that ‰¸ =

1
det

¸

2
, hence given an element x œ S

1

(¸)c with eigenvalues
1 and ⁄, we have that ‰¸(x) =

1
⁄
¸

2
. There are an equal number of squares

and non-squares in (Z/¸Z)◊, so we conclude then

ÿ

xœS1(¸)

‰¸(x) = ≠
ÿ

xœS1(¸)

c

‰¸(x)

= ≠
3

¸2

31
¸

4
+ (¸2 + ¸)

ÿ

⁄œ(Z/¸Z)

◊

”̧=1

3
⁄

¸

4 4

= ≠!
¸2 ≠ (¸2 + ¸)

"

= ¸.

From this we obtain

E¸ = ¸

|G(¸)| ≠ |S
1

(¸)|
= ¸

(¸2 ≠ ¸)(¸2 ≠ 1) ≠ (¸2 + ¸)(¸ ≠ 2) ≠ ¸2

= 1
¸3 ≠ 2¸2 ≠ ¸ + 3 .

For ¸ = 2 one can directly compute S
1

(2). It consists of the 2 matrices
1

1 1
1 0

2

and
1

0 1
1 1

2
both of which have order 3 and hence are even permutations.

Since ‰
2

is the signature character we conclude E
2

= 1, and this completes
the proof.
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Chapter 3

Non-Serre curves

3.1 Introduction

Let E be a non-CM elliptic curve over a number field K. As we have seen
in chapters 1 and 2, understanding the image of flE in GL

2

(Ẑ) amounts to
understanding the ¸-adic images flE,¸Œ(GK) for every prime ¸ as well as the
entanglement fields

K(E[m
1

]) fl K(E[m
2

])

for each pair m
1

, m
2

œ N which are relatively prime. We have also seen
such entanglement fields appear prominently in Chapter 2. Indeed, using
Lemma 2.3.1 we see that the character sum method for the study of con-
jectural constants can only be applied to the class of elliptic curves whose
entanglement fields are abelian extensions of K. This naturally leads to the
question: given a number field K, can one classify the triples (E, m

1

, m
2

)
with E an elliptic curve over K and m

1

, m
2

a pair of coprime integers for
which the entanglement field K(E[m

1

]) fl K(E[m
2

]) is non-abelian over K?
The study of correction factors done in Chapter 2 illustrates why it would
be of interest to obtain a complete classification of such examples.

In this chapter we show that there does indeed exist at least one infi-
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Non-Serre curves

nite family of curves such that the curves in it do not satisfy the abelian
entanglements property. The character sum method as we have developed
it cannot be applied to the curves in this family, however we will see that
with some additional restrictions it still can be. The family of curves we
have found appears to be of a very idiosyncratic nature.

Let us restrict our attention now to elliptic curves over Q. With respect
to understanding the entanglement fields, the case K = Q, although it is
usually the first case considered, has a complication which doesn’t arise over
any other number field. Indeed, when the base field is Q, the Kronecker-
Weber theorem, together with the containment Q(’n) ™ Q(E[n]), forces the
occurrence of non-trivial entanglement fields. Recall from Section 2.4.1 that
for any elliptic curve E over Q one has

Q(


�E) ™ Q(E[2]) fl Q(’n), (3.1.1)

where n = 4|�E |, and that a Serre curve is one whose Galois action on its
torsion points is as large as possible. That is, it satisfies that [GL

2

(Ẑ) :
flE(GQ)] = 2. These are precisely the curves E over Q for which the entan-
glement (3.1.1) is the only obstruction to surjectivity of flE . It is also shown
in Section 2.4 that Serre curves have abelian entanglements.

Let Er,s denote the curve given by the equation

Er,s : Y 2 = X3 + rX + s.

For a varying parameter x let R(x) and S(x) be a given length and width
that grow with x and define

C(x) := {Er,s : (r, s) œ Z2, |r| 6 R(x), |s| 6 S(x) and 4r3 + 27s2 ”= 0}.

In [Jon10] Nathan Jones proves a theorem bounding the mean-square error
in the Chebotarev theorem for division fields of elliptic curves and uses this
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3.1. Introduction

to count the elliptic curves over Q which are Serre curves. More precisely,
he proves the following theorem (Theorem 4 in [Jon10]).

Theorem 3.1.1 (Jones). Let CSerre(x) denote the set

{Er,s œ C(x) : Er,s is a Serre curve}.

Assuming that min{R(x), S(x)} > x2, one has

|C(x) ≠ CSerre(x)| π |C(x)| logB x

x
,

where B is an explicit constant. Thus, in particular,

lim
xæŒ

|CSerre(x)|
C(x)| = 1.

The main algebraic ingredient used by Jones in his proof is the following
lemma (Lemma 5 in [Jon10]) which gives a su�cient condition for an elliptic
curve E to be a Serre curve.

Lemma 3.1.2 (Jones). Suppose E is an elliptic curve over Q such that:

1. For all primes ¸ we have that flE,¸(GQ) = GL
2

(Z/¸Z),

2. flE,72

(GQ) = GL
2

(Z/72Z).

Then E is a Serre curve.

In [Zyw10], Zywina generalizes Theorem 3.1.1 to the case K ”= Q (see
also [Rad08], which sharpens the upper bound to an asymptotic formula).
In [GJ11], di�erent ideas are used to deduce stronger upper bounds for
the number of elliptic curves in one-parameter families which are not Serre
curves. These results are obtained by viewing non-Serre curves as coming
from rational points on modular curves. More precisely, there is a family
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X = {X
1

, X
2

, . . . } of modular curves with the property that, for each elliptic
curve E, one has

E is not a Serre curve ≈∆ j(E) œ
€

XœX
j(X(Q)), (3.1.2)

where j denotes the natural projection followed by the usual j-map:

j : X ≠æ X(1) ≠æ P1.

In [GJ11], the authors use (3.1.2) together with geometric methods to bound
the number of non-Serre curves in a given one-parameter family. This brings
us to the following question, which serves as additional motivation for the
present chapter.

Question 3.1.3. What is an explicit list of modular curves in a family
X = {X

1

, X
2

, . . . } satisfying (3.1.2)?

In order to answer this question it will be essential to have a necessary
and su�cient condition for an elliptic curve to be a Serre curve. Lemma
3.1.2 above gives a su�cient condition, and this was furthered strengthened
by Jones (Corollary 2.12 in [Jon]) to provide a necessary condition as well.

Proposition 3.1.4 (Jones). Let E be an elliptic curve over Q. Then E is
a Serre curve if and only if the following two conditions hold.

1. For each prime ¸ > 5, flE,¸(GQ) = GL
2

(Z/¸Z).

2. One has [flE,36

(GQ), flE,36

(GQ)] = [GL
2

(Z/36Z), GL
2

(Z/36Z)].

Let E¸ be the set of modular curves whose rational points correspond to
j-invariants of elliptic curves E for which flE,¸ is not surjective. Then we
have seen in Section 1.2.3 that

E¸ ™
Ó

X
0

(¸), X+

split

(¸), X+

non-split

(¸), XA4(¸), XS4(¸), XA5(¸)
Ô

(3.1.3)
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where each of the modular curves XA4(¸), XS4(¸), and XA5(¸) corresponding
to the exceptional groups A

4

, S
4

and A
5

only occurs for certain primes ¸.
We have then €

¸ prime

E¸ ™ X .

If flE,¸ is surjective for all primes ¸ and E is not a Serre curve then by Propo-
sition 3.1.4 the obstruction must be coming from the mod 36 representation.
By Corollary 1.2.4 we have that if flE,¸ is surjective then so is the ¸-adic
representation flE,¸Œ , however this is not necessarily true for ¸ = 2, 3. These
obstructions are described by two other modular curves X Õ(4) and X ÕÕ(4) of
level 4, and another X Õ(9) of level 9, which have been considered in [DD12]
and [Elk06], respectively.

Here we consider a modular curve X Õ(6) of level 6 which, taken together
with those listed above, completes the set X of modular curves occurring in
(3.1.2), answering Question 3.1.3. Let X(n) denote the complete modular
curve of level n, and let H ™ GL

2

(Z/nZ) be a subgroup containing ≠I for
which the determinant map

det : H ≠æ (Z/nZ)◊

is surjective. Recall from Section 1.2.3 that for any x œ P1(Q), we have that

x œ j(XH(Q)) ≈∆ ÷ an elliptic curve E over Q and ÷g œ GL
2

(Z/nZ)
with j(E) = x and flE,n(Gal(Q/Q)) ™ g≠1Hg.

(3.1.4)
Thus, to describe X Õ(6), it su�ces to describe the corresponding subgroup
H ™ GL

2

(Z/6Z).
There is exactly one index 6 normal subgroup N ™ GL

2

(Z/3Z), defined
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by

N :=
IA

x ≠y

y x

B

: x2 + y2 © 1 mod 3
J

Û
IA

x y

y ≠x

B

: x2 + y2 © ≠1 mod 3
J

. (3.1.5)

This subgroup fits into an exact sequence

1 ≠æ N ≠æ GL
2

(Z/3Z) ≠æ GL
2

(Z/2Z) ≠æ 1, (3.1.6)

and we denote by

◊ : GL
2

(Z/3Z) ≠æ GL
2

(Z/2Z) (3.1.7)

the (non-canonical) surjective map in the above sequence. We take H ™
GL

2

(Z/2Z) ◊ GL
2

(Z/3Z) to be the graph of ◊, viewed as a subgroup of
GL

2

(Z/6Z) via the Chinese Remainder Theorem. The modular curve X Õ(6)
is then defined by

X Õ(6) := XHÕ
6
, where H Õ

6

:= {(g
2

, g
3

) œ GL
2

(Z/2Z) ◊ GL
2

(Z/3Z) :

g
2

= ◊(g
3

)} ™ GL
2

(Z/6Z). (3.1.8)

Unravelling (3.1.4) in this case, we find that, for every elliptic curve E over
Q,

j(E) œ j(X Õ(6)(Q)) ≈∆
E ƒQ EÕ for some EÕ over Q for which Q(EÕ[2]) ™ Q(EÕ[3]). (3.1.9)

By considering the geometry of the natural map X Õ(6) ≠æ X(1), the curve
X Õ(6) is seen to have genus zero and one cusp. Since Gal(Q/Q) acts on the
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cusps, the single cusp must be defined over Q, thus endowing X Õ(6) with
a rational point. Therefore X Õ(6) ƒQ P1. We prove the following theorem,
which gives an explicit model of X Õ(6).

Theorem 3.1.5. There exists a parameter t : X Õ(6) ≠æ P1, whose inverse
is a uniformizer at the cusp, and which has the property that

j = 21033t3(1 ≠ 4t3),

where j : X Õ(6) ≠æ X(1) ƒ P1 is the usual j-map.

Remark 3.1.6. By (3.1.9), Theorem 3.1.5 is equivalent to the following state-
ment: for any elliptic curve E over Q, E is isomorphic over Q to an elliptic
curve EÕ satisfying

Q(EÕ[2]) ™ Q(EÕ[3])

if and only if j(E) = 21033t3(1 ≠ 4t3) for some t œ Q.
Furthermore, we prove the following theorem, which answers Question

3.1.3. For each prime ¸, consider the set G¸,max

of maximal proper subgroups
of GL

2

(Z/¸Z), which surject via determinant onto (Z/¸Z)◊:

G¸,max

:= {H ( GL
2

(Z/¸Z) : det(H) = (Z/¸Z)◊

and @H
1

with H ( H
1

( GL
2

(Z/¸Z)}. (3.1.10)

The group GL
2

(Z/¸Z) acts on G¸,max

by conjugation, and let R¸ be a set
of representatives of G¸,max

modulo this action. By (3.1.4), the collection X
occurring in (3.1.2) must contain as a subset

E¸ := {XH : H œ R¸}, (3.1.11)

the set of modular curves attached to subgroups H œ R¸ (this gives a more
precise description of the set E¸ in (3.1.3)). Furthermore, the previously men-
tioned modular curves X Õ(4), X ÕÕ(4), and X Õ(9) correspond to the following
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subgroups. Let Á : GL
2

(Z/2Z) ≠æ {±1} denote the unique non-trivial char-
acter, and we will view det : GL

2

(Z/4Z) ≠æ (Z/4Z)◊ ƒ {±1} as taking the
values ±1.

X Õ(4) = XHÕ
4
, where H Õ

4

:= {g œ GL
2

(Z/4Z) :

det g = Á(g mod 2)} ™ GL
2

(Z/4Z),

X ÕÕ(4) = XHÕÕ
4

where H ÕÕ
4

:=
KA

0 1
3 0

B

,

A
0 1
1 1

BL

™ GL
2

(Z/4Z),

X Õ(9) = XHÕ
9

where H Õ
9

:=
= A

0 2
4 0

B

,

A
4 1

≠3 4

B

,

A
2 0
0 2

B

,

A
≠1 0
0 1

B >
™ GL

2

(Z/9Z).

(3.1.12)

For more details on these modular curves, see [DD12] and [Elk06].

Theorem 3.1.7. Let X be defined by

X =
)
X Õ(4), X ÕÕ(4), X Õ(9), X Õ(6)

* fi
€

¸ prime
E¸,

where X Õ(4), X ÕÕ(4) and X Õ(9) are defined by (3.1.12), X Õ(6) is defined by
(3.1.8), and E¸ is as in (3.1.11). Then, for any elliptic curve E over Q,

E is not a Serre curve ≈∆ j(E) œ
€

XœX
j(X(Q)).

3.2 Proofs

We now prove Theorems 3.1.5 and 3.1.7.
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Proof of Theorem 3.1.5. Consider the elliptic curve E over Q(t) given by

E : y2 = x3 + 3t
1
1 ≠ 4t3

2
x +

1
1 ≠ 4t3

2 31
2 ≠ 4t3

4
,

with discriminant and j-invariant �E, j(E) œ Q(t) given, respectively, by

�E = ≠2633(1 ≠ 4t3)2 and j(E) = 21033t3(1 ≠ 4t3). (3.2.1)

For every t œ Q, the specialization Et is an elliptic curve over Q whose
discriminant �Et œ Q and j-invariant j(Et) œ Q are given by evaluating
(3.2.1) at t. We will show that, for any t œ Q, one has

Q(Et[2]) ™ Q(Et[3]). (3.2.2)

By (3.1.9) and (3.2.1), it then follows that

’t œ Q, 21033t3(1 ≠ 4t3) œ j(X Õ(6)(Q)).

Since the natural j-map j : X Õ(6) ≠æ P1 and the map t ‘æ 21033t3(1 ≠ 4t3)
both have degree 6, Theorem 3.1.5 will then follow. To verify (3.2.2), we
will show that, for every t œ Q, one has

Q(Et[2]) ™ Q(’
3

, �1/3

Et
). (3.2.3)

It is a classical fact that, for any elliptic curve E over Q, one has Q(’
3

, �1/3

E ) ™
Q(E[3]) (for details, see for instance [LT74, p. 181] and the references given
there). Thus, the containment (3.2.2) follows from (3.2.3). Finally, (3.2.3)
follows immediately from the factorization

(x ≠ e
1

(t)) (x ≠ e
2

(t)) (x ≠ e
3

(t)) = x3+3t
1
1 ≠ 4t3

2
x+

1
1 ≠ 4t3

2 31
2 ≠ 4t3

4
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of the 2-division polynomial x3 +3t
1
1 ≠ 4t3

2
x+

1
1 ≠ 4t3

2 31
2 ≠ 4t3

4
, where

e
1

(t) := 1
6�1/3

Et
+ t

18(1 ≠ 4t3)�2/3

Et
,

e
2

(t) := ’
3

6 �1/3

Et
+ ’2

3

t

18(1 ≠ 4t3)�2/3

Et
, and

e
3

(t) := ’2

3

6 �1/3

Et
+ ’

3

t

18(1 ≠ 4t3)�2/3

Et
.

This finishes the proof of Theorem 3.1.5. 2
Remark 3.2.1. Our proof shows that, viewing Et as an elliptic curve over
Q(t), we have a containment of function fields

Q(t)(Et[2]) ™ Q(t)(Et[3]).

We will now turn to Theorem 3.1.7, whose proof employs the following
group theoretic lemma. Recall from Section 1.2.2 that if Â is the abbreviation
for the ordered pair (Â

0

, Â
1

), then the group G given by

G
1

◊Â G
2

:= {(g
1

, g
2

) œ G
1

◊ G
2

: Â
1

(g
1

) = Â
2

(g
2

)} (3.2.4)

is called the fibered product of G
0

and G
1

over Â, and is commonly denoted
by G

0

◊Â G
1

. Notice that, for a surjective group homomorphism f : Q æ Q
1

,
if f ¶ Â denotes the ordered pair (f ¶ Â

0

, f ¶ Â
1

) and G
0

◊f¶Â G
1

denotes the
corresponding fibered product, then one has

G
0

◊Â G
1

™ G
0

◊f¶Â G
1

. (3.2.5)

Lemma 3.2.2. Let G
0

and G
1

be groups, let Â
0

: G
0

æ Q and Â
1

: G
1

æ Q

be a pair of surjective homomorphisms onto a common quotient group Q,
and let H = G

0

◊Â G
1

be the associated fibered product. If Q is cyclic, then
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3.2. Proofs

one has the following equality of commutator subgroups:

[H, H] = [G
0

, G
0

] ◊ [G
1

, G
1

].

Proof. See [LT74, Lemma 1, p. 174] (the hypothesis of this lemma is readily
verified when Q is cyclic).

Proof of Theorem 3.1.7. Using Proposition 3.1.4 one has

E is not a Serre curve ≈∆

÷ a prime ¸ Ø 5 with
flE,¸(Gal(Q/Q)) ( GL

2

(Z/¸Z),
or [flE,36

(Gal(Q/Q)), flE,36

(Gal(Q/Q))]
( [GL

2

(Z/36Z), GL
2

(Z/36Z)].

For each divisor d of 36, let

fi
36,d : GL

2

(Z/36Z) ≠æ GL
2

(Z/dZ) (3.2.6)

denote the canonical projection. One checks that, for ¸ œ {2, 3}, any proper
subgroup H ( GL

2

(Z/¸Z) for which det(H) = (Z/¸Z)◊ must satisfy [H, H] (
[GL

2

(Z/¸Z), GL
2

(Z/¸Z)]. We then define

G
36

:=

Y
__]

__[
H ™ GL

2

(Z/36Z) :
’d œ {2, 3}, fi

36,d(H) = GL
2

(Z/dZ),
det(H) = (Z/36Z)◊,

and [H, H] ( [GL
2

(Z/36Z), GL
2

(Z/36Z)]

Z
__̂

__\
,

(3.2.7)
and note that

E is not a Serre curve ≈∆

÷ a prime ¸ and H œ G¸,max

for which
flE,¸(Gal(Q/Q)) ™ H,

or ÷H œ G
36

for which
flE,36

(Gal(Q/Q)) ™ H.

(3.2.8)
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As in the prime level case, we need only consider maximal subgroups H œ
G

36

, and because of (3.1.4), only up to conjugation by GL
2

(Z/36Z). Thus,
we put

G
36,max

:= {H œ G
36

: @H
1

œ G
36

with H ( H
1

( GL
2

(Z/36Z)},

we let R
36

™ G
36,max

be a set of representatives of G
36,max

modulo GL
2

(Z/36Z)-
conjugation, and we set

E
36

:= {XH : H œ R
36

}.

The equivalence (3.2.8) now becomes (see (3.1.11))

E is not a Serre curve ≈∆
÷ a prime ¸ and XH œ E¸ for which

j(E) œ j(XH(Q)), or ÷XH œ E
36

for which
j(E) œ j(XH(Q)).

Thus, Theorem 3.1.7 will follow from the next proposition.

Proposition 3.2.3. With the above notation, one may take

R
36

= {fi≠1

36,4(H Õ
4

), fi≠1

36,4(H ÕÕ
4

), fi≠1

36,9(H Õ
9

), fi≠1

36,6(H Õ
6

)},

where fi
36,d is as in (3.2.6) and the groups H Õ

4

, H ÕÕ
4

, H Õ
9

and H Õ
6

are given by
(3.1.12) and (3.1.8).

Proof. Let H œ G
36,max

. If fi
36,4(H) ”= GL

2

(Z/4Z), then [DD12] shows
that fi

36,4(H) ™ H Õ
4

or fi
36,4(H) ™ H ÕÕ

4

, up to conjugation in GL
2

(Z/4Z). If
fi

36,9(H) ”= GL
2

(Z/9Z), then [Elk06] shows that, up to GL
2

(Z/9Z)-conjugation,
one has fi

36,9(H) ™ H Õ
9

. Thus, we may now assume that fi
36,4(H) = GL

2

(Z/4Z)
and fi

36,9(H) = GL
2

(Z/9Z). By Lemma 1.2.7, this implies that there exists
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a group Q and a pair of surjective homomorphisms

Â
4

: GL
2

(Z/4Z) ≠æ Q

Â
9

: GL
2

(Z/9Z) ≠æ Q

for which H = GL
2

(Z/4Z) ◊Â GL
2

(Z/9Z). We will now show that in this
case, up to GL

2

(Z/36Z)-conjugation, we have

H ™ {(g
4

, g
9

) œ GL
2

(Z/4Z) ◊ GL
2

(Z/9Z) : ◊(g
9

mod 3) = g
4

mod 2},

(3.2.9)
where ◊ : GL

2

(Z/3Z) ≠æ GL
2

(Z/2Z) is the map given in (3.1.7), whose
graph determines the level 6 structure defining the modular curve X Õ(6).
This will finish the proof of Proposition 3.2.3.

Let us make the following definitions:

N
4

:= ker Â
4

™ GL
2

(Z/4Z), N
9

:= ker Â
9

™ GL
2

(Z/9Z)
N

2

:= fi
4,2(N

4

) ™ GL
2

(Z/2Z), N
3

:= fi
9,3(N

9

) ™ GL
2

(Z/3Z)
Q

2

:= GL
2

(Z/2Z)/N
2

, Q
3

:= GL
2

(Z/3Z)/N
3

,

where fi
4,2 : GL

2

(Z/4Z) æ GL
2

(Z/2Z) and fi
9,3 : GL

2

(Z/9Z) æ GL
2

(Z/3Z)
denote the canonical projections. We then have the following exact se-
quences:

1 ≠æ N
9

≠æ GL
2

(Z/9Z) ≠æ Q ≠æ 1

1 ≠æ N
4

≠æ GL
2

(Z/4Z) ≠æ Q ≠æ 1

1 ≠æ N
3

≠æ GL
2

(Z/3Z) ≠æ Q
3

≠æ 1

1 ≠æ N
2

≠æ GL
2

(Z/2Z) ≠æ Q
2

≠æ 1,

(3.2.10)

as well as

1 ≠æ K
2

≠æ Q ≠æ Q
2

≠æ 1

1 ≠æ K
3

≠æ Q ≠æ Q
3

≠æ 1,
(3.2.11)
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where for each ¸ œ {2, 3}, the kernel K¸ ƒ ker fi¸2,¸

N¸2 fl ker fi¸2,¸
™ GL

2

(Z/¸2Z)
N¸2

ƒ
Q is evidently abelian (since ker fi¸2,¸ is), and has order dividing ¸4 = | ker fi¸2,¸|.
We will proceed to prove that

Q
2

ƒ GL
2

(Z/2Z) and Q
3

ƒ Q, (3.2.12)

which is equivalent to

N
4

™ ker fi
4,2 and ker fi

9,3 ™ N
9

.

Writing Ẫ
4

: GL
2

(Z/4Z) æ Q æ Q
2

ƒ GL
2

(Z/2Z) and Ẫ
9

: GL
2

(Z/9Z) æ
Q æ Q

2

ƒ GL
2

(Z/2Z), we then see by (3.2.5) that

H = GL
2

(Z/4Z) ◊Â GL
2

(Z/9Z) ™ GL
2

(Z/4Z) ◊
˜Â GL

2

(Z/9Z).

Furthermore, it follows from Q ƒ Q
3

that Ẫ
9

factors through the projec-
tion GL

2

(Z/9Z) æ GL
2

(Z/3Z). This, together with the uniqueness of N
in (3.1.6) and the fact that every automorphism of GL

2

(Z/2Z) is inner, im-
plies that (3.2.9) holds, up to GL

2

(Z/36Z)-conjugation. Thus, the proof of
Proposition 3.2.3 is reduced to showing that (3.2.12) holds.

We will first show that Q
2

ƒ GL
2

(Z/2Z). Suppose on the contrary that
Q

2

( GL
2

(Z/2Z). Looking at the first exact sequence in (3.2.11), we see
that Q must then be a 2-group, and since K

3

has order a power of 3 (possibly
1), we see that Q ƒ Q

3

, and the third exact sequence in (3.2.10) becomes

1 ≠æ N
3

≠æ GL
2

(Z/3Z) ≠æ Q ≠æ 1.

The kernel N
3

must contain an element ‡ of order 3, and by considering
GL

2

(Z/3Z)-conjugates of ‡, we find that |N
3

| Ø 8. Since 3 also divides |N
3

|,
we see that |N

3

| Ø 12, and so Q must be abelian, having order at most 4.
Furthermore, since [GL

2

(Z/3Z), GL
2

(Z/3Z)] = SL
2

(Z/3Z), we find that Q
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has order at most 2, and thus is cyclic. Applying Lemma 3.2.2, we find that
[H, H] = [GL

2

(Z/36Z), GL
2

(Z/36Z)], contradicting (3.2.7). Thus, we must
have that Q

2

ƒ GL
2

(Z/2Z).
We will now show that Q

3

ƒ Q. To do this, we will first take a more
detailed look at the structure of the group GL

2

(Z/4Z). Note the embedding
of groups GL

2

(Z/2Z) Òæ GL
2

(Z) given by
A

1 0
0 1

B

‘æ
A

1 0
0 1

B

,

A
1 1
1 0

B

‘æ
A

≠1 ≠1
1 0

B

,

A
0 1
1 1

B

‘æ
A

0 1
≠1 ≠1

B

,

A
0 1
1 0

B

‘æ
A

0 1
1 0

B

,

A
1 1
0 1

B

‘æ
A

≠1 ≠1
0 1

B

,

A
1 0
1 1

B

‘æ
A

1 0
≠1 ≠1

B

.

This embedding, followed by reduction modulo 4, splits the exact sequence

1 æ ker fi
4,2 æ GL

2

(Z/4Z) æ GL
2

(Z/2Z) æ 1.

Also note the isomorphism (ker fi
4,2, ·) æ (M

2◊2

(Z/2Z), +) given by I +
2A ‘æ A (mod 2). These two observations realize GL

2

(Z/4Z) as a semi-
direct product

GL
2

(Z/4Z) ƒ GL
2

(Z/2Z) n M
2◊2

(Z/2Z), (3.2.13)

where the right-hand factor is an additive group and the action of GL
2

(Z/2Z)
on M

2◊2

(Z/2Z) is by conjugation. Since Q
2

ƒ GL
2

(Z/2Z), we see that,
under (3.2.13), one has

N
4

™ M
2◊2

(Z/2Z),

and since it is a normal subgroup of GL
2

(Z/4Z), we see that N
4

must be
a Z/2Z-subspace which is invariant under GL

2

(Z/2Z)-conjugation. This
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implies that we must be in one of the following 5 cases.

N
4

Q

M
2◊2

(Z/2Z) GL
2

(Z/2Z)
{A œ M

2◊2

(Z/2Z) : trA = 0} GL
2

(Z/2Z) ◊ {±1}
IA

0 0
0 0

B

,

A
1 0
0 1

B

,

A
1 1
1 0

B

,

A
0 1
1 1

BJ

GL
2

(Z/2Z) n (Z/2Z)2

IA
0 0
0 0

B

,

A
1 1
0 1

B

,

A
1 0
1 1

B

,

A
0 1
1 0

BJ

GL
2

(Z/2Z) n (Z/2Z)2

IA
0 0
0 0

B

,

A
1 0
0 1

BJ

PGL
2

(Z/4Z)

(We have omitted from the table the case that N
4

is trivial, since then
Q ƒ GL

2

(Z/4Z), which has order 25 · 3 and thus cannot be a quotient
of GL

2

(Z/9Z).) In the third row of the table, the action of GL
2

(Z/2Z)
on (Z/2Z)2 defining the semi-direct product is the usual action by matrix
multiplication on column vectors, while in the fourth row of the table, the
action is defined via

g ·
A

x

y

B

=

Y
_______]

_______[

Q

ax

y

R

b if g œ
Y
]

[

Q

a1 0

0 1

R

b ,

Q

a1 1

1 0

R

b ,

Q

a0 1

1 1

R

b

Z
^

\ ,

Q

ay

x

R

b if g œ
Y
]

[

Q

a1 1

0 1

R

b ,

Q

a1 0

1 1

R

b ,

Q

a0 1

1 0

R

b

Z
^

\ .

Since 9 does not divide |Q|, the degree of the projection Q ⇣ Q
3

is either 1 or
3. Inspecting the table above, we see that in all cases except Q = GL

2

(Z/2Z),
either Q has no normal subgroup of order 3, or for each normal subgroup
K

3

⇥ Q of order 3, Q
3

ƒ Q/K
3

has Z/2Z◊Z/2Z as a quotient group. Since
[GL

2

(Z/3Z), GL
2

(Z/3Z)] = SL
2

(Z/3Z), the group GL
2

(Z/3Z) cannot have
Z/2Z ◊ Z/2Z as a quotient group, and so we must have Q ƒ Q

3

in these
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cases, as desired.
When Q = GL

2

(Z/2Z), we must proceed di�erently. Suppose that Q =
GL

2

(Z/2Z) and (for the sake of contradiction) that Q ”= Q
3

, so that the
projection Q ⇣ Q

3

has degree 3. Then Q
3

ƒ Z/2Z, which implies that
N

3

= SL
2

(Z/3Z), so that

N
9

™ fi≠1

9,3(SL
2

(Z/3Z)) ™ GL
2

(Z/9Z).

Furthermore, the quotient group fi≠1

9,3(SL
2

(Z/3Z))/N
9

ƒ Z/3Z, and in par-
ticular is abelian. A commutator calculation shows that

[fi≠1

9,3(SL
2

(Z/3Z)), fi≠1

9,3(SL
2

(Z/3Z))] = fi≠1

9,3(N ) fl SL
2

(Z/9Z),

(see (3.1.5)) and that the corresponding quotient group satisfies

fi≠1

9,3(SL
2

(Z/3Z))/[fi≠1

9,3(SL
2

(Z/3Z)), fi≠1

9,3(SL
2

(Z/3Z))] ƒ Z/3Z ◊ Z/3Z.

Furthermore, fixing a pair of isomorphisms

÷
1

:
AIA

1 0
0 1

B

,

A
1 1
1 0

B

,

A
0 1
1 1

BJ

, ·
B

≠æ (Z/3Z, +) ,

÷
2

: (1 + 3 · Z/9Z, ·) ≠æ (Z/3Z, +),

and defining the characters

‰
1

: fi≠1

9,3(SL
2

(Z/3Z)) ≠æ Z/3Z,

‰
2

: fi≠1

9,3(SL
2

(Z/3Z)) ≠æ Z/3Z

by ‰
1

= ÷
1

¶ ◊ ¶ fi
9,3 and ‰

2

= ÷
2

¶ det, we have that every homomorphism
‰ : fi≠1

9,3(SL
2

(Z/3Z)) æ Z/3Z must satisfy

‰ = a
1

‰
1

+ a
2

‰
2

,
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for appropriately chosen a
1

, a
2

œ Z/3Z. In particular,

N
9

= ker(a
1

‰
1

+ a
2

‰
2

) (3.2.14)

for some choice of a
1

, a
2

œ Z/3Z. One checks that

÷g œ GL
2

(Z/9Z), x œ fi≠1

9,3(SL
2

(Z/3Z)) for which ‰
1

(gxg≠1) ”= ‰
1

(x),

whereas ‰
2

(gxg≠1) = ‰
2

(x) for any such choice of g and x. Since N
9

is a normal subgroup of GL
2

(Z/9Z), it follows that a
1

= 0, a
2

”= 0 in
(3.2.14). This implies that N

9

= SL
2

(Z/9Z), which contradicts the fact
that GL

2

(Z/9Z)/N
9

ƒ Q ƒ GL
2

(Z/2Z) is non-abelian. This contradiction
shows that we must have Q ƒ Q

3

, and this verifies (3.2.12), completing the
proof of Proposition 3.2.3.

As already observed, the proof of Proposition 3.2.3 completes the proof
of Theorem 3.1.7. 2

3.3 Elliptic curves without abelian entanglements

Let us study in more detail one example coming from the family of curves
in Theorem 3.1.5. Consider the curve E/Q given by minimal Weierstrass
equation Y 2 = X3 ≠ 63504X + 6223392. This curve has j(E) = ≠21034, as
well as � = ≠2431176. Machine computation shows that G(¸) = GL

2

(Z/¸Z)
and Q(E[2]) µ Q(E[3]). We also have that Q(

Ô
�) = Q(

Ô≠3), which
is what we expect since the maximal abelian extension inside Q(E[3]) is
precisely Q(

Ô≠3).
Suppose we wish to compute the conjectural density of primes p such

that Ẽ(Fp) is cyclic. As we have seen, the naive density of this is
r

¸ ”¸,
however a correction factor is needed. As the only critical primes are 2, 3

100



3.3. Elliptic curves without abelian entanglements

and 7, the density we are looking for is

CE = |G(42) fl S
42

|
G(42)|

Ÿ

”̧=2,3,7

”¸,

where we are using the notation of Section 2.4. Now GL
2

(Z/3Z) and GL
2

(Z/7Z)
have no simple non-abelian quotients, hence any entanglement between the
fields Q(E[3]) and Q(E[7]) would have to contain a non-trivial abelian sub-
field. However the maximal abelian extensions of Q(E[3]) and Q(E[7]) are
Q(’

3

) and Q(’
7

), hence we conclude Q(E[3]) fl Q(E[7]) = Q. This implies
that G(42) = G(6) ◊ G(7), hence

CE = |G(6) fl S
6

|
|G(6)|

Ÿ

”̧=2,3

”¸,

Finally, note that because G(6) = G(3) and G(2) is a quotient of G(6), then

|G(6) fl S
6

|
|G(6)| = |S(2)|

|G(2)| .

Using machine computation we find that the observed density of primes
p 6 100000000 is 0.831069 while our computation yields

CE =
Ÿ

”̧=3

”¸

¥ 0.831066.

As mentioned in the introduction, another natural question which arises
from this is whether one can one classify the triples (E, m

1

, m
2

) with E

an elliptic curve over Q and m
1

, m
2

a pair of coprime integers for which
the entanglement field Q(E[m

1

]) fl Q(E[m
2

]) is non-abelian over Q. We are
not sure if any other families exist, however one systematic way one could
possibly rule out other examples is via the following steps.
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(i) Classify the non-abelian groups which arise as common quotients of
subgroups Hm1 and Hm2 , where Hmi µ GL

2

(Z/miZ) and det(Hmi) =
(Z/miZ)◊ for i = 1, 2.

(ii) For each example in step (i), compute the genus of the associated
modular curve.

(iii) For each modular curve in step (ii), decide whether or not it has any
rational points.

For each of these families of curves it would also be of interest to find a
systematic way to compute their entanglement correction factors. For the
family we have described here this is easy to do because one of the torsion
fields is fully contained in another one. It may occur however, at least
in theory, that a curve could have many non-abelian intersections between
various of its torsion fields. However it seems unlikely many examples of this
type exist.
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Summary

This thesis deals primarily with the study of Galois representa-
tions attached to torsion points on elliptic curves. In the first
chapter we consider the problem of determining the image of the
Galois representation flE attached to a non-CM elliptic curve
over the rational number field Q. We give a deterministic algo-
rithm that determines the image of flE as a subgroup of GL

2

(‚Z),
where the output is given as an integer m together with a finite
subgroup G(m) µ GL

2

(Z/mZ). The image of flE is then the
subgroup of all elements of GL

2

(‚Z) whose reduction modulo m

belongs to G(m).

In the second part we develop a method using character sums
that uses the image of flE to describe densities of sets of primes
p for which Ẽ(Fp) has certain prescribed properties. If E is
an elliptic curve over Q, then it follows by work of Serre and
Hooley that, under the assumption of the Generalized Riemann
Hypothesis, the density of primes p such that the group of Fp-
rational points of the reduced curve Ẽ(Fp) is cyclic can be written
as an infinite product

r
”¸ of local factors ”¸ reflecting the degree

of the ¸-torsion fields, multiplied by a factor that corrects for
the entanglements between the various torsion fields. We show
that this correction factor can be interpreted as a character sum,
and the resulting description allows us to easily determine non-
vanishing criteria for it. We apply our character sum method
to a variety of other settings. Among these, we consider the
aforementioned problem with the additional condition that the



primes p lie in a given arithmetic progression. We also study
the conjectural constants appearing in Koblitz’s conjecture, a
conjecture which relates to the density of primes p for which the
cardinality of the group of Fp-points of E is prime. The unifying
theme in all these settings is that the constants we are interested
in are completely determined by the image of flE .

The final chapter deals with the classification of non-Serre curves.
An elliptic curve over Q is a Serre curve if its attached Galois
representation is as large as possible, and it is known that most
elliptic curves over Q are of this type. We exhibit a modular
curve of level 6 that completes a set of modular curves which
parametrise non-Serre curves. This modular curve also gives an
infinite family of elliptic curves with non-abelian "entanglement
fields". Exhibiting such a family is naturally motivated by ques-
tions arising in the previous chapter regarding the classification
of elliptic curves to which we can apply the character sum method
described above.



Samenvatting

Dit proefschrift richt zich in hoofdzaak op de studie van Galois-
representaties geassocieerd met de torsiepunten van elliptische
krommen. In het eerste hoofdstuk beschouwen we het probleem
om het beeld te bepalen van de Galoisrepresentatie flE van een
elliptische kromme zonder CM over het lichaam van de ratio-
nale getallen Q. We geven een deterministische algoritme dat
het beeld van flE bepaalt als ondergroep van GL

2

(‚Z), waarbij de
output gegeven wordt als een geheel getal m tesamen met een
eindige ondergroep. Het beeld van flE is dan de ondergroep van
alle elementen van GL

2

(‚Z) waarvan de reductie modulo m to
G(m) behoort.

In het tweede deel ontwikkelen we een methode die van karak-
tersommen gebruik maakt om uitgaande van het beeld van flE

dichtheden te beschrijven van verzamelingen van priemen p waar-
voor zekere voorgeschreven eigenschappen heeft. Als E een el-
liptische kromme over Q is, dan volgt uit werk van Serre en
Hooley dat, onder aanname van de Gegeneraliseerde Riemannhy-
pothese, de dichtheid van de verzameling priemen p waarvoor de
groep van Fp-rationale punten van de gereduceerde kromme cy-
clisch is, geschreven kan worden als een oneindig product

r
”¸

van locale factoren ”¸ die de graad van de ¸-torsielichamen re-
flecteren, vermenigvuldigd met met een factor die corrigeert voor
de verstrengeling tussen de torsielichamen. We laten zien dat
deze correctiefactor geïnterpreteerd kan worden als een karak-
tersom, en de resulterende beschrijving stelt ons in staat om



op eenvoudige wijze criteria voor het verdwijnen van de correc-
tiefactor te bepalen. We passen onze karaktersommethode toe in
een aantal andere situaties. Hieronder is het hiervoor genoemde
probleem met de aanvullende voorwaarde dat de priemen in een
gegeven meetkundige reeks liggen. We bestuderen ook de ver-
moede constanten die voorkomen in een vermoeden van Koblitz
betre�ende de dichtheid van priemen waarvoor de cardinaliteit
van de groep van Fp-punten van E een priemgetal is. Het unifi-
cerende thema in al deze situaties is dat de constanten waarin
we geïnteresseerd zijn, geheel bepaald worden door het beeld van
flE .

Het laatste hoofdstuk gaat in op de classificatie van niet-Serre-
krommen. Een elliptische kromme over Q is een Serre-kromme
als de ermee geassocieerde Galoisrepresentatie zo groot mogelijk
is, en het is bekend dat de meeste elliptische krommen over Q van
dit type zijn. We presenteren een modulaire kromme van niveau
6 die een verzameling van modulaire krommen die niet-Serre-
krommen parmetriseren completeert. Deze modulaire kromme
geeft ook een oneindige familie van elliptische krommen met niet-
abelse "verstrengelingslichamen". Het aangeven van zo’n familie
komt op natuurlijke wijze naar voren in relatie tot de vragen
in het vorige hoofstuk met betrekking tot de classificatie van
elliptische krommen waarvoor we de karaktersommethode toe
kunnen passen.



Resume

Cette thèse étudie principalement les représentations galoisiennes
attachées aux points de torsion des courbes elliptiques. Dans le
premier chapitre, nous considérons le problème de déterminer
l’image de la représentation flE attachée à une courbe elliptique
E définie sur Q, sans multiplication complexe. Nous donnons
un algorithme déterministe qui calcule l’image de flE comme
sous-groupe de GL

2

(‚Z), dont la sortie est un entier m et un
sous-groupe fini G(m) µ GL

2

(Z/mZ). L’image de flE est le
sous-groupe des éléments de GL

2

(‚Z) dont la réduction modulo
m appartient à G(m).

Dans une seconde partie, nous développons une méthode util-
isant des sommes de caractères, qui exploite l’image de flE pour
décrire les densités d’ensembles de premiers p pour lesquels la
courbe réduite Ẽ(Fp) a certaines propriétés. Si E est une courbe
elliptique définie sur Q, il suit des travaux de Serre et Hooley que,
sous l’Hypothèse de Riemann Généralisée, la densité des premiers
p tels que le groupe des points Fp-rationnels de la courbe réduite
Ẽ(Fp) est cyclique s’écrit comme un produit infini

r
”¸ de fac-

teurs locaux ”¸ liés au degré du corps contenant la ¸-torsion,
multiplié par un facteur correctif prenant en compte l’intrication
de ces di�érents corps. Nous montrons que ce facteur correctif
s’interprète comme somme de caractères et cette description nous
permet de déterminer facilement s’il s’annule ou non. Nous ap-
pliquons notre méthode à d’autres situations, par exemple en re-
streignant p à une progression arithmétique fixée. Nous étudions



aussi les constantes apparaissant dans la conjecture de Koblitz,
liée à la densité des p pour lesquels le groupe des Fp-points de E

est un nombre premier. Dans toutes ces applications, le thème
unificateur sous-jacent est que les densités étudiées sont entière-
ment déterminées par l’image de flE .

Une courbe elliptique sur Q est une courbe de Serre si l’image de
la représentation galoisienne associée est aussi grande que pos-
sible, et la plupart des courbes elliptiques définies sur Q sont
de ce type. Notre dernier chapitre se préoccupe de la classi-
fication des courbes qui ne sont pas courbes de Serre : nous
exhibons une courbe modulaire de niveau 6 qui complète la liste
des courbes modulaires paramétrant ces courbes. Cette courbe
modulaire définit aussi une famille infinie de courbes elliptiques
dont les «corps d’intrication» sont non abéliens. Les questions
en suspens après le chapitre précédent, sur la classification des
courbes elliptiques auxquelles nous pouvons appliquer la méth-
ode des sommes de caractères, fournissent une motivation sup-
plémentaire pour cette famille.
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