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Chapter 1

Elliptic curves with additive
reduction over p-adic fields

1.1 Introduction

In this chapter, we fix a prime p. If E/Qp is an elliptic curve with additive
reduction, and we choose a minimal Weierstrass equation over Zp for it:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Zp for each i,

then we denote by E0(Qp) ⊂ E(Qp) the open subgroup of points that re-
duce to a non-singular point of the reduced curve. As is well-known, this
construction does not depend on the choice of minimal Weierstrass equation.

The purpose of this chapter is to investigate the structure of E0(Qp) as
a topological group. We will prove the following theorem. It is slightly less
general than the main result of this chapter (Theorem 1.28), but it has the
advantage that its statement is more elementary.

Theorem 1.1. Let E/Qp be an elliptic curve with additive reduction, such
that it can be given by a minimal Weierstrass equation over Zp:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the ai are contained in pZp for each i. Then the group E0(Qp) is
topologically isomorphic to Zp, except in the following four cases:

(i) p = 2 and a1 + a3 ≡ 2 (mod 4);

(ii) p = 3 and a2 ≡ 6 (mod 9);

(iii) p = 5 and a4 ≡ 10 (mod 25);
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(iv) p = 7 and a6 ≡ 14 (mod 49).

In each of the cases (i)-(iv), E0(Qp) is topologically isomorphic to pZp ×
Z/pZ, where Z/pZ has the discrete topology.

The proof of Theorem 1.1 will be given in section 1.5.5. The case p > 7
of Theorem 1.1 was also mentioned in [38].

We will say a few words about the idea of the proof. It is a standard fact
from the theory of elliptic curves over local fields [32, VII.6.3] that E0(Qp)
admits a canonical filtration

E0(Qp) ⊃ E1(Qp) ⊃ E2(Qp) ⊃ E3(Qp) ⊃ . . . ,

where for each i ≥ 1 the quotient Ei(Qp)/Ei+1(Qp) is isomorphic to Z/pZ.
The quotient E0(Qp)/E1(Qp) is also isomorphic to Z/pZ by the fact that
E has additive reduction. One has a natural isomorphism of topological
groups j : E2(Qp)

∼→ p2Zp given by the theory of formal groups. If p > 2,
the same theory even gives a natural isomorphism j′ : E1(Qp)

∼→ pZp [32,
IV.6.4(b)]. These isomorphisms identify En(Qp) with pnZp for all n ≥ 2.
The idea of the proof of theorem 1.1 is to start from j or j′ and, by extending
its domain, to build up an isomorphism between E0(Qp) and either Zp or
pZp × Z/pZ.

Rather than elliptic curves over Qp with additive reduction, we consider
the more general case of Weierstrass curves over Zp whose generic fibre is
smooth and whose special fibre is a cuspidal cubic curve. This allows more
general results. Theorem 1.1 is derived as a special case.

In Section 1.6, we give examples for each prime 2 ≤ p ≤ 7 of an elliptic
curve E/Q with additive reduction at p such that E0(Qp) contains a p-
torsion point defined over Q.

1.2 Preliminaries on Weierstrass curves

All proofs of facts recalled in this section can be found in [32, Ch. IV, VII].
Let K be a finite field extension of Qp for some prime p, and let vK : K →

Z ∪ {∞} be its normalized valuation. Let OK be the ring of integers, mK

its maximal ideal and k its residue field. By a Weierstrass curve over OK we
mean a projective curve E ⊂ P2

OK defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.1)
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If moreover the generic fibre EK of E is an elliptic curve overK with (0 : 1 : 0)
as the origin, then we call E a nice Weierstrass curve. The coefficients ai are
uniquely determined by E . The discriminant of E , denoted ∆E , is defined as
in [32, III.1]. The curve E is said to be minimal if vK(∆E) is minimal among
vK(∆E ′), where E ′ ranges over the Weierstrass curves such that E ′K ∼= EK .

We will say that a Weierstrass curve E/OK has good reduction when
the special fibre Ek is smooth, multiplicative reduction when Ek is nodal (i.e.
there are two distinct tangent directions to the singular point), and additive
reduction when Ek is cuspidal (i.e. one tangent direction to the singular
point). A non-minimal Weierstrass curve has additive reduction. The re-
duction type of an elliptic curve E over K is defined to be the reduction type
of a minimal Weierstrass model of E over OK , which is a minimal Weierstrass
curve E/OK such that EK ∼= E. By the fact that the minimal Weierstrass
model of E is unique up to OK-isomorphism, this is well-defined.

We have E(K) = E(K) = E(OK) since E is projective. Therefore,
we have a reduction map E(K) → E(k) given by restricting an element of
E(OK) to the special fibre. By E0(K) we denote the subgroup E0(K) ⊂ E(K)
of points reducing to a non-singular point of the special fibre Ek. We define
the subgroup E1(K) ⊂ E0(K) as the kernel of reduction, i.e. the points
that map to the identity of E(k) under the reduction map. A more explicit
definition of E1(K) is

E1(K) = {(x, y) ∈ E(K) : vK(x) ≤ −2, vK(y) ≤ −3} ∪ {0}. (1.2)

More generally, one defines subgroups En(K) ⊂ E0(K) for n ≥ 1 as follows:

En(K) = {(x, y) ∈ E(K) : vK(x) ≤ −2n, vK(y) ≤ −3n} ∪ {0}.

We thus have an infinite filtration on the subgroup E1(K):

E1(K) ⊃ E2(K) ⊃ E3(K) ⊃ · · · (1.3)

For an elliptic curve E/K and an integer n ≥ 0, we define En(K) to be the
subgroups of E(K) corresponding to En(K), where E is a minimal Weier-
strass model of E over OK . The En(K) are well-defined, again by the fact
that the minimal Weierstrass model of E is unique up to OK-isomorphism.

Proposition 1.2. For a nice Weierstrass curve E over Zp, there is an exact
sequence

0→ E1(K)→ E0(K)→ Ẽsm(k)→ 0,

where Ẽsm is the complement of the singular points in the special fibre Ẽ.
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Proof. This comes down to Hensel’s lemma. See [32, VII.2.1].

For a nice Weierstrass curve E over OK , we can consider its formal group
Ê [32, IV.1–2]. This is a one-dimensional formal group over OK . Giving the
data of this formal group is the same as giving a power series F = FÊ in
OK [[X, Y ]], called the formal group law. It satisfies

F (X, Y ) = X + Y + (terms of degree ≥ 2)

and
F (F (X, Y ), Z)) = F (X,F (Y, Z)).

For E as in (1.1), the first few terms of F are given by

F (X, Y ) = X + Y−
a1XY − a2(X2Y +XY 2) − 2a3(X3Y +XY 3) + (a1a2 − 3a3)X2Y 2−
(2a1a3 + 2a4)(X4Y +XY 4)− (a1a3 − a2

2 + 4a4)(X3Y 2 +X2Y 3) + . . .

Treating the Weierstrass coefficients ai as unknowns, we may consider F as
an element of Z[a1, a2, a3, a4, a6][[X, Y ]] called the generic formal group law.
If we make Z[a1, a2, a3, a4, a6] into a weighted ring with weight function wt,
such that wt(ai) = i for each i, then the coefficients of F in degree n are
homogeneous of weight n−1 [32, IV.1.1]. For each n ∈ Z≥2, we define power
series [n] in OK [[T ]] by [2](T ) = F (T, T ) and [n](T ) = F ([n− 1](T ), T ) for
n ≥ 3. Here also, we may consider each [n] either as a power series inOK [[T ]]
or as a power series in Z[a1, a2, a3, a4, a6][[T ]] called the generic multiplication
by n law.

Lemma 1.3. Let [p] =
∑

n bnT
n ∈ Z[a1, a2, a3, a4, a6][[T ]] be the generic

formal multiplication by p law. Then:

(i) p | bn for all n not divisible by p;

(ii) wt(bn) = n − 1, considering Z[a1, a2, a3, a4, a6] as a weighted ring as
above.

Proof. Part (i) is proved in [32, IV.4.4]. Part (ii) follows from [32, IV.1.1]
or what was said above.

The series F (u, v) converges to an element of mK for all u, v ∈ mK . To

E one associates the group Ê(mK), the mK-valued points of Ê , which as a
set is just mK , and whose group operation + is given by u+ v = F (u, v) for

all u, v ∈ Ê(mK). The identity element of Ê(mK) is 0 ∈ mK . If n ≥ 1 is an
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integer, then by Ê(mn
K) we denote the subset of Ê(mK) corresponding to the

subset mn
K ⊂ mK , where mn

K is the nth power of the ideal mK of OK . The

groups Ê(mn
K) are subgroups of Ê(mK), and we have an infinite filtration of

Ê(mK):

Ê(mK) ⊃ Ê(m2
K) ⊃ Ê(m3

K) ⊃ · · · (1.4)

Proposition 1.4. The map

ψK : E1(K)
∼→ Ê(mK)

(x, y) 7→ −x/y
0 7→ 0

is an isomorphism of topological groups. Moreover, ψK respects the filtra-
tions (1.3) and (1.4), i.e. it identifies the subgroups En(K) defined above

with Ê(mn
K).

Proof. See [32, VII.2.2].

It follows from the proof given in [32, VII.2.2] that there exists a power
series w ∈ OK [[T ]], with the first few terms given by

w(T ) = T 3 + a1T
4 + (a2

1 + a2)T 5 + (a3
1 + 2a1a2 + a3)T 6 + . . . ,

such that the inverse to ψK is given by z 7→ (z/w(z),−1/w(z)). Given a
finite field extension K ⊂ L, we have an obvious commutative diagram

E1(K)
ψK //

incl

��

Ê(mK)

incl
��

E1(L)
ψL // ÊOL(mL)

Here ÊOL(mL) is the set of mL-valued points of the formal group of EOL , the
base-change of E to Spec(OL).

1.3 Extensions of topological abelian groups

In this section, we investigate the following question. Suppose that d is
a non-negative integer, that A and C are finite abelian groups considered
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with the discrete topology, and that B is a topological abelian group sitting
in a short exact sequence

0→ Zdp × A→ B → C → 0

where the maps are continuous, and with the second map an embedding; de-
termine which isomorphism types of topological abelian groups are possible
for B. A partial answer, sufficient for the needs of this and later chapters,
is given in Proposition 1.14.

1.3.1 The profinite topology

Definition 1.5. Let G be any group. The profinite topology on G is the
coarsest topology such that, for all subgroups H ⊂ G of finite index, the
quotient map G→ G/H is continuous.

Proposition 1.6. Let G be a group. A base B for the profinite topology on
G is obtained by letting B be the collection of all translates of finite index
subgroups of G. Alternatively, a base B for the profinite topology on G is
given by taking a set {Hi}i∈I of finite-index subgroups of G that is final
among the set of all finite-index subgroups when ordered by inclusion, and
letting B be the collection of the translates of each Hi.

Proof. The first assertion is clear from the definition. The second one follows
since we can write every subgroup H of G as a union of translates of an
element Hi of the final set of subgroups {Hi}i∈I of G.

Lemma 1.7. Let G = Zp considered with the p-adic topology.

(i) The open subgroups of G are the subgroups pkZp for k ∈ Z≥0.

(ii) The p-adic topology and the profinite topology on G are the same.

Proof. Let H ⊂ Zp be an open subgroup of G. Since G is compact, it is
of finite index; let the index of H be n. We write n = mpk with m not
divisible by p. Then we have pkZp = nZp ⊂ H, so H contains pkZp. The
image of H in Zp/pkZp = Z/pkZ must have index n as well: therefore we
have n = pk and H = pkZp. Conversely, it is clear that the subgroups pkZp
of G are open. This proves (i).

The proof of (i) shows that any finite index subgroup of G is of the form
pkZp, and therefore open. Hence a base for the profinite topology on G
is given by the pkZp and their translates. The same is true for the p-adic
topology.
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Lemma 1.8. If G1 and G2 are topological groups such that their topologies
coincide with the profinite topologies, then the same is true for the topological
group G1 ×G2, considered with the product topology.

Proof. Let G = G1 ×G2. A base B for the product topology on G is given
by taking bases B1 and B2 for the topologies on G1 and G2, and defining B
to be the collection of products U1 × U2 with Ui ∈ Bi for i ∈ {1, 2}.

Now we describe the profinite topology on G. Clearly, the set S of
subgroups of the form H1 × H2, with H1 of finite index in G1 and H2 of
finite index in G2, is final among the set of all finite-index subgroups of G.
By Proposition 1.6, the collection B′ consisting of all translates of elements
of S is a basis for the profinite topology on G. It is now clear that B and
B′ are the same.

Lemma 1.9. Let G be a topological group and let H ⊂ G be an open
subgroup of finite index. Assume that the induced topology on H is the
profinite one. Then the topology on G is the profinite one.

Proof. A base B for the topology on G is given by letting B consist of all
possible translates of a base for the topology of H. If G′ has finite index in
G, then G′ ∩H has finite index in H. Conversely, clearly every finite-index
subgroup H ′ of H is of the form G′ ∩ H for G′ of finite index in G: one
can just take G′ = H ′. Subgroups of G of the form G′ ∩ H, with G′ of
finite index in G, are final among the set of all finite-index subgroups of G.
Hence, by Proposition 1.6, if B′ is defined as the union of all translates of
subgroups of the form G′ ∩ H of G, then B′ gives a base for the profinite
topology on G. But it is clear that B and B′ are the same.

Corollary 1.10. Let d be a non-negative integer, and let G be a topological
group containing Zdp, equipped with the p-adic topology, as an open subgroup
of finite index. Then G has the profinite topology.

Proof. By Lemmas 1.7(ii) and 1.8, we have that Zdp has the profinite topol-
ogy. Lemma 1.9 shows that the same is true for G.

1.3.2 The extension problem

Lemma 1.11. Let d be a non-negative integer and let G be Zdp. Let H ⊂
G be a subgroup of finite index. Then H is isomorphic to Zdp as a Zp-
submodule.
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Proof. We use the properties of G as a topological group. Since H is of
finite index, it contains pnZdp as an open subgroup for some n, and therefore
it is open in G. Hence H is also closed in G, which shows that it is actually
a Zp-submodule of G. Since H is finitely generated (since it is the kernel of
the map G → G/H between finitely generated modules over a Noetherian
ring) and torsion-free over the local ring Zp, it is a free Zp-module, i.e. it
is isomorphic to Zrp for some non-negative integer r. Since H contains an
isomorphic image of pnZdp as a finite-index subgroup, we must have r =
d.

Lemma 1.12. Let p be a prime, d a non-negative integer, and B a finite
abelian group. Let G = Zdp×B and let H ⊂ G be a subgroup of finite index.
Then the following statements are true.

(i) There exists a subgroup B′ ⊂ B such that H is isomorphic to Zdp×B′.
(ii) Suppose that p does not divide #B. Let π1 : G→ Zdp and π2 : G→ B

be the projections to the first and second factors. Then

H → π1(H)× π2(H)

h 7→ (π1(h), π2(h))

is an isomorphism.

Proof. First we prove (i). Let π1 : G → Zdp be the projection to the first
coordinate. Since H has finite index in G, the subgroup π1(H) of Zdp has
finite index. By Lemma 1.11, we have that π1(H) is isomorphic to the free
Zp-module Zdp, which implies the existence of a section σ : π1(H) → H of
the restricted map π1|H : H → π1(H). We define a map π′2 : H → B by
h 7→ h− σ(π1(h)) ∈ {0} ×B. We claim that

H → π1(H)× π′2(H)

h 7→ (π1(h), π′2(h))

is an isomorphism. Indeed, injectivity is clear, and the surjectivity follows
from the fact that π′2 sends an element of the form h1 + b, with h1 ∈
(σ ◦ π1)(H) and b ∈ {0} ×B, to b.

To establish (ii), we claim that if p does not divide #B, the map π′2
constructed above is the restriction of the projection π2 : G → B to H.
Since π2|H and π′2 coincide on {0} × B, the two maps differ by an element
of Hom(π1(H), B) ∼= Hom(Zdp, B), which is zero by the assumption on B,
so the claim follows. Hence π′2 = π2. Since the argument from the previous
paragraph showed that (π1, π

′
2) : H → π1(H) × π′2(H) is an isomorphism,

we are done.
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Lemma 1.13. Let 0 → A → B
g→ C → 0 be a short exact sequence of

abelian groups, and let A = A1×A2. If we set B1 = B/A2 and B2 = B/A1,
then for i equal to 1 or 2 we have short exact sequences 0 → Ai → Bi →
C → 0, and B sits inside the short exact sequence 0 → B → B1 × B2 →
C → 0, where B → B1 ×B2 is the diagonal map.

Proof. Dividing out 0→ A→ B → C → 0 by Ai we get,

0→ Ai → Bi → C → 0. (1.5)

Taking the sum over the exact sequences (1.5) for i ∈ {1, 2}, we get,

0→ A→ B1 ×B2 → C × C → 0,

with B sitting in the short exact sequence

0→ B → B1 ×B2 → C → 0

(b1, b2) 7→ g(b1)− g(b2)

This proves the lemma.

With the next proposition, we answer the question posed at the start
of this section. Note that, if B′ is a finite abelian group, and G = Zdp × B′
for some non-negative integer d, then B′ is uniquely determined by G up to
isomorphism, since we have B′ ∼= Gtors.

Proposition 1.14. Let A and C be finite abelian groups considered with the
discrete topology. Let d be a positive integer, let B be a topological abelian
group, and let

0→ Zdp × A→ B → C → 0

be a short exact sequence, with continuous maps and with the second map
an embedding. Then the following statements are true.

(i) We have B ∼= Zdp×B′ as topological groups, where B′ is a finite abelian
group carrying the discrete topology.

(ii) If A = {0}, then B′ is isomorphic to a subgroup of C.

(iii) If A = {0} and C ∼= Z/pZ, then B′ is isomorphic to {0} or to Z/pZ.

(iv) If p divides neither #A nor #C, then B′ fits inside a short exact
sequence 0→ A→ B′ → C → 0.
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Proof. We will show existence of a finite abelian group B′′ such that, as
a group, B can be embedded as a finite index subgroup of Zdp × B′′. By
Lemma 1.12, it then follows that B is isomorphic as a group to Zdp ×B′ for
some subgroup B′ of B′′. Then, since the topological groups B and Zdp×B′
both have Zdp as a finite-index open subgroup, and since they are isomorphic
as groups, by Lemma 1.10 they are isomorphic as topological groups. The
existence of B′′ thus proves (i).

By Lemma 1.13, there exist groups B1 and B2 such that B sits inside a
short exact sequence of abelian groups

0→ B → B1 ×B2 → C → 0 (1.6)

and such that there are further short exact sequences

0→ Zdp
i→ B1

π→ C → 0 (1.7)

and
0→ A→ B2

ρ→ C → 0. (1.8)

Since A and C are finite abelian groups and since B is abelian, we have
that B2 is finite abelian. Furthermore, we may embed B1 in Zdp × C by

f : B1 → Zdp × C
b 7→ (i−1(nb), π(b))

where n = #C. For the image of Zdp ⊂ B1 we have f(Zdp) = nZdp × {0}, so
f(B1) has finite index in Zdp × C. Together with (1.6), this shows that B
has finite index in Zdp×B2×C. We may thus take B′′ to be B2×C, which
proves (i).

If A = {0}, then in addition to (1.7),

0→ Zdp → B1
π→ C → 0

we have that (1.8) becomes

0→ 0→ C
id→ C → 0.

By Lemma 1.13, we have that B sits inside the exact sequence

0→ B → B1 × C → C → 0

where the map B1 × C → C is given by (b, c) 7→ π(b) − c by Lemma 1.13.
This map is split by the obvious section c 7→ (0, c); hence we have B ∼= B1,
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which by the previous paragraph is isomorphic to a subgroup of Zdp × C.
Part (ii) now follows from Lemma 1.12(i).

Assertion (iii) follows from (ii).
Now the proof of (iv). Since p does not divide #C, Lemma 1.12(ii) shows

that B1 is isomorphic to Zdp ×C, and that, moreover, this isomorphism can
be chosen in such a way that π corresponds to the projection Zdp × C → C
to the second factor. From (1.6), we see that B is obtained as the kernel of
the surjective map

Zdp × C ×B2 → C

that sends (x, c, b) to c − ρ(b) by Lemma 1.13. This map has the obvious
section c 7→ (0, c, 0); hence the kernel B is isomorphic to Zdp × B2. This
proves (iv).

Remark 1.15. By repeatedly applying Proposition 1.14, we see that if we
have a finite filtration

Zdp = Bn ⊂ Bn−1 ⊂ . . . ⊂ B1

of topological groups, in which all quotients are finite abelian groups, then
B1 is torsion-free if and only if it is topologically isomorphic to Zdp.

The following is a strengthening of Proposition 1.14 in the case d = 1,
which will be important for us.

Corollary 1.16. Suppose we have a short exact sequence

0→ pZp
i→ X → Z/pZ→ 0

of topological abelian groups where the second arrow is a topological embed-
ding. Then the following statements are true.

(i) If X is topologically isomorphic to Zp, then vp(i
−1(px)) = 1 for all

x ∈ X − i(pZp), where vp is the p-adic valuation.

(ii) If X is not topologically isomorphic to Zp, it is topologically isomorphic
to pZp × Z/pZ, and we have vp(i

−1(px)) > 1 for all x ∈ X − i(pZp).

Proof. If X is topologically isomorphic to Zp, the map i is given by multipli-
cation by some unit α ∈ Z∗p followed by the inclusion pZp ⊂ Zp. Assertion
(i) follows.

If X is not topologically isomorphic to Zp, then by Proposition 1.14(iii)
we must have X ∼= pZp×Z/pZ. But then if x = (y, c), we have vp(i

−1(px)) =
vp(py) > 1, proving (ii).
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Corollary 1.17. Suppose that we have an inclusion H ⊂ G of topological
groups, that

0→ H
i→ G→ Z/pZ→ 0

is an exact sequence with continuous maps, with i being the inclusion of H
in G and Z/pZ carrying the discrete topology, and that H is topologically
isomorphic to Z/pZ. If G is topologically isomorphic to Zp, then pG =
H, and any topological isomorphism φ : H

∼→ pZp extends to a topological

isomorphism φ̃ : G
∼→ Zp.

Proof. If G is isomorphic to Zp, then it follows from Corollary 1.16 that
pG = H. Furthermore, fixing topological isomorphisms φ : H

∼→ pZp and
φ′ : G

∼→ Zp, we get a commutative diagram

H
φ
//

��

pZp
a

��

G
φ′
// Zp

where the dotted map is defined as a = φ−1 ◦ i ◦ φ′, making the diagram
commute. Since a is continuous, there is α ∈ Z∗p such that for all x ∈ pZp
we have a(x) = αx ∈ Zp. Then φ̃ = α−1φ′ is the desired lift of φ.

1.4 Weierstrass curves with additive reduc-

tion

Let K be a finite extension of Qp. Let OK again be the ring of integers of
K, with maximal ideal mK and residue field k.

In this section, we gather some general properties of nice Weierstrass
curves over OK with additive reduction.

Lemma 1.18. Let E/OK be a Weierstrass curve with additive reduction.
Then E is OK-isomorphic to a Weierstrass curve of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where all ai lie in mK.

Proof. We construct an automorphism α ∈ PGL3(OK) that maps E to
a Weierstrass curve of the desired form. Consider a translation α1 ∈



1.4. Weierstrass curves with additive reduction 13

PGL3(OK) moving the singular point of the special fibre Ek to (0 : 0 : 1).
The image E1 = α1(E) is a Weierstrass curve with coefficients satisfying
a3, a4, a6 in mK . There exists a second automorphism α2 ∈ PGL3(OK), of
the form x′ = x, y′ = y + cx, such that in the special fibre of α2(E1) the
unique tangent at (0 : 0 : 1) is given by y′ = 0. The Weierstrass curve
E2 = α2(E1) now has all its coefficients a1, a2, a3, a4, a6 in mK . One may
thus take α = α2 ◦ α1.

Suppose that E/OK is a nice Weierstrass curve given by (1.1), and sup-
pose that the ai are contained in mK . In particular, E has additive reduction.
If we let F denote the formal group law of E , then the assumption on the
ai implies that F (u, v) converges to an element of OK for all u, v ∈ OK .
Hence F can be seen to induce a group structure on OK , extending the
group structure on Ê(mK). The same statement holds true when we replace
K by a finite field extension L.

Definition 1.19. Let E/OK be a nice Weierstrass curve given by (1.1),
and assume that the ai are contained in mK . For any finite field extension
K ⊂ L, we denote by Ê(OL) the topological group obtained by endowing
the space OL with the group structure induced by F .

The following proposition will be fundamental in determining the struc-
ture of E0(Qp) as a topological group for nice Weierstrass curves with addi-
tive reduction.

Proposition 1.20. Let E/OK be a nice Weierstrass curve given by (1.1),
and assume that the ai are contained in mK.

(i) The map Ψ: E0(K)→ Ê(OK) that sends (x, y) to −x/y is an isomor-
phism of topological groups.

(ii) If 6e(K/Qp) < p − 1, where e denotes the ramification degree, then
E0(K) is also topologically isomorphic to OK equipped with the usual
group structure.

Proof. Let π be a uniformizer for OK . Consider the field extension L =
K(ρ) with ρ6 = π. Then define the Weierstrass curve D over OL by

y2 + α1xy + α3y = x3 + α2x
2 + α4x

4x+ α6,

where αi = ai/ρ
i. There is a birational map φ : E ×OK OL 99K D, given by

φ(x, y) = (x/ρ2, y/ρ3). The birational map φ induces an isomorphism on
generic fibres, and hence a homeomorphism between E(L) and D(L). Using
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(1.2) and the fact that we have (x, y) ∈ E0(L) if and only if vL(x), vL(y)
are both not greater than zero, one sees that φ induces a bijection E0(L)

∼→
D1(L), that all maps (a priori just of sets) in the following diagram are
well-defined, and that the diagram commutes:

E1(K)

ψK
��

incl // E0(K)

Ψ
��

incl // E0(L)

ΨL
��

φ
// D1(L)

ψL
��

Ê(mK) incl // Ê(OK) incl // Ê(OL)
·ρ
// D̂(mL)

Here the map ΨL : E0(L)→ OL is defined by (x, y) 7→ −x/y, the rightmost
lower horizontal arrow is multiplication by ρ, and the maps labeled incl are
the obvious inclusions. Note that the horizontal and vertical outer maps are
all continuous. Since ψL, φ and multiplication by ρ are homeomorphisms
(for ψL one uses Proposition 1.4), so is ΨL. Hence Ψ must be a homeo-
morphism onto its image. By Galois theory, Ψ is surjective, so it is itself a
homeomorphism.

Let FD̂ be the formal group law of D. One calculates that

ρF (X, Y ) = FD̂(ρX, ρY ).

Hence all maps in the diagram are group homomorphisms. This proves the
first part of the proposition.

Now assume 6e(K/Qp) < p− 1, so that vL(p) = 6vK(p) = 6e(K/Qp) <
p− 1. Now [32, IV.6.4(b)] implies that E1(K) is topologically isomorphic to

mK , and D1(L) to mL. Since E has additive reduction, we have Ẽsm(k) ∼=
k+ ∼= (Z/pZ)f , where f = f(K/Qp) is the inertia degree of K/Qp and Ẽsm

is the smooth locus of the special fibre of E . Proposition 1.2 shows we have
a short exact sequence

0→ mK → E0(K)→ (Z/pZ)f → 0.

In the diagram above, the topological group E0(K) is mapped homomor-
phically into the torsion-free group D1(L), hence it is itself torsion-free. It
follows from Remark 1.15 that E0(K) is topologically isomorphic to OK .
This proves the second part.

The following corollary is worth noting, but will not be used in what
follows.
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Corollary 1.21. Let E/OK be a nice Weierstrass curve with additive re-
duction. If 6e(K/Qp) < p − 1, then E0(K) is topologically isomorphic to
OK.

Proof. The statement that E0(K) is topologically isomorphic to OK only
depends on the OK-isomorphism class of E . By Lemma 1.18, there exists a
Weierstrass curve E ′ with ai ∈ mK that is OK-isomorphic to E . Now apply
Proposition 1.20 to E ′.

1.5 Proof of the main theorem

In this section, we gather some general properties of nice Weierstrass curves
over Zp with additive reduction and finish the proof of Theorem 1.1.

Lemma 1.22. Let E/Zp be a nice Weierstrass curve with additive reduction.

Then there exists a topological isomorphism χ : Ê(pZp)
∼→ pZp that, for all

n ∈ Z≥1, identifies Ê(pnZp) with pnZp.

Proof. For p > 2, this is standard; the proof may be found in [32, IV.6.4(b)].
We now treat the case p = 2. By Lemma 1.18, we may assume that the
Weierstrass coefficients ai of E all lie in 2Z2. The multiplication by 2 on
Ê(2Z2) is given by the power series

[2](T ) = FÊ(T, T ) = 2T − a1T
2 − 2a2T

3 + (a1a2 − 7a3)T 4 − . . . , (1.9)

where FÊ is the formal group law of E . By [32, IV.3.2(a)], Ê(2Z2)/Ê(4Z2) is
cyclic of order 2. By [32, IV.6.4(b)], there exists a topological isomorphism

Ê(4Z2)
∼→ 4Z2. Hence there exists an extension

0→ 4Z2
i→ Ê(2Z2)→ Z/2Z→ 0.

From Proposition 1.14 we see that Ê(2Z2) is topologically isomorphic either
to 2Z2 or to 4Z2 × Z/2Z. Assume that the latter is the case, then there

is an element z of order 2 in Ê(2Z2) that is not contained in Ê(4Z2). For

such a z we have v2(z) = 1, where v2 : Ê(2Z2) → Z≥1 ∪ {∞} is the 2-

adic valuation on the underlying set 2Z2 of Ê(2Z2). Using that in the
duplication power series (1.9) we have ai ∈ 2Z2 for each i, it follows that
v2([2](z)) = 2, so [2](z) 6= 0. This is a contradiction, so there exists an

isomorphism χ : Ê(2Z2)
∼→ 2Z2 as topological groups. From this, and from

the fact that Ê(2nZ2)/Ê(2n+1Z2) ∼= Z/2Z for all n ∈ Z≥1 [32, IV.3.2(a)], we
see that χ necessarily respects the filtrations on either side.
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Corollary 1.23. Let E/Zp be a nice Weierstrass curve with additive reduc-
tion. Then there exists an isomorphism E1(Qp)

∼→ pZp which for n ∈ Z≥1

identifies En(Qp) with pnZp.

Proof. Such an isomorphism can be obtained by composing the isomorphism
χ from Lemma 1.22 with the isomorphism ψQp from Proposition 1.4.

1.5.1 The case p = 2

Proposition 1.24. Let E/Z2 be a nice Weierstrass curve with its coeffi-
cients ai in 2Z2. Then E0(Q2) is topologically isomorphic to Z2 if a1+a3 ≡ 0
(mod 4), and to 2Z2 × Z/2Z otherwise.

Proof. Proposition 1.2 shows that there is a short exact sequence

0→ E1(Q2)→ E0(Q2)→ Z/2Z→ 0.

By Lemma 1.22, we have E1(Q2) ∼= 2Z2, so Proposition 1.14 implies that
E0(Q2) is topologically isomorphic either to Z2 or to 2Z2 × Z/2Z.

Let [2](T ) ∈ OK [[T ]] be the formal duplication formula (1.9) on E . Let Ψ
be the map from Proposition 1.20. Since Ψ is an isomorphism of topological
groups, we have for all P ∈ E0(Q2):

Ψ(2P ) = [2](Ψ(P )). (1.10)

By Corollary 1.16, we have E0(Q2) ∼= Z2 if and only if for all P ∈ E0(Q2)−
E1(Q2) we have 2P ∈ E1(Q2) − E2(Q2), which by (1.10) is true if and only

if for all z ∈ Ê(Z2) − Ê(2Z2) we have v2([2](z)) = 1, where v2 : Ê(Z2) →
Z≥0 ∪ {∞} is the 2-adic valuation on the underlying set Z2 of Ê(Z2). This
condition may be checked using the duplication power series

[2](T ) = 2T − a1T
2 − 2a2T

3 + (a1a2 − 7a3)T 4 − . . . =
∞∑
i=1

biT
i.

In deciding whether v2([2](z)) = 1 for z ∈ Ê(Z2) − Ê(2Z2), we do not
need to consider those parts of terms whose coefficients have valuation ≥ 2.
The non-linear parts of each coefficient bi will contribute only terms with
valuation≥ 2, so may ignore these and keep only the linear parts. The terms
biz

i with i odd and greater than 1 we may discard altogether; by Lemma
1.3, all their coefficients have valuation ≥ 2. Finally, we may discard all
terms biz

i with i even and ≥ 6: a polynomial in Z[a1, . . . , a6] whose weight
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is odd and at least 5 does not contain a linear term (there being no a5), so
the terms involving z6, z8, z10, . . . will have valuation ≥ 2.

We thus get that, if z ∈ Ê(Z2)− Ê(2Z2),

v2([2](z)) = 1 ⇔ v2(2z − a1z
2 − 7a3z

4) = 1.

The last statement is true for all z ∈ Ê(Z2)− Ê(2Z2) if and only if

v2

(
z − a1

2
z2 − 7a3

2
z4

)
= 0⇔ a1 + 7a3 ≡ 0 mod 4⇔ a1 + a3 ≡ 0 mod 4

since z ≡ z2 ≡ z4 (mod 2). This proves the proposition.

1.5.2 The case p = 3

Proposition 1.25. Let E/Z3 be a nice Weierstrass curve with its coeffi-
cients ai in 3Z3. Then E0(Q3) is topologically isomorphic to Z3 if a2 6≡ 6
(mod 9), and to 3Z3 × Z/3Z otherwise.

Proof. We proceed as in the proof of Proposition 1.24, using the formal
triplication formula:

[3](T ) = 3T − 3a1T
2 + (a2

1 − 8a2)T 3 + (12a1a2 − 39a3)T 4 + . . . =
∞∑
i=1

biT
i.

(1.11)
We consider the usual exact sequence for E0(Q3):

0→ E1(Q3)→ E0(Q3)→ Z/3Z→ 0.

We see from E1(Q3) ∼= 3Z3 and Corollary 1.16 that E0(Q3) is topologically

isomorphic to 3Z3×Z/3Z if and only if for all elements z ∈ Ê(Z3)−Ê(3Z3),
[3](z) has valuation greater than 1. On the other hand, E0(Q3) is topo-
logically isomorphic to Z3 if for all such z, the valuation of [3](z) is 1.
Reasoning as in the proof of Proposition 1.24, we see that we may ignore
all terms whose degree is not 1 and not a multiple of 3, since these have
coefficients divisible by 3 and of positive weight. Also we may ignore the
terms of degree both equal to a multiple of 3 and greater than 3, since their
coefficients do not contain parts that are linear in a1, . . . , a6. Finally, we
may ignore the non-linear part of the term of degree 3. We see that for
z ∈ Ê(Z3)− Ê(3Z3), we have

v3([3](z)) = 1 ⇔ v3(3z − 8a2z
3) = 1.
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The last statement is true for all such z if and only if

v3

(
z − 8a2

3
z3

)
= 0⇔ 1− 8a2

3
6≡ 0 mod 3⇔ a2 6≡ 6 mod 9

since z ≡ z3 (mod 3). This proves the proposition.

1.5.3 The case p = 5

Proposition 1.26. Let E/Z5 be a nice Weierstrass curve with its coeffi-
cients ai in 5Z5. Then E0(Q5) is topologically isomorphic to Z5 if a4 6≡ 10
(mod 25), and to 5Z5 × Z/5Z otherwise.

Proof. For simplicity, we give the formal multiplication by 5 power series in
the case where a1, a2, a3 are zero:

[5](T ) = 5T − 1248a4T
5 + . . . =

∞∑
i=1

biT
i (1.12)

This formula suffices for our purposes, since the same arguments as in the
proofs of Propositions 1.24 and 1.25 show that the terms that are canceled
by setting a1 = a2 = a3 = 0 could have been ignored anyway.

We apply Corollary 1.16 to:

0→ 5Z5 → E0(Q5)→ Z/5Z→ 0.

In (1.12) we may ignore terms of degree not equal to 1 or 5, by the same
reasoning as in the proofs of Propositions 1.24 and 1.25. We see that for
z ∈ Ê(Z5)− Ê(5Z5) we have

v5([5](z)) = 1 ⇔ v5(5z − 1248a4z
5) = 1.

The last statement is true for all such z if and only if

v5

(
z − 1248a4

5
z5

)
= 0⇔ 1− 1248a4

5
6≡ 0 mod 5⇔ a4 6≡ 10 mod 25

since z ≡ z5 (mod 5). This proves the proposition.
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1.5.4 The case p = 7

Proposition 1.27. Let E/Z7 be a nice Weierstrass curve with its coeffi-
cients ai in 7Z7. Then E0(Q7) is topologically isomorphic to Z7 if a6 6≡ 14
(mod 49), and to 7Z7 × Z/7Z otherwise.

Proof. For simplicity, we give the formal multiplication by 7 power series
with a1, a2, a3 set to zero:

[7](T ) = 7T − 6720a4T
5 − 352944a6T

7 + . . . (1.13)

As before, the terms that have disappeared as a result could have been
ignored anyway.

We apply Corollary 1.16 to:

0→ 7Z7 → E0(Q7)→ Z/7Z→ 0,

In (1.13) we may ignore terms of degree not equal to 1 or 7, by the same
reasoning as in the proofs of Propositions 1.24 and 1.25. We see that for
z ∈ Ê(Z7)− Ê(7Z7) we have

v7([7](z)) = 1 ⇔ v7(7z − 352944a6z
7) = 1.

The last statement is true for all such z if and only if

v7

(
z − 352944a6

7
z7

)
= 0⇔ 1− 352944a6

7
6≡ 0 mod 7⇔ a6 6≡ 14 mod 49

since z ≡ z7 (mod 7). This proves the proposition.

1.5.5 The proof

We are now ready to derive Theorem 1.1 from our previous results. In fact,
we state a more general version of that theorem, since it is also valid for
non-minimal Weierstrass equations.

Theorem 1.28. Let E/Zp be a nice Weierstrass curve given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the ai are contained in pZp for each i. Then there is a topological
isomorphism between E0(Qp) and Zp, except in the following four cases:
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(i) p = 2 and a1 + a3 ≡ 2 (mod 4);

(ii) p = 3 and a2 ≡ 6 (mod 9);

(iii) p = 5 and a4 ≡ 10 (mod 25);

(iv) p = 7 and a6 ≡ 14 (mod 49).

Moreover, every isomorphism between E0(Qp) and Zp identifies En(Qp) with
pnZp for all n ∈ Z≥0. In each of the cases (i)-(iv), E0(Qp) is topologically
isomorphic to pZp × Z/pZ, where Z/pZ has the discrete topology.

Proof. The isomorphism type of E0(Qp) follows from applying part (ii) of
Proposition 1.20 if p > 7, or one of Propositions 1.24–1.27 if p ≤ 7.

We claim that, if E0(Qp) ∼= Zp, then the isomorphism can be chosen in
such a way that En(Qp) is identified with pnZp for all n ∈ Z≥0. For this,
we choose the topological isomorphism χ : E1(Qp)

∼→ pZp from Lemma 1.22.
By Corollary 1.17, the map χ extends to a topological isomorphism

χ̃ : E0(Qp)
∼→ Zp

and we have pE0(Qp) = E1(Qp). It follows from Lemma 1.22 that pnE0(Qp)
equals En(Qp); hence every group isomorphism E0(Qp)

∼→ Zp will identify
En(Qp) with pnZp. This concludes the proof.

Proof of Theorem 1.1. Theorem 1.1 follows by applying Theorem 1.28 to a
minimal Weierstrass equation of E

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the ai are contained in pZp for each i. Such an equation exists by
Lemma 1.18. �

1.6 Examples

In this section, we have collected some examples of elliptic curves over Qp

with additive reduction, such that their points of good reduction contains a
p-torsion point. All curves and torsion points in these examples are defined
over Q. The fact that they possess a p-torsion point of good reduction can
be verified using the appropriate result from the previous section.

Example 1.29. The elliptic curve

E2 : y2 − 2y = x3 − 2

has additive reduction at 2, and its 2-torsion point (1, 1) is of good reduction.
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Example 1.30. The elliptic curve

E3 : y2 = x3 − 3x2 + 3x

has additive reduction at 3, and its 3-torsion point (1, 1) is of good reduction.

Example 1.31. The elliptic curve

E5 : y2 − 5y = x3 + 20x2 − 15x

has additive reduction at 5, and its 5-torsion point (1,−1) is of good reduc-
tion.

Example 1.32. The elliptic curve

E7 : y2 + 7xy − 28y = x3 + 7x− 35

has additive reduction at 7, and its 7-torsion point (2, 1) is of good reduction.
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