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Introduction

This thesis is concerned with the arithmetic of K3 surfaces over number
fields. A K3 surface over a field k is a smooth, projective, and geometrically
integral surface over k such that the canonical divisor class of X is trivial
and the first cohomology of the structure sheaf of X vanishes. We will prove
various results about p-adic density of rational points on certain types of
K3 surfaces defined over Q. In particular, we prove that, for each prime
number p, there exist infinitely many K3 surfaces X over Q such that the
rational points on X are p-adically dense. A fuller summary of the results
in this thesis can be found at the end of this Introduction.

0.1 Diophantine geometry

Broadly speaking, this thesis is concerned with the topic of Diophantine
equations, which are polynomial equations with coefficients in a number field
k, for which one is only interested in solutions defined over the same number
field k. This thesis applies geometric methods to the study of solution sets
of Diophantine equations. In this context, one often speaks of Diophantine
geometry.

Given a number field k and a system of Diophantine equations

f1 = 0, . . . , fn = 0, (1)

where f1, . . . , fn are polynomials over k, one may consider the algebraic
variety X defined by the f1, . . . , fn. There are several ways to describe
the variety X. The classical viewpoint is, having chosen an algebraically
closed field extension F of k, for example the field C of complex numbers,
to identify X with the set of F -valued solutions to (1). A more modern
viewpoint is to view X as a scheme, which is a topological space equipped
with a sheaf of commutative rings, that admits an open covering by so-called
spectra of commutative rings. Both viewpoints are equally acceptable for
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the purposes of this thesis, with the exception of some parts of chapter
4 which use scheme theory in an essential way. In both viewpoints, the
variety X comes equipped with a topology, called the Zariski topology, in
which the closed subsets are exactly the subsets Z of X that can be defined
by imposing further polynomial equations

g1 = 0, . . . , gm = 0 (2)

on the points of Z.
We say that a variety is defined over a number field k if it arises from a

set of polynomial equations whose coefficients lie in k. We also speak more
simply of a variety over k. Note that the ground field k is often implicitly
assumed to be part of the data of the variety.

Still writing X for the variety associated to the equations (1), the set
of solutions over k to (1) is denoted by X(k). The elements of X(k) are
called the rational points on X. For every field extension K of k, the set of
solutions over K to (1) is denoted by X(K).

Within the theory of Diophantine equations, the terminology afforded
by the theory of algebraic varieties is considered to be so convenient that the
central focus is often placed on the variety rather than its defining equations.
Questions about Diophantine equations thus often take the following form:
“Given a certain variety X defined over a number field k, what can one say
about its set X(k) of rational points?” In line with this, the results of this
thesis are phrased in terms of varieties rather than their defining equations.

0.2 Topological aspects of rational points

0.2.1 Completions of a number field

It is possible to view X(k) in a topological way, even leaving aside the
Zariski topology for the moment. To this end, we will introduce the notion
of completions of a number field k with respect to an (equivalence class of)
absolute value(s) on k. Recall that an absolute value | · | on k is a function

| · | : k → R

satisfying:

(i) for all x ∈ k we have |x| ≥ 0;

(ii) for all x ∈ k we have |x| = 0 if and only if x = 0;
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(iii) for all x, y ∈ k we have |xy| = |x| |y|;
(iv) for all x, y ∈ k we have |x+ y| ≤ |x|+ |y|.

Note that property (iv) is known as the triangle inequality for | · |. An
absolute value | · | is called non-archimedean if in addition to (iv) it satisfies
the stronger property

(iv’) for all x, y ∈ k we have |x+ y| ≤ max(|x| , |y|).
This last property is known as the ultrametric inequality for | · |.

Two absolute values | · |1 and | · |2 of k are considered equivalent if there
exists a non-zero real number e such that for all x ∈ k we have |x|2 = |x|e1.
If v is a place of k, i.e. an equivalence class of absolute values on k, and
| · | is an element of v, then the completion of k for v, often denoted by kv,
is obtained, analogously to the construction of R from Q, by taking the
Cauchy sequences in k for the metric | · | and identifying Cauchy sequences
if their difference converges to 0. Note that this construction does not
depend on the choice of | · |. The set kv is a field, with the addition and
multiplication operations induced by the ones on k, and it is a metric space
with the metric given by | · |. If | · | is non-archimedean, then all elements
of v are, and the field kv is called a p-adic field.

By Ωk we denote the set of all places of k. By Ostrowski’s theorem, we
have that the non-archimedean absolute values on k all arise from the valua-
tions at the prime ideals of the ring of integers of k, whereas the archimedean
absolute values on k are all obtained by composing the embeddings of k into
the field C of complex numbers by the standard absolute value on C. In
particular, if we specialize to the case k = Q, then all places of Q are given
by either the standard absolue value on Q, or the p-adic valuation for some
prime number p

| · | : Q→ R
x 7→ p−vp(x)

0 7→ 0.

Here vp is the p-adic valuation on Q: for every pair a, b of non-zero integers,
we have that vp(a/b) is the number of prime factors p in a minus the number
of prime factors p in b.

0.2.2 The Hasse principle

The sets X(kv), which we recall are the solution sets over kv to (1), give a
very useful tool for studying X(k). Observe that X(k) embeds in X(kv), by
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considering a solution over k to (1) as a solution over kv to (1). It follows
that if, for some place v of k, we have that X(kv) is empty, then X(k) must
be empty too. This gives a very useful sufficient criterion for the emptiness
of X(k). Its usefulness derives from the fact that there is an algorithm that
checks in finite time whether or not there exists a place v of k such that
X(kv) is empty. (By Hensel’s lemma and the Lang–Weil estimates [17] one
reduces this last problem to deciding the non-emptiness of X(kv) for only
finitely many places v, which can be done in finite time by the main result
of [24].)

Conversely, one might ask: if for all places v of k the set X(kv) is non-
empty, may we then conclude that X(k) is also non-empty? As we shall
see, this implication does not hold for general X. If X is such that the
implication does hold, we say that X satisfies the Hasse principle; if it does
not hold, then it is said that X violates the Hasse principle. Note that
X violates the Hasse principle if and only if X(k) is empty, but X(kv) is
non-empty for all places v of k.

We have the following classical theorem.

Theorem 0.1 (Hasse, Minkowski). Let C be a smooth plane conic curve
over a number field k. Then the Hasse principle holds for C; that is, if
C(kv) is non-empty for all places v of k, then C(k) is non-empty.

There exist varieties X over number fields k (even over Q) that violate
the Hasse principle. We will see examples of this later in this introduction.

0.2.3 Density of rational points

This thesis deals with the topological aspects of the solution set X(k). For
instance, one may ask whether X(k) is dense in X for the Zariski topology.
This is sometimes abbreviated slightly by asking whether X(k) is Zariski-
dense in X.

Other topological aspects of X(k) can be made visible as follows. If v
is a place of k, then the set X(kv) inherits a topology from the one on kv.
By viewing X(k) as a subset of X(kv), we may then ask: is X(k) dense
in X(kv)? Similarly, for any non-empty set S of places of X(k), the set
X(k) embeds diagonally into the product

∏
v∈S X(kv), which we consider

as having the product topology, and one may ask if X(k) has dense image
under this embedding.

Let X be a variety defined over a number field k. The following are
some questions one may ask about the topological nature of X(k).
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(D1) Is X(k) Zariski-dense in X?

(D2) For a non-empty finite subset S ⊂ Ωk, is the closure of X(k) open in∏
v∈S X(kv)?

(D3) For a non-empty finite subset S ⊂ Ωk, is X(k) is dense in
∏

v∈S X(kv)?

(D4) Does there exist a finite subset T ⊂ Ωk such that X(k) dense in∏
v/∈T X(kv)?

(D5) Is X(k) dense in
∏

v∈Ωk
X(kv)?

If X satisfies property (D2) with respect to some finite set S of places
of v, one says that X has S-openness. If X satisfies property (D4) for some
finite set T of places of k, one says that X satisfies weak weak approximation.
If X satisfies property (D5), one says that X satisfies weak approximation.
(For this terminology, see [21].) We note that (D5) implies that (D4) holds
for every T ; (D4) for some T implies that (D3) holds for every S disjoint
from T ; (D3) for some S implies that (D2) holds for the same S; lastly,
(D2) for some S implies that (D1) holds.

0.3 Obstructions to rational points

Before, we mentioned that X(k) may be empty whereas X(kv) is non-empty
for all places v of k. An example of this is given by the famous Reichardt–
Lind curve, which is the curve T defined over Q that is given by the equation

2y2 = x4 − 17. (3)

We have that T (R) 6= ∅ as well as T (Qp) 6= ∅ for all prime numbers p. On
the other hand, it is an easy application of the law of quadratic reciprocity
to show that there are no solutions over Q to (3) (see [32, X.6.5(a)]), or
equivalently, that we have T (Q) = ∅. Hence, T provides an instance of a
violation of the Hasse principle.

In 1970, Yuri Manin defined a framework that explains the failure of the
Hasse principle in certain cases [19]. For this, we need to introduce some
additional concepts and set some notation. Assume that X is a smooth,
projective, and geometrically integral variety defined over a number field
k. Let Br(X) be the Brauer group of X, which is defined as the étale
cohomology group H2

ét(X,Gm). By functoriality, we have a map from Br(k),
the Brauer group of the field k, to Br(X). The image of Br(k) in Br(X)
is denoted by Br0(X). Furthermore, one defines Br1(X) as the subgroup
of Br(X) consisting of the elements that become trivial over some finite
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extension of k. The elements of Br1(X) are called algebraic Brauer classes.
Elements of Br(X) that are not algebraic are called transcendental. By the
fact that X is projective, we may write

X(Ak) =
∏
v∈Ωk

X(kv),

where Ak is the ring of adeles of k. We are now ready to describe Manin’s
theory. In [19], Manin defines a pairing

X(Ak)× Br(X)→ Q/Z.

This pairing is continuous in the first variable, for the discrete topology on
Q/Z, and it has the property that ((xv)v, α) maps to 0 if (xv)v ∈ X(Ak) is
the image of a rational point. The set of points (xv)v ∈ X(Ak) that pair
to 0 with every α ∈ Br(X) is customarily denoted by X(Ak)

Br. By these
facts, we thus have the crucial property

X(k) ⊂ X(Ak)
Br. (4)

The properties of Manin’s pairing mentioned above imply that X(Ak)
Br is

a closed subset of X(Ak). Hence, if X(k) denotes the closure of the image
of X(k) in X(Ak), we have the following strengthening of (4):

X(k) ⊂ X(Ak)
Br. (5)

For a smooth, projective and geometrically integral variety over k, it may
happen that X(Ak) is non-empty, but X(Ak)

Br is empty, and, by (4), so is
X(k). Then X violates the Hasse principle, and Manin’s pairing explains
why this is true. In this case, one says that there is a Brauer–Manin obstruc-
tion to the Hasse principle on X. Similarly, if X(Ak)

Br is a proper subset of
X(Ak), then (5) shows that X(k) is not dense in X(Ak), and one says that
there is a Brauer–Manin obstruction to weak approximation on X.

In view of the inclusion (5), we may ask the following further question
regarding the topological properties of X(k).

(D4’) Is X(k) dense in X(Ak)
Br?

If the answer to (D5) is positive for X, then so is the answer to (D4’). Now
assume that Br(X)/Br0(X) is finite, so that X(Ak)

Br is open in X(Ak).
Then if X(k) is non-empty, and if the answer to (D4’) is positive for X,
then the answer to (D4) is also positive for some T .
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0.4 Rational points on surfaces

By a surface X over a field k we will mean a smooth, projective, and geo-
metrically integral variety X over k that has dimension 2. In the sequel, we
again let k be a number field. The subject of this thesis mainly concerns
the Diophantine geometry of surfaces over number fields, or, as is some-
times said, the arithmetic of surfaces. We will give an overview of what is
known and conjectured about questions (D1)–(D5) for the case where X is
a surface over a number field k.

0.5 Geometrically rational surfaces

One says that a variety X over k is rational if X is birational to Pnk for some
integer n. We say that X is geometrically rational if the base-change Xk of X
to the algebraic closure of k is rational. Let X be a geometrically rational
surface over a number field k.

It is well-known that, since X is geometrically rational, the quotient
of Br(X) by Br0(X) is finite, hence a positive answer to (D4’) implies a
positive answer to (D4) for some T . Moreover, we have that X is either a
del Pezzo surface, which means that the anticanonical divisor −KX of X is
ample, or X is a conic bundle, which means that there exists a surjective
morphism π : X → C, where C is a curve of genus 0 defined over k, such
that the fibres of π are isomorphic to plane conics [16]. The degree dX of X
is defined as the self-intersection of KX , where KX is the canonical divisor
of X.

The following conjecture is a special case of a conjecture by Colliot–
Thélène [9, p. 319, Conjecture (d)]).

Conjecture 0.2. Let X be a geometrically rational surface over a number
field k. Then X(k) is dense in X(Ak)

Br.

We will discuss some of the known facts about Conjecture 0.2.
Suppose first that X is a del Pezzo surface. Then we have dX ≥ 1 by

ampleness of −KX . If dX ≥ 5, then we have by [20, Theorem 29.4] that X
satisfies both the Hasse principle and weak approximation. It follows that if
dX ≥ 5 and X(k) 6= ∅, then all questions (D1)–(D5) have positive answers.
If dX = 4, then X may violate the Hasse principle (see [1]). However, if X(k)
is non-empty, then X(k) is dense in X(Ak)

Br (see [27]). Hence if dX = 4
and X(k) 6= ∅, then the questions (D1)–(D4’) all have positive answers.
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If dX = 3, then the Hasse principle may fail (see [36]). Furthermore, if
dX = 3 and X(k) 6= ∅, then it is currently unknown in general whether
any of the questions (D2)–(D5) have positive answers; however, it is known
that if X(k) 6= ∅ then X(k) is Zariski-dense in X, so that question (D1)
does have a positive answer. Finally, if dX ≤ 2 and X(k) 6= ∅, we do not
currently know the answers to any of the questions (D1)-(D5) in general;
for the current state of the art in these cases, see [29] for dX = 2 and [30]
for dX = 1.

If the geometrically rational surface X is not a del Pezzo surface, then it
is shown in [16] that there exists a surjective morphism π : X → C, where C
is a curve of genus 0 defined over k, such that the fibres of π are isomorphic
to plane conics.

By Theorem 0.1, the Hasse principle holds for C, hence a finite com-
putation enables one to see whether C(k) is non-empty. If C(k) = ∅, then
we have X(k) = ∅. If C(k) 6= ∅, then C is isomorphic to P1

k. We assume
that the latter is indeed the case, so that we have a surjective morphism
π : X → P1

k whose fibres are isomorphic to plane conics. Then if the number
of non-smooth fibres of π is at most 3, then X satisfies both the Hasse prin-
ciple and weak approximation. Hence, if we are in this case and we have
X(k) 6= ∅, the answers to the questions (D1)-(D5) are all positive. If the
number of non-smooth fibres is 4 or 5, then we have that X(k) is dense in
X(Ak)

Br (this follows from the results of [6], [7], [8], and [28] if the number
of bad fibres is 4, and from [27] if the number of bad fibres is 5; see also the
introduction to [4]). Finally, if the number of bad fibres is arbitrary, but
every bad fibre is defined over Q, then a very recent result [4, Theorem 1.1]
says that X(k) is always non-empty, and that X(k) is dense in X(Ak)

Br.

0.6 K3 surfaces

Assume now that X is a K3 surface over a number field k, i.e., the class of
the canonical divisor KX in Pic(X) vanishes and we have H1(X,OX) = 0.
In the case of K3 surfaces, the theory is far less complete than in the case for
geometrically rational surfaces. We will describe some of the known results
on the arithmetic of K3 surfaces, in particular the ones concerning density
of rational points.
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0.6.1 Existence of rational points

It is known that, in general, the Hasse principle fails for K3 surfaces over
number fields. For example, Swinnerton-Dyer shows in [37] that the K3
surface over Q defined by

4x4 + 9y4 − 8z4 − 8w4 = 0

has points over Qp for every prime number p, as well as over R, but none
over Q.

0.6.2 Brauer group and density questions

By a remarkable result of Skorobogatov and Zarhin [34], one knows that
Br0(X) has finite index in Br(X), hence a positive answer to (D4’) implies
a positive answer to (D4) for some set of places T . In general, however, it
is unknown whether any of the questions (D1)–(D5) has a positive answer.
In fact, it is famously unknown whether X(k) 6= ∅ implies X(k) to be even
infinite!

0.6.3 Elliptic fibrations on K3 surfaces

It is known that K3 surfaces may admit fibrations into curves of genus 1.
In this introduction, we will abuse terminology, and call such a fibration an
elliptic fibration on X, even though the fibres are not elliptic curves since an
identity for the group law is not specified.

Potential density

The presence of elliptic fibrations on a K3 surface is an important aid in
proving density results. A seminal result by Bogomolov and Tschinkel [2,
Theorem 1.1] says that if X possesses an elliptic fibration, then the rational
points on X are potentially dense: there exists a finite field extension k′/k
such that X(k′) is Zariski-dense in X.

If the rank of the abelian group Pic(X), which is free and finitely gen-
erated, is at least 5, then [13, Proposition 11.1] says that there exists a
finite field extension k′′/k such that the base-change of X to k′′ possesses
an elliptic fibration. From this and the result by Bogomolov and Tschinkel,
it follows that if the rank of Pic(Xk) is at least 5, then the rational points
on X are potentially dense.
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Multiple elliptic fibrations

The result by Bogomolov and Tschinkel does not apply when one is solely
interested in density over the ground field. We therefore turn to the case
where X admits at least two elliptic fibrations. An example of a K3 surface
over Q admitting at least two elliptic fibrations is the diagonal quartic surface

Xa,b,c,d : ax4 + by4 + cz4 + dw4 = 0,

where a, b, c, d are rational numbers such that abcd ∈ Q∗2. It is a result by
Logan, McKinnon, and Van Luijk [18, Theorem 1.1] that if Xa,b,c,d contains
a rational point that lies outside the coordinate planes and any of the 48
lines on Xa,b,c,d, then the rational points on Xa,b,c,d lie dense in Xa,b,c,d for
the Zariski topology, as well as in Xa,b,c,d(R) for the real-analytic topology.

The above is an example of a more general phenomenon. Assuming
that X admits at least two elliptic fibrations, a result by Swinnerton-Dyer
[38] provides sufficient conditions for X(k) to be Zariski-dense in X. More
precisely, under the assumption that every fibre belonging to one fibration is
algebraically equivalent to none of the fibres belonging to the other fibration,
Swinnerton-Dyer’s result asserts the existence of an explicitly computable
closed subset Z ( X such that if X contains a rational point outside of Z,
then X(k) is Zariski dense in X.

0.6.4 Failure of weak approximation on K3 surfaces

We are still keeping the assumption that X is a K3 surface over a number
field k. It is currently unknown whether or not it is true in general that X(k)
is dense in X(Ak)

Br. However, it is known that we may have X(k) 6= X(Ak),
even if X(k) is non-empty. We give some examples of this. In [37, pp. 534–
535], Swinnerton-Dyer shows that if X is the K3 surface over Q given by

7x4 + 8y4 − 9z4 − 14w4 = 0,

then X(Q) does not lie dense in X(Q3). In [41], Wittenberg shows that if
X is the K3 surface over Q that is the minimal proper regular model of the
elliptic surface

y2 = x(x− 3(t− 1)3(t+ 3))(x− 3(t+ 1)3(t− 3))

over the projective line over Q with coordinate t, then X(Q) is not dense
in X(Q2). In his PhD thesis [25], Preu shows that if X over Q is given by

x4 + 3y4 − 4z4 − 9w4 = 0,
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thenX(Q) is not dense inX(Q3). Finally, in [14], Hassett, Várilly-Alvarado,
and Varilly construct a K3 surface with Picard rank equal to 1, for which
weak approximation fails. In the last three cases, the failure of weak ap-
proximation is explained by a transcendental Brauer class.

0.7 An open question about K3 surfaces

In [34, p. 484], Skorobogatov and Zarhin ask the following question.

Question 0.3. Given a K3 surface X over a number field k, is X(k) dense
in X(Ak)

Br?

Question 0.3 thus asks whether the answer to question (D4’) is positive
for every K3 surface X. In other words: does the Brauer–Manin obstruction
explain the failure of the Hasse principle or weak approximation for all K3
surfaces X? It is this question that has guided the research of this thesis.
We have restricted to certain classes of K3 surfaces, and for none of these we
have been able to give a full answer to Question 0.3. On the other hand, we
believe that the results do suggest that the answer to Question 0.3 should
be positive for at least certain K3 surfaces.

0.8 Contents of this thesis

We briefly describe the contents of this thesis.
In chapter 1, we answer the following question: if p is a prime, and E is

an elliptic curve over Qp that has additive reduction, what are the possible
isomorphism types of E(Qp) as a topological group? Let E0(Qp) ⊂ E(Qp)
be the subgroup of points of good reduction. We will give an easy criterion
to determine the isomorphism type of E0(Qp) in terms of the coefficients
of a Weierstrass equation for E. In particular, we show that E0(Qp) is
topologically isomorphic to either Zp or Zp × Z/pZ as topological groups,
where Zp carries the p-adic topology, and Z/pZ carries the discrete topology.
If p > 7, then we find that E0(Qp) is always topologically isomorphic to Zp,
and E(Qp) is topologically isomorphic to the product of Zp and a discrete
finite group of order at most 4.

In chapter 2, we review, and slightly improve upon, a result by Sir Peter
Swinnerton-Dyer [38]. This result concerns the 2-adic density of rational
points on certain explicitly given diagonal quartic surfaces over Q. We will
mainly follow the proof of Swinnerton-Dyer, which employs the presence
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of multiple elliptic fibrations. The argument also builds on the results of
chapter 1 to determine the structure of the groups of 2-adic points on the
fibres that have additive reduction. The work by Swinnerton-Dyer repre-
sents the first known result concerning p-adic density of rational points on
a K3 surface for any prime number p.

In chapter 3, we move beyond the work of Swinnerton-Dyer, and con-
struct, for each prime number p, infinitely many pairwise non-isomorphic K3
surfaces over Q whose rational points are p-adically dense. All K3 surfaces
constructed in this chapter will be Kummer surfaces. We will give criteria,
in terms of an elliptic curve E and a set of primes S, for the density of the
rational points on the Kummer surface X of E×E in the topological space∏

p∈S X(Qp). We construct a K3 surface X over Q whose rational points
lie dense in the space

∏
p∈S X(Qp), where S is a set of 331 primes. We con-

struct a K3 surface over Q whose rational points are p-adically dense for all
p with p > 7 and p ≡ 3 (mod 4). Finally, we give a simple not-too-strong
condition, in terms of an elliptic curve E over Q, for the p-adic density of
the rational points on the Kummer surface of E × E for infinitely many p.

In chapter 4, we collect more conditions on an elliptic curve E and a
prime number p that imply that the rational points on the Kummer surface
of E × E are p-adically dense. We use these additional criteria to perform
a computer experiment. A significant result of this experiment is that, for
all elliptic curves E over Q given by y2 = x3 + ax + b, with a, b ∈ Z such
that −5 ≤ a ≤ 5 with a 6= 0, and 0 < b ≤ 5, if X is the Kummer surface
of E × E, then X(Q) is dense in X(Qp) for all prime numbers p such that
109 < p < 2000 and p is of good reduction for E.

In chapter 5, we treat a result of a different nature. At the AIM workshop
“Cohomological Methods in Abelian Varieties”, held in Palo Alto from 26–
30 March 2012, a group of eight people, namely Lisa Berger, Chris Hall,
Jennifer Park, Karl Rubin, Shahef Sharif, Alice Silverberg, Doug Ulmer,
and the author of this thesis, worked on the task of extending the result
[39, Theorem 12.1] to curves of higher genus. In this thesis, we will prove
the following result, which is only one among many results obtained by
our group. We let K and Kd be as above, we let C be the curve yr =
xr−1(x+ 1)(x+ t) over K for an odd prime r, and we let J be the Jacobian
of C. Then the rank of the abelian group J(Kd) is unbounded, more precise,
it is at least d − 2 for infinitely many values of d. Moreover, for the d for
which it is shown that the rank of J(Kd) is at least d−2, explicit generators
of a rank d− 2 subgroup of J(Kd) are given.



Chapter 1

Elliptic curves with additive
reduction over p-adic fields

1.1 Introduction

In this chapter, we fix a prime p. If E/Qp is an elliptic curve with additive
reduction, and we choose a minimal Weierstrass equation over Zp for it:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Zp for each i,

then we denote by E0(Qp) ⊂ E(Qp) the open subgroup of points that re-
duce to a non-singular point of the reduced curve. As is well-known, this
construction does not depend on the choice of minimal Weierstrass equation.

The purpose of this chapter is to investigate the structure of E0(Qp) as
a topological group. We will prove the following theorem. It is slightly less
general than the main result of this chapter (Theorem 1.28), but it has the
advantage that its statement is more elementary.

Theorem 1.1. Let E/Qp be an elliptic curve with additive reduction, such
that it can be given by a minimal Weierstrass equation over Zp:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the ai are contained in pZp for each i. Then the group E0(Qp) is
topologically isomorphic to Zp, except in the following four cases:

(i) p = 2 and a1 + a3 ≡ 2 (mod 4);

(ii) p = 3 and a2 ≡ 6 (mod 9);

(iii) p = 5 and a4 ≡ 10 (mod 25);
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(iv) p = 7 and a6 ≡ 14 (mod 49).

In each of the cases (i)-(iv), E0(Qp) is topologically isomorphic to pZp ×
Z/pZ, where Z/pZ has the discrete topology.

The proof of Theorem 1.1 will be given in section 1.5.5. The case p > 7
of Theorem 1.1 was also mentioned in [38].

We will say a few words about the idea of the proof. It is a standard fact
from the theory of elliptic curves over local fields [32, VII.6.3] that E0(Qp)
admits a canonical filtration

E0(Qp) ⊃ E1(Qp) ⊃ E2(Qp) ⊃ E3(Qp) ⊃ . . . ,

where for each i ≥ 1 the quotient Ei(Qp)/Ei+1(Qp) is isomorphic to Z/pZ.
The quotient E0(Qp)/E1(Qp) is also isomorphic to Z/pZ by the fact that
E has additive reduction. One has a natural isomorphism of topological
groups j : E2(Qp)

∼→ p2Zp given by the theory of formal groups. If p > 2,
the same theory even gives a natural isomorphism j′ : E1(Qp)

∼→ pZp [32,
IV.6.4(b)]. These isomorphisms identify En(Qp) with pnZp for all n ≥ 2.
The idea of the proof of theorem 1.1 is to start from j or j′ and, by extending
its domain, to build up an isomorphism between E0(Qp) and either Zp or
pZp × Z/pZ.

Rather than elliptic curves over Qp with additive reduction, we consider
the more general case of Weierstrass curves over Zp whose generic fibre is
smooth and whose special fibre is a cuspidal cubic curve. This allows more
general results. Theorem 1.1 is derived as a special case.

In Section 1.6, we give examples for each prime 2 ≤ p ≤ 7 of an elliptic
curve E/Q with additive reduction at p such that E0(Qp) contains a p-
torsion point defined over Q.

1.2 Preliminaries on Weierstrass curves

All proofs of facts recalled in this section can be found in [32, Ch. IV, VII].
Let K be a finite field extension of Qp for some prime p, and let vK : K →

Z ∪ {∞} be its normalized valuation. Let OK be the ring of integers, mK

its maximal ideal and k its residue field. By a Weierstrass curve over OK we
mean a projective curve E ⊂ P2

OK defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.1)
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If moreover the generic fibre EK of E is an elliptic curve overK with (0 : 1 : 0)
as the origin, then we call E a nice Weierstrass curve. The coefficients ai are
uniquely determined by E . The discriminant of E , denoted ∆E , is defined as
in [32, III.1]. The curve E is said to be minimal if vK(∆E) is minimal among
vK(∆E ′), where E ′ ranges over the Weierstrass curves such that E ′K ∼= EK .

We will say that a Weierstrass curve E/OK has good reduction when
the special fibre Ek is smooth, multiplicative reduction when Ek is nodal (i.e.
there are two distinct tangent directions to the singular point), and additive
reduction when Ek is cuspidal (i.e. one tangent direction to the singular
point). A non-minimal Weierstrass curve has additive reduction. The re-
duction type of an elliptic curve E over K is defined to be the reduction type
of a minimal Weierstrass model of E over OK , which is a minimal Weierstrass
curve E/OK such that EK ∼= E. By the fact that the minimal Weierstrass
model of E is unique up to OK-isomorphism, this is well-defined.

We have E(K) = E(K) = E(OK) since E is projective. Therefore,
we have a reduction map E(K) → E(k) given by restricting an element of
E(OK) to the special fibre. By E0(K) we denote the subgroup E0(K) ⊂ E(K)
of points reducing to a non-singular point of the special fibre Ek. We define
the subgroup E1(K) ⊂ E0(K) as the kernel of reduction, i.e. the points
that map to the identity of E(k) under the reduction map. A more explicit
definition of E1(K) is

E1(K) = {(x, y) ∈ E(K) : vK(x) ≤ −2, vK(y) ≤ −3} ∪ {0}. (1.2)

More generally, one defines subgroups En(K) ⊂ E0(K) for n ≥ 1 as follows:

En(K) = {(x, y) ∈ E(K) : vK(x) ≤ −2n, vK(y) ≤ −3n} ∪ {0}.

We thus have an infinite filtration on the subgroup E1(K):

E1(K) ⊃ E2(K) ⊃ E3(K) ⊃ · · · (1.3)

For an elliptic curve E/K and an integer n ≥ 0, we define En(K) to be the
subgroups of E(K) corresponding to En(K), where E is a minimal Weier-
strass model of E over OK . The En(K) are well-defined, again by the fact
that the minimal Weierstrass model of E is unique up to OK-isomorphism.

Proposition 1.2. For a nice Weierstrass curve E over Zp, there is an exact
sequence

0→ E1(K)→ E0(K)→ Ẽsm(k)→ 0,

where Ẽsm is the complement of the singular points in the special fibre Ẽ.
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Proof. This comes down to Hensel’s lemma. See [32, VII.2.1].

For a nice Weierstrass curve E over OK , we can consider its formal group
Ê [32, IV.1–2]. This is a one-dimensional formal group over OK . Giving the
data of this formal group is the same as giving a power series F = FÊ in
OK [[X, Y ]], called the formal group law. It satisfies

F (X, Y ) = X + Y + (terms of degree ≥ 2)

and
F (F (X, Y ), Z)) = F (X,F (Y, Z)).

For E as in (1.1), the first few terms of F are given by

F (X, Y ) = X + Y−
a1XY − a2(X2Y +XY 2) − 2a3(X3Y +XY 3) + (a1a2 − 3a3)X2Y 2−
(2a1a3 + 2a4)(X4Y +XY 4)− (a1a3 − a2

2 + 4a4)(X3Y 2 +X2Y 3) + . . .

Treating the Weierstrass coefficients ai as unknowns, we may consider F as
an element of Z[a1, a2, a3, a4, a6][[X, Y ]] called the generic formal group law.
If we make Z[a1, a2, a3, a4, a6] into a weighted ring with weight function wt,
such that wt(ai) = i for each i, then the coefficients of F in degree n are
homogeneous of weight n−1 [32, IV.1.1]. For each n ∈ Z≥2, we define power
series [n] in OK [[T ]] by [2](T ) = F (T, T ) and [n](T ) = F ([n− 1](T ), T ) for
n ≥ 3. Here also, we may consider each [n] either as a power series inOK [[T ]]
or as a power series in Z[a1, a2, a3, a4, a6][[T ]] called the generic multiplication
by n law.

Lemma 1.3. Let [p] =
∑

n bnT
n ∈ Z[a1, a2, a3, a4, a6][[T ]] be the generic

formal multiplication by p law. Then:

(i) p | bn for all n not divisible by p;

(ii) wt(bn) = n − 1, considering Z[a1, a2, a3, a4, a6] as a weighted ring as
above.

Proof. Part (i) is proved in [32, IV.4.4]. Part (ii) follows from [32, IV.1.1]
or what was said above.

The series F (u, v) converges to an element of mK for all u, v ∈ mK . To

E one associates the group Ê(mK), the mK-valued points of Ê , which as a
set is just mK , and whose group operation + is given by u+ v = F (u, v) for

all u, v ∈ Ê(mK). The identity element of Ê(mK) is 0 ∈ mK . If n ≥ 1 is an
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integer, then by Ê(mn
K) we denote the subset of Ê(mK) corresponding to the

subset mn
K ⊂ mK , where mn

K is the nth power of the ideal mK of OK . The

groups Ê(mn
K) are subgroups of Ê(mK), and we have an infinite filtration of

Ê(mK):

Ê(mK) ⊃ Ê(m2
K) ⊃ Ê(m3

K) ⊃ · · · (1.4)

Proposition 1.4. The map

ψK : E1(K)
∼→ Ê(mK)

(x, y) 7→ −x/y
0 7→ 0

is an isomorphism of topological groups. Moreover, ψK respects the filtra-
tions (1.3) and (1.4), i.e. it identifies the subgroups En(K) defined above

with Ê(mn
K).

Proof. See [32, VII.2.2].

It follows from the proof given in [32, VII.2.2] that there exists a power
series w ∈ OK [[T ]], with the first few terms given by

w(T ) = T 3 + a1T
4 + (a2

1 + a2)T 5 + (a3
1 + 2a1a2 + a3)T 6 + . . . ,

such that the inverse to ψK is given by z 7→ (z/w(z),−1/w(z)). Given a
finite field extension K ⊂ L, we have an obvious commutative diagram

E1(K)
ψK //

incl

��

Ê(mK)

incl
��

E1(L)
ψL // ÊOL(mL)

Here ÊOL(mL) is the set of mL-valued points of the formal group of EOL , the
base-change of E to Spec(OL).

1.3 Extensions of topological abelian groups

In this section, we investigate the following question. Suppose that d is
a non-negative integer, that A and C are finite abelian groups considered
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with the discrete topology, and that B is a topological abelian group sitting
in a short exact sequence

0→ Zdp × A→ B → C → 0

where the maps are continuous, and with the second map an embedding; de-
termine which isomorphism types of topological abelian groups are possible
for B. A partial answer, sufficient for the needs of this and later chapters,
is given in Proposition 1.14.

1.3.1 The profinite topology

Definition 1.5. Let G be any group. The profinite topology on G is the
coarsest topology such that, for all subgroups H ⊂ G of finite index, the
quotient map G→ G/H is continuous.

Proposition 1.6. Let G be a group. A base B for the profinite topology on
G is obtained by letting B be the collection of all translates of finite index
subgroups of G. Alternatively, a base B for the profinite topology on G is
given by taking a set {Hi}i∈I of finite-index subgroups of G that is final
among the set of all finite-index subgroups when ordered by inclusion, and
letting B be the collection of the translates of each Hi.

Proof. The first assertion is clear from the definition. The second one follows
since we can write every subgroup H of G as a union of translates of an
element Hi of the final set of subgroups {Hi}i∈I of G.

Lemma 1.7. Let G = Zp considered with the p-adic topology.

(i) The open subgroups of G are the subgroups pkZp for k ∈ Z≥0.

(ii) The p-adic topology and the profinite topology on G are the same.

Proof. Let H ⊂ Zp be an open subgroup of G. Since G is compact, it is
of finite index; let the index of H be n. We write n = mpk with m not
divisible by p. Then we have pkZp = nZp ⊂ H, so H contains pkZp. The
image of H in Zp/pkZp = Z/pkZ must have index n as well: therefore we
have n = pk and H = pkZp. Conversely, it is clear that the subgroups pkZp
of G are open. This proves (i).

The proof of (i) shows that any finite index subgroup of G is of the form
pkZp, and therefore open. Hence a base for the profinite topology on G
is given by the pkZp and their translates. The same is true for the p-adic
topology.
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Lemma 1.8. If G1 and G2 are topological groups such that their topologies
coincide with the profinite topologies, then the same is true for the topological
group G1 ×G2, considered with the product topology.

Proof. Let G = G1 ×G2. A base B for the product topology on G is given
by taking bases B1 and B2 for the topologies on G1 and G2, and defining B
to be the collection of products U1 × U2 with Ui ∈ Bi for i ∈ {1, 2}.

Now we describe the profinite topology on G. Clearly, the set S of
subgroups of the form H1 × H2, with H1 of finite index in G1 and H2 of
finite index in G2, is final among the set of all finite-index subgroups of G.
By Proposition 1.6, the collection B′ consisting of all translates of elements
of S is a basis for the profinite topology on G. It is now clear that B and
B′ are the same.

Lemma 1.9. Let G be a topological group and let H ⊂ G be an open
subgroup of finite index. Assume that the induced topology on H is the
profinite one. Then the topology on G is the profinite one.

Proof. A base B for the topology on G is given by letting B consist of all
possible translates of a base for the topology of H. If G′ has finite index in
G, then G′ ∩H has finite index in H. Conversely, clearly every finite-index
subgroup H ′ of H is of the form G′ ∩ H for G′ of finite index in G: one
can just take G′ = H ′. Subgroups of G of the form G′ ∩ H, with G′ of
finite index in G, are final among the set of all finite-index subgroups of G.
Hence, by Proposition 1.6, if B′ is defined as the union of all translates of
subgroups of the form G′ ∩ H of G, then B′ gives a base for the profinite
topology on G. But it is clear that B and B′ are the same.

Corollary 1.10. Let d be a non-negative integer, and let G be a topological
group containing Zdp, equipped with the p-adic topology, as an open subgroup
of finite index. Then G has the profinite topology.

Proof. By Lemmas 1.7(ii) and 1.8, we have that Zdp has the profinite topol-
ogy. Lemma 1.9 shows that the same is true for G.

1.3.2 The extension problem

Lemma 1.11. Let d be a non-negative integer and let G be Zdp. Let H ⊂
G be a subgroup of finite index. Then H is isomorphic to Zdp as a Zp-
submodule.
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Proof. We use the properties of G as a topological group. Since H is of
finite index, it contains pnZdp as an open subgroup for some n, and therefore
it is open in G. Hence H is also closed in G, which shows that it is actually
a Zp-submodule of G. Since H is finitely generated (since it is the kernel of
the map G → G/H between finitely generated modules over a Noetherian
ring) and torsion-free over the local ring Zp, it is a free Zp-module, i.e. it
is isomorphic to Zrp for some non-negative integer r. Since H contains an
isomorphic image of pnZdp as a finite-index subgroup, we must have r =
d.

Lemma 1.12. Let p be a prime, d a non-negative integer, and B a finite
abelian group. Let G = Zdp×B and let H ⊂ G be a subgroup of finite index.
Then the following statements are true.

(i) There exists a subgroup B′ ⊂ B such that H is isomorphic to Zdp×B′.
(ii) Suppose that p does not divide #B. Let π1 : G→ Zdp and π2 : G→ B

be the projections to the first and second factors. Then

H → π1(H)× π2(H)

h 7→ (π1(h), π2(h))

is an isomorphism.

Proof. First we prove (i). Let π1 : G → Zdp be the projection to the first
coordinate. Since H has finite index in G, the subgroup π1(H) of Zdp has
finite index. By Lemma 1.11, we have that π1(H) is isomorphic to the free
Zp-module Zdp, which implies the existence of a section σ : π1(H) → H of
the restricted map π1|H : H → π1(H). We define a map π′2 : H → B by
h 7→ h− σ(π1(h)) ∈ {0} ×B. We claim that

H → π1(H)× π′2(H)

h 7→ (π1(h), π′2(h))

is an isomorphism. Indeed, injectivity is clear, and the surjectivity follows
from the fact that π′2 sends an element of the form h1 + b, with h1 ∈
(σ ◦ π1)(H) and b ∈ {0} ×B, to b.

To establish (ii), we claim that if p does not divide #B, the map π′2
constructed above is the restriction of the projection π2 : G → B to H.
Since π2|H and π′2 coincide on {0} × B, the two maps differ by an element
of Hom(π1(H), B) ∼= Hom(Zdp, B), which is zero by the assumption on B,
so the claim follows. Hence π′2 = π2. Since the argument from the previous
paragraph showed that (π1, π

′
2) : H → π1(H) × π′2(H) is an isomorphism,

we are done.
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Lemma 1.13. Let 0 → A → B
g→ C → 0 be a short exact sequence of

abelian groups, and let A = A1×A2. If we set B1 = B/A2 and B2 = B/A1,
then for i equal to 1 or 2 we have short exact sequences 0 → Ai → Bi →
C → 0, and B sits inside the short exact sequence 0 → B → B1 × B2 →
C → 0, where B → B1 ×B2 is the diagonal map.

Proof. Dividing out 0→ A→ B → C → 0 by Ai we get,

0→ Ai → Bi → C → 0. (1.5)

Taking the sum over the exact sequences (1.5) for i ∈ {1, 2}, we get,

0→ A→ B1 ×B2 → C × C → 0,

with B sitting in the short exact sequence

0→ B → B1 ×B2 → C → 0

(b1, b2) 7→ g(b1)− g(b2)

This proves the lemma.

With the next proposition, we answer the question posed at the start
of this section. Note that, if B′ is a finite abelian group, and G = Zdp × B′
for some non-negative integer d, then B′ is uniquely determined by G up to
isomorphism, since we have B′ ∼= Gtors.

Proposition 1.14. Let A and C be finite abelian groups considered with the
discrete topology. Let d be a positive integer, let B be a topological abelian
group, and let

0→ Zdp × A→ B → C → 0

be a short exact sequence, with continuous maps and with the second map
an embedding. Then the following statements are true.

(i) We have B ∼= Zdp×B′ as topological groups, where B′ is a finite abelian
group carrying the discrete topology.

(ii) If A = {0}, then B′ is isomorphic to a subgroup of C.

(iii) If A = {0} and C ∼= Z/pZ, then B′ is isomorphic to {0} or to Z/pZ.

(iv) If p divides neither #A nor #C, then B′ fits inside a short exact
sequence 0→ A→ B′ → C → 0.
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Proof. We will show existence of a finite abelian group B′′ such that, as
a group, B can be embedded as a finite index subgroup of Zdp × B′′. By
Lemma 1.12, it then follows that B is isomorphic as a group to Zdp ×B′ for
some subgroup B′ of B′′. Then, since the topological groups B and Zdp×B′
both have Zdp as a finite-index open subgroup, and since they are isomorphic
as groups, by Lemma 1.10 they are isomorphic as topological groups. The
existence of B′′ thus proves (i).

By Lemma 1.13, there exist groups B1 and B2 such that B sits inside a
short exact sequence of abelian groups

0→ B → B1 ×B2 → C → 0 (1.6)

and such that there are further short exact sequences

0→ Zdp
i→ B1

π→ C → 0 (1.7)

and
0→ A→ B2

ρ→ C → 0. (1.8)

Since A and C are finite abelian groups and since B is abelian, we have
that B2 is finite abelian. Furthermore, we may embed B1 in Zdp × C by

f : B1 → Zdp × C
b 7→ (i−1(nb), π(b))

where n = #C. For the image of Zdp ⊂ B1 we have f(Zdp) = nZdp × {0}, so
f(B1) has finite index in Zdp × C. Together with (1.6), this shows that B
has finite index in Zdp×B2×C. We may thus take B′′ to be B2×C, which
proves (i).

If A = {0}, then in addition to (1.7),

0→ Zdp → B1
π→ C → 0

we have that (1.8) becomes

0→ 0→ C
id→ C → 0.

By Lemma 1.13, we have that B sits inside the exact sequence

0→ B → B1 × C → C → 0

where the map B1 × C → C is given by (b, c) 7→ π(b) − c by Lemma 1.13.
This map is split by the obvious section c 7→ (0, c); hence we have B ∼= B1,
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which by the previous paragraph is isomorphic to a subgroup of Zdp × C.
Part (ii) now follows from Lemma 1.12(i).

Assertion (iii) follows from (ii).
Now the proof of (iv). Since p does not divide #C, Lemma 1.12(ii) shows

that B1 is isomorphic to Zdp ×C, and that, moreover, this isomorphism can
be chosen in such a way that π corresponds to the projection Zdp × C → C
to the second factor. From (1.6), we see that B is obtained as the kernel of
the surjective map

Zdp × C ×B2 → C

that sends (x, c, b) to c − ρ(b) by Lemma 1.13. This map has the obvious
section c 7→ (0, c, 0); hence the kernel B is isomorphic to Zdp × B2. This
proves (iv).

Remark 1.15. By repeatedly applying Proposition 1.14, we see that if we
have a finite filtration

Zdp = Bn ⊂ Bn−1 ⊂ . . . ⊂ B1

of topological groups, in which all quotients are finite abelian groups, then
B1 is torsion-free if and only if it is topologically isomorphic to Zdp.

The following is a strengthening of Proposition 1.14 in the case d = 1,
which will be important for us.

Corollary 1.16. Suppose we have a short exact sequence

0→ pZp
i→ X → Z/pZ→ 0

of topological abelian groups where the second arrow is a topological embed-
ding. Then the following statements are true.

(i) If X is topologically isomorphic to Zp, then vp(i
−1(px)) = 1 for all

x ∈ X − i(pZp), where vp is the p-adic valuation.

(ii) If X is not topologically isomorphic to Zp, it is topologically isomorphic
to pZp × Z/pZ, and we have vp(i

−1(px)) > 1 for all x ∈ X − i(pZp).

Proof. If X is topologically isomorphic to Zp, the map i is given by multipli-
cation by some unit α ∈ Z∗p followed by the inclusion pZp ⊂ Zp. Assertion
(i) follows.

If X is not topologically isomorphic to Zp, then by Proposition 1.14(iii)
we must have X ∼= pZp×Z/pZ. But then if x = (y, c), we have vp(i

−1(px)) =
vp(py) > 1, proving (ii).
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Corollary 1.17. Suppose that we have an inclusion H ⊂ G of topological
groups, that

0→ H
i→ G→ Z/pZ→ 0

is an exact sequence with continuous maps, with i being the inclusion of H
in G and Z/pZ carrying the discrete topology, and that H is topologically
isomorphic to Z/pZ. If G is topologically isomorphic to Zp, then pG =
H, and any topological isomorphism φ : H

∼→ pZp extends to a topological

isomorphism φ̃ : G
∼→ Zp.

Proof. If G is isomorphic to Zp, then it follows from Corollary 1.16 that
pG = H. Furthermore, fixing topological isomorphisms φ : H

∼→ pZp and
φ′ : G

∼→ Zp, we get a commutative diagram

H
φ
//

��

pZp
a

��

G
φ′
// Zp

where the dotted map is defined as a = φ−1 ◦ i ◦ φ′, making the diagram
commute. Since a is continuous, there is α ∈ Z∗p such that for all x ∈ pZp
we have a(x) = αx ∈ Zp. Then φ̃ = α−1φ′ is the desired lift of φ.

1.4 Weierstrass curves with additive reduc-

tion

Let K be a finite extension of Qp. Let OK again be the ring of integers of
K, with maximal ideal mK and residue field k.

In this section, we gather some general properties of nice Weierstrass
curves over OK with additive reduction.

Lemma 1.18. Let E/OK be a Weierstrass curve with additive reduction.
Then E is OK-isomorphic to a Weierstrass curve of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where all ai lie in mK.

Proof. We construct an automorphism α ∈ PGL3(OK) that maps E to
a Weierstrass curve of the desired form. Consider a translation α1 ∈
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PGL3(OK) moving the singular point of the special fibre Ek to (0 : 0 : 1).
The image E1 = α1(E) is a Weierstrass curve with coefficients satisfying
a3, a4, a6 in mK . There exists a second automorphism α2 ∈ PGL3(OK), of
the form x′ = x, y′ = y + cx, such that in the special fibre of α2(E1) the
unique tangent at (0 : 0 : 1) is given by y′ = 0. The Weierstrass curve
E2 = α2(E1) now has all its coefficients a1, a2, a3, a4, a6 in mK . One may
thus take α = α2 ◦ α1.

Suppose that E/OK is a nice Weierstrass curve given by (1.1), and sup-
pose that the ai are contained in mK . In particular, E has additive reduction.
If we let F denote the formal group law of E , then the assumption on the
ai implies that F (u, v) converges to an element of OK for all u, v ∈ OK .
Hence F can be seen to induce a group structure on OK , extending the
group structure on Ê(mK). The same statement holds true when we replace
K by a finite field extension L.

Definition 1.19. Let E/OK be a nice Weierstrass curve given by (1.1),
and assume that the ai are contained in mK . For any finite field extension
K ⊂ L, we denote by Ê(OL) the topological group obtained by endowing
the space OL with the group structure induced by F .

The following proposition will be fundamental in determining the struc-
ture of E0(Qp) as a topological group for nice Weierstrass curves with addi-
tive reduction.

Proposition 1.20. Let E/OK be a nice Weierstrass curve given by (1.1),
and assume that the ai are contained in mK.

(i) The map Ψ: E0(K)→ Ê(OK) that sends (x, y) to −x/y is an isomor-
phism of topological groups.

(ii) If 6e(K/Qp) < p − 1, where e denotes the ramification degree, then
E0(K) is also topologically isomorphic to OK equipped with the usual
group structure.

Proof. Let π be a uniformizer for OK . Consider the field extension L =
K(ρ) with ρ6 = π. Then define the Weierstrass curve D over OL by

y2 + α1xy + α3y = x3 + α2x
2 + α4x

4x+ α6,

where αi = ai/ρ
i. There is a birational map φ : E ×OK OL 99K D, given by

φ(x, y) = (x/ρ2, y/ρ3). The birational map φ induces an isomorphism on
generic fibres, and hence a homeomorphism between E(L) and D(L). Using
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(1.2) and the fact that we have (x, y) ∈ E0(L) if and only if vL(x), vL(y)
are both not greater than zero, one sees that φ induces a bijection E0(L)

∼→
D1(L), that all maps (a priori just of sets) in the following diagram are
well-defined, and that the diagram commutes:

E1(K)

ψK
��

incl // E0(K)

Ψ
��

incl // E0(L)

ΨL
��

φ
// D1(L)

ψL
��

Ê(mK) incl // Ê(OK) incl // Ê(OL)
·ρ
// D̂(mL)

Here the map ΨL : E0(L)→ OL is defined by (x, y) 7→ −x/y, the rightmost
lower horizontal arrow is multiplication by ρ, and the maps labeled incl are
the obvious inclusions. Note that the horizontal and vertical outer maps are
all continuous. Since ψL, φ and multiplication by ρ are homeomorphisms
(for ψL one uses Proposition 1.4), so is ΨL. Hence Ψ must be a homeo-
morphism onto its image. By Galois theory, Ψ is surjective, so it is itself a
homeomorphism.

Let FD̂ be the formal group law of D. One calculates that

ρF (X, Y ) = FD̂(ρX, ρY ).

Hence all maps in the diagram are group homomorphisms. This proves the
first part of the proposition.

Now assume 6e(K/Qp) < p− 1, so that vL(p) = 6vK(p) = 6e(K/Qp) <
p− 1. Now [32, IV.6.4(b)] implies that E1(K) is topologically isomorphic to

mK , and D1(L) to mL. Since E has additive reduction, we have Ẽsm(k) ∼=
k+ ∼= (Z/pZ)f , where f = f(K/Qp) is the inertia degree of K/Qp and Ẽsm

is the smooth locus of the special fibre of E . Proposition 1.2 shows we have
a short exact sequence

0→ mK → E0(K)→ (Z/pZ)f → 0.

In the diagram above, the topological group E0(K) is mapped homomor-
phically into the torsion-free group D1(L), hence it is itself torsion-free. It
follows from Remark 1.15 that E0(K) is topologically isomorphic to OK .
This proves the second part.

The following corollary is worth noting, but will not be used in what
follows.
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Corollary 1.21. Let E/OK be a nice Weierstrass curve with additive re-
duction. If 6e(K/Qp) < p − 1, then E0(K) is topologically isomorphic to
OK.

Proof. The statement that E0(K) is topologically isomorphic to OK only
depends on the OK-isomorphism class of E . By Lemma 1.18, there exists a
Weierstrass curve E ′ with ai ∈ mK that is OK-isomorphic to E . Now apply
Proposition 1.20 to E ′.

1.5 Proof of the main theorem

In this section, we gather some general properties of nice Weierstrass curves
over Zp with additive reduction and finish the proof of Theorem 1.1.

Lemma 1.22. Let E/Zp be a nice Weierstrass curve with additive reduction.

Then there exists a topological isomorphism χ : Ê(pZp)
∼→ pZp that, for all

n ∈ Z≥1, identifies Ê(pnZp) with pnZp.

Proof. For p > 2, this is standard; the proof may be found in [32, IV.6.4(b)].
We now treat the case p = 2. By Lemma 1.18, we may assume that the
Weierstrass coefficients ai of E all lie in 2Z2. The multiplication by 2 on
Ê(2Z2) is given by the power series

[2](T ) = FÊ(T, T ) = 2T − a1T
2 − 2a2T

3 + (a1a2 − 7a3)T 4 − . . . , (1.9)

where FÊ is the formal group law of E . By [32, IV.3.2(a)], Ê(2Z2)/Ê(4Z2) is
cyclic of order 2. By [32, IV.6.4(b)], there exists a topological isomorphism

Ê(4Z2)
∼→ 4Z2. Hence there exists an extension

0→ 4Z2
i→ Ê(2Z2)→ Z/2Z→ 0.

From Proposition 1.14 we see that Ê(2Z2) is topologically isomorphic either
to 2Z2 or to 4Z2 × Z/2Z. Assume that the latter is the case, then there

is an element z of order 2 in Ê(2Z2) that is not contained in Ê(4Z2). For

such a z we have v2(z) = 1, where v2 : Ê(2Z2) → Z≥1 ∪ {∞} is the 2-

adic valuation on the underlying set 2Z2 of Ê(2Z2). Using that in the
duplication power series (1.9) we have ai ∈ 2Z2 for each i, it follows that
v2([2](z)) = 2, so [2](z) 6= 0. This is a contradiction, so there exists an

isomorphism χ : Ê(2Z2)
∼→ 2Z2 as topological groups. From this, and from

the fact that Ê(2nZ2)/Ê(2n+1Z2) ∼= Z/2Z for all n ∈ Z≥1 [32, IV.3.2(a)], we
see that χ necessarily respects the filtrations on either side.
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Corollary 1.23. Let E/Zp be a nice Weierstrass curve with additive reduc-
tion. Then there exists an isomorphism E1(Qp)

∼→ pZp which for n ∈ Z≥1

identifies En(Qp) with pnZp.

Proof. Such an isomorphism can be obtained by composing the isomorphism
χ from Lemma 1.22 with the isomorphism ψQp from Proposition 1.4.

1.5.1 The case p = 2

Proposition 1.24. Let E/Z2 be a nice Weierstrass curve with its coeffi-
cients ai in 2Z2. Then E0(Q2) is topologically isomorphic to Z2 if a1+a3 ≡ 0
(mod 4), and to 2Z2 × Z/2Z otherwise.

Proof. Proposition 1.2 shows that there is a short exact sequence

0→ E1(Q2)→ E0(Q2)→ Z/2Z→ 0.

By Lemma 1.22, we have E1(Q2) ∼= 2Z2, so Proposition 1.14 implies that
E0(Q2) is topologically isomorphic either to Z2 or to 2Z2 × Z/2Z.

Let [2](T ) ∈ OK [[T ]] be the formal duplication formula (1.9) on E . Let Ψ
be the map from Proposition 1.20. Since Ψ is an isomorphism of topological
groups, we have for all P ∈ E0(Q2):

Ψ(2P ) = [2](Ψ(P )). (1.10)

By Corollary 1.16, we have E0(Q2) ∼= Z2 if and only if for all P ∈ E0(Q2)−
E1(Q2) we have 2P ∈ E1(Q2) − E2(Q2), which by (1.10) is true if and only

if for all z ∈ Ê(Z2) − Ê(2Z2) we have v2([2](z)) = 1, where v2 : Ê(Z2) →
Z≥0 ∪ {∞} is the 2-adic valuation on the underlying set Z2 of Ê(Z2). This
condition may be checked using the duplication power series

[2](T ) = 2T − a1T
2 − 2a2T

3 + (a1a2 − 7a3)T 4 − . . . =
∞∑
i=1

biT
i.

In deciding whether v2([2](z)) = 1 for z ∈ Ê(Z2) − Ê(2Z2), we do not
need to consider those parts of terms whose coefficients have valuation ≥ 2.
The non-linear parts of each coefficient bi will contribute only terms with
valuation≥ 2, so may ignore these and keep only the linear parts. The terms
biz

i with i odd and greater than 1 we may discard altogether; by Lemma
1.3, all their coefficients have valuation ≥ 2. Finally, we may discard all
terms biz

i with i even and ≥ 6: a polynomial in Z[a1, . . . , a6] whose weight
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is odd and at least 5 does not contain a linear term (there being no a5), so
the terms involving z6, z8, z10, . . . will have valuation ≥ 2.

We thus get that, if z ∈ Ê(Z2)− Ê(2Z2),

v2([2](z)) = 1 ⇔ v2(2z − a1z
2 − 7a3z

4) = 1.

The last statement is true for all z ∈ Ê(Z2)− Ê(2Z2) if and only if

v2

(
z − a1

2
z2 − 7a3

2
z4

)
= 0⇔ a1 + 7a3 ≡ 0 mod 4⇔ a1 + a3 ≡ 0 mod 4

since z ≡ z2 ≡ z4 (mod 2). This proves the proposition.

1.5.2 The case p = 3

Proposition 1.25. Let E/Z3 be a nice Weierstrass curve with its coeffi-
cients ai in 3Z3. Then E0(Q3) is topologically isomorphic to Z3 if a2 6≡ 6
(mod 9), and to 3Z3 × Z/3Z otherwise.

Proof. We proceed as in the proof of Proposition 1.24, using the formal
triplication formula:

[3](T ) = 3T − 3a1T
2 + (a2

1 − 8a2)T 3 + (12a1a2 − 39a3)T 4 + . . . =
∞∑
i=1

biT
i.

(1.11)
We consider the usual exact sequence for E0(Q3):

0→ E1(Q3)→ E0(Q3)→ Z/3Z→ 0.

We see from E1(Q3) ∼= 3Z3 and Corollary 1.16 that E0(Q3) is topologically

isomorphic to 3Z3×Z/3Z if and only if for all elements z ∈ Ê(Z3)−Ê(3Z3),
[3](z) has valuation greater than 1. On the other hand, E0(Q3) is topo-
logically isomorphic to Z3 if for all such z, the valuation of [3](z) is 1.
Reasoning as in the proof of Proposition 1.24, we see that we may ignore
all terms whose degree is not 1 and not a multiple of 3, since these have
coefficients divisible by 3 and of positive weight. Also we may ignore the
terms of degree both equal to a multiple of 3 and greater than 3, since their
coefficients do not contain parts that are linear in a1, . . . , a6. Finally, we
may ignore the non-linear part of the term of degree 3. We see that for
z ∈ Ê(Z3)− Ê(3Z3), we have

v3([3](z)) = 1 ⇔ v3(3z − 8a2z
3) = 1.
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The last statement is true for all such z if and only if

v3

(
z − 8a2

3
z3

)
= 0⇔ 1− 8a2

3
6≡ 0 mod 3⇔ a2 6≡ 6 mod 9

since z ≡ z3 (mod 3). This proves the proposition.

1.5.3 The case p = 5

Proposition 1.26. Let E/Z5 be a nice Weierstrass curve with its coeffi-
cients ai in 5Z5. Then E0(Q5) is topologically isomorphic to Z5 if a4 6≡ 10
(mod 25), and to 5Z5 × Z/5Z otherwise.

Proof. For simplicity, we give the formal multiplication by 5 power series in
the case where a1, a2, a3 are zero:

[5](T ) = 5T − 1248a4T
5 + . . . =

∞∑
i=1

biT
i (1.12)

This formula suffices for our purposes, since the same arguments as in the
proofs of Propositions 1.24 and 1.25 show that the terms that are canceled
by setting a1 = a2 = a3 = 0 could have been ignored anyway.

We apply Corollary 1.16 to:

0→ 5Z5 → E0(Q5)→ Z/5Z→ 0.

In (1.12) we may ignore terms of degree not equal to 1 or 5, by the same
reasoning as in the proofs of Propositions 1.24 and 1.25. We see that for
z ∈ Ê(Z5)− Ê(5Z5) we have

v5([5](z)) = 1 ⇔ v5(5z − 1248a4z
5) = 1.

The last statement is true for all such z if and only if

v5

(
z − 1248a4

5
z5

)
= 0⇔ 1− 1248a4

5
6≡ 0 mod 5⇔ a4 6≡ 10 mod 25

since z ≡ z5 (mod 5). This proves the proposition.
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1.5.4 The case p = 7

Proposition 1.27. Let E/Z7 be a nice Weierstrass curve with its coeffi-
cients ai in 7Z7. Then E0(Q7) is topologically isomorphic to Z7 if a6 6≡ 14
(mod 49), and to 7Z7 × Z/7Z otherwise.

Proof. For simplicity, we give the formal multiplication by 7 power series
with a1, a2, a3 set to zero:

[7](T ) = 7T − 6720a4T
5 − 352944a6T

7 + . . . (1.13)

As before, the terms that have disappeared as a result could have been
ignored anyway.

We apply Corollary 1.16 to:

0→ 7Z7 → E0(Q7)→ Z/7Z→ 0,

In (1.13) we may ignore terms of degree not equal to 1 or 7, by the same
reasoning as in the proofs of Propositions 1.24 and 1.25. We see that for
z ∈ Ê(Z7)− Ê(7Z7) we have

v7([7](z)) = 1 ⇔ v7(7z − 352944a6z
7) = 1.

The last statement is true for all such z if and only if

v7

(
z − 352944a6

7
z7

)
= 0⇔ 1− 352944a6

7
6≡ 0 mod 7⇔ a6 6≡ 14 mod 49

since z ≡ z7 (mod 7). This proves the proposition.

1.5.5 The proof

We are now ready to derive Theorem 1.1 from our previous results. In fact,
we state a more general version of that theorem, since it is also valid for
non-minimal Weierstrass equations.

Theorem 1.28. Let E/Zp be a nice Weierstrass curve given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the ai are contained in pZp for each i. Then there is a topological
isomorphism between E0(Qp) and Zp, except in the following four cases:
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(i) p = 2 and a1 + a3 ≡ 2 (mod 4);

(ii) p = 3 and a2 ≡ 6 (mod 9);

(iii) p = 5 and a4 ≡ 10 (mod 25);

(iv) p = 7 and a6 ≡ 14 (mod 49).

Moreover, every isomorphism between E0(Qp) and Zp identifies En(Qp) with
pnZp for all n ∈ Z≥0. In each of the cases (i)-(iv), E0(Qp) is topologically
isomorphic to pZp × Z/pZ, where Z/pZ has the discrete topology.

Proof. The isomorphism type of E0(Qp) follows from applying part (ii) of
Proposition 1.20 if p > 7, or one of Propositions 1.24–1.27 if p ≤ 7.

We claim that, if E0(Qp) ∼= Zp, then the isomorphism can be chosen in
such a way that En(Qp) is identified with pnZp for all n ∈ Z≥0. For this,
we choose the topological isomorphism χ : E1(Qp)

∼→ pZp from Lemma 1.22.
By Corollary 1.17, the map χ extends to a topological isomorphism

χ̃ : E0(Qp)
∼→ Zp

and we have pE0(Qp) = E1(Qp). It follows from Lemma 1.22 that pnE0(Qp)
equals En(Qp); hence every group isomorphism E0(Qp)

∼→ Zp will identify
En(Qp) with pnZp. This concludes the proof.

Proof of Theorem 1.1. Theorem 1.1 follows by applying Theorem 1.28 to a
minimal Weierstrass equation of E

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the ai are contained in pZp for each i. Such an equation exists by
Lemma 1.18. �

1.6 Examples

In this section, we have collected some examples of elliptic curves over Qp

with additive reduction, such that their points of good reduction contains a
p-torsion point. All curves and torsion points in these examples are defined
over Q. The fact that they possess a p-torsion point of good reduction can
be verified using the appropriate result from the previous section.

Example 1.29. The elliptic curve

E2 : y2 − 2y = x3 − 2

has additive reduction at 2, and its 2-torsion point (1, 1) is of good reduction.
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Example 1.30. The elliptic curve

E3 : y2 = x3 − 3x2 + 3x

has additive reduction at 3, and its 3-torsion point (1, 1) is of good reduction.

Example 1.31. The elliptic curve

E5 : y2 − 5y = x3 + 20x2 − 15x

has additive reduction at 5, and its 5-torsion point (1,−1) is of good reduc-
tion.

Example 1.32. The elliptic curve

E7 : y2 + 7xy − 28y = x3 + 7x− 35

has additive reduction at 7, and its 7-torsion point (2, 1) is of good reduction.
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Chapter 2

Density results for diagonal
quartic surfaces

For c ∈ Q∗, let Vc be the smooth quartic surface in P3
Q given by

x4
0 + cx4

1 = x4
2 + cx4

3. (2.1)

Let Q2 denote the field of 2-adic numbers, let Z2 ⊂ Q2 denote the ring of
2-adic integers, and let v : Q2 → Z∪{∞} denote the 2-adic valuation, using
the convention v(0) = ∞. We will call a 2-adic integer a odd if v(a) = 0;
otherwise we will call it even.

The main result discussed in this chapter is the following theorem, due
to Sir Peter Swinnerton-Dyer.

Theorem 2.1 (Swinnerton-Dyer, 2010). Let c be 2 or 4. The set Vc(Q) lies
dense in Vc(Q2), when this set is equipped with the 2-adic topology.

The reasons for including a discussion of Swinnerton-Dyer’s theorem in
this thesis are twofold. Since this thesis is concerned with results concerning
p-adic density of rational points on K3 surfaces, and since Swinnerton-Dyer’s
result was the first such result to appear for any K3 surface and for any p, it
provides an important example of how such a result is arrived at. Secondly,
we have striven to provide more details in our proof, and incorporate some
minor improvements over the proof of Swinnerton-Dyer. For example, most
of our results are stated for arbitrary values of c, whereas Swinnerton-Dyer
restricts to c ∈ {2, 4, 8} (although his methods clearly would have allowed
him to go beyond this). Using this, we prove Theorem 2.1 for more values
of c than Swinnerton-Dyer.

In our proof of Theorem 2.1, we will follow the arguments of Swinnerton-
Dyer [38] in the main. The proof will be given in section 2.8.
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2.1 Some open subsets of Vc(Q2)

We start by defining some open sets of Vc(Q2). We use them to reduce the
proof of density of Vc(Q) in Vc(Q2) to the proof of density of Vc(Q) in many
smaller open subsets.

Definition 2.2. For any c ∈ Q∗, let Uc ⊂ Vc(Q2) be the open subset of
2-adic points that have representatives (a0 : a1 : a2 : a3) where the ai are
2-adic integers such that a0 and a2 are both odd.

Proposition 2.3. Let c ∈ Q be such that 1 ≤ v(c) ≤ 3. If the rational
points on Vc lie dense in Uc and the rational points on V16/c lie dense in
U16/c, then Vc(Q) lies dense in Vc(Q2) and V16/c(Q) lies dense in V16/c(Q2).

Proof. Suppose that (a0 : a1 : a2 : a3) defines a point in Vc(Q2), where the
ai are 2-adic integers that do not all have positive valuation. Then it follows
from (2.1) and the assumption on c that either a0, a2 are both odd, or a0, a2

are both even and a1, a3 are both odd. Moreover, there is an isomorphism
between Vc and V16/c defined as follows

ψc : Vc → V16/c

(x0 : x1 : x2 : x3) 7→ (x1 :
x0

2
: x3 :

x2

2
)

We see from this that either a0 and a2 are both odd, or we have that
ψc(a0 : a1 : a2 : a3) ∈ V16/c(Q2) has a representative (a′0 : a′1 : a′2 : a′3)
where the a′i are 2-adic integers such that a′0 and a′2 are both odd. So for
P ∈ Vc(Q2) we have either P ∈ Uc or ψc(P ) ∈ U16/c. This establishes the
proposition.

We partition the sets Uc into open subsets

U ′c ∪
∞⋃
n=1

U ′′c,n ∪
∞⋃
n=1

U ′′′c,n,

with the definition of these subsets included in the following definition.

Definition 2.4. We define various open subsets of Uc.

– Let U ′c ⊂ Uc be the open subset of 2-adic points that have representa-
tives (a0 : a1 : a2 : a3) such that the ai are all odd 2-adic integers.
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– Let Ac ⊂ U ′c be the open subset of points (a0 : a1 : a2 : a3) where the
ai additionally satisfy v(a0 +a2) = v(a1−a3) = 1. Let A′c ⊂ U ′c be the
open subset where instead the ai satisfy v(a0 − a2) = v(a1 + a3) = 1.

– For n ∈ Z≥1, let U ′′c,n ⊂ Uc be the set of 2-adic points that have
representatives (a0 : a1 : a2 : a3) where the ai are 2-adic integers such
that a0 and a2 are both odd and v(a1) = v(a3) = n.

– For n ∈ Z≥1, let Bc,n ⊂ U ′′c,n be the open subset of points (a0 : a1 : a2 :
a3) where the ai additionally satisfy v(a0 − a2) = 1 and v(a1 − a3) =
n+ 1.

– For n ∈ Z≥1, let U ′′′c,n ⊂ Uc be the open subset of 2-adic points that
have representatives (a0 : a1 : a2 : a3) where the ai are 2-adic integers
such that a0 and a2 are both odd, and either v(a1) > v(a3) = n or
v(a3) > v(a1) = n.

– For n ∈ Z≥1, let Cc,n ⊂ U ′′′c,n be the open subset of points (a0 : a1 : a2 :
a3) where the ai additionally satisfy v(a0 +a2) = 1, and let C ′c,n ⊂ U ′′′c,n
be the open subset of points (a0 : a1 : a2 : a3) where the ai additionally
satisfy v(a0 − a2) = 1.

Clearly, to prove density of a certain subset of Uc it suffices to prove its
density in each of the sets U ′c, U ′′c,n and U ′′′c,n. However, if we use some of
the automorphisms of Vc, it suffices to restrict our attention to smaller open
subsets Ac, A′c, Bc,n, Cc,n and C ′c,n.

Throughout the chapter, we make frequent use of the following auto-
morphisms of Vc.

Definition 2.5. For 0 ≤ i ≤ 3, let φi denote the automorphism of Vc that
acts on (x0 : x1 : x2 : x3) by multiplying the xi-coordinate by −1.

We observe that U ′c is the union of the images of Ac under the subgroup
of Aut(Vc) generated by the φi. Note also that we have A′c = φ2(φ3(Ac))
and C ′c,n = φ2(Cc,n) for each n. Also, each U ′′c,n is the union of the images
of Bc,n under the said subgroup of Aut(Vc) and each U ′′′c,n is the union of
the images of Cc,n. Therefore, to prove density of the set of Vc(Q) in Uc, it
suffices to prove its density in the sets Ac, Bc,n for all integers n ≥ 1 and in
either Cc,n or C ′c,n for all integers n ≥ 1.

2.1.1 Outline of the rest of the chapter

In sections 2.2 and 2.3, we introduce elliptic fibrations on Vc, and we investi-
gate the fibres of these fibrations. In section 2.4, we explain the strategy of
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proving density of rational points using elliptic fibrations. Sections 2.5–2.7
form the core of the proof. We will prove in section 2.5 that the existence of
any rational point on Vc that is in Cc,1 implies the density of Vc(Q) in Cc,1;
that the same fact implies the density of Vc(Q) inAc will be proven in section
2.6. In section 2.7, we will show that density of Vc(Q) in A′c = φ2(φ3(Ac))
implies the density of Vc(Q) in Bc,n for all integers n ≥ 1 and in C ′c,n for all
integers n ≥ 2. Therefore, in view of the arguments of the previous para-
graph, sections 2.5–2.7 show that the existence of a rational point of Vc that
is in Cc,1 implies the density of Vc(Q) in the set Uc defined at the start of
this section. Furthermore, if we combine this with Proposition 2.3, we find
that the existence of both a rational point of Vc that is in Cc,1 and a rational
point of V16/c that is in C16/c,1 implies the density of Vc(Q) in Vc(Q2).

2.2 Elliptic fibrations on Vc

We define rational maps f, g : Vc 99K P1 as follows:

f(x0 : x1 : x2 : x3) =
x0 − x2

x1 − x3

, g(x0 : x1 : x2 : x3) =
x0 + x2

x1 − x3

.

We observe that g = f ◦ φ2. By considering the identities

−x0 ± x2

x1 − x3

= c
(x1 + x3)(x2

1 + x2
3)

(x0 ∓ x2)(x2
0 + x2

2)

in the function field of Vc, we see that f and g are actually morphisms from
Vc to P1. For λ ∈ P1, the preimage f−1(λ) is the intersection of the cubic
surface

(x0 + x2)(x2
0 + x2

2) = − c
λ

(x1 + x3)(x2
1 + x2

3) (2.2)

with the plane x0 − x2 = λ(x1 − x3), with the understanding that the left-
hand side is equated to zero if λ = 0, and the right-hand side is equated to
zero if λ =∞, with λ replaced by any finite value. For µ ∈ P1, the preimage
g−1(µ) is the intersection of the cubic surface

(x0 − x2)(x2
0 + x2

2) = − c
µ

(x1 + x3)(x2
1 + x2

3),

with the plane x0 + x2 = µ(x1 − x3), with the understanding that the left-
hand side is equated to zero if µ = 0, and the right-hand side is equated to
zero if µ =∞, with µ replaced by any finite value.
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The morphisms f, g : Vc → P1 endow the surface Vc with a fibration in
curves of genus one (which is often abusively called an elliptic fibration).
Note that f has the section λ 7→ Pλ, where Pλ = (λ : 1 : −λ : −1). The
point Pλ is the intersection of f−1(λ) with the line x0 + x2 = x1 + x3 = 0.
Applying φ2, we see that g likewise has a section given by µ 7→ P ′µ, where
P ′µ = (µ : 1 : µ : −1). By taking Pλ to be the identity for the group law on
f−1(λ), and P ′µ for the one on g−1(µ), we may (and will) regard f and g as
elliptic fibrations, i.e. fibrations whose generic fibres are elliptic curves.

2.2.1 The level of a point on a Weierstrass curve

Let P ∈ Vc(Q2) and let E = e−1(e(P )) be a fibre of an elliptic fibration
e : Vc → P1 passing through P . Then E is an elliptic curve over Q2. Suppose
we are given a nice Weierstrass curve E over Z2 together with a morphism
i : E → E that is an isomorphism on generic fibres. On E(Q2), we have a
filtration (see section 1.2)

E(Q2) ⊃ E0(Q2) ⊃ E1(Q2) ⊃ E2(Q2) ⊃ . . . ,

inducing an exhaustive filtration {En(Q2)}∞n=0 on the subgroup of E(Q2)
that maps isomorphically to E0(Q2). If P is not the identity of E(Q2),
and P lies in E0(Q2), then there exists a largest integer n ≥ 0 such that
P ∈ En(Q2); we will call n the level of P on E . If the image of P does not lie
in E0(Q2), we will say that the level of P is−1: this is the same as saying that
the image of P has singular reduction. The choice of i is suppressed from
the terminology; it is always clear from the context. Usually the choices of
both i and E are clear: we will then speak of the level of P on E or along e,
or write levelE(P ).

2.3 Weierstrass models for the fibres of f

This section consists mainly of calculations, of which the aim is to find
Weierstrass models for the fibres of f . We do this in order to be able to
apply the results of chapter 1, which deal with Weierstrass curves. Moreover,
with a Weierstrass equation at hand it is easier to compute j-invariants
and division polynomials, as is done in the proof of Proposition 2.10. The
Weierstrass models and the changes of variables from which they result are
summarized in Propositions 2.6–2.8.

Throughout section 2.3, we assume 1 ≤ v(c) ≤ 3. By Z2 we denote the
integral closure of Z2 in Q2.
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Proposition 2.6. Let λ ∈ P1(Q2) − {0,∞} be such that λ8 6= c2 and
v(λ) ≥ 0. Then there exists an isomorphism from f−1(λ) to the generic
fibre of the Weierstrass curve in P2

Z2
with homogeneous coordinates x, y, z

given by

Eλ : y2z = x3 − 3λ6x2z − 3λ4(c2 − λ8)xz2 − λ2(c2 − λ8)2z3, (2.3)

where this isomorphism is given by

x = −x0 + x2

2c
, y =

x1 − x3

2
, z =

x1 + x3 + λ3

c
(x0 + x2)

2λ(c2 − λ8)
. (2.4)

Proof. Let λ be as in the proposition. The preimage f−1(λ) of λ under the
morphism f : Vc → P1 is the cubic curve over Q2

(x0 + x2)(x2
0 + x2

2) = − c
λ

(x1 + x3)(x2
1 + x2

3), x0 − x2 = λ(x1 − x3).

Note that it has the point Pλ defined in the previous section, which we take
to be the identity for the group law, endowing f−1(λ) with the structure
of an elliptic curve. We map f−1(λ) isomorphically to the cubic curve in
P3
Q2

(s0, s1, v0, v1) given by

s0(s2
0 + v2

0) = − c
λ
s1(s2

1 + v2
1), v0 = λv1 (2.5)

with the maps given by

s0 = x0 + x2, v0 = x0 − x2, s1 = x1 + x3, v1 = x1 − x3. (2.6)

If we project the image of f−1(λ) to P2
Q2

(s0, s1, v1), by eliminating v0 in
(2.5), its isomorphic copy in P2

Q2
(s0, s1, v1) is given by

s0(s2
0 + λ2v2

1) = − c
λ
s1(s2

1 + v2
1). (2.7)

The point Pλ maps to the flex point (s0 : v1 : s1) = (0 : 1 : 0), whose
tangent is given by λ3s0 = −cs1. We introduce the variable

s2 = s1 +
λ3

c
s0.

With this substitution we arrive at the curve in P2
Q2

(s0, v1, s2)

s3
0 =

c

λ

(
λ9

c3
s3

0 − 3
λ6

c2
s2

0s2 + 3
λ3

c
s0s

2
2 − s3

2 − v2
1s2

)
,
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isomorphic to the one given by (2.7). The effect of this last step is that the
image of the point Pλ is (s0 : v1 : s2) = (0 : 1 : 0), with the tangent now
given by s2 = 0. Rearranging, we get

− c
λ
v2

1s2 =

(
1− λ8

c2

)
s3

0 + 3
λ5

c
s2

0s2 − 3λ2s0s
2
2 +

c

λ
s3

2.

Finally, since λ8 6= c2, we may define an isomorphism from the curve defined
by the equation above to the Weierstrass curve given by

y2z = x3 − 3λ6x2z − 3λ4(c2 − λ8)xz2 − λ2(c2 − λ8)2z3,

by setting

x = −s0

2c
= −x0 + x2

2c
, y =

v1

2
=
x1 − x3

2
,

z =
s2

2λ(c2 − λ8)
=
x1 + x3 + λ3

c
(x0 + x2)

2λ(c2 − λ8)
.

Here, the factors 2 in the denominators are introduced for our convenience
at a later stage in this chapter. This ends the proof.

Proposition 2.7. Let λ ∈ P1(Q2) − {0,∞} be such that λ8 6= c2 and
v(λ) ≥ v(c). There exists an isomorphism from f−1(λ) to the generic fibre
of the Weierstrass curve in P2

Z2
with homogeneous coordinates x̃, ỹ, z̃ given

by

Ẽλ : ỹ2z̃ = x̃3 − 3λ6

c2
x̃2z̃ − 3λ4(c2 − λ8)

c4
x̃z̃2 − λ2(c2 − λ8)2

c6
z̃3. (2.8)

where this isomorphism is given by

x̃ = −x0 + x2

2c3
, ỹ =

x1 − x3

2c3
, z̃ =

x1 + x3 + λ3

c
(x0 + x2)

2λ(c2 − λ8)
. (2.9)

Proof. The new variables x̃, ỹ, z̃ are related to the x, y, z from Proposition
2.6 by x̃ = x/c2, ỹ = y/c2, z̃ = z.

Proposition 2.8. Let λ ∈ P1(Q2) − {0,∞} be such that λ8 6= c2 and
v(λ) < 0. There exists an isomorphism from f−1(λ) to the generic fibre of
the Weierstrass curve in P2

Z2
with homogeneous coordinates x̂, ŷ, ẑ given by

Êλ : ŷ2ẑ = x̂3 − 3λ−4c2x̂ẑ2 − λ−2c2(c2λ−8 + 1)ẑ3. (2.10)
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where this isomorphism is given by

x̂ = −x0 + x2

2λ4c
−
λ(x1 + x3) + λ4

c
(x0 + x2)

2(c2 − λ8)
, ŷ =

x1 − x3

2λ6
,

ẑ =
x1 + x3 + λ3

c
(x0 + x2)

2λ(c2 − λ8)
. (2.11)

Proof. Resuming the notation of Proposition 2.6, we set

u = x− λ6z = −x0 + x2

2c
−
λ5(x1 + x3) + λ8

c
(x0 + x2)

2(c2 − λ8)
,

we get a morphism from f−1(λ) to the curve given by the short Weierstrass
equation

y2z = u3 − 3λ4c2uz2 − λ2c2(c2 + λ8)z3. (2.12)

If we put ẑ = z, and define scalings of u and y as follows

x̂ = u/λ4, ŷ = y/λ6,

this defines an isomorphism from f−1(λ) to the curve (2.10).

Remark 2.9. The above propositions can of course be used to give Weier-
strass models for fibres of other elliptic fibrations on Vc. Let φ be any
automorphism of Vc. Then e = f ◦ φ is an elliptic fibration of Vc. For
λ ∈ P1(Q2) − {0,∞} such that v(λ) ≥ 0, Proposition 2.6 can be used to
give an embedding of e−1(λ) into the Weierstrass curve Eλ ⊂ P2

Z2
as defined

by (2.3). This embedding is obtained by precomposing the morphism (2.4)
with φ. Similarly, Propositions 2.7 and 2.8 can be used to obtain embed-
dings of e−1(λ) into the Weierstrass curves Ẽλ and Êλ given by (2.8) and
(2.10) for the appropriate values of λ ∈ P1(Q2)− {0,∞}.

2.3.1 The group structure on the fibres

It will be important for us in what follows to know the structure of the
topological groups Eλ(Q2), Ẽλ(Q2), and Êλ(Q2), where the notation is as in
Propositions 2.6–2.8, or at least the parts consisting of the points of good
reduction.

Proposition 2.10. Assume that 1 ≤ v(c) ≤ 3. We have the following
isomorphisms of topological groups.
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(i) For all λ ∈ P1(Q2)− {0,∞} with v(λ) = 0, we have

(Eλ)0(Q2) ∼= Z2,

and the isomorphism can be chosen in such a way that (Eλ)n(Q2) is
identified with 2nZ2 for all n ∈ Z≥0.

(ii) For all λ ∈ P1(Q2)− {0,∞} with v(λ) ≥ v(c), we have

(Ẽλ)0(Q2) ∼= Z2,

and the isomorphism can be chosen in such a way that (Ẽλ)n(Q2) is
identified with 2nZ2 for all n ∈ Z≥0.

(iii) For all λ ∈ P1(Q2)− {0,∞} with v(λ) < 0, we have

(Êλ)0(Q2) ∼= Z2,

and the isomorphism can be chosen in such a way that (Êλ)n(Q2) is
identified with 2nZ2 for all n ∈ Z≥0.

(iv) For all λ ∈ P1(Q2)− {0,∞} with v(λ) = v(c) + 1, we have

Ẽλ(Q2) ∼= 2−1Z2,

where 2−1Z2 is seen as an open subset of Q2, and the isomorphism
can be chosen in such a way that (Ẽλ)n(Q2) is identified with 2nZ2 for
all n ∈ Z≥0.

Proof. For (i)–(iii), it suffices to apply Theorem 1.28 of Chapter 1. Now
part (iv). In view of (ii) and Corollary 1.17, it is enough to show that

Ẽλ(Q2) ∼= 2−1Z2. Let λ ∈ P1 − {∞} be such that v(λ) = v(c) + 1. The

j-invariant of the generic fibre of Ẽλ equals

123 · 4λ8c2

4λ8c2 − λ8 − c2
,

which has positive 2-adic valuation. Therefore Ẽλ has either good or additive
reduction. However, the reduction must in fact be additive: the discriminant
of Ẽλ is equal to

16 · 27 · λ4c−8(4λ8c2 − (c2 + λ8)2),

and so has valuation 8, hence Ẽλ is minimal. We thus have a short exact
sequence

0→ (Ẽλ)0(Q2)→ Ẽλ(Q2)→ G→ 0
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where G is a group of order at most 4 [32, C.15]. It follows from Proposition

1.14(ii) that Ẽλ(Q2) is isomorphic to Z2 if and only if it has no elements of

order 2 or 3. We may prove that the 2- and 3-torsion of Ẽλ(Q2) is trivial

using the 2- and 3-division polynomials of (Ẽλ)Q2 . However, we may equally
well work with the 2- and 3-division polynomials Φ2,Φ3 ∈ Q2[u] of the

generic fibre of the Weierstrass curve (2.12), which is isomorphic to (Ẽλ)Q2 ;
we will do this since this makes the computation easier. The polynomial Φ2

is just the right-hand side of (2.12):

Φ2 = u3 − 3λ4c2u− λ2c2(c2 + λ8).

For Φ3 we have [32, III, Exercise 3.7]:

Φ3 = 3u4 − 18λ4c2u2 − 12λ2c2(c2 + λ8)u− 9λ8c4.

We find the valuation of the three zeros of Φ2 by inspecting its Newton
polygon. The coefficient of u0 has valuation 6v(c) + 2, that of u1 has val-
uation 6v(c) + 4, and that of u3 has valuation 0: each zero of Φ2 therefore
has valuation 2v(c) + 2

3
, and therefore does not lie in Q2. We consider the

Newton polygon of Φ3: the coefficient of u0 has valuation 12v(c) + 8, that
of u1 has valuation 6v(c) + 4, that of u2 has valuation 6v(c) + 5, and that of
u4 has valuation 0. From this, we see that Φ3 has a unique root in Q2, and
this root has valuation 6v(c) + 4. However, there is no 2-adic point (u0, y0)
on the curve (2.12) such that v(u0) = 6v(c) + 4, since then it would follow
from (2.12) and from the valuations of the coefficients of Φ2 we have just
computed that we would have

y2
0 ≡ −λ2c2(c2 + λ8) (mod 212v(c)+8).

However, the right-hand side cannot be a square in Q2, since λ2c2(c2 +λ8) =

λ2c4(1 + λ8/c2) is a square in Q2. Therefore Ẽλ(Q2) has no 2- or 3-torsion.
This concludes the proof.

Section 2.3.2 will illustrate how Proposition 2.10 can be used to prove
that, locally in Vc(Q2), one has 2-adic density of rational points.

2.3.2 The bad fibres

We will describe the bad (non-smooth) fibres of f .
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Lemma 2.11. The geometric fibre of f : Vc → P1 above λ = 0 is the union
of the line

x0 − x2 = x1 + x3 = 0

and two lines whose field of definition contains a square root of −1. The
geometric fibre of f above λ =∞ is the union of the line

x0 + x2 = x1 − x3 = 0

and two lines whose field of definition contains a square root of −1. The
fibres of f above λ = 0 and λ = ∞ both consist of three lines meeting in
one point.

Proof. If λ = 0, then from (2.2) we get that the fibre f−1(λ) is given by

(x1 + x3)(x2
1 + x2

3) = 0, x0 − x2 = 0.

If λ =∞, then the fibre f−1(λ) is given by

(x0 + x2)(x2
0 + x2

2) = 0, x1 − x3 = 0.

The last assertion is clear from these equations.

Lemma 2.12. Let λ ∈ Q be such that λ8 = c2. The geometric fibres of
f : Vc → P1 above λ are unions of a line and a smooth conic.

Proof. Let λ be as in the statement of the lemma. From (2.2) we get that
the fibre f−1(λ) is given by

(x0 + x2)(x2
0 + x2

2) = ±λ3(x1 + x3)(x2
1 + x2

3), x0 − x2 = λ(x1 − x3),

for some change of sign. Changing variables to

s0 = x0 + x2, v0 = x0 − x2, s1 = λ(x1 + x3), v1 = λ(x1 − x3),

we find that f−1(λ) is isomorphic to the curve given by

s0(s2
0 + v2

0) = ±s1(s2
1 + v2

1), v0 = v1.

By projecting onto the coordinates (s0, s1, v1), and slightly rearranging the
resulting equation, we get that f−1(λ) is isomorphic to the curve given by

(s0 ∓ s1)(s2
0 + s2

1 ± s0s1 + v2
1) = 0.

This clearly consists of a line and a non-singular conic.



34 Chapter 2. Density results for quartic surfaces

We will show that there are no other bad fibres than the ones described
in Lemmas 2.11–2.12.

Proposition 2.13. The non-smooth fibres of f : Vc → P1 are exactly the
fibres above λ = 0, λ =∞ and the λ with λ8 = c2.

Proof. Let λ ∈ P1(Q2) − {0,∞} be such that λ8 6= c2. We will see that
f−1(λ) is an elliptic curve. It follows from the proof of Proposition 2.8 that
(2.11) defines an isomorphism from f−1(λ) to the curve Eλ over Q2 defined
by

ŷ2ẑ = x̂3 − 3λ−4c2x̂ẑ2 − λ−2c2(c2λ−8 + 1)ẑ3.

(The restriction v(λ) < 0 in Proposition 2.8 is there just to ensure that
(2.10) defines a Weierstrass curve over Z2.) We claim that the Weierstrass
curve Eλ is non-singular. In order to see this, it suffices to check that its
discriminant, which is

16 · 27 · λ20c−8(4c2λ−8 − (c2λ−8 + 1)2) = −16 · 27 · λ20c−8(c2λ−8 − 1)2,

is non-zero, which is clearly the case. The proposition now follows from
Lemmas 2.11–2.12.

Corollary 2.14. Let P ∈ Vc(Q2) be a point lying on a bad fibre of f .

(i) We have f(P ) = 0 or f(P ) = ∞, and P lies on the line x0 − x2 =
x1 + x3 = 0 if f(P ) = 0, and on the line x0 + x2 = x1 − x3 = 0 if
f(P ) =∞.

(ii) Assume that P ∈ Uc. If f(P ) = 0, then P ∈ Ac or P ∈ φ3(Bc,n) for
some n ≥ 1. If f(P ) = ∞, then P ∈ A′c or P ∈ φ2(Bc,n) for some
n ≥ 1.

Proof. Let P be as in the statement, and let λ = f(P ) ∈ P1(Q2). The point
P is defined over Q2, so we cannot have λ8 = c2, since the valuation of c is
not a multiple of four. Hence λ is either 0 or ∞ by Proposition 2.13.

Assuming that f(P ) = 0, then by Lemma 2.11, the point P lies on the
line x0 − x2 = x1 + x3 = 0. Assume moreover P ∈ Uc. Then if P is given
by (a0 : a1 : a2 : a3) with the ai in Z2 and v(a0) = v(a2) = 0, we have
v(a0 − a2) = ∞ and v(a0 + a2) = v(2a0) = 1, and v(a1 + a3) = ∞ and
v(a1 − a3) = v(2a1). Hence, if v(a1) = 0, then P lies in Ac, if v(a1) > 0,
then P lies in φ2(Bc,n) with n = v(a1).

Assuming that f(P ) = ∞, then by Lemma 2.11, the point P lies on
the line x0 + x2 = x1 − x3 = 0. Assume moreover P ∈ Uc. Then if P is
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given by (a0 : a1 : a2 : a3) with the ai in Z2 and v(a0) = v(a2) = 0, we
have v(a0 + a2) =∞ and v(a0 − a2) = v(2a0) = 1, and v(a1 − a3) =∞ and
v(a1 + a3) = v(2a1). Hence, if v(a1) = 0, then P lies in A′c; if v(a1) > 0,
then P lies in φ3(Bc,n) with n = v(a1).

2.4 Using elliptic fibrations to prove density

We will show how the elliptic fibrations on Vc can be exploited to show
that, locally around a certain point in Vc(Q2), the rational points lie dense.
The main result of this section, Lemma 2.16, is almost trivial, but it neatly
captures the basic ideas of this chapter.

2.4.1 One elliptic fibration

Assume that e : Vc → P1 is an elliptic fibration. Let P and P ′ be elements of
Vc(Q2) lying on the same smooth fibre of e, and let E = e−1(e(P )). Assume
that we have a Weierstrass curve E over Z2, and an isomorphism i : E → EQ2

of elliptic curves over Q2. Suppose furthermore that we have an isomorphism
φ : En(Q2)

∼→ 2nZ2 for some n ≥ −1, where we write E−1(Q2) = E(Q2), and
that φ identifies Ek(Q2) with 2kZ2 for all k ≥ n. (Note that Proposition
2.10 asserts that there (many) triples (e, P, P ′) for which these conditions
are all satisfied.) In this setup, we have the following lemma.

Lemma 2.15. Suppose that we have

levelE(P ′) ≥ levelE(P ) ≥ n.

Then the multiples of P on E lie dense around P ′. Moreover, if there exists
a sequence {Qi}∞i=0 of rational points converging to P , then there exists a
sequence {Q′i}∞i=0 of rational points converging to P ′.

Proof. Let k = levelE(P ) and k′ = levelE(P ′). Then φ(i(P )) ∈ 2nZ2 has
valuation k and φ(i(P ′)) ∈ 2nZ2 has valuation k′ ≥ k. Hence the multiples
of φ(i(P )) are dense around φ(i(P ′)). Since φ ◦ i is a homeomorphism from
En(Q2) to 2nZ2, the multiples of P are dense around P ′. For any integer m,
we have the rational map [m] : Vc 99K Vc that is multiplication by m along
fibres of e; it is a morphism when restricted to the smooth locus of e. Let
{Qi}∞i=0 be as in the statement of the lemma. If {mi}∞i=0 is a sequence of
integers such that [mi]P converges to P ′, then {[mi]Qi}∞i=0 converges to P ′,
by continuity of [mi] near smooth fibres. We may thus take Q′i = [mi]Qi for
all i.
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2.4.2 Two elliptic fibrations

We continue with the assumptions of section 2.4.1. If we employ not just
one elliptic fibration e, but also a second one e′, we obtain a method for
proving density in an open subset of Vc(Q2). Let e′ : Vc → P1 be an elliptic
fibration, and suppose that P ′′ is an element of Vc(Q2) such that P ′ and P ′′

lie on the same smooth fibre of e′. Let us denote E ′ = (e′)−1(e′(P ′)).
Assume, analogously to what we assumed for E, that we have a Weier-

strass curve E ′ over Z2, and an isomorphism i′ : E ′ → E ′Q2
of elliptic curves

over Q2. Suppose furthermore that we have an isomorphism φ′ : E ′m(Q2)
∼→

2mZ2 for some m ≥ −1, where we again write E ′−1(Q2) = E ′(Q2), and that
φ′ identifies E ′k(Q2) with 2kZ2 for all k ≥ m.

Lemma 2.16. Suppose that we have both

levelE(P ′) ≥ levelE(P ) ≥ n

and
levelE′(P

′′) ≥ levelE′(P
′) ≥ m.

Then if there exists a sequence {Qi}∞i=0 of rational points converging to P ,
then there exists a sequence {Q′′i }∞i=0 of rational points converging to P ′′. In
particular, the rational points are dense around P ′′.

Proof. For any integer m, we have the rational maps [m]e : Vc 99K Vc and
[m]e′ : Vc 99K Vc that are multiplication by m along fibres of e and e′; the
rational maps [m]e and [m]e′ give morphisms when restricted to the smooth
loci of e and e′. Lemma 2.15 applied to P and P ′ yields the existence of
a sequence {mi}∞i=0 of integers such that ([mi]eP )i converges to P ′. By
restricting to a subsequence if necessary, we can assume that all [mi]eP lie
on smooth fibres of e′. Applying Lemma 2.15 to P ′ and P ′′, we get the
existence of a sequence {m′i}∞i=0 of integers such that ([m′i]e′P

′)i converges
to P ′′. If we put

Q′′i = [m′i]e′ [mi]eQi,

then {Q′′i }∞i=0 is a sequence of rational points converging to P ′′.

Lemma 2.16 shows the strategy that we will follow to prove density of
Vc(Q) in Vc(Q2). Continuing with the assumptions on e and e′ and the
notation established earlier in this section, one starts from a point P ∈
Vc(Q2) and a sequence {Qi}∞i=0 of rational points converging to P (this is
especially easy if P is itself rational), then one looks for an open subset U of
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Vc(Q2) such that, for all P ′′ ∈ U , there exists an auxiliary point P ′ ∈ Vc(Q2)
with e(P ′) = e(P ) and e′(P ′) = e′(P ′′) such that both

levelE(P ′) ≥ levelE(P ) ≥ n

and
levelE′(P

′′) ≥ levelE′(P
′) ≥ m.

It follows from Lemma 2.16 that the rational points are then dense in U .
This is the strategy that will be followed in sections 2.5 and 2.6, where

density in Cc,1 and Ac is established. The roles of e and e′ will be taken by
the elliptic fibrations f , g and f ◦ φ3. The arguments in section 2.7, which
covers density in Bc,n for n ≥ 1 and Cc,n for n ≥ 2, are similar, but apply
Lemma 2.15 instead of Lemma 2.16.

2.5 Density in Cc,1
From this point in the chapter on, we will assume that c ∈ Q∗ is such that
1 ≤ v(c) ≤ 3.

We will show that the rational points on Vc are dense in Cc,1. In this
section and the next, we will frequently use the fact that the equation (2.1)
defining Vc can be rewritten as

(x0 − x2)(x0 + x2)(x2
0 + x2

2) = −c(x1 − x3)(x1 + x3)(x2
1 + x2

3). (2.13)

Lemma 2.17. Let P = (a0 : a1 : a2 : a3) be a point in Cc,1, where the ai
are 2-adic integers at least one of which is a unit. Write λ = f(P ) and
π = (f ◦ φ3)(P ). Then the following statements are true.

(i) We have

v(a0 + a2) = 1, v(a0 − a2) = v(c) + 2, v(a2
0 + a2

2) = 1

as well as

v(a1 + a3) = 1, v(a1 − a3) = 1, v(a2
1 + a2

3) = 2.

(ii) We have v(λ) = v(π) = v(c) + 1.

Proof. The first equality is by definition of Cc,1. The third equality follows
from the fact that the square of an element a ∈ Z∗2 is 1 (mod 8). The second
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row of equalities all follow from the definition of Cc,1. Now from (2.13), we
get

v(a0 − a2) = v(c) + v(a1 − a3) + v(a1 + a3) + v(a2
1 + a2

3) (2.14)

− v(a0 + a2)− v(a2
0 + a2

2) = v(c) + 2,

which concludes the proof of (i). Part (ii) is a direct consequence of part
(i).

We have the following converse of Lemma 2.17(ii).

Lemma 2.18. Let λ0, π0 ∈ Q2 satisfy v(λ0) = v(π0) = v(c) + 1. Then there
exists a unique point P ∈ Cc,1 such that f(P ) = λ0 and (f ◦ φ3)(P ) = π0.
Moreover, the dependence of P on λ0 and π0 is continuous.

Proof. We rewrite (2.13) in terms of the homogeneous coordinates s0 =
x0 + x2, v0 = x0 − x2, s1 = x1 + x3, v1 = x1 − x3:

s0v0(s2
0 + v2

0) = −cs1v1(s2
1 + v2

1). (2.15)

The hypotheses imply that in (2.15) we have v0 = λ0v1 and v0 = π0s1. If
we set w = s0/v0, we obtain the following equation for w:

w3 + w + b0 = 0,

where

b0 = c
λ2

0 + π2
0

λ3
0π

3
0

.

The conditions on the valuations of λ0 and π0 give v(b0) = −3v(c) − 3.
(Here, we use that if κ ∈ Z2, then κ2 ≡ 22v(κ) (mod 22v(κ)+3).) Setting
w = w′/2c, we find that w′ satisfies

w′3 + 4c2w′ + 8b0c
3 = 0. (2.16)

By Hensel’s lemma, this has a solution w′0 ∈ Q2 with v(w′0) = 0. Moreover,
the three roots w′0, w

′
1, w

′
2 of (2.16) in Q2 reduce to the three zeros of X3 +1

in F2, only one of which lies in F2; therefore, w′0 is the unique solution to
(2.16) in Q2. It gives rise to the point

P0 = P (λ0, π0) = (w′0 + 2c : 2c/λ0 + 2c/π0 : w′0 − 2c : −2c/λ0 + 2c/π0),

of which one checks that it indeed lies in Cc,1. For the P whose existence
was asserted in the lemma we may thus take P = P0.



2.5. Density in Cc,1 39

Finally, we check that P (λ0, π0) depends on λ0 and π0 in a continuous
way. This comes down to the claim that if ((λi, πi))

∞
i=1 ⊂ Q2

2 is a sequence
of pairs converging to (λ0, µ0), then if w′i is a solution to

w′3 + 4c2w′ + 8bic
3 = 0 (2.17)

where

bi = c
λ2
i + π2

i

λ3
iπ

3
i

.

then the sequence (w′i)i tends to w′0. We now prove this claim. From (2.17)
we deduce

8(bi − bi−1)c3 = (w′3i−1 + 4c2w′i−1)− (w′3i + 4c2w′i)

= −(w′i − w′i−1)(w′2i + w′iw
′
i−1 + w′2i−1 + 4c2).

As i tends to infinity, we have that bi−bi−1 tends to 0, while v(w′2i +w′iw
′
i−1+

w′2i−1 + 4c2) = 0 since v(w′i−1) = v(w′i) = 0. Hence w′i−w′i−1 tends to 0, and
we are done.

For each P ∈ Cc,1, we will identify the fibre through P of f with the

generic fibre of the curve Ẽf(P ) given by (2.8) via (2.9); the fibre through P

of f ◦ φ3 we will identify with the generic fibre of the curve Ẽ(f◦φ3)(P ) in the
same way. It follows from Lemma 2.17(ii) that these identifications can be
made. With these conventions, it makes sense to speak of the levels of the
points in Cc,1 along f and f ◦ φ3.

Lemma 2.19. Let P be a point in Cc,1. The level of P along f is equal to
−1. The level of P along f ◦ φ3 is equal to −1.

Proof. The proof uses Lemma 2.17 throughout. We write P = (a0 : a1 : a2 :

a3) and λ = f(P ). We obtain a representative (ξ̃ : η̃ : ζ̃) of the image of P

on Ẽλ by substituting xi = ai into the equations (2.9). Using (2.9), we get

v(ξ̃) = v(a0+a2)−3v(c)−1 = −3v(c), v(η̃) = v(a1−a3)−3v(c)−1 = −3v(c),

where we have used the definition of Cc,1. To compute the valuation of

ζ̃ =
a1 + a3 + λ3

c
(a0 + a2)

2λ(c2 − λ8)
(2.18)
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note that Lemma 2.17(i) implies v(a1 +a3) = 1 < 2v(c)+4 = v(λ
3

c
(a0 +a2));

hence the valuation of the numerator is equal to 1. Therefore

v(ζ̃) = 1− v(2λ(c2 − λ8)) = 1− (1 + v(c) + 1 + 2v(c)) = −3v(c)− 1.

It follows that we have v(ξ̃/ζ̃) = v(η̃/ζ̃) = 1. Therefore the point P reduces

to the singular point on the special fibre of Ẽλ. Thus we have shown that
the level of P along f is −1.

The calculations for the level along f ◦φ3 go in exactly the same way as
the calculations for the level along f .

Proposition 2.20. Assume that there exists a rational point P0 ∈ Cc,1.
Then Vc(Q) is dense in Cc,1.

Proof. Let P2 ∈ Cc,1 be an arbitrary 2-adic point. Define λ0 = f(P0) and
π2 = (f ◦φ3)(P2). It follows from Lemma 2.17(ii) and 2.18 that there exists
a unique P1 ∈ Cc,1 such that f(P1) = λ0 and (f ◦ φ3)(P1) = π2. These
conditions express exactly that P1 lies on the same f -fibre as P0, and on the
same (f ◦ φ3)-fibre as P2. The levels of P0 and P1 along f are both equal
to −1 by Lemma 2.19. The levels of P1 and P2 along f ◦ φ3 are both equal
to −1 by Lemma 2.19. By Corollary 2.14, the points P0 and P1 lie on a
smooth fibre of f , and P1 and P2 lie on a smooth fibre of f ◦φ3. By Lemma
2.16, the rational points lie dense around P2.

2.6 Density in Ac
Assuming there is a rational point in Cc,1, we will show density of the rational
points in Ac.

Lemma 2.21. Let P = (a0 : a1 : a2 : a3) be a point in Ac. Write λ = f(P )
and µ = g(P ). Then the following statements are true.

(i) We have

v(a0 + a2) = 1, v(a0 − a2) = v(λ) + 1, v(a2
0 + a2

2) = 1,

as well as

v(a1 + a3) = v(λ) + 1− v(c), v(a1 − a3) = 1, v(a2
1 + a2

3) = 1.

(ii) We have v(λ) ≥ v(c) + 1 and v(µ) = 0.
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Proof. Since P is in Ac we have v(a0 + a2) = v(a1 − a3) = 1 by definition
of Ac, and this implies

v(a2
0 + a2

2) = v(a2
1 + a2

3) = 1,

since the square of the 2-adic unit ai is 1 (mod 8) for each i. This shows
(i) except for the second and fourth equality. Using (2.13) as in the proof
of Lemma 2.17, we get

v(a0 − a2) = v(a1 + a3) + v(c), (2.19)

which shows that v(λ) = v((a0 − a2)/(a1 − a3)) = v(a0 − a2) − 1, which
shows the second equality. If we combine this with (2.19), we get v(λ) =
v(a1 + a3) + v(c) − 1. This concludes the proof of the fourth equality and
therefore that of (i). Part (ii) is a direct consequence of part (i).

We have the following converse of Lemma 2.21(ii).

Lemma 2.22. Let λ0, µ0 ∈ Q2 satisfy v(λ0) ≥ v(c)+1 and v(µ0) = 0. Then
there exists a unique point P ∈ Ac such that f(P ) = λ0 and g(P ) = µ0.
Moreover, the dependence of P on λ0 and µ0 is continuous.

Proof. We rewrite (2.13) in terms of the homogeneous coordinates s0 =
x0 + x2, v0 = x0 − x2, s1 = x1 + x3, v1 = x1 − x3:

s0v0(s2
0 + v2

0) = −cs1v1(s2
1 + v2

1).

We are looking for a point with f(P ) = λ0 and g(P ) = µ0. We thus have
v0 = λ0v1 and s0 = µ0v1. In terms of w = s1/v1 we have to solve the
equation

λ0µ0(λ2
0 + µ2

0) = −cw(1 + w2).

Defining

a =
λ0µ0

c
(λ2

0 + µ2
0),

we can rewrite the equation as

w3 + w + a = 0.

Given a solution w0 ∈ Q2 to this equation, we get the point in Vc(Q2)
represented by the four-tuple

P0 = (λ0 + µ0 : w0 + 1 : −λ0 + µ0 : w0 − 1). (2.20)
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Note that we have v(a) > 0. By considering the Newton polygon of
w3 + w + a, we see that two of its zeros in Q2 have valuation 0. These do
not give rise to points in U ′c. The remaining zero w0 has positive valuation.
By Galois theory, we have w0 ∈ Q2. By the assumptions on λ0, µ0 and
the fact that v(w0) > 0, the four-tuple (2.20) represents a point in U ′c.
One can check that it in fact lies in Ac. For the P whose existence was
asserted in the lemma we may thus take P = P0. Finally, the fact that
P depends continuously on λ0 and µ0 is shown exactly as in the proof of
Lemma 2.18.

For each P ∈ Ac, we will identify f−1(f(P )) with the generic fibre of
(2.8) via (2.9). Note that this is the same choice that we made in section
2.5 for P ∈ Cc,1, so that it makes sense to compare levels along f of points
in Ac and Cc,1. We will identify the fibre g−1(g(P )) with the generic fibre
of (2.3) via (2.4). It follows from Lemma 2.21(ii) that these identifications
can be made. With these conventions, it makes sense to speak of the levels
of the points in Ac along f and g.

Lemma 2.23. Let P be a point in Ac and write λ = f(P ). The level of P
along f is equal to 0. The level of P along g is equal to v(λ)− v(c).

Proof. We write P = (a0 : a1 : a2 : a3). We obtain a representative (ξ̃ : η̃ : ζ̃)

of the image of P on Ẽλ by substituting xi = ai into the equations (2.9).
Using (2.9), we get

v(ξ̃) = v(a0+a2)−3v(c)−1 = −3v(c), v(η̃) = v(a1−a3)−3v(c)−1 = −3v(c),

where we have used the definition of Ac. To compute the valuation of

ζ̃ =
a1 + a3 + λ3

c
(a0 + a2)

2λ(c2 − λ8)
, (2.21)

note that Lemma 2.21(i) implies v(a1 + a3) = v(λ) + 1 − v(c) < 3v(λ) +
1− v(c) = v(λ

3

c
(a0 + a2)); hence the valuation of the numerator is equal to

v(a1 + a3). Therefore

v(ζ̃) = v(a1+a3)−v(2λ(c2−λ8)) = (v(λ)+1−v(c))−(v(λ)+1+2v(c)) = −3v(c).

It follows that we have v(ξ̃/ζ̃) = v(η̃/ζ̃) = 0. Therefore the point P reduces

to a non-singular point different from the identity on the special fibre of Ẽλ.
Thus we have shown that the level of P along f is 0.
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Set µ = g(P ). We obtain a representative (ξ : η : ζ) of the image of P
on Eµ by substituting xi = ai for i 6= 2 and x2 = −a2 into the equations
(2.4), and replacing λ by µ. We get

v(ξ) = v(a0 − a2)− 1− v(c) = v(λ)− v(c) ≥ 1

and
v(η) = v(a1 − a3)− 1 = 0.

From v(µ) = 0 and (2.19) we deduce

v(a1 + a3) = v

(
µ3

c
(a0 − a2)

)
,

hence we have, by formula (2.4),

v(ζ) > v(a1 + a3)− v(2µ(c2 − µ8)) = v(a1 + a3)− 1 > 0.

Since v(η) < v(ζ), the point P is mapped to (Eµ)1(Qp), and its level is
therefore v(ξ/η) = v(λ)− v(c).

Proposition 2.24. Assume that there is a rational point P0 ∈ Vc(Q) such
that P0 ∈ Cc,1. Then Vc(Q) is dense in Ac.

Proof. Let P0 be as in the statement of the proposition, and let P2 ∈ Ac
be an arbitrary 2-adic point. Define λ0 = f(P ) and µ2 = g(P2). We have
v(λ0) = v(c) + 1 by Lemma 2.17(ii) and v(µ2) = 0 by Lemma 2.21(ii).
It follows from Lemma 2.22 that there exists a unique P1 ∈ Ac such that
f(P1) = λ0 and g(P1) = µ2.

By Lemma 2.19 we have that the level of P along f is −1 and, by Lemma
2.23, the level of P1 along f is 0. Also by Lemma 2.23, the level of P1 along g
equals v(f(P1))−v(c) = 1 and level of P2 along g is v(f(P2))−v(c), which is
at least 1 by Lemma 2.21. The f -fibre through P1 is smooth since it equals
the f -fibre through P0, which is smooth by Corollary 2.14. Moreover, we
may assume that the g-fibre through P1 is smooth, since we may otherwise
replace P2 by a point lying arbitrarily close to it by Lemma 2.22. By Lemma
2.16, the rational points lie dense around P2.

2.7 Density in Bc,n for all n and in C ′c,n for

n ≥ 2

Assuming density of Vc(Q) in A′c, we show that the rational points on Vc
are dense in Bc,n for all n ≥ 1 and in C ′c,n for all n ≥ 2.
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Lemma 2.25. The following statements are true.

(i) Let P = (a0 : a1 : a2 : a3) be a point in A′c, where the ai are 2-adic
integers at least one of which is a unit. Write λ = f(P ). We have

v(a0 + a2) = v(c) + 1− v(λ), v(a0 − a2) = 1, v(a2
0 + a2

2) = 1

as well as

v(a1 + a3) = 1, v(a1 − a3) = 1− v(λ), v(a2
1 + a2

3) = 1.

(ii) Let P ∈ A′c and write λ = f(P ), µ = g(P ). Then we have v(λ) < 0
and v(µ) = v(c).

(iii) Let P = (a0 : a1 : a2 : a3) be a point in Bc,n for some integer n ≥ 1,
where the ai are 2-adic integers at least one of which is a unit. We
have

v(a0 − a2) = 1, v(a2
0 + a2

2) = 1

as well as

v(a1+a3) = v(a0+a2)−3n−v(c), v(a1−a3) = n+1, v(a2
1+a2

3) = 2n+1.

(iv) Let P ∈ Bc,n for some integer n ≥ 1. Write λ = f(P ). Then we have
v(λ) = −n.

(v) Let P = (a0 : a1 : a2 : a3) ∈ C ′c,n for some integer n ≥ 2, where the ai
are 2-adic integers at least one of which is a unit. We have

v(a0 + a2) = v(c) + 4n− 2, v(a0 − a2) = 1, v(a2
0 + a2

2) = 1

as well as

v(a1 + a3) = n, v(a1 − a3) = n, v(a2
1 + a2

3) = 2n.

(vi) Let P ∈ C ′c,n for some integer n ≥ 2. Write λ = f(P ). Then we have
v(λ) = 1− n.

Proof. Part (i) follows directly from Lemma 2.21(i). Part (ii) follows from
part (i). In part (iii), the first and fourth equality follow directly from the
definition of Bc,n. For the second and fifth, one uses that if a ∈ Z2, then
a2 ≡ 22v(a) (mod 22v(a)+3). The third equality follows from the others and
from (2.13). Part (iv) follows from part (iii). In part (v), the only non-
obvious equation is the first one: it follows from the others and (2.13). Part
(vi) follows from part (v).
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We have the following converse of Lemma 2.25(ii).

Lemma 2.26. Let λ0, µ0 ∈ Q2 satisfy v(λ0) < 0 and v(µ0) = v(c). Then
there exists a unique point P ∈ A′c such that f(P ) = λ0 and g(P ) = µ0.
Moreover, the dependence of P on λ0 and µ0 is continuous.

Proof. As in the proof of Lemma 2.22, we define

a =
λ0µ0

c
(λ2

0 + µ2
0).

Still as in the proof of Lemma 2.22, given a solution w0 to the equation

w3 + w + a = 0, (2.22)

we get the point in Vc(Q2) represented by the four-tuple

(λ0 + µ0 : w0 + 1 : −λ0 + µ0 : w0 − 1). (2.23)

Under the assumptions of the lemma, we have v(a) = 3v(λ0) < 0. If we put
w = λ0w

′, equation (2.22) transforms to

w′3 + λ−2
0 w′ + aλ−3

0 = 0, (2.24)

where aλ−3
0 ∈ Z∗2. By Hensel’s lemma, this has a solution w′0 ∈ Z∗2. More-

over, the three roots w′0, w
′
1, w

′
2 of (2.24) in Q2 reduce to the three zeros

of X3 + 1 in F2, only one of which lies in F2; therefore, w′0 is the unique
solution to (2.24) in Q2. We then have w0 = λ0w

′
0 with v(w0) = v(λ0) < 0.

The four-tuple (2.23) that we obtain has non-integral coordinates. Scaling
by λ−1

0 , we obtain the four-tuple

(µ0/λ0 + 1 : w′0 + λ−1
0 : µ0/λ0 − 1 : w′0 − λ−1

0 ),

which defines a point in U ′c, and one checks that it lies in A′c. For the
P whose existence was asserted in the lemma we may thus take P = P0.
Finally, the fact that P depends continuously on λ0 and µ0 follows as in the
proof of Lemma 2.18.

For a point P ∈ Vc(Q2) that is contained in A′c, in Bc,n for some n ≥ 1,
or in Cc,n for some n ≥ 2, we will identify f−1(f(P )) with the generic fibre

of the curve Êf(P ) given by (2.10) via (2.11). Since Lemma 2.25 shows that
v(f(P )) < 0 in each case, these identifications may be made. Accordingly,
the level along f of such a point P is well-defined.
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Lemma 2.27. Let P = (a0 : a1 : a2 : a3) ∈ Vc(Q2) be a point, where the ai
are 2-adic integers at least one of which is a unit.

(i) Assume that P ∈ A′c. The level of P along f is equal to 0.

(ii) Assume that P ∈ Bc,n for some n ≥ 1. The level of P along f is equal
to v(a1 + a3)− 1, which is an integer at least 2.

(iii) Assume that P ∈ C ′c,n for some n ≥ 2. The level of P along f is equal
to n− 1.

Proof. We write λ = f(P ). In all cases (i)–(iii), we obtain a representative

(ξ̂ : η̂ : ζ̂) of the image of P on Êλ by substituting xi = ai into the equations
(2.11). We have

v(ξ̂) = v

(
−a0 + a2

2λ4c
−
λ(a1 + a3) + λ4

c
(a0 + a2)

2(c2 − λ8)

)
. (2.25)

We will only need to compute this valuation for case (ii). We have
v
(
−a0+a2

2λ4c

)
= v(a0 + a2) − 1 − v(c) + 4n = v(a1 + a3) + 7n − 1 by Lemma

2.25(iii)–(iv). Both the terms λ(a1 + a3) and λ4

c
(a0 + a2) have valuation

equal to v(a1 + a3)− n by Lemma 2.25(iii)–(iv). Hence the second fraction
in (2.25) has valuation greater than or equal to v(a1 + a3) + 7n. Hence in

case (ii) we have v(ξ̂) = v(a1 + a3) + 7n− 1.
For

v(η̂) = v

(
a1 − a3

2λ6

)
,

we have in case (i) that v(η̂) = −7v(λ). In case (ii) we find v(η̂) = n+ 1−
(1− 6n) = 7n. In case (iii) we get v(η̂) = n− (1 + 6(1− n)) = 7n− 7.

Finally, we consider

v(ζ̂) = v

(
a1 + a3 + λ3

c
(a0 + a2)

2λ(c2 − λ8)

)
.

In case (i), we have v(a1 + a3) = 1 and v(λ
3

c
(a0 + a2)) = 2v(λ) + 1 < 1;

therefore, we have that v(ζ̂) = 2v(λ) + 1 − (1 + 9v(λ)) = −7v(λ). In
case (ii), both the terms a1 + a3 and λ3

c
(a0 + a2) have valuation equal to

v(a1 + a3), hence we have that v(ζ̂) ≥ v(a1 + a3) + 9n. In case (iii), we have
v(a1 + a3) = n and v(λ

3

c
(a0 + a2)) = 3(1−n)− v(c) + v(c) + 4n− 2 = n+ 1;

therefore, we have that v(ζ̂) = n− (10− 9n) = 10n− 10.
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We finish the proof for case (i) by observing that, in that case, we have

v(η̂/ζ̂) = 0. Therefore, in view of equation (2.10), we must have that the

level of P is 0. In case (ii) we see that v(η̂/ζ̂) ≤ −2n − v(a1 + a3), which

implies that the level of P is equal to v(ξ̂/ζ̂) = v(a1 + a3) − 1 ≥ 2, where
the last inequality follows from v(a1 +a3) ≥ 3. Finally, in case (iii), we have

v(η̂/ζ̂) = −3n+ 3, which shows that the level of P is equal to n− 1.

Proposition 2.28. Assume the density of Vc(Q) in A′c. The rational points
on Vc are dense in Bc,n for all integers n ≥ 1 and in C ′c,n for all integers
n ≥ 2.

Proof. Let P1 be any point in either Bc,n or C ′c,n, where n is as in the propo-
sition. Then if λ1 = f(P1), we have v(λ1) < 0 by Lemma 2.25(iv)+(vi).
By Lemma 2.26, there exists P0 ∈ A′c such that f(P0) = λ1 and g(P0) = c.
Note that P0 and P1 lie on the same fibre of f . Since the rational points on
Vc are dense in A′c, there is a sequence {P ′i}∞i=0 ⊂ Vc(Q) that converges to
P0. By Lemma 2.27, the level of P0 along f is 0 and the level of P1 along f
is at least 1. By Corollary 2.14, the f -fibre through P0 and P1 is smooth.
Hence we are done by Lemma 2.15.

2.8 Proof of the main theorem

Theorem 2.29. Let c be an element of the set

S = {2, 4, 6, 10, 12, 14, 18, 20, 22, 2/3, 2/5, 2/7, 2/9, 2/11} .

Then the set Vc(Q) lies dense in the set Vc(Q2), when this set is equipped
with the 2-adic topology.

Proof. In view of the discussion in section 2.1, it suffices to exhibit an
element Pc ∈ Vc(Q) that lies in Cc,1 for each c such that either c or 16/c lies
in S. This is done in the table below.
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Value of c Point Pc in Vc(Q) ∩ Cc,1
2 P2 = (489 : 684 : 577 : 662)
4 P4 = (61 : 168 : 237 : 58)
6 P6 = (67 : 16 : −37 : 42)
8 P8 = (257 : 22 : −223 : 124)
10 P10 = (1 : 4 : −7 : 2)
12 P12 = (359 : 112 : −361 : 106)
14 P14 = (11 : 4 : 3 : 6)
18 P18 = (9 : 16 : 33 : 2)
20 P20 = (309 : 132 : 37 : 166)
22 P22 = (347 : 76 : −269 : 146)
24 P24 = (11 : 308 : −533 : 274)
40 P40 = (29 : 12 : −3 : 14)
56 P56 = (43 : 68 : 139 : 62)
72 P72 = (269 : 52 : 109 : 94)
88 P88 = (1333 : 172 : 1109 : 374)
2/3 P2/3 = (39 : 4 : 31 : 38)
2/5 P2/5 = (31 : 8 : −25 : 34)
2/7 P2/7 = (349 : 124 : −347 : 194)
2/9 P2/9 = (3 : 16 : 11 : 2)
2/11 P2/11 = (179 : 76 : −53 : 274)
4/3 P4/3 = (171 : 88 : −101 : 158)
4/5 P4/5 = (79 : 452 : 415 : 262)
8/3 P8/3 = (19 : 4 : −13 : 14)
8/5 P8/5 = (5 : 24 : −27 : 2)
8/7 P8/7 = (599 : 2732 : 1591 : 2662)
8/9 P8/9 = (269 : 156 : 109 : 282)
8/11 P8/11 = (391 : 152 : −281 : 394)

Proof of Theorem 2.1. This follows from Theorem 2.29. �



Chapter 3

Density results for Kummer
surfaces

In the preprint [38], Sir Peter Swinnerton-Dyer has given two non-singular
diagonal quartic surfaces over Q together with a proof that their rational
points lie dense in the space of 2-adic points. A detailed proof of Swinnerton-
Dyer’s theorem was given in chapter 2. To the author’s best knowledge,
Swinnerton-Dyer’s result provides the first proof of p-adic density of rational
points on any K3 surface over Q, for any prime number p. The goal of this
chapter is to extend the results of Swinnerton-Dyer to all prime numbers
p, giving for each p an infinite number of K3 surfaces over Q on which the
rational points form a p-adically dense set.

The K3 surfaces for which we will obtain p-adic density results are Kum-
mer surfaces. For an abelian variety B over a field of characteristic different
from 2, let Km(B) denote the Kummer variety of B. It is the blow-up of
the quotient B/ 〈−1〉 in the image of the 2-torsion of B. When B is an
abelian variety of dimension 2, the surface Km(B) is a K3 surface.

We will establish the following results.

Theorem 3.1. Let p be a prime number. Then there exist infinitely many
pairwise non-isomorphic Kummer surfaces X of the form Km(E×E), with
E an elliptic curve over Q, such that X(Q) is dense in X(Qp)×X(R).

Theorem 3.2. Let p and q be distinct prime numbers not equal to 3. Then
there exist infinitely many pairwise non-isomorphic Kummer surfaces X of
the form Km(E × E), with E an elliptic curve over Q, such that X(Q) is
dense in X(Qp)×X(Qq)×X(R).
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Theorem 3.3. There exists an elliptic curve E over Q and a set S of 331
prime numbers, such that, if X is the Kummer surface Km(E×E), we have
X(Q) dense in

∏
p∈S X(Qp).

Theorem 3.4. There exists an elliptic curve E over Q such that the set of
rational points of Km(E×E) lies dense in the space of p-adic points for all
prime numbers p with p ≡ 3 (mod 4) and p > 7.

Theorem 3.5. For an elliptic curve E over Q such that #E(Q)[2] = 2, the
set of rational points of Km(E ×E) lies dense in the space of p-adic points
for infinitely many p.

The proofs will be given in the present chapter. The proofs of Theorems
3.1 and 3.2 are given at the end of Section 3.4. Theorem 3.3 is proven in
Section 3.5. Theorem 3.4 is proven in Section 3.6. Theorem 3.5 is proven
in Section 3.7.

We will treat the archimedean completion R of Q as well as the non-
archimedean completions Qp for every prime p. Our terminology will be
such that, for every number field k, we will take a prime of k to mean a
place of k, i.e. an equivalence class of absolute values on Q, two absolute
values |·|1 and |·|2 being considered equivalent if and only if there exists a
real number e such that |x|1 = |x|e2 for all x ∈ k. We will take a prime to
mean either a prime of Q, in the sense defined above, or a prime number
p ∈ Z≥0.

3.1 Birational invariance of density results

By a variety over a field k we shall mean a scheme that is separated and
of finite type over k. For a number field k and a prime v of k, we denote
by kv the completion of k at v. If X is a variety over a number field k
and S is a set of primes of k, we write X(S) =

∏
v∈S X(kv) to shorten

notation. Unless stated otherwise, we will consider X(kv) as endowed with
the analytic topology and X(S) with the product topology.

Lemma 3.6. Let X be a smooth geometrically integral variety over a num-
ber field k and let Y ⊂ X be a non-empty Zariski open subset. If S is a
finite set of primes of k and U ⊂ X(S) is a non-empty open subset, then
U ∩ Y (S) is non-empty.

Proof. By definition of the product topology, the set U must contain a set∏
v∈S Uv with the Uv ⊂ X(kv) non-empty open sets. It is therefore enough
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to show that if U ⊂ X(kv) is a non-empty open subset for some fixed v,
then U cannot be contained in Z(kv), where we define Z as the complement
of Y in X.

Suppose that U ⊂ Z(kv). We choose a point z0 ∈ U ∩ Z(kv). Let
t1, . . . , td denote a set of local parameters of X at z0, where d is the dimen-
sion of X. By smoothness of X and the implicit function theorem, there
exists a neighborhood U ′ of z0 contained in U so that the map

φ : U ′ → kdv
u 7→ (t1(u), . . . , td(u))

is a diffeomorphism onto its image. Since Z is a proper closed subset of X,
there exists a function g ∈ k(X) defined at z0 that vanishes on Z. We view g
as an element of the power series ring k[[t1, . . . , td]] via the embedding of the
local ring OX,z0 into its completion k[[t1, . . . , td]]. We have that g converges
on an open neighborhood of z0 and by assumption, it must vanish on the
non-empty open set φ(U ′) of kdv . But a power series that vanishes on an open
neighborhood of (0, . . . , 0) ∈ kdv must be zero, which is a contradiction.

If f : Y 99K X is a rational map between varieties over a number field k
and ∆ ⊂ Y (S) is some subset for some set S of primes of k, then we define
the subset f(∆) of X(S) as

f(∆) = {f(t) : all t ∈ ∆ for which f(t) is defined} .

Proposition 3.7. Let X and Y be geometrically integral varieties over
a number field k and let S be a finite set of primes of k. Assume that
f : Y 99K X is a birational map, and that Γ ⊂ X(S) and ∆ ⊂ Y (S) are
subsets such that f(∆) ⊂ Γ and f−1(Γ) ⊂ ∆. Then Γ is dense in X(S) if
and only if ∆ is dense in Y (S).

Proof. The proof proceeds in four steps.
Step 0. By restricting the domain of f , we may assume that f is the

inclusion of a non-empty Zariski open subset Y of X. The conditions
f(∆) ⊂ Γ and f−1(Γ) ⊂ ∆ now mean that f identifies ∆ with a subset
of Γ whose complement lies outside f(Y (S)).

Step 1. We claim that if Γ ⊂ X(S) is dense, then ∆ ⊂ Y (S) is
dense. Since the v-adic topology is finer than the Zariski topology, the
map f : Y (S)→ X(S) is the inclusion of an open subset. Therefore if Γ is
dense in X(S), then ∆ = Γ ∩ Y (S) is dense in Y (S).
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Step 2. We claim that, under the assumption that X is smooth over k,
the following is true: if ∆ ⊂ Y (S) is dense, then Γ ⊂ X(S) is dense. Let
U ⊂ X(S) be a non-empty open subset. We want to show that it contains
the image of an element of ∆. By Lemma 3.6, the open subset U ∩ f(Y (S))
of f(Y (S)) is non-empty, and by the assumption that ∆ ⊂ Y (S) is dense it
must contain the image of an element of ∆. This proves the claim.

Step 3. We claim that if ∆ ⊂ Y (S) is dense, then Γ ⊂ X(S) is dense,
now without the smoothness assumption on X. For this step we combine
the results of Step 1 and 2. By step 1, we may shrink Y if necessary; in
particular, we may assume that Y is smooth over k. Now by resolution of
singularities, there exists a smooth variety X̃ over k, a morphism π : X̃ →
X, and an embedding f̃ : Y ↪→ X̃, such that the diagram

Y �
� f̃

// X̃

π

��

Y �
� f

// X

is commutative. So if U ⊂ X(S) is a non-empty open subset, then π−1(U) ⊂
X̃(S) is also a non-empty open subset. By the argument of the previous

paragraph, the open subset U ∩ f̃(Y (S)) of f̃(Y (S)) is then non-empty. It
follows from the diagram that U ∩ f(Y (S)) is also non-empty. Now arguing
as in Step 2, we finish the proof.

Corollary 3.8. Let S be a set of primes and let X and Y be geometrically
integral varieties over Q that are birational to each other. Then X(Q) is
dense in

∏
p∈S X(Qp) if and only if Y (Q) is dense in

∏
p∈S Y (Qp).

3.2 Procyclic and topologically cyclic groups

In this section, we recall the definitions of profinite and procyclic groups,
and gather some facts about these. We will also introduce “topologically
cyclic” groups (Definition 3.10). This term is non-standard, but will be very
useful to us.

Definition 3.9. A topological group G is called profinite if it is an inverse
limit

G = lim←−
i∈I

Gi,
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where the Gi are finite, and the topology on G is the coarsest topology such
that the quotient maps G → Gi are continuous. A topological group G is
called procyclic if it is an inverse limit

G = lim←−
i∈I

Ci,

where the Ci are finite cyclic, and the topology on G is the coarsest topology
such that the quotient maps G→ Ci are continuous.

Definition 3.10. If G is a topological group, we call a set V ⊂ G a generator
set of G if the closure of 〈V 〉 is equal to G. We will call g ∈ G a topological
generator of G if {g} is a generator set of G. If G has a topological generator,
then we call G topologically cyclic.

Lemma 3.11. A profinite group is procyclic if and only if it is topologically
cyclic.

Proof. Let G be a profinite group. By Corollary 1.1.8(a) of [26], we may
assume that G is the limit of an inverse system (Gi, tji) where the Gi are
finite and the transition maps tji : Gj → Gi are surjective. The result now
follows from Lemma 2.5.3 of [26].

In general, the topologically cyclic groups do not define the same class of
topological groups as the procyclic groups. This is shown by the example of
the circle R/Z, which is generated topologically by the class of any irrational
real number. It does not have any non-trivial finite quotients, since it is
divisible. Hence it is certainly not profinite.

It is very easy to give a complete classification of procyclic groups. We
define a supernatural number to be a formal product∏

p

pn(p),

where the product is taken over all prime numbers p, and where 0 ≤ n(p) ≤
∞ for each p. The natural numbers (not counting zero) are those supernat-
ural numbers

∏
p p

n(p) with n(p) < ∞ for each p and n(p) = 0 for almost
all p. Note that with this definition, there is an obvious division relation on
the set of supernatural numbers that extends the ordinary one on the nat-
ural numbers. We may therefore take greatest common divisors and least
common multiples of supernatural numbers, and it makes sense to describe
two supernatural numbers as being coprime or not.
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Definition 3.12. The order of a profinite group G is the least common
multiple of the finite supernatural numbers (G : H), where H runs through
the open normal subgroups of G.

Note that if G1 is profinite of order n1 and G2 is profinite of order n2,
then G1×G2 is profinite of order n1n2. A procyclic group is determined up
to isomorphism by its order.

Proposition 3.13. The following statements are true.

(i) For each integer n ∈ Z≥0, the discrete group Z/pnZ is the unique
procyclic group of order pn, and the group Zp equipped with the p-adic
topology is the unique procyclic group of order p∞.

(ii) For any supernatural number σ =
∏

p p
n(p), there is a unique procyclic

group G of order σ. Moreover, the group G is the direct product
∏

pGp,
where the product is taken over all prime numbers p, and where Gp is
the unique procyclic group of order pn(p).

Proof. This follows from Theorem 2.7.1 from [26] and the discussion follow-
ing immediately afterwards.

As a corollary, we note:

Corollary 3.14. Let G1 be procyclic of order n1 and let G2 be procyclic of
order n2. If n1 and n2 are coprime, then G1 ×G2 is again procyclic.

Proof. We can write G1 and G2 as products of procyclic groups of order pn.
Since n1 and n2 are coprime, the set of primes appearing in the product for
G1 is disjoint from the set of primes appearing in the product for G2 by
Proposition 3.13(ii). Again by Proposition 3.13(ii), the product of G1 and
G2 is procyclic.

In the rest of the chapter, we will be mainly concerned with topologically
cyclic groups. The following result complements Corollary 3.14.

Proposition 3.15. The following statements are true.

(i) Let G1 be procyclic and let G2 be R/Z. Then G1 ×G2 is topologically
cyclic.

(ii) Let G1 be procyclic of order coprime to 2, and let G2 be R/Z×Z/2Z.
Then G1 ×G2 is topologically cyclic.



3.3. Elliptic curves with good twists 55

Proof. For part (i), we let gi be a topological generator of Gi for i ∈ {1, 2}.
Write G = G1 × G2 and g = (g1, g2). We prove that if U ⊂ G is an open
subset, then some multiple of g lies in U . By shrinking U we may suppose
it is of the form U = U1×U2 with Ui ⊂ Gi open for i ∈ {1, 2}. Furthermore,
U1 contains a translate of some open subgroup H ⊂ G1. Therefore, it is
enough to see that the quotient map

G→ G1/H ×G2

has dense image, where the first factor is a group of finite order n carrying
the discrete topology. Since g1 is a topological generator of G1, for every
coset c in G1/H there exists an m ∈ Z such that (m+ kn)g1 maps to c for
all k ∈ Z. But the set

{(m+ kn)g2 : k ∈ Z}

lies dense in G2. Hence the image of the set of multiples of g is a dense set
in G.

Part (ii) follows from part (i) by taking G′1 = G1×Z/2Z and G′2 = R/Z.
We have G1 × G2 = G′1 × G′2, and G′1 is procyclic by Corollary 3.14. Now
apply part (i) to G′1 and G′2.

3.3 Elliptic curves with good twists

3.3.1 Notation and definitions

For the rest of this chapter, we fix an elliptic curve E over Q. Most of our
results will therefore be of the form “Assume that E satisfies (some list of
properties), then (some conclusion) holds.” We assume that E is given by
the affine equation y2 = f(x), with f(x) a separable polynomial of degree
3. Let us denote the complement of E[2] in E by E◦. If c ∈ k∗, then by Ec

we denote the quadratic twist of E by c, and we assume that it is given by
the equation cy2 = f(x).

The inversion −1 on each twist Ec restricts to an involution of (Ec)◦,
which we will also denote by −1. For c in a field ` ⊃ k, we let Ac be the
variety (Ec)◦ × (Ec)◦ over `. We set A = A1. The Ac are thus non-empty
Zariski open subsets of the abelian surfaces Ec×Ec. The quotient A/ 〈−1〉,
where −1 acts diagonally, is a smooth subvariety Y of X = Km(E × E).
We will identify the variety Y with the subvariety of A3

Q, with coordinates
(x1, x2, z), given by

z2 = f(x1)f(x2), z 6= 0. (3.1)
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With this choice of model, the maps qc defined by

qc : Ac → Y

((x1, y1), (x2, y2)) 7→ (x1, x2, cy1y2)

are the quotient maps for the involution −1 on Ac. Note that q1 : A → Y
is obtained by restricting the quotient rational map E × E 99K X to A.

3.3.2 Partition of the rational points of a Kummer
surface

The role played by the varieties Ac, the morphisms qc and the open subset
Y ⊂ X is explained by the following lemma. It is stated very generally, but
we will only apply it for k = Q and ` equal either to Qp for some prime
number p or to R.

Lemma 3.16. Let k be a field containing Q, and let k ⊂ ` be a field
extension.

(i) For every set Γ(`) of coset representatives of `∗/`∗2, we have

Y (`) =
∐
c∈Γ(`)

qc(A
c(`)).

Moreover, a point (ξ1, ξ2, ζ) ∈ Y (`) lies in qc(A
c(`)) if and only if

c ∈ f(ξ1)`∗2.

(ii) The maps qc induce a natural bijection∐
c∈Γ(`)

qc :
∐
c∈Γ(`)

Ac(`)/ 〈−1〉 ∼→ Y (`).

Proof. The second assertion follows from the first, since

qc : Ac → Y

is the quotient map for the involution −1 on Ac. For the first assertion,
it suffices to show the following: for every P ∈ Y (`), there exists a c ∈ `∗
such that P ∈ qc(Ac(`)), and moreover c is unique up to multiplication by
a square in `∗. Let P = (ξ1, ξ2, ζ) be an element of Y (`). There is a unique
element c ∈ Γ(`) such that f(ξ1)/c = α2 for some α ∈ `∗. Then (ξ1, α) and
(ξ2, αζ/f(ξ1)) are elements of (Ec)◦(`); furthermore the point

((ξ1, α), (ξ2, αζ/f(ξ1)) ∈ Ac(`)
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maps to P under qc. Now for the uniqueness of c up to squares: an element
in Ac(`) that maps to P by qc is of the form ((ξ1, η1), (ξ2, η2)), and from
(ξ1, η1) ∈ (Ec)◦(`) it follows that cη2

1 = f(ξ1), so we have c ∈ f(ξ1)`∗2. This
ends the proof.

Remark 3.17. Since A has a natural structure of Z/2Z-torsor over Y , part
(i) of Lemma 3.16 is a special case of [33, eq. (2.12)].

3.3.3 Elliptic curves with good twists

We begin by stating the most important definition of this chapter.

Definition 3.18. Let S be a set of primes.

(i) For (dp) ∈
∏

p∈S Q∗p and c ∈ Q∗, we call Ec a good twist of E with

respect to (dp) and S if for each p ∈ S we have c ∈ dpQ∗2p , and Ec(Q)
is dense in

∏
p∈S E

c(Qp).

(ii) We say E has good twists if, for all (dp) ∈
∏

p∈S Q∗p, there is c ∈ Q∗
such that Ec is a good twist of E with respect to (dp) and S.

If S = {p} for some prime p, and if E has good twists with respect to
(dp) and S, we will also say that E has good twists with respect to dp and
p, and if E has good twists with respect to S = {p}, we will also say that
E has good twists with respect to p.

Theorem 3.20 will show: if the elliptic curve E over Q has good twists
with respect to S, and we have X = Km(E × E), then X(Q) is dense in∏

p∈S X(Qp). For all primes p, we will give many examples of elliptic curves
with good twists with respect to p.

Remark 3.19. The condition c ∈ dpQ∗2p appearing in Definition 3.18 is
equivalent to the twists Ec and Edp , considered as elliptic curves over Qp,
being isomorphic over Qp. We may thus rephrase the fact of E having good
twists with respect to S as follows: for all collections of twists {Edp}p∈S of
E over Qp, there exists a twist Ec of E over Q that is isomorphic over Qp

to Edp for each p ∈ S, for which Ec(Q) is dense in
∏

p∈S E
c(Qp).

3.3.4 From good twists to density results

Theorem 3.20. Let S be a set of primes and let E be an elliptic curve over
Q that has good twists with respect to S. Let X = Km(E×E). Then X(Q)
is dense in

∏
p∈S X(Qp).
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Proof. Let P = (Pp)p∈S be a point of
∏

p∈S Y (Qp). Since E has good twists

with respect to S, there exists a c ∈ Q∗ such that c ∈ f(x1(Pp))Q∗2p for each
p ∈ S and Ec(Q) is dense in

∏
p∈S E

c(Qp). By Lemma 3.16, we have that
for each p ∈ S, the point Pp is in the image of the map

qc : Ac(Qp)→ Y (Qp),

hence P is in the image of the map

qc,S :
∏
p∈S

Ac(Qp)→
∏
p∈S

Y (Qp).

Since Ac(Q) lies dense in
∏

p∈S A
c(Qp), the set qc,S(Ac(Q)) lies dense around

P .

3.3.5 A partial converse to Theorem 3.20

In this section, we provide a converse to Theorem 3.20 in the case where
S = {p} and p > 2 (see Proposition 3.23). We need a lemma first.

Lemma 3.21. Let p be a prime and let E be an elliptic curve over Qp.
Then E (Qp) can be generated topologically by three elements. If p > 2, then
E (Qp) can be generated topologically by two elements.

Proof. By Proposition 1.14(i), we have a topological isomorphism

E (Qp) ∼= Zp ×G

for some finite abelian group G. It follows from [32, Theorem VI.6.1] that,
for every prime `, the `-torsion subgroup G[`] = E (Qp)[`] is generated by
at most 2 elements. Hence by the structure theorem for finitely generated
abelian groups we have G ∼= C1 × C2, with C1 and C2 cyclic groups for
which the order of C1 divides that of C2. It is clear that the elements
(1, 0, 0), (0, 1, 0) and (0, 0, 1) are topological generators of Zp × C1 × C2.

For the second part, note that G[p] = E (Qp)[p] cannot equal E (Qp)[p],
since Qp(E [p]) contains a primitive p-th root of unity ζp /∈ Qp by the exis-
tence of the Weil pairing. Therefore, the order of C1 is coprime to p. Then
if we define the elements P and Q in Zp × C1 × C2 to be P = (1, 1, 0) and
Q = (0, 0, 1), the elements P and Q correspond to topological generators of
E (Qp).
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Remark 3.22. We give an example showing that the second part of Lemma
3.21 fails for p = 2. Take the elliptic curve E over Q2 defined by y2 = x3−x.
It has CM over Q2(

√
−1), so has potentially good reduction. Since the

reduction is bad, it must be additive. We have E0(Q2) ∼= Z2 by Theorem
1.1, and clearly E (Q2)[2] is isomorphic to the Klein four-group. Hence by
Proposition 1.14(ii) we have

E (Q2) ∼= Z2 × C1 × C2,

where C1 and C2 are cyclic groups of even order. Hence E (Q2) needs 3
elements to generate it topologically.

Proposition 3.23. If X(Q) is dense in X(Qp) for some prime p greater
than 2, then E has good twists with respect to p.

Proof. Let d ∈ Q∗p be arbitrary, we will show that E has a good twist with
respect to d and p. By Lemma 3.21, we may choose elements P,Q ∈ Ed(Qp)
such that 〈P,Q〉 is dense in Ed(Qp). We may assume that P and Q are not
contained in Ed(Qp)[2]. Let R ∈ X(Qp) be the image of the point (P,Q)
under the map

qd : Ad → Y.

If X(Q) is dense in X(Qp), then by Corollary 3.8 there exists a sequence
{Ri}∞i=1 ⊂ Y (Q) converging to R. By Lemma 3.16 there are ci ∈ Q∗ and
(Pi, Qi) ∈ Aci(Q) such that Ri = qci((Pi, Qi)). Again by Lemma 3.16, we
have ci ∈ f(x1(Ri))Q∗2p and d ∈ f(x1(R))Q∗2p , so we have ci ≡ d (mod Q∗2p )
for i sufficiently large. We claim that for these values of i, we have that
〈Pi, Qi〉 is dense in Eci(Qp), and therefore that Eci(Q) is dense in Eci(Qp).
For these values of i, we fix isomorphisms over Qp

φi : E
ci ∼→ Ed

The images of Pi and Qi under ±φi converge to ±P and ±Q. Since P
and Q are topological generators of Ec(Qp), we have that Pi and Qi are
topological generators of Eci(Qp).

3.4 Density results for Kummer surfaces

In this section, we give sufficient conditions on E to have good twists with
respect to a prime p, and we show that there are many cases in which these
conditions are satisfied. Secondly, we give sufficient criteria for E and a set
of primes S that imply that E has good twists with respect to S. At the
end of this section, we will derive Theorems 3.1 and 3.2 from these results.
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3.4.1 Topologically cyclic groups and density results

Recall that E is given by y2 = f(x), with f separable and of degree 3.

Lemma 3.24. Assume that f(x) = x3 + ax+ b. Let p be a prime number.

(i) Assume p = 2, v2(a) > 0, and v2(b) = 1. Then for all d ∈ Q∗2, the
topological group Ed(Q2) is procyclic of order 2∞.

(ii) Assume p = 3, v3(a) = 1, and v3(b) > 1. Then for all d ∈ Q∗3, the
topological group Ed(Q3) is procyclic of order 2 · 3∞.

(iii) Assume p > 3, vp(a) > 0, vp(b) = 1. If p = 5, assume a 6≡ ±10
(mod 25); if p = 7, assume b 6≡ ±14 (mod 49). Then for all d ∈ Q∗p,
the topological group Ed(Qp) is procyclic of order p∞ or 3 · p∞. Both
orders occur for some d.

(iv) Assume p > 3, vp(a) = 1, vp(b) > 1. If p = 5, assume a 6≡ ±10
(mod 25). Then for all d ∈ Q∗p, the topological group Ed(Qp) is pro-
cyclic of order 2 · p∞.

(v) Assume p > 3, vp(a) > 1, vp(b) = 2. Then for all d ∈ Q∗p, the
topological group Ed(Qp) is procyclic of order p∞ or 3 · p∞. Both
orders occur for some d.

Proof. Without loss of generality, we assume that d satisfies vp(d) ∈ {0, 1}.
For the j-invariant j(E) of E, we have

j(E) = 28 · 33 · a3

4a3 + 27b2
, (3.2)

and the discriminant ∆d of the model Ed of Ed over Zp given by y2 =
x3 + ad2x+ bd3 is

∆d = −16d6(4a3 + 27b2).

In all cases, we have vp(j(E)) ≥ 0 and vp(∆d) > 0. This implies that the
reduction type of E at p is potentially good, hence either good or additive;
moreover, if Ed is a minimal model of E at p, then the reduction of E
must be additive. In case (i), Tate’s algorithm gives the following: firstly,
Ed is a minimal model of Ed for all d; secondly, if v2(d) = 0 then Ed has
Kodaira type II, if v2(d) = 1 and v2(a) = 1 then Ed has Kodaira type III∗, if
v2(d) = 1 and v2(a) > 1 then Ed has Kodaira type II∗. In cases (ii)-(v), we
have that vp(∆d) is strictly less than 12. Hence in each case, the Weierstrass
curve Ed is a minimal model of Ed, so Ed has additive reduction in all cases.

Since Ed has additive reduction for all d, it follows from [32, Theorem
C.15.1] that Φ = Ed(Qp)/E

d
0(Qp), the component group of the special fibre
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of the Néron model, is a group of order at most 4. It follows from Theorem
1.1 that Ed

0(Qp) is topologically isomorphic to Zp in each of the cases (i)-(v)
and for all d. We have the tautological exact sequence

0→ Ed
0(Qp)→ Ed(Qp)→ Φ→ 0. (3.3)

Applying Proposition 1.14(ii) to (3.3) gives that Ed(Qp) is topologically
isomorphic to a subgroup of Zp×Φ′ with Φ′ a subgroup of Φ. To determine
Φ′, the following strategy may be followed: first one determines the Kodaira
type of Ed at p to get an upper bound for Φ, leaving only a finite number
of possibilities for Φ′, and then one uses the division polynomials of Ed to
identify the isomorphism type of Φ′.

We prove part (i). By the fact that the Kodaira type of Ed is II, III∗

or II∗, the group Φ is of order at most 2. Hence we are done if we can
show Ed(Q2)[2] = 0 for all d. We do this with the 2-division polynomial ψ2

of Ed, which is ψ2 = x3 + ad2x + bd3, whose Newton polygon has vertices
(0, 1 + 3vp(d)), (1, vp(a) + 2vp(d)), and (3, 0), which shows that its three
roots in Q2 have valuation 1/3 + vp(d), so do not lie in Q2.

We prove part (ii). Tate’s algorithm gives that the Kodaira type of Ed

is III if v3(d) = 0 and III∗ if v3(d) = 1. Hence Φ is of order at most 2.
We use the 2-division polynomial ψ2 = x3 + ad2x+ bd3 of Ed to prove that
Ed(Q3)[2] ∼= Z/2Z for all d. The Newton polygon of ψ2 shows that two of
its roots in Q3 have valuation 1/2 + vp(d), so do not lie in Q3. The third
one is the unique one with valuation vp(b) + vp(d)− 1, so by Galois theory
it must lie in Q3.

In parts (iii)-(v) we have p > 3. Since Ed has potentially good reduction,
and p is different from 2 and 3, the table from [32, C.15] enables us to
determine the Kodaira type of Ed at p, and hence an upper bound for Φ,
just by knowing vp(∆d).

In case (iii), we have to show that Ed(Qp)[2] = 0 for all d, while both
Ed(Qp)[3] = 0 for some d and Ed(Qp)[3] ∼= Z/3Z for some d. We find from
the table in [32, C.15] that the curve Ed has Kodaira type II if vp(d) = 0
and Kodaira type IV∗ if vp(d) = 1. In the first case, the component group is
trivial, so Ed(Qp) = Ed

0(Qp) ∼= Zp is procyclic of order p∞ as claimed. In the
second case, the group Φ has order 1 or 3, so Ed(Qp) is isomorphic to either
Zp or Zp × Z/3Z, so indeed procyclic of order p∞ or 3 · p∞. We show that
both possibilities occur. We therefore investigate the 3-division polynomial
ψd3 of Ed. Its Newton polygon shows that ψd3 has a unique zero xd ∈ Q2 of
valuation 2vp(a) + vp(d) − 1, which is therefore defined over Qp, while the
remaining three roots have valuation 1/3 + vp(d), so lie outside of Qp. We
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conclude: if x3
d + ad2xd + bd3 is a square in Q∗p, we have Ed(Qp)[3] ∼= Z/3Z;

otherwise we have Ed(Qp)[3] = 0. Note that there indeed exists d ∈ Q∗p
such that we have x3

d + ad2xd + bd3 ∈ Q∗2p , since we have

x3
d + ad2xd + bd3 = d3(x3

1 + ax1 + b),

where x1 ∈ Q∗p is the unique zero of ψ1
3 in Qp.

In case (iv), the curve Ed has Kodaira type III if vp(d) = 0 and Kodaira
type III∗ if vp(d) = 1. In both cases, we find from the table in [32, C.15]
that Φ has order 1 or 2, and that therefore Ed(Qp) is isomorphic to either
Zp or Zp × Z/2Z. To show that only the latter possibility occurs, we use
the 2-division polynomial x3 + ad2x+ bd3 of Ed. We find from the Newton
polygon that there are two roots with valuation 1/2 + vp(d), and one with
valuation vp(b) + vp(d)− 1, which therefore lies in Qp.

In case (v), the curve Ed has Kodaira type IV if vp(d) = 0 and Kodaira
type II∗ if vp(d) = 1. As in case (iii), we find from the table that Φ has order
1 or 2 if vp(d) = 0, and order 1 if vp(d) = 1, which implies that Ed(Qp) is
isomorphic to Zp or Zp × Z/3Z if vp(d) = 0 and to Zp if vp(d) = 1. As in
case (iii), we use the Newton polygon of the 3-division polynomial of Ed to
show that it has a unique zero xd ∈ Q2 of valuation 2vp(a)+vp(d)−1, which
is therefore defined over Qp, while the remaining three roots have valuation
1/3 + vp(d), so lie outside of Qp. The same argument as the one given for
case (iii) shows that both Ed(Qp) ∼= Zp and Ed(Qp) ∼= Zp ×Z/3Z occur for
suitable d.

Lemma 3.25. For all d ∈ R, the group Ed(R) is topologically isomorphic
to R/Z × (Z/2Z)e, where e ∈ {0, 1}. Furthermore, we have e = 0 if and
only if f has only one real root.

Proof. The first assertion is proven in [31, V.2.3.1]. The second one is
standard.

Lemma 3.26. Let S be a finite set of primes and let (dp) ∈
∏

p∈S Q∗p. For

all p ∈ S, let (ξp, ηp) be in Edp(Qp) and let γp and εp be real numbers. Then
there exists a non-zero rational number c, such that for all p ∈ S we have
vp(c− dp) > γp, and such that there exists a point (ξ, η) ∈ Ec(Q) satisfying
vp(ξ − ξp) > εp for all p ∈ S.

Proof. We may assume that ηp 6= 0 for all p ∈ S. By the approximation
theorem, there exist ξ and η with η 6= 0 in Q such that, for all p ∈ S, we
have vp(ξ − ξp) > εp and vp(η − ηp) > εp. Define c = f(ξ)/η2. Since for all
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p ∈ S we have f(ξp)/η
2
p = dp, we may assume that c satisfies vp(c−dp) > γp

for all p ∈ S by choosing both ξ closer to ξp and η closer to ηp if necessary.
Now the twist Ec of E, given by the equation (f(ξ)/η2)y2 = f(x), trivially
contains the point (ξ, η), and both c and ξ satisfy the requirements.

Proposition 3.27. Let E be an elliptic curve over Q and let S be a finite
set of primes. Assume that

∏
p∈S E

dp(Qp) is topologically cyclic for all tuples
(dp)p ∈

∏
p∈S Q∗p. Then E has good twists with respect to S.

Proof. It suffices to show that for all (dp) ∈
∏

p∈S Q∗p, there exists c ∈
Q∗, such that for each p ∈ S we have c ∈ dpQ∗2p , and Ec(Q) is dense in∏

p∈S E
c(Qp).

We choose (dp) ∈
∏

p∈S Q∗p. Let P = ((ξp, ηp))p be a topological genera-

tor of
∏

p∈S E
dp(Qp). By the previous proposition, there exists a twist Ec of

E, with c arbitrarily close to each of the dp, such that there exists a point
(ξ, η) ∈ Ec(Q) with ξ arbitrarily close to each of the ξp. If c is sufficiently
close to each of the dp, we have c ∈ dpQ∗2p ; we may therefore assume that
we can choose αp ∈ Q∗2p such that α2

p = c/dp for each p.
We now claim that, if ξ is sufficiently close to each of the ξp, then (ξ, η)

is a topological generator of
∏

p∈S E
c(Qp), and hence Ec(Q) lies dense in∏

p∈S E
c(Qp). For each p ∈ S, there is an isomorphism defined over Qp

ψp : Ec → Edp

(x, y) 7→ (x, αpy)

Hence the ψp combine to give an isomorphism of topological groups

ψ :
∏
p∈S

Ec(Qp)
∼→
∏
p∈S

Edp(Qp).

Under ψ, the point ((ξ, η))p maps to a point P ′ = ((ξ, η′p))p, for certain
(η′p) ∈

∏
p∈S Qp. If ξ is sufficiently close to the ξp, we can make P ′ as close

as we want to the image of P under an automorphism of
∏

p∈S E
dp(Qp) that

acts on the ηp by multiplication by ±1; hence for ξ sufficiently close to the
ξp, the point P ′ is a topological generator of

∏
p∈S E

dp(Qp), and so (ξ, η) is
a topological generator of

∏
p∈S E

c(Qp).

3.4.2 Proof of Theorems 3.1–3.2

Lemma 3.28. If E1 and E2 are elliptic curves over Q that do not admit
complex multiplication over Q, and for which Km(E1×E1) is Q-isomorphic
to Km(E2 × E2), then E1 and E2 are isogenous over Q.



64 Chapter 3. Density results for Kummer surfaces

Proof. Let E1 and E2 be as in the statement of the lemma. By [34, eq.
(10)], we have that NS(E1×E1) has rank 3, and is generated by the classes
of D1 = E1 × {0}, D2 = {0} × E1, and D3, which is the diagonal copy of
E1 inside E1 × E1. The discriminant of NS(E1 × E1) equals

det

 D2
1 D1D2 D1D3

D1D2 D2
2 D2D3

D1D3 D2D3 D2
3

 = det

 0 1 1
1 0 1
1 1 0

 = 2.

Theorem 0.1 of [15] says that if B1 and B2 are abelian surfaces over Q such
that NS(B1) has rank 3 and has square-free discriminant, and such that
Km(B1) ∼= Km(B2), then B2 is isomorphic to either B1 or its dual. If we
apply this result with Bi equal to Ei×Ei base-changed to Q for i ∈ {1, 2},
and use that the Ei × Ei are their own duals, we find that E1 × E1 is
isomorphic to E2×E2 over Q. The Poincaré Complete Reducibility Theorem
[23, p. 173] implies that E1 is isogenous to E2 over Q.

Lemma 3.29. Let E1 be an elliptic curve over Q that does not admit com-
plex multiplication over Q. Then there are only finitely many elliptic curves
E2 over Q up to Q-isomorphism such that E1 and E2 are isogenous over Q.

Proof. Let E1 be as in the statement of the lemma. The proof is an ap-
plication of [32, Corollary IX.6.2], which says that there are only finitely
many elliptic curves E2 over Q up to Q-isomorphism such that E1 and E2

are isogenous over Q.
Let E2 be an elliptic curve over Q and let φ : E1 → E2 be a Q-isogeny.

By [32, Corollary IX.6.2], it suffices to show that there exists a quadratic
twist E ′2 of E2 over Q such that E1 and E ′2 are isogenous over Q. Let
φ : E2 → E1 be the dual isogeny to φ. Then there exists an integer n with
φ ◦ φ = [n]E2 , where [n]Ei is multiplication by n on Ei for i ∈ {1, 2}. We
construct a cocycle

c : Gal(Q/Q)→ {±1}

as follows: for every σ ∈ Gal(Q/Q), we have that c′σ : E2 → E2 defined by
c′σ = σφ ◦ φ is an endomorphism of degree n2. Since E1 does not admit
complex multiplication over Q, the same holds for E2, and we have c′σ =
±[n]E2 . We define cσ ∈ {±1} to be such that c′σ = cσ[n]E2 . It is a trivial
verification that cσ is a cocycle.

By the theory of quadratic twists, there exists a quadratic twist E ′2 of
E2 and a Q-isomorphism

ψ : E2 → E ′2
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such that for every σ ∈ Gal(Q/Q) we have σ(ψ−1)◦ψ = cσ. Let χ : E1 → E ′2
be the Q-isogeny ψ ◦ φ, and let χ = φ ◦ ψ−1. We have χ ◦ χ = [n]E1 , so χ is
the dual isogeny to χ. For every σ ∈ Gal(Q/Q), we have

σχ ◦ χ = σφ ◦ σψ−1 ◦ ψ ◦ φ = [n]E1 .

Hence χ is defined over Q. This concludes the proof.

Corollary 3.30. Let C be a collection of elliptic curves over Q, representing
infinitely many Q-isomorphism classes of elliptic curves. Then the collection
of Kummer surfaces

{Km(E ′ × E ′) : E ′ ∈ C}

contains infinitely many pairwise non-Q-isomorphic surfaces.

Proof. Since there are only a finite number of Q-isomorphism classes of
elliptic curves over Q that admit complex multiplication over Q, we may
assume that C does not contain any such elliptic curves. By Lemma 3.28,
if the Kummer surfaces Km(E1 ×E1) and Km(E2 ×E2) are Q-isomorphic,
then E1 and E2 are Q-isogenous. But by Lemma 3.29, for every E1 ∈ C,
there are only finitely many E2 ∈ C up to Q-isomorphism such that E1 and
E2 are Q-isogenous. Since the elliptic curves in C represent infinitely many
Q-isomorphism classes, we are done.

We use the results obtained so far to give the proofs of Theorems 3.1
and 3.2.

Proof of Theorem 3.1. Assume that the elliptic curve E is given by y2 =
x3 + ax + b with a, b ∈ Q. We give conditions on a and b implying that, if
X = Km(E ×E), then X(Q) is dense in X(Qp)×X(R). We treat the case
p = 3 separately.

First, assume p = 3. Assume that a > 0, v3(a) = 1, and v3(b) > 1. Then
according to Lemma 3.24(ii), we have that Ed(Q3) is a procyclic group of
order 2 · 3∞ for all d ∈ Q∗p. Since x3 + ax + b has only one real root by
the positivity of a, we have Ed(R) ∼= R/Z for all d ∈ R by Lemma 3.25.
Now Proposition 3.15 yields that Ed3(Q3)× Ed∞(R) is topologically cyclic
for all d3 ∈ Q3 and d∞ ∈ R. Finally, Proposition 3.27 implies that E has
good twists with respect to {3,∞}, so X(Q) is dense in X(Q3)×X(R) by
Theorem 3.20.

Now assume p 6= 3. We assume that a and b in Q are such that vp(a) > 0,
and vp(b) = 1; if p = 2 we require additionally that a > 0, if p = 5 we require
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additionally that a 6≡ ±10 (mod 25), and if p = 7, we require additionally
that b 6≡ ±14 (mod 49). Lemma 3.24(i)+(iii) gives that Edp(Qp) is a pro-
cyclic group of order p∞ or 3 · p∞ for all d ∈ Q∗p. Our assumptions on a and
b together with Lemma 3.25 imply that, for all d∞ ∈ R, the group Ed∞(R)
is isomorphic to R/Z or R/Z × Z/2Z; moreover, if p = 2, then, for all
d∞ ∈ R, the group Ed∞(R) is isomorphic to R/Z. Proposition 3.15 yields
that Edp(Qp)× Ed∞(R) is topologically cyclic for all dp ∈ Qp and d∞ ∈ R.
As in the previous case, we find that X(Q) is dense in X(Qp)×X(R).

Finally, it follows from equation (3.2) that the conditions on a and b
given above correspond to infinitely many Q-isomorphism classes of elliptic
curves. The theorem thus follows from Corollary 3.30. �

Proof of Theorem 3.2. Assume that the elliptic curve E is given by y2 =
x3 + ax+ b with a, b ∈ Q. For p and q as in the theorem, we give conditions
on a and b implying that, if X = Km(E × E), then X(Q) is dense in
X(Qp)×X(Qq)×X(R). We may assume that p < q.

We assume that a and b in Q∗ are such that they satisfy the following
conditions: a > 0, vp(a) = 1, vp(b) > 1, vq(a) > 0, and vq(b) = 1; if one of p
and q equals 5, we require additionally that a 6≡ ±10 (mod 25), and if q = 7,
we require additionally that b 6≡ ±14 (mod 49). According to parts (i), (iii)
and (iv) of Lemma 3.24 and Corollary 3.14, the group Edp(Qp) × Edq(Qq)
is procyclic for all dp ∈ Qp and dq ∈ Qq. Observe that Ed(R) is isomorphic
to R/Z for all d ∈ R by the fact that a > 0. Then by Proposition 3.15, we
get that Edp(Qp)×Edq(Qq)×Ed∞(R) is topologically cyclic for all choices
of dp ∈ Qp, dq ∈ Qq, and d∞ ∈ R. By Proposition 3.27 and Theorem 3.20,
we have that X(Q) is dense in X(Qp)×X(Qq)×X(R).

As in the proof of Theorem 3.1, the conditions on a and b given above cor-
respond to infinitely many Q-isomorphism classes of elliptic curves. Hence,
again by Corollary 3.30, we are done. �

3.5 Large product topologies

Lemma 3.31. Let p > 3 be a prime number and let E be an elliptic curve
over Qp with good reduction. Assume that the groups Ẽ (Fp) and Ẽ t(Fp) are

both cyclic of order coprime to p, where Ẽ is the reduction modulo p of E
and Ẽ t its unique non-trivial quadratic twist. Then E d(Qp) is a procyclic
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group for all d ∈ Q∗p. Moreover, its order is equal to

#E d(Qp) =


#Ẽ (Fp) · p∞ if d ∈ Q∗2p
#Ẽ t(Fp) · p∞ if d /∈ Q∗2p and vp(d) is even

#Ẽ (Fp)[2] · p∞ if vp(d) is odd

Proof. By changing to a Qp-isomorphic curve if necessary, it suffices to
restrict to the case where d ∈ Q∗p satisfies vp(d) = 0 or vp(d) = 1. First
assume that we have vp(d) = 0. Since p is a prime of good reduction for E d,
by [32, VII.2.1] we have a short exact sequence

0→ E d
1 (Qp)→ E d(Qp)→ C → 0 (3.4)

where E d
1 (Qp) is the kernel of reduction of E d, which is topologically iso-

morphic to Zp by [32, IV.6.4(b)], and C is Ẽ (Fp) if d ∈ Z∗2p and Ẽ t(Fp)
otherwise. By assumption, the order of C is coprime to p. By Proposition
1.14(iv), then we must have

E d(Qp) ∼= E d
1 (Qp)× C, (3.5)

with C as above. Therefore, the group E d(Qp) is a procyclic topological
group by Corollary 3.14. Since E d(Qp) is a direct product, its order is the
product of the orders of E d

1 (Qp) and C. This proves the lemma in the case
vp(d) = 0.

Now we assume that vp(d) = 1. The minimal discriminant of the twist
E d has valuation 6, and from the table in [32, C.15] we see that E d is of
reduction type I∗0, and the component group of the special fibre of its Néron
model is isomorphic to a subgroup of the Klein four-group. Hence E d(Qp)
sits in a short exact sequence of topological groups

0→ E d
0 (Qp)→ E d(Qp)→ Φ→ 0, (3.6)

where Φ is isomorphic to a subgroup of the Klein four-group. Since E d can
be given of an equation y2 = x3 + ad2x+ bd3 with a and b in Zp, the group
E d

0 (Qp) is topologically isomorphic to Zp by Theorem 1.1. We conclude
that E d(Qp) is an extension of a finite abelian 2-group by Zp, and hence
must be isomorphic to the direct product by Proposition 1.14(iv). We have
then that Φ = Φ[2] = E d(Qp)[2], and this is isomorphic to E (Qp)[2] since

the twisting does not affect the 2-torsion. We have E (Qp)[2] = Ẽ (Fp)[2]

by (3.6) and Proposition 1.14(iv). Since Ẽ (Fp) is cyclic, so is Ẽ (Fp)[2], and

therefore E d(Qp) ∼= E d
0 (Qp) × Ẽ (Fp)[2] is procyclic by Corollary 3.14. The

assertion about the order follows as in the first part.
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The following corollary will be used to prove Theorem 3.3.

Corollary 3.32. Let S be a set of prime numbers > 3 such that:

(i) for all p ∈ S, the elliptic curve E has good reduction at p;

(ii) for all p ∈ S and all δ ∈ F∗p, the group Ẽδ(Fp) is cyclic, where Ẽ
denotes the reduction of E modulo p;

(iii) for all (δp)p ∈
∏

p∈S F∗p, the numbers #Ẽδp(Fp) are pairwise coprime,
and are coprime to log2 #E(R)[2] and the elements of S.

Then if X = Km(E × E), then X(Q) is dense in X(R)×
∏

p∈S X(Qp).

Proof. Lemma 3.31 shows that, for all p ∈ S, the prime numbers dividing
the orders of the groups Ed(Qp), as d runs through Q∗p, are equal to p and

the primes dividing #Ẽδ(Fp), where δ runs through F∗p. Lemma 3.14 and
assumptions (i)-(iii) then imply that, for all (dp)p ∈

∏
p∈S Q∗p, the topological

groups Edp(Qp) are procyclic and pairwise of coprime order.

By Proposition 3.15 and the fact that the numbers #Ẽδp(Fp) are co-
prime to log2 #E(R)[2] for all p ∈ S and δp ∈ F∗p, the groups Ed∞(R) ×∏

p∈S E
dp(Qp) are topologically cyclic for all (dp)p ∈

∏
p∈S Q∗p and d∞ ∈ R.

The result now follows from Proposition 3.27 and Theorem 3.20.

Theorem 3.33. Assume that E is given by y2 = x3 + x + 1. Let S be
the following set of 331 primes: S = {467, 1033, 1289, 1823, 2081, 2221,
2591, 2887, 3163, 3229, 4691, 4751, 6047, 7103, 7883, 8069, 8663, 9221,
11909, 12149, 12211, 13451, 13567, 14207, 14419, 14557, 15299, 15959,
18089, 18233, 19889, 20201, 20857, 21379, 21803, 24509, 25031, 26711,
27091, 28477, 28607, 29333, 29723, 32309, 37139, 38791, 39359, 39953,
40519, 41957, 42179, 44867, 45233, 45757, 47501, 48767, 49711, 50581,
51563, 52379, 53699, 55487, 56951, 57089, 57413, 63659, 64153, 64217,
66347, 68927, 71597, 71987, 72139, 72869, 73061, 73583, 73613, 73849,
76679, 77377, 78179, 78889, 79531, 81197, 81953, 82883, 82997, 84299,
85061, 85259, 87407, 87641, 88741, 89909, 90373, 90499, 92699, 98519,
98801, 102533, 104831, 105563, 108161, 108877, 110237, 112403, 116131,
117659, 122051, 125399, 125899, 125941, 126397, 131321, 131507, 131797,
133769, 135851, 135887, 136531, 137239, 137867, 138869, 139921, 140269,
144299, 145139, 145829, 146801, 147083, 148157, 148663, 149533, 149731,
149921, 151637, 154849, 157019, 157901, 159899, 164581, 164617, 165713,
166949, 167879, 169859, 170953, 173501, 174413, 175361, 182687, 184187,
185599, 186583, 187373, 187787, 187931, 188171, 190409, 192233, 194891,
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195103, 196709, 197441, 198959, 199313, 199603, 199783, 202031, 203531,
204557, 204973, 205129, 205441, 209123, 210907, 212081, 214507, 214559,
219251, 220771, 221261, 221411, 222109, 225371, 228601, 228913, 230389,
230999, 231109, 232607, 234989, 238181, 238213, 239119, 240319, 241727,
242083, 242453, 245753, 251171, 251879, 251969, 253109, 254369, 263489,
263849, 265091, 265711, 266089, 266129, 267749, 268253, 270329, 271619,
272549, 273281, 274831, 276323, 278819, 278917, 280061, 280963, 281893,
283837, 287003, 287501, 289343, 289607, 290767, 291371, 291559, 292133,
293071, 297191, 297589, 306781, 308003, 310087, 311237, 314407, 315461,
315527, 315899, 317459, 319031, 320611, 322079, 322583, 324983, 325229,
327517, 328589, 330439, 332851, 333791, 337327, 337907, 339517, 342389,
342527, 344429, 347993, 350159, 352309, 353401, 353963, 354337, 361789,
364853, 365929, 370067, 371737, 371873, 372397, 376039, 376577, 379913,
380189, 381209, 381527, 390703, 393299, 393539, 402419, 408461, 409391,
414077, 414893, 419599, 419789, 421703, 422407, 423221, 424601, 427169,
429887, 431521, 433859, 439661, 440983, 442333, 443759, 447257, 450847,
453569, 456553, 456679, 457381, 460099, 462311, 466061, 467651, 470279,
471923, 472057, 475793, 476137, 477409, 478679, 480463, 481097, 486449,
487717, 491149, 491327, 493291, 494699, 495449, 495947, 495973 }. Then
E(Q) is dense in E(R)×

∏
p∈S E(Qp).

Proof. One proves this by taking the list S and verifying (for example with
the help of sage) that E and S as in the theorem satisfy the hypotheses of
Corollary 3.32.

The assertion about the cardinality of S is left to the reader.

Proof of Theorem 3.3. Theorem 3.3 follows from Theorem 3.33. �

Remark 3.34. The list S in Theorem 3.33 was found by defining the fol-
lowing procedure in sage [35]. The prime numbers that are to be included
in S are contained in the set greedyList; this set is only added to while
the procedure runs. The set primeList keeps track of the prime num-
bers p whose inclusion in S still has to be decided; it is equal to the set
of prime numbers between min p and max p at the start of the procedure,
and every time a new prime number p is added to S, the prime divisors of
#Ẽδ(Fp) are removed from it, where δ runs over the elements of F∗p. The
set greedyBlacklist contains the primes in greedyList as well as the set
of prime divisors of Ẽδ(Fp), where p runs over the elements of greedyList
and δ runs over the elements of F∗p. If E(R)[2] = 4, the initial value of
greedyBlacklist is {2}, otherwise its initial value is ∅.
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def findPrimes(E,min_p,max_p):

Disc = E.discriminant()

min_p = max(min_p,5)

primeList = set([p for p in prime_range(min_p,max_p)])

greedyList = set([])

greedyBlacklist = set([])

phi_2 = (E.division_polynomial(2)).change_ring(RR)

if len(phi_2.roots()) == 3:

greedyBlacklist.add(2)

while primeList != set([]):

p = primeList.pop()

if (Disc % p) != 0 and p not in greedyBlacklist:

Ep = E.base_extend(GF(p))

A = Ep.abelian_group()

B = Ep.quadratic_twist().abelian_group()

if A.is_cyclic() == true:

if B.is_cyclic() == true:

S = set(A.order().prime_divisors())

T = set(B.order().prime_divisors())

U = S.union(T)

greedyList.add(p)

for s in U:

if s == p or s in greedyBlacklist:

greedyList.remove(p)

break

if p in greedyList:

Up = U.union([p])

greedyBlacklist = greedyBlacklist.union(Up)

primeList = primeList.difference(U)

return(greedyList);

One gets the list S in Theorem 3.33 by running the commands

E = EllipticCurve([1,1]); min_p = 5; max_p = 500000

findPrimes(E,min_p,max_p)
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3.6 Proof of Theorem 3.4

We keep our notation and assumptions as explained in section 3.3.1.

Theorem 3.35. Assume that E/Q is given by y2 = x3 + x. Then X(Q) is
dense in X(Qp) for all p with p ≡ 3 (mod 4) and p > 7.

Proof. Let p be a prime congruent to 3 mod 4. For d ∈ Q∗p, the twist Ed

of E is given by the equation y2 = x3 + d2x. By Lemma 3.27 and Theorem
3.20, it suffices to show that Ed(Qp) is procyclic for all d ∈ Q∗p. By changing
to a Qp-isomorphic curve if necessary, it suffices to restrict to the case of
d ∈ Q∗p with vp(d) equal to 0 or 1.

First assume vp(d) = 0. Let Ẽd be the reduction of Ed modulo p. Then

#Ẽd(Fp) = p + 1. This follows from the fact that Ẽd is supersingular [32,

V.4.5] and the fact that p > 3. We claim that Ẽd(Fp) is cyclic. Suppose that

(Z/`Z)2 ⊂ Ẽd(Fp) for some prime `. Then p must split completely in Q(ζ`),

giving ` | p−1. On the other hand ` must certainly divide #Ẽd(Fp) = p+1;
therefore we must have ` = 2. But since x3+d2x has a linear and a quadratic

irreducible factor over Fp, we must have #Ẽd(Fp)[2] = 2. This gives a
contradiction, proving the claim.

By [32, VII.2.1] and the fact that Ed has good reduction at p, we have
a short exact sequence:

0→ Ed
1(Qp)→ Ed(Qp)→ Ẽd(Fp)→ 0,

where the kernel of reduction Ed
1(Qp) of Ed is isomorphic to Zp by [32,

IV.6.4(b)]. We conclude that Ed(Qp) is topologically isomorphic to the
direct product of Zp and a cyclic group of order p + 1. By Proposition
1.14(iv), the group Ed(Qp) is procyclic.

Now assume vp(d) = 1. Then Ed has additive reduction with Kodaira
type IV [32, C.15]. Hence we have a short exact sequence

0→ Ed
0(Qp)→ Ed(Qp)→ G→ 0,

where Ed
0(Qp) is topologically isomorphic to Zp by Theorem 1.1, and G is

isomorphic to a subgroup of the Klein four-group. Again by Proposition
1.14(iv), the group Ed(Qp) is topologically isomorphic to the direct product
of Zp and G. Hence G is isomorphic to Ed(Qp)[2] = E(Qp)[2], which we
already knew to be isomorphic to Z/2Z. Hence by Corollary 3.14, the group
Ed(Qp) is procyclic.

Proof of Theorem 3.4. Theorem 3.4 follows from Theorem 3.35. �
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3.7 Proof of Theorem 3.5

In this section, we will now prove Theorem 3.5. The core of the proof of
this theorem is a slight modification of the proof of Theorem 1 of [11] by
Rajiv Gupta and M. Ram Murty. We will need the following lemma, which
is reasonably standard.

Lemma 3.36. Let p be a prime. Let E be an elliptic curve over Q and
Ẽ its reduction modulo p. If Ẽ(Fp)[`] is not cyclic for some prime `, then
p ≡ 1 (mod `).

Proof. If Ẽ(Fp)[`] is not cyclic for some prime `, the prime p must split
completely in Q(E[`]). By the existence of the Weil pairing, we have Q(ζ`) ⊂
Q(E[`]). Hence p splits completely in Q(ζ`). Now the theory of cyclotomic
fields implies that p ≡ 1 (mod `).

Theorem 3.37. For every elliptic curve E over Q such that #E(Q)[2] = 2,
the set of rational points of Km(E ×E) lies dense in the space of its p-adic
points for infinitely many primes p.

Proof. Take an elliptic curve E as in the statement of the theorem. When-
ever we write Ẽ, we will mean the reduction of E modulo the prime p under
consideration and Ẽt for its non-trivial quadratic twist.

In this proof, we will call a prime p “good” for an elliptic curve E if the
groups Ẽ(Fp) and Ẽt(Fp) are both cyclic, and “bad” otherwise. Applying
Lemma 3.31, Proposition 3.27 and Theorem 3.20 in turn, one sees that it
suffices to prove that there exist infinitely many primes p that are good for
E. (Note that, since #E(Q)[2] = 2, the condition in Lemma 3.31 that the
order of both groups be different from p is automatically satisfied if p is not
equal to 2 and is a prime of good reduction.)

We will restrict to a set of primes among which the primes that are
good for E are easier to count. Following Gupta and Murty, we define the
following set of primes for each pair of positive real numbers ε and x:

Sε(x) =

p ≤ x prime :
E has good reduction at p, each odd prime
divisor of p− 1 is ≥ x1/4+ε and divides
p− 1 only once, and p is non-split in Q(E[2])


In [11, Lemma 3], Gupta and Murty prove, using a result from sieve theory
by Fouvry and Iwaniec [10], that there exists an ε > 0 such that

#Sε(x)� x

log2 x
. (3.7)
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We choose an ε such that (3.7) holds, and we define S(x) = Sε(x). For
every integer a we let S(a, x) ⊂ S(x) be the subset of primes p such that ap
is equal to a, where ap = p+ 1−#Ẽ(Fp) is the trace of the Frobenius of E
at p. By the Hasse–Weil bound, we have

S(x) =
∐

|a|≤2x1/2

S(a, x).

We claim that if x ∈ R is large enough, then for every integer a with
|a| ≤ 2x1/2, there are primes `a and `ta, both greater than or equal to x1/4+ε,

such that, for all p ∈ S(a, x), we have that Ẽ(Fp)[`] is cyclic for all primes

` 6= `a and Ẽt(Fp)[`′] is cyclic for all primes `′ 6= `ta. Choose an integer a

such that |a| ≤ 2x1/2. First, assume that p ∈ S(a, x) and Ẽ(Fp)[`] is not
cyclic. Then ` must be odd, since p does not split in Q(E[2]). Then we
must have

`2 | #Ẽ(Fp) = p+ 1− a. (3.8)

We also have

` | p− 1 (3.9)

by Lemma 3.37. This last fact implies, by the definition of S(x) and the
fact that ` is odd, that we have

` ≥ x1/4+ε (3.10)

Together, (3.8) and (3.9) imply ` | a − 2. If x is large enough, then the
integer a, whose absolute value is less than 2x1/2, has at most one prime
divisor that is greater than or equal to x1/4+ε. Hence, if there is such a prime
divisor `a, we have ` = `a. If there is no such prime divisor, we may set `a
equal to any prime we want. For the other part, we assume that p ∈ S(a, x)

and Ẽt(Fp)[`′] is not cyclic. Now we use that `2 | #Ẽt(Fp) = p + 1 + a.
Reasoning as before, we find that `′ must be an odd prime divisor of a+ 2
that is greater than or equal to x1/4+ε. Again, there is at most one such a
prime divisor for x large enough: if there exists one we will call it `ta, and
then we must have `′ = `ta; if not, we let `ta be arbitrary. This proves the
claim made at the start of the paragraph.

Assuming that x is large enough as in the previous paragraph, we can
now give a lower bound in terms of x on the number of primes p in S(a, x)
such that p is good for E in the sense defined earlier. If p ∈ S(a, x) is bad
for E, then we must have either `2

a | p + 1 − a or (`ta)
2 | p + 1 + a. Since
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both `a and `ta are greater than or equal to x1/4+ε, and we have p ≤ x, the
number of p ∈ S(a, x) that are bad for E is bounded above by

x

`2
a

+
x

(`ta)
2

+O(1) ≤ x

x1/2+2ε
+

x

x1/2+2ε
+O(1) = 2x1/2−2ε +O(1).

Summing the above over all integers a with |a| ≤ 2x1/2, we find that the
total number of p in S(x) that is bad for E is at most

4x1/2 ·
(
2x1/2−2ε +O(1)

)
= 8x1−2ε +O(x1/2).

Comparing this with (3.7), we see that, for x large enough, the number of
good primes in S(x) grows at least as fast asymptotically as x

log2 x
times a

constant.

Proof of Theorem 3.5. Theorem 3.5 coincides with Theorem 3.37. �
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Refinements and computations

4.1 Introduction

We recall the following definition from chapter 3.

Definition 4.1. Let S be a set of primes.

(i) For (dp) ∈
∏

p∈S Q∗p and c ∈ Q∗, we call Ec a good twist of E with

respect to (dp) and S if for each p ∈ S we have c ∈ dpQ∗2p , and Ec(Q)
is dense in

∏
p∈S E

c(Qp).

(ii) We say E has good twists if, for all (dp) ∈
∏

p∈S Q∗p, there is c ∈ Q∗
such that Ec is a good twist of E with respect to (dp) and S.

As before, if S = {p} for some prime p, and if E has good twists with
respect to (dp) and S, we will also say that E has good twists with respect
to dp and p. If E has good twists with respect to S, we will also say that E
has good twists with respect to p.

4.1.1 Goal of this chapter

In this chapter we will establish criteria for an elliptic curve E over Q to
have good twists with respect to a prime p. In view of Theorem 3.20, the
existence of good twists of E with respect to p implies that the rational
points on Km(E × E) lie p-adically dense. The crucial idea underlying
all criteria established in this chapter is a construction of Jean-François
Mestre [22], to be introduced in section 4.2.1. In section 4.7, we will use
these criteria to perform a computer search for pairs (E, p) for which it is
true that the rational points on Km(E × E) lie p-adically dense.
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4.1.2 Computer calculations

For an elliptic curve E over Q whose j-invariant is different from 0 and 1728,
we will introduce the notion of a lucky prime number p for E in Definition
4.34. Prime numbers that are not lucky for E are called unlucky for E. The
unlucky prime numbers include the prime numbers less than or equal to
7, and the primes for which E has bad reduction. It will be very easy to
verify, using a Computer Algebra System, whether or not a prime number p
is lucky for E. We will show in Proposition 4.35 that if p is lucky for E, and
if X = Km(E × E), then X(Q) lies dense in X(Qp). We have also created
computer code (described in section 4.7) that computes the lucky prime
numbers < 2000 for all elliptic curves E over Q given by y2 = x3 + ax+ b,
where a and b are integers such that −5 ≤ a ≤ 5 with a 6= 0, and 0 < b ≤ 5.
Doing this, we have obtained the following result.

Theorem 4.2. Let S5,5 be the set of elliptic curves E over Q given by
y2 = x3 + ax + b, where a and b are integers such that −5 ≤ a ≤ 5 with
a 6= 0, and 0 < b ≤ 5. Then for all E ∈ S5,5 there are at most 8 prime
numbers p with 7 < p < 2000 which are unlucky for E. Furthermore, for all
prime numbers p such that 109 < p < 2000 and all E ∈ S5,5 we have that if
p is unlucky for E, then p is a prime of bad reduction for E. If E ∈ S5,5,
and X = Km(E × E), and p is a prime with 109 < p < 2000 for which E
has good reduction, then X(Q) is dense in X(Qp).

The proof of Theorem 4.2 will be given at the end of section 4.7.

4.2 Definitions

Let k be a field of characteristic not equal to 2. Let a and b be elements of
k such that

ab(4a3 + 27b2) 6= 0 (4.1)

and define f(x) = x3 + ax+ b. Then the curve E over k given by y2 = f(x)
is an elliptic curve with j-invariant not equal to 0 or 1728.

Remark 4.3. The assumption (4.1) also implies:

f(−b/a) = (−b/a)3 + a(−b/a) + b = (−b/a)3 6= 0 (4.2)

and

f(3b/a) = (3b/a)3 + a(3b/a) + b = a−3b
(
27b2 + 4a3

)
6= 0; (4.3)
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in other words, −b/a and 3b/a are not the x-coordinate of any 2-torsion
point on E.

4.2.1 Mestre’s construction

We now come to the construction by Mestre [22], which is of fundamental
importance to the rest of this chapter. We shall denote

φ(u) = − b
a

u4 + u2 + 1

u4 + u2
. (4.4)

We will mostly interpret φ as a rational expression in whatever argument is
given to it, but we will sometimes regard it as a morphism P1

k → P1
k. Note

that
u2φ(u) = φ(u−1).

For each d ∈ k, we define the smooth projective curve Cd over k as

Cd : dv2 = f(φ(u)).

For each d ∈ k, we have a morphism πd1 : Cd → Ed sending (u, v) to (φ(u), v).
It is clear from (4.4) that φ satisfies

aφ(u)(u4 + u2) = −b(u4 + u2 + 1).

Multiplying both sides with (u2 − 1), we get

aφ(u)u2(u4 − 1) = b(1− u6).

Rearranging this, we obtain

au2φ(u) + b = u6(aφ(u) + b).

Finally, from this it follows that we have

f(φ(u−1)) = f(u2φ(u)) = u6φ(u)3 + au2φ(u) + b

= u6(φ(u)3 + aφ(u) + b) = u6f(φ(u)).

For each d ∈ k therefore, there exists the involution τ d of Cd defined by

τ d : Cd → Cd

(u, v) 7→ (u−1, u3v)
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We define a second morphism πd2 : Cd → Ed for each d ∈ k, by setting
πd2 = πd1 ◦ τ d. The morphism πd2 sends (u, v) to (u2φ(u), u3v).

Summarizing, we have two morphisms for each d ∈ k

π1 : Cd → Ed π2 : Cd → Ed

(u, v) 7→ (φ(u), v) (u, v) 7→ (u2φ(u), u3v)

as well as the following diagram

Cd τd //

π1 !!

Cd

π2}}

Ed

For brevity, we denote the curve C1 by C, the automorphism τ 1 by τ ,
and the morphisms π1

1 and π1
2 from C to E by π1 and π2. This concludes

the discussion of Mestre’s construction.

Remark 4.4. Unless stated otherwise, when write (u0, v0) for a point on
C, we will mean u0 to be its u-coordinate, and v0 to be its v-coordinate.

4.2.2 An affine model for C

We create an affine model for C that is smooth away from infinity. We
introduce the change of variables v′ = u3(u2 + 1)2v, resulting in a model for
C of the form

v′2 = g(u), (4.5)

with g(u) a polynomial of degree 14 equal to

g(u) = (u2 + 1)

( (
− b
a

)3

(u4 + u2 + 1)3 −

b(u4 + u2 + 1)(u4 + u2)2 + b(u4 + u2)3

)
. (4.6)

We will show that (4.5) defines a smooth affine curve in Proposition 4.8(ii).
We have g(0) = (−b/a)3 6= 0. Relative to the model v′2 = g(u), the curve C
has two points∞1 and∞2 at infinity. The maps π1 : C → E and π2 : C → E
are now given by

π1 : C → E π2 : C → E

(u, v′) 7→ (φ(u), u−3v′(u2 + 1)−2) (u, v′) 7→ (u2φ(u), v′(u2 + 1)−2)
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while the automorphism τ : C → C is given by

τ : C → C

(u, v′) 7→ (u−1, u−7v′).

4.3 Creating good twists

In this section, we take k = Q. The conditions on a and b, which are now
elements of Q, are as in the previous section, and the rest of the notation
introduced there remains valid. The lemmas 4.5 and 4.6 in this subsection
will explain the relevance of the curves Cd and the morphisms πdi . They
will be used to construct good twists of E.

Lemma 4.5. Take k = Q. Let α, β ∈ k with β 6= 0, and write c =
f(φ(α))/β2. The point

(α, β)

lies on the curve Cc, and the points

(φ(α), β) and (α2φ(α), α3β)

lie on the elliptic curve Ec.

Proof. It is obvious that (α, β) lies on Cc. The two points (φ(a), β) and
(α2φ(α), α3β) are its images on Ec under πc1 and πc2.

Lemma 4.6. Suppose that there exists P ∈ Cd(Qp) such that πd1(P ) and
πd2(P ) generate Ed(Qp) topologically. Then there exists a good twist of E
with respect to d and p.

Proof. By perturbing P if necessary, we may assume that u0 = u(P ) and
v0 = v(P ) are both finite, and that v0 is non-zero. Choose u′0 and v′0 ∈
Q with v′0 6= 0 such that u′0 is close to u0 and v′0 is close to v0. Define
c = f(φ(u′0))/v′20 ; by possibly taking u′0 and v′0 closer to u0 and v0, we may
assume that c/d ∈ Q∗2p . By Lemma 4.5, the curve Cc contains the rational
point (u′0, v

′
0), and Ec contains the rational points

Q′1 = (φ(u′0), v′0)) and Q′2 = (u′20 φ(u′0), u′30 v
′
0)).

Under the isomorphism defined over Qp

Ec → Ed

(x, y) 7→ (x, y
√
c/d)
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the points ±Q′1 and ±Q′2 map to points lying arbitrarily close to ±Q1 and
±Q2, where Q1 = πd1(P ) and Q2 = πd2(P ). Hence, possibly after taking u′0
and v′0 closer to u0 and v0, we get that Q′1 and Q′2 are topological generators
of Ec(Qp).

Lemma 4.6 provides the implication going from a purely p-adic statement
to a statement about rational points. Therefore, after establishing some
elementary properties of the curves Cd, we will restrict to k = Qp. Later
on, in section 4.6, we will go back to assuming k = Q, and we will use
Lemma 4.6 to draw conclusions about the existence of good twists. In fact,
the hypothesis of Lemma 4.6 is so important in this chapter, that we will
make it into a definition.

Definition 4.7. We will say that P ∈ Cd(Qp) is a Mestre point if the points
πd1(P ) and πd2(P ) generate Ed(Qp) topologically.

4.4 Properties of the curve C

In this section, the field k is an arbitrary field of characteristic not equal to
2. We will collect some information on C (defined in section 4.2.1) and its
maps to E. Let the assumptions and notation on the ground field k, the
curve E, the curve C, and the maps π1,π2 and τ be as in section 4.2.

Proposition 4.8. The following statements are true.

(i) The branch locus of π1 consists of the points on E with x equal to
−b/a or 3b/a. The ramification loci of π1 and π2 are disjoint.

(ii) The polynomial g is separable. The genus of C is equal to 6.

Proof. We let C ′ be the smooth projective curve defined by

C ′ : v2 = f

(
− b
a

w2 + w + 1

w2 + w

)
.

Putting v′′ = v(w2 + w)2, we obtain for C ′ an affine model of the form
v′′2 = h(w) with h(w) a polynomial of degree 8 with a simple zero at 0.
Note that, relative to this model, the curve C ′ has two points ∞′1,∞′2 at
infinity. In terms of the coordinates (u, v′) on C, and the coordinates (w, v′′)
on C ′, we define the maps

π′1 : C → C ′ π′′1 : C ′ → E

(u, v′) 7→ (u2, uv′) (w, v′′) 7→
(
− b
a

w2 + w + 1

w2 + w
, v′′(w2 + w)−2

)
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With these definitions, we have factored the map π1 as π′′1 ◦ π′1.
In view of (4.2) and (4.3), the points on E with x-coordinates −b/a or

3b/a do not belong to the 2-torsion on E, and hence there are two of both.

E

C ′

C

(−b/a, η)

∞′1

∞1

(−b/a,−η)

∞′2

∞2

(3b/a, η′)

(−1/2, η′)

(3b/a,−η′)

(−1/2,−η′)

0E

We analyze the ramification of the degree-two map π′′1 : C ′ → E. It is
unramified above the identity 0E of E, since the points with w = 0 or
w = −1 map to 0E. It is ramified at the two points (w, v) where w = ∞,
which map to the points with x = −b/a. If w is finite, not equal to 0 or
−1, and π′′1 is ramified at (w, v), then the equation

− b
a

T 2 + T + 1

T 2 + T
= − b

a

w2 + w + 1

w2 + w
=: x0

must have a unique solution T = w; equivalently, the polynomial

T 2 + T +
b

ax0 + b

has its unique zero at T = w. Hence we must have b/(ax0 + b) = 1/4. In
that case, we must therefore have x0 = 3b/a and w = −1/2. Summarizing,
we have found that π′′1 is ramified at the points (w, v) lying above the points
where x = −b/a, which have w = ∞, and at the points (w, v) lying above
the points where x = 3b/a, which have w = −1/2.

Next, we analyze the ramification of the degree-two map π′1 : C → C ′

that, in terms of the models constructed at the start of the proof, sends
(u, v′) to (u2, uv′). It is certainly unramified above points where w is not
0 or ∞. It is also unramified above points where w = 0; indeed, there is
a single point on C ′ where w = 0, which corresponds to the smooth point
(0, 0) on the model v′′2 = h(w) for C ′ obtained before, whereas on C there
are two points with u = 0. We claim further that π′1 is ramified above
the points at infinity ∞′1 and ∞′2. Indeed, it is clear that the preimage of
{∞′1,∞′2} under π′1 is {∞1,∞2}.
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Summarizing, we have shown, firstly, that π′′1 ramifies at ∞′1 and ∞′2,
which map to the two points where x = −b/a, and at the two points where
w equals −1/2, which map to the points where x = 3b/a; secondly, that π′1
ramifies at the two points ∞1 and ∞2, which map to ∞′1 and ∞′2. This
shows that π1 is ramified at ∞1 and ∞2, each with ramification index 4,
and at the four points where u2 = −1/2, each with ramification index
2. Applying the automorphism τ , we get that π2 is ramified at the two
points where u = 0 with ramification index 4, and at the four points where
u2 = −2, each with ramification index 2. This shows that the ramification
loci are disjoint.

Now we prove (ii). From (4.6), we see that the set of zeros of g is the
union of the set of zeros of u2 + 1, and the set of u with u4 + u2 6= 0 such
that

f(φ(u)) = f

(
− b
a

u4 + u2 + 1

u4 + u2

)
(4.7)

is zero. We see from (4.2) and (4.3) that f(φ(u)) = 0 implies φ(u) 6= −b/a
and φ(u) 6= 3b/a, hence π1 is unramified above E[2]. This shows that there
are exactly 12 values of u for which (4.7) vanishes. Hence g has 14 distinct
zeros, and therefore it can have no repeated roots. This shows that C has
genus 6, and ends the proof.

Remark 4.9. Part (ii) of Proposition 4.8 was mentioned by Mestre [22].

We define the map
i : C → E × E (4.8)

as the map given by (π1, π2). Also, we will use the letter Z to denote the
(reduced) closed subscheme of C consisting of the points (u, v) with

u4 + u2 + 1 = 0 or v = 0.

Using (4.5) and (4.6), we see that Z ×k k consists of the 8 points where
u4 + u2 + 1 = 0, and the 14 points where v = 0, hence 22 points in total.

Proposition 4.10. The restriction of i to C − Z is an embedding.

Proof. We resume the notation of the proof of Proposition 4.8. We first
claim that i|C−Z is injective, and that i(C −Z) and i(Z) are disjoint; from
this we will deduce that i|C−Z is a homeomorphism onto its image. Let P
be a point on C − Z and write (Q1, Q2) for the point on E ×E that is the
image of P under i. By definition of i, we have Q1 = π1(P ) and Q2 = π2(P ).
We distinguish three pairwise exclusive possibilities for (Q1, Q2).
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Case (a): we have Q1 = 0E or Q2 = 0E. First suppose P /∈ Z. If
Q1 = 0E, we have that u(P ) = 0 or u(P )2 + 1 = 0; since P /∈ Z, we must
have u(P ) = 0. We get that u(τ(P )) = u(P )−1 = ∞, hence τ(P ) = ∞1

or τ(P ) = ∞2, and we have Q2 = π1(τ(P )) = (−b/a,±η), where η2 =
f(−b/a). If Q2 = 0E, we can apply τ to the result of the previous calculation
to find that Q1 = (−b/a,±η). Hence, there are four possibilities for P : the
two points with u(P ) = 0 and the two points with u(P ) = ∞. The first
pair maps to the two points (0E, (−b/a,±η)), the second pair maps to the
two points ((−b/a,±η), 0E). Now suppose P ∈ Z. Reasoning as before, we
find that Q1 = 0E or Q2 = 0E implies u(P )2 + 1 = 0. One checks that i
sends the points satisfying u2 + 1 = 0 to (0E, 0E).

Case (b): we have x(Q1) = 0 or x(Q2) = 0. Then we have either
φ(u(P )) = 0 or u(P )2φ(u(P )) = 0. In either case we have u(P )4 + u(P )2 +
1 = 0. Hence P lies in Z. Conversely, if P is such that u(P )4+u(P )2+1 = 0,
then we have both x(Q1) = 0 and x(Q2) = 0.

Case (c): we have that x1 = x(Q1) and x2 = x(Q2) are both finite and
non-zero. By the discussion of the previous case, we have u(P )4+u(P )2+1 6=
0. Then since x1 = φ(u(P )) and x2 = u(P )2φ(u(P )), we have that u(P ) is
also finite and non-zero. If we further put y1 = y(Q1) and y2 = y(Q2), then
from y1 = v(P ) we get that y1 is also finite. First assume that y1 = v(P )
is zero. Then P ∈ Z. Assuming that y1 = v(P ) is non-zero, then since
we also had u(P )4 + u(P )2 + 1 6= 0, we must have P /∈ Z. Since we have
y2 = u(P )3v(P ) = u(P )3y1, we can find back u(P ) from x1, x2, y1, y2 as
u(P ) = x2y2/(x1y1), and we can find v(P ) back as v(P ) = y1. Hence P is
determined by Q1 and Q2 in case (c).

Clearly, cases (a) through (c) exhaust the possibilities for the pair
(Q1, Q2). The discussion of the three cases above then establishes the claim
that the restriction to C − Z of i is injective, and that i(C − Z) is disjoint
from i(Z). Since i is proper, it is closed and since i(C −Z) is disjoint from
i(Z), we must have that the map i|C−Z is closed onto its image. Since i|C−Z
is moreover injective and continuous, we get that it is a homeomorphism
onto its image.

To prove that i|C−Z is an embedding in the sense of algebraic geometry,
it is enough by the proof of [12, Lemma II.7.4] to show that it separates
tangent vectors, i.e., that, for each P ∈ C, the map

TPC → Ti(P )(E × E) = Tπ1(P )(E)× Tπ2(P )(E)

induced by i is an injection. By dualizing, this is equivalent to showing that
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the pull-back map

i∗P : T ∗π1(P )(E)× T ∗π2(P )(E)→ T ∗PC (4.9)

on cotangent spaces is surjective for all P ∈ C. Let ω be the invariant
differential

ω =
dx

y
∈ H0(E,Ω1

E)

on E. Since T ∗PC is a one-dimensional k-vector space, it suffices to check
that for each P ∈ C, at least one of the everywhere-regular differential forms
π∗1ω and π∗2ω on C is non-zero at P . One easily computes that

π∗1ω =
1

v
d

(
− b
a

u4 + u2 + 1

u4 + u2

)
=

2b

a

2u2 + 1

u3v(u2 + 1)2
du =

2b

a

2u2 + 1

v′
du

and

π∗2ω =
1

v
d

(
− b
a

u4 + u2 + 1

u2 + 1

)
= −2b

a

u2 + 2

(u2 + 1)2v
du = −2b

a

u3(u2 + 2)

v′
du.

One computes that the zero-locus of π∗1ω consists of {∞1,∞2} as well as the
points where u2 = −1/2, while the zero-locus of π∗2ω consists of the points
where u2 = 0 or u2 = −2. Hence (4.9) is surjective for all P ∈ C, and so
i : C → E × E separates tangent vectors. This concludes the proof of the
proposition.

The following lemma will be used in the proof of Proposition 4.12. We
keep the assumption that k is a field of characteristic not equal to 2.

Lemma 4.11. Let e1, e2, e3 be the roots of f = x3 + ax + b in k, and let
{λ, µ, ν} = {1, 2, 3}. Then the roots in k of the polynomial

T 2 + T +
b

aeλ + b
(4.10)

are eµ/eλ and eν/eλ. If furthermore k is a p-adic field with p 6= 2, and e1, e2

and e3 are of equal valuation in k, then one of the elements

e1

e2

,
e2

e3

, and
e3

e1

is a square in k(e1, e2, e3).
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Proof. Without loss of generality, we assume that we have λ = 1, µ = 2, ν =
3. Long division gives f = (x− e1)g with

g = (x2 + e1x+ a+ e2
1),

so that we have

(x−e2/e1)(x−e3/e1) = e−2
1 g(e1x) = x2+x+

a+ e2
1

e2
1

= x2+x+
−b/e1

(−ae1 − b)/e1

,

from which the first claim follows. The second one is clear.

Proposition 4.12. Let φ1 denote φ and let φ2 denote the function u 7→
u2φ(u). Let k be a finite extension of Qp for some prime number p with
p 6= 2, and assume that the zeros of f in k have the same valuation.

(i) Let i be either 1 or 2. If f has three roots in k, then at least two of
the roots of f are contained in φi(P1(k)).

(ii) Let e1, e2, e3 be the roots of f in k, and let {λ, µ, ν} = {1, 2, 3}. Then

φ2(φ−1
1 (eλ)) = {eµ, eν}.

Proof. We first prove assertion (i) for i = 1. For any e ∈ k, we have
e ∈ φ1(P1(k)) if and only if there exists u ∈ k such that

φ1(u) = − b
a

u4 + u2 + 1

u4 + u2
= e. (4.11)

Let e1, e2, e3 be the zeros of f . If for example e = e1, Lemma 4.11 shows
that the solutions to this equation are u = ±

√
e2/e1 and u = ±

√
e3/e1.

For the cases where e = e2 and e = e3, the solutions follow from this by
symmetry.

By the identity (e1/e2) · (e2/e3) · (e3/e1) = 1 and the fact that e1, e2, e3

have equal valuation in k, we can choose λ, µ and ν such that {λ, µ, ν} =
{1, 2, 3} in such a way that eλ/eµ is a square in k. Therefore equation (4.11)
has the solution uλ =

√
eµ/eλ in k if e = eλ, and the solution uµ = 1/uλ in

k if e = eµ. Hence we find that uλ is a preimage in k of eλ under φ1, and uµ
is a preimage in k of eµ under φ1. Hence assertion (i) is proven for i = 1.
For i = 2, we need only observe

φ2(uλ) = u2
λφ(uλ) = (eµ/eλ) · eλ = eµ (4.12)
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and
φ2(uµ) = u2

µφ(uµ) = (eλ/eµ) · eµ = eλ.

We now prove (ii). We define u′λ =
√
eν/eλ. The preimages of eλ under φ1

are ±uλ and ±u′λ. We get φ2(±uλ) = eµ by (4.12), as well as

φ2(±u′λ) = (eν/eλ) · φ(±u′λ) = (eν/eλ) · eλ = eν .

This concludes the proof of (ii).

4.5 Existence criteria for Mestre points

In this section we will establish various criteria for the existence of Mestre
points on C in the sense of Definition 4.7.

Definition 4.13. By a smooth curve (resp. surface) over Zp we shall mean
a scheme equipped with a smooth morphism to Zp whose fibres are of di-
mension one (resp. two).

4.5.1 Assumptions and definitions

For the rest of this section, we assume that p > 2 is a prime, that k = Qp

and that a and b are elements of Zp such that

ab(4a3 + 27b2) ∈ Z∗p. (4.13)

The elliptic curve E over Qp is defined as at the start of section 4.2, and
we let E be the Weierstrass model of E defined by y2 = x3 + ax + b. By
(4.13), we have that E is a smooth curve over Zp. In particular, the elliptic
curve E has good reduction, and E is a minimal Weierstrass model of it. By
C we denote the closure of i(C) in E × E , where i is as in (4.8), and by Z
we denote the closure of i(Z) in E × E , both considered with their reduced
subscheme structures. We further define C◦ = C − Z. We have that C is a
proper curve over Zp. Moreover, since C is the scheme-theoretic image of
the morphism C → E×E by [12, ex. II.3.11(d)], it is flat over Zp by [3, 1.1].
Since C◦ ⊂ C is an open subscheme of the proper flat scheme C over Zp, and
its fibres over Zp are smooth, it is itself smooth over Zp. The automorphism
of E × E that interchanges both factors will be denoted by τ . On i(C), the
map τ induces the same map as the automorphism τ of C. The maps π1

and π2 from C to E extend to morphisms C → E , which we will denote by
the same symbols.
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By Γn ⊂ E × E , we denote the graph of multiplication by n, in the
following sense

Γn = {(e, ne) : e ∈ E} .

We have that the curve Γn ⊂ E × E is smooth over Zp for all n. By the
valuative criterion of properness, we have

E(Qp) = E(Qp) = E(Zp), C(Qp) = C(Qp) = C(Zp)

and via these identifications the subgroups En(Qp) and En(Qp), as defined
in section 1.2, coincide for all integers n ≥ 0.

4.5.2 The case where p does not divide #E(Fp)
The following proposition shows that if #E(Fp) is coprime to p, we may
reduce the problem of finding a P as in Lemma 4.6 to a problem involving
only the reductions CFp and EFp .

Proposition 4.14. Assume that the order of E(Fp) is coprime to p. Let
P ∈ C(Fp). Then the following conditions are equivalent.

(i) The points π1(P ) and π2(P ) generate E(Fp).

(ii) There exists a Mestre point P ∈ C(Qp) with PFp = P .

Proof. The implication (ii)⇒ (i) is clear: if P ∈ C(Qp) is such that PFp = P ,

and π1(P ) and π2(P ) do not generate E(Fp), then certainly π1(P ) and π2(P )
do not generate E(Qp) topologically.

Since the ramification loci of the πi are disjoint by Proposition 4.8(i),
without loss of generality we may assume (π1)Fp to be unramified, and hence

étale, at P . Write Q = π1(P ).
Denote the set of points in C(Qp) that reduce to P with C(Qp)P . If

P ′ ∈ C(Qp)P , then by the assumption of the proposition, the points Q′1 =
π1(P ′) and Q′2 = π2(P ′) together with E1(Qp) generate E(Qp). Therefore
it suffices to show that we can choose P ′ in such a way that some Z-linear
combination of Q′1 and Q′2 lies in E1(Qp) − E2(Qp). By the fact that π1 is
étale at P and by Hensel’s lemma, the restriction of π1 to C(Qp)P surjects
to the set E(Qp)Q of points Q′ ∈ E(Qp) such that (Q′)Fp = Q. We have
E(Qp)Q = π1(P ′) + E1(Qp) for any P ′ ∈ C(Qp)P . Hence, for any P ′ ∈
C(Qp)P , there exists P ′′ ∈ C(Qp)P with π1(P ′)− π1(P ′′) /∈ E2(Qp).

Now we use the fact that the order of E(Fp) is coprime to p. We have
`π1(P ) = 0 for some integer ` coprime to p. Let P ′ ∈ C(Qp)P be arbitrary.



88 Chapter 4. Refinements and computations

The fact `π1(P ) = 0 implies that `π1(P ′) ∈ E1(Qp). If `π1(P ′) /∈ E2(Qp), we
are done. Otherwise, there exists P ′′ ∈ C(Qp)P such that π1(P ′)−π1(P ′′) /∈
E2(Qp). We have `π1(P ′)− `π1(P ′′) /∈ E2(Qp), since E2(Qp) has index p in
E1(Qp), and p - `, and therefore `π1(P ′′) /∈ E2(Qp). Hence in this case we
can take P ′′ instead of P ′, and we are again done.

4.5.3 The case of anomalous reduction

The most notable case to which Proposition 4.14 does not apply is the case
where E(Fp) has order p. Indeed, when we have p > 5 the Hasse–Weil bound
implies that if E(Fp) is divisible by p, then it must be equal to p.

Definition 4.15. We say that E has anomalous reduction if E(Fp) is cyclic
of order p.

In this section, we establish two criteria for the existence of Mestre points
on C in the anomalous reduction case.

Remark 4.16. Assume that E has anomalous reduction at p, and that
p > 7. We have the usual short exact sequence

0→ E1(Qp)→ E(Qp)→ E(Fp)→ 0

as well as the topological isomorphism E1(Qp) ∼= Zp [32, IV.6.4(b)]. Then
according to Proposition 1.14(iii), we have either E(Qp) ∼= Zp or E(Qp) ∼=
Zp×Z/pZ. In the first case, we have that E(Qp) is procyclic, and the results
of chapter 3 give that E has good twists. Therefore, the results from this
section are only needed in the second case.

Lemma 4.17. Assume that E has anomalous reduction. Let P1 and P2 be
elements of E(Qp). Consider the following three statements.

(i) The points P1 and P2 generate E(Qp) topologically.
(ii) The points P1 are P2 are not both contained in E1(Qp).

(iii) There exists n ∈ Z such that (P1, P2)Fp is contained in Γn(Fp), but
(P1, P2)Z/p2Z is not contained in Γn(Z/p2Z).

Then (ii)+(iii) implies (i).

Proof. Assume that assumption (ii) and (iii) hold. In view of (ii), we only
have to prove that 〈P1, P2〉 lies dense in E1(Qp). Since we had assumed
p > 2, we have E1(Qp) ∼= Zp; therefore it suffices to show that some integer
linear combination of P1 and P2 lies in E1(Qp)− E2(Qp). We let n be as in
(iii). Then we have P2 − nP1 ∈ E1(Qp)− E2(Qp).
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Anomalous reduction: a transversality criterion

To establish the first criterion for the existence of a Mestre point on C in
the case of anomalous reduction, we reinterpret condition (iii) of Lemma
4.17 as the statement that a certain intersection is transversal.

Proposition 4.18. Let S be a smooth surface over Zp, and let D1,D2 ⊂ S
be smooth curves over Zp. Let P ∈ S(Zp). The following conditions are
equivalent.

(i) We have the following equality between subsets of S(Z/p2Z):{
P ′ ∈ D1(Z/p2Z) : (P ′)Fp = PFp

}
=
{
P ′ ∈ D2(Z/p2Z) : (P ′)Fp = PFp

}
.

(ii) The curves (D1)Fp and (D2)Fp are tangent to each other in PFp.

Proof. The result can be seen as a variant of the multi-variable Hensel’s
lemma. A difference here is that we are only interested in lifting Fp-points
to Z/p2Z-points.

By the fact that S is locally of finite type, we have that S is of the
following form locally around PFp

SpecZp[x1, . . . , xn]/(f1, . . . , fr)

for f1, . . . , fr ∈ Zp[x1, . . . , xn], where we may identify P with the section
0 = (0, . . . , 0). Let i ∈ {1, 2}. Since Di is smooth along P of relative
dimension 1, there exist

g1,1, . . . , g1,n−1, g2,1, . . . , g2,n−1 ∈ Zp[x1, . . . , xn]

such that Di is given as the zero-set Vi of

gi,1, . . . , gi,n−1

locally around 0, where the gi,j are such that the matrix

Ti =


∂gi,1
∂x1

. . .
∂gi,1
∂xn

...
. . .

...
∂gi,n−1

∂x1
. . .

∂gi,n−1

∂xn


(0,...,0)

has an (n− 1)-by-(n− 1) minor whose determinant is contained in Z∗p. As
usual, the tangent space of (Di)Fp at 0Fp may be identified with the kernel
of the matrix

Ti,Fp
∣∣
(0,...,0)
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where Ti,Fp denotes the entry-wise reduction modulo p of the matrix Ti.
Since Z/p2Z is a local ring and Di and Vi agree on open subsets con-

taining P and 0 respectively, the Z/p2Z-points of Di reducing to PFp are
in bijection with the Z/p2Z-points of Vi reducing to 0Fp . It thus suffices to
show that equality

{P ′ ∈ V1(Z/p2Z) : P ′Fp = 0Fp} = {P ′ ∈ V2(Z/p2Z) : P ′Fp = 0Fp} (4.14)

is equivalent to
ker(T1,Fp) = ker(T2,Fp). (4.15)

Let Zi = {P ′ ∈ Vi(Z/p2Z) : P ′Fp = 0Fp}. We can describe Zi explicitly in
terms of Ti,Fp : any P ′ ∈ Zi must be of the form

(δ1p, . . . , δnp)

with δ1, . . . , δn ∈ Fp. Let P ′ = (δ1p, . . . , δnp). By expanding the equations

gi,1(δ1p, . . . , δnp) = . . . = gi,n−1(δ1p, . . . , δnp) = 0,

we find that for P ′ to be contained in Zi, it is necessary and sufficient that

Ti|(0,...,0) ·

 δ1p
...
δnp

 =

 0
...
0

 in (Z/p2Z)n−1.

This shows that (4.14) and (4.15) are indeed equivalent. This finishes the
proof.

In order to be able to keep track of tangent directions on (E × E)Fp , we
introduce the following definition.

Definition 4.19. Let κ be Qp or Fp, and denote by Eκ the base-change of
E to κ. Let ω = dx

y
be the standard invariant differential on Eκ. Let D be

a smooth curve on (E × E)κ. If P ∈ D(κ), then the tangent direction to D
at P is (

i∗2ω

i∗1ω

)
(P ) ∈ P1(κ), (4.16)

where
(i1, i2) : D → (E × E)κ, (4.17)

is the closed embedding of D into (E × E)κ, and where the left-hand side of

(4.16) denotes the value of the function
i∗2ω

i∗1ω
∈ κ(D) at P .
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The above definition can be given in a dual form that is a little more
involved, but shows more clearly the relationship between Definition 4.19
and tangent vectors.

Lemma 4.20. Let κ be Qp or Fp, and denote by Eκ the base-change of E
to κ. Let ω = dx

y
as in Definition 4.19. For every Q ∈ E(κ), there is a

unique tangent vector ω∗Q ∈ TQEκ such that ω(ω∗Q) = 1. Let D, i1 and i2 be
as in Definition 4.19, and let P ∈ D(κ) be a smooth point with i1(P ) = Q1

and i2(P ) = Q2. Choose a non-zero element η ∈ TPD. Then the tangent
direction to D at P is the image of η under the composite map

TPD
(i1,i2)∗−→ TQ1Eκ × TQ2Eκ 99K P1(κ),

where the last arrow is the partially-defined map that sends (t1ωQ1 , t2ωQ2)
to (t2 : t1) for all t1, t2 ∈ κ that are not both zero.

Proof. We have that ω is a basis for the cotangent space T ∗QEκ for every
Q ∈ Eκ, so for each Q ∈ E(κ) there exists a unique tangent vector ω∗Q ∈ TQEκ
such that ω(ω∗Q) = 1. Furthermore, ω∗Q is a basis of TQEκ for each Q, which
shows that the map TQ1Eκ×TQ2Eκ 99K P1(κ) is defined everywhere except at
0. Suppose that t1, t2 ∈ κ are such that (i1, i2)∗(η) = (t1ωQ1 , t2ωQ2). Then
we have i∗1(ω)(η) = ω(i1∗(η)) = ω(t1ωQ1) = t1, and likewise i∗2(ω)(η) = t2.
This shows that i∗2(ω)/i∗1(ω) evaluated at P gives t2/t1, which is what we
had to show.

The following lemma is due to J. F. Voloch, to whom I am very grateful
for mentioning it to me in a discussion about this chapter.

Lemma 4.21. Assume that E(Fp) is cyclic of order p. Write

f(x)(p−1)/2 = U(x) + Axp−1 + xpV (x)

for some U(x) of degree at most p− 2 and V (x) of degree (p− 3)/2. Then
the map

E(Fp)→ Fp
(x, y) 7→ yV (x)

is an isomorphism of groups.

Proof. Let φ : E ′Fp → EFp the isogeny dual to the Frobenius. Since E(Fp)[p] 6=
0, we have that φ is separable and its image equals pE(Fp) = 0. The result
now follows from Proposition 1.3 in [40].
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The proof of the following proposition makes essential use of the smooth-
ness of C◦.

Proposition 4.22. Suppose that E has anomalous reduction. Write

f(x)(p−1)/2 = U(x) + Axp−1 + xpV (x) (4.18)

for some U(x) of degree at most p− 2 and V (x) of degree (p− 3)/2. Write
ω = dx/y for the standard invariant differential on EFp. Assume that there
exists a point P ∈ C◦(Fp) such that(

π∗2ω

π∗1ω

)
(P ) 6=

(
π∗2yV (x)

π∗1yV (x)

)
(P ), (4.19)

where the value infinity is allowed for both sides. Then C has a Mestre
point.

Proof. Recall that we denote by τ the automorphism of E × E that inter-
changes both factors. Replacing P by τ(P ) amounts to replacing both sides
of (4.19) by their inverses. Possibly after replacing P by τ(P ), we may as-
sume that π1(P ) 6= 0, so there exists an integer n such that π2(P ) = nπ1(P ),
which is equivalent to P ∈ Γn(Fp).

The left-hand side of (4.19) is the tangent direction to C◦Fp ⊂ (E × E)Fp
at P . For the right-hand side, we have(

π∗2yV (x)

π∗1yV (x)

)
(P ) = n

by Proposition 4.21 and the definition of n. We claim that the tangent
direction to (Γn)Fp at P is n. The curve Γn arises as the image of the closed
immersion

(i1, i2) : E → E × E
defined on points by e 7→ (e, ne). Using Definition 4.19, we see that the
tangent direction to (Γn)Fp at any point P ′ is(

i∗2ω

i∗1ω

)
(P ′) = n.

(This uses the fact that [n]∗ω = nω, where [n] : EFp → EFp is multiplication
by n; see [32, III.5.3].) Hence the statement (4.19) is equivalent to the
tangent direction to C◦ at P not being equal to the tangent direction to
Γn at P . Then by Proposition 4.18, there exists a point P ′ ∈ C◦(Z/p2Z)
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with (P ′)Fp = P , but P ′ /∈ Γn(Z/p2Z). By Hensel’s lemma, there exists
P ′′ ∈ C◦(Zp) ⊂ C(Qp) so that P ′′ satisfies (P ′′)Z/p2Z = P ′. Let Q1 =
π1(P ′′) and Q2 = π2(P ′′). The condition (P ′′)Z/p2Z /∈ Γn(Z/p2Z) implies
that Q2 − nQ1 ∈ E1(Qp) − E2(Qp), and hence by Lemma 4.17 we have
that Q1 and Q2 are topological generators of E(Qp). This concludes the
proof.

Remark 4.23. By expanding, we can make the inequality (4.19) more
explicit. It says that, for a point P = (u0, v0) ∈ C(Fp), we have

−u
3
0(u2

0 + 2)

2u2
0 + 1

6= u3
0V (−b/a · (u4

0 + u2
0 + 1)/(u2

0 + 1))

V (−b/a · (u4
0 + u2

0 + 1)/(u4
0 + u2

0)))

with V defined as in (4.18). It seems difficult in general to prove that there
exists a point P = (u0, v0) ∈ C(Fp) for which this inequality is satisfied. For
instance, the degree of the rational function on the right-hand side grows
linearly with p, so that the naive estimate comparing the number of zeros of
a rational function on C with the number of points in C(Fp) will not work.

Anomalous reduction: an explicit criterion

Proposition 4.24. Suppose that E has anomalous reduction. Assume that
−ab ∈ Q∗2p . Then C has a Mestre point.

Proof. We assume −ab ∈ Q∗2p . We will prove the existence of P ∈ C(Qp)
such that Q1 = π1(P ) is contained in E1(Qp) − E2(Qp) and Q2 = π2(P )
is contained in E(Qp) − E1(Qp). Since E(Q) is isomorphic to either Zp or
Zp×Z/pZ, where in the latter case the subgroup Zp corresponds to E1(Qp),
the points Q1 and Q2 generate E(Qp) topologically.

Let Q1 = (x0, y0) ∈ E1(Qp)−E2(Qp) be arbitrary. Observe that we have
vp(x0) = −2. Also, since y2

0 = x3
0 + ax0 + b, we have x0 ∈ Q∗2p . Then, for

u0 ∈ Qp, the statement that P = (u0, y0) is contained in C(Qp) and is such
that π1(P ) = Q1 is equivalent to

x0 = φ(u0) = − b
a

w2
0 + w0 + 1

w2
0 + w0

, (4.20)

where we have put w0 = u2
0. Solving this equation for w0, we get

w+ = −1

2
+

1

2

√
1− 4b

ax0 + b
and w− = −1

2
− 1

2

√
1− 4b

ax0 + b
(4.21)
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Since vp(4b/(ax0 + b)) = 2, we have w+ ∈ Qp. Moreover, by p-adically
expanding the square roots in the expressions (4.21), we obtain

w+ = −1

2
+

1

2

(
1− 1

2

4b

ax0 + b
+O(p4)

)
= − b

ax0 + b
+O(p4) (4.22)

and

w− = −1

2
− 1

2

(
1− 1

2

4b

ax0 + b
+O(p4)

)
= −1 +

b

ax0 + b
+O(p4)

We have that x0 and −b/a are both contained in Q∗2p , so that w+ is a
p-adic square. Therefore, there exists u0 ∈ Qp that satisfies (4.20), and
equation (4.22) shows that vp(w+) = −vp(x0) = 2. We have that P =
(u0, y0) maps to Q1 ∈ E1(Qp). Moreover, Q2 = π2(u0, y0) is equal to Q2 =
(u2

0φ(u0), u3
0y0) = (u2

0x0, u
3
0y0), which is obviously contained in E(Qp) −

E1(Qp). This proves the proposition. (Note that we couldn’t have used
w− even if −1 ∈ Q∗2p , since in that case both π1(

√
w−, y0) and π2(

√
w−, y0)

would lie in E1(Qp).)

4.5.4 Good points over ramified twists

For d ∈ Q∗p, recall that a twist Ed of E is called ramified if the valuation
of d is odd. For such d, the existence of Mestre points on Cd is guaranteed
by Proposition 4.26 in the case where Ed has the full 2-torsion over Qp. (In
the other cases we will have that Ed(Qp) is procyclic, so we can apply the
results of the previous chapter.)

Lemma 4.25. Let d ∈ Q∗p be an element of valuation 1. Then the quadratic
twist Ed of E has Kodaira type I∗0, and Ed(Qp)[2] contains no non-zero
points of good reduction.

Proof. The 2-torsion of Ed is defined over any extension of Qp that contains
the roots of the polynomial

x3 + ad2x+ bd3 = d3f(x/d). (4.23)

As (4.23) shows, the same is true over any extension of Qp that contains
the roots of f . Since f (mod p) is separable over Fp, the roots of f are
contained in an unramified extension of Qp. The 2-torsion of Ed is therefore
defined over the maximal unramified extension Qun

p of Qp. Equation (4.23)
shows that for any x0 ∈ Qun

p , we have that x0 is a root of f if and only
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if (dx0, 0) is a point in Ed(Qun
p ). Since y2 = x3 + ad2x + bd3 defines a

minimal Weierstrass model of Ed, the non-trivial 2-torsion of Ed(Qun
p ) is of

bad reduction, which shows that Ed(Qun
p )/Ed

0(Qun
p ) contains the Klein four-

group. The only Kodaira type for which the component group contains the
Klein four-group is I∗0 (see [32, C.15]), so this must be the Kodaira type of
Ed.

Proposition 4.26. Let d ∈ Q∗p be an element of valuation 1. Assume
furthermore that either p > 7 or Ed

0(Qp) ∼= Zp, and assume furthermore
that #Ed(Qp)[2] = 4. Then there exists a Mestre point P ∈ Cd(Qp).

Proof. The assumption that either p > 7 or Ed
0(Qp) ∼= Zp is there to guaran-

tee Ed
0(Qp) ∼= Zp. (See Theorem 1.1; note that Ed has additive reduction.)

Putting Φ = Ed(Qp)/E
d
0(Qp), we have the usual short exact sequence

0→ Zp → Ed(Qp)→ Φ→ 0,

with Φ isomorphic to (Z/2Z)2 by Lemma 4.25. Proposition 1.14(iv) shows
that Ed(Qp) is topologically isomorphic to Zp × (Z/2Z)2.

When denoting points on Ed, we shall be using the equation dy2 = f(x)
for it. By performing Tate’s algorithm on a Weierstrass model for Ed, we
find that the three non-trivial cosets of Ed

0(Qp) in Ed(Qp) are of the following
form:

Se =
{

(x0, y0) ∈ Ed(Qp) : x0 ≡ e (mod p)
}
,

where e ∈ Z∗p is one of the three roots of f . We may apply Proposition 4.12

to f , using φ2(u) = φ1(u−1), to find that there exist two distinct roots e1

and e2 of f , such that if we put α1 = e1 and α2 = e2, there exist elements
β1 and β2 of Fp such that

φ(β1) = α1, φ(β2) = α2

and
φ(β−1

1 ) = α2, φ(β−1
2 ) = α1,

where we use · to denote reduction modulo p. These identities imply that
for any point P ′ = (u1, v1) in Cd(Qp) such that u1 = β1, if we write π1(P ′) =
(x1, y1) and π2(P ′) = (x2, y2), then we have x1 = α1 and x2 = α2 in Fp.

Let Q1 = (x1, y1) be an arbitrary point in Ed(Qp) − Ed
0(Qp) with x1 ≡

e1 (mod p). We will construct a point P = (u1, v1) in Cd(Qp) such that
π1(P ) = Q1. Such a P may be constructed from a solution u = u1 to the
equation

− b
a

u4 + u2 + 1

u4 + u2
= x1, (4.24)
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since for a solution u1 to (4.24), the morphism π1 maps P = (u1, y1) to Q1.
Over Fp, the reduction modulo p of (4.24) has 4 distinct solutions, since the
right-hand side reduces to α1, and we know from Proposition 4.8(i) that
π1 is unramified above the point (α1, 0) on the smooth curve EFp . We may
thus apply Hensel’s lemma to find a solution u1 such that u1 = β1. We
define P = (u1, y1). Then we have π1(P ) = Q1, as desired. Moreover, by
the previous paragraph, we also have π2(P ) = (x2, y2), with x2 an element
of Zp such that x2 = α2.

Now take Q1 = (x1, y1) to be a point in Ed(Qp) such that x1 ≡ e1

(mod p) and such that some multiple of Q1 lies in Ed
0(Qp) − Ed

1(Qp). (We
know that such a Q1 exists by the fact that the points (x1, y1) satisfying
x1 ≡ e1 (mod p) make up a coset of Ed

0(Qp) ∼= Zp in Ed(Qp) ∼= Zp ×
(Z/2Z)2.) Then by the previous paragraph, there exists P in Cd(Qp) such
that Q1 = π1(P ) and Q2 = π2(P ) lie in different non-trivial cosets of Ed

0(Qp)
in Ed(Qp). Since in addition some multiple of Q1 lies in Ed

0(Qp)− Ed
1(Qp),

it is clear that Q1 and Q2 generate Ed(Qp) topologically.

4.6 Existence criteria for good twists

We let p > 2 be a prime number and a and b rational numbers of non-
negative p-adic valuation such that

ab(4a3 + 27b2)

is a p-adic unit. We let E be the elliptic curve over Q given by y2 =
x3 + ax+ b. In this section, we will combine the results of section 4.5 with
Lemma 4.6 to give existence results on good twists, given d ∈ Q∗p, of E with
respect to d and p.

4.6.1 Unramified twists

The following definitions are made in order to apply the results of section
4.5 to (unramified) twists Ed of E, instead of just E itself. Instead of the
curves Ed, given by dy2 = x3 +ax+b, we consider the curves E ′d, which are
given by y2 = x3 + ad2x + bd3. The curves Ed and E ′d are isomorphic for
each d, but the E ′d have the advantage that they are given by Weierstrass
equations.

Definition 4.27. For d ∈ Z∗p, we let E ′d be the elliptic curve given by
y2 = x3 + ad2x + bd3 and E ′d the smooth Weierstrass curve over Zp given
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by the same equation. Note that E ′d is isomorphic to Ed and that E ′d is a
smooth Weierstrass model of E ′d. We let C ′d be the curve arising from the
construction in section 4.2.1 applied to the case where E is replaced by the
elliptic curve E ′d. Note that C ′d is isomorphic to Cd as defined in section
4.2.1. We define Z ′d ⊂ C ′d in the same way as we defined Z for C (see the
start of section 4.4). As in section 4.2.1, we have maps

π′d1 : C ′d → E ′d, π′d2 : C ′d → E ′d,

and we define the notion of a Mestre point on C ′d in the same way we did
for Cd. We denote by i′d : C ′d → E ′d × E ′d the map i′d = (π′d1 , π

′d
2 ). We let

C ′d ⊂ E ′d×E ′d be the closure of i′d(C ′d). The morphisms π′d1 and π′d2 extend
to morphisms π′d1 , π

′d
2 : C ′d → E ′d. We let Z ′d ⊂ E ′d × E ′d be the closure of

i′d(Z ′d). Finally, the smooth subscheme C ′d−Z ′d of E ′d×E ′d we will denote
by C ′dsmooth.

Remark 4.28. One checks that the isomorphisms between E ′d and Ed and
between Cd and C ′d can be chosen in such a way that, for d ∈ Z∗p and
i ∈ {1, 2}, the diagram

Cd ∼ //

πdi
��

C ′d

π′di
��

Ed ∼ // E ′d

commutes. Thus C ′d has a Mestre point if and only if Cd does.

Unramified twists: the non-anomalous reduction case

Let d ∈ Q∗p be an element with vp(d) = 0.

Proposition 4.29. Assume that the order of E ′d(Fp) is coprime to p. Let
P ∈ C ′d(Fp). If the points π′d1 (P ) and π′d2 (P ) generate E ′d(Fp), then there
exists a good twist of E with respect to d and p.

Proof. Proposition 4.14, with E replaced by E ′d, implies that C ′d has a
Mestre point. By Remark 4.28, so does Cd. The result now follows from
Lemma 4.6.

The following proposition deals with the special case of cyclic non-
anomalous reduction. It is partly a corollary of the results from the previous
chapter.
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Proposition 4.30. Assume that E ′d(Fp) is cyclic of order coprime to p.
Then there exists a good twist of E with respect to d and p.

Proof. We have that E ′d(Qp) sits inside a short exact sequence with contin-
uous maps, and with the second map an embedding

0→ E ′d1 (Qp)→ E ′d(Qp)→ E ′d(Fp)→ 0,

where E ′d1 (Qp) is procyclic and E ′d(Fp) is cyclic of order coprime to p. By
Proposition 1.14(ii), we have that E ′d(Qp) is procyclic, and therefore so is
Ed(Qp). By Proposition 3.27 we find that E has a good twist with respect
to d and p.

Unramified twists: the anomalous reduction case

Again, we let d ∈ Q∗p be an element with vp(d) = 0.

Proposition 4.31. Assume that the order of E ′d(Fp) is equal to p. Write(
x3 + ad2x+ bd3

)(p−1)/2
= U(x) + Axp−1 + xpV (x) (4.25)

for some U(x) of degree at most p− 2 and V (x) of degree (p− 3)/2. Write

ω =
dx

y
(4.26)

for the standard invariant differential on (E ′d)Fp. Assume that there exists
a point P ∈ C ′dsmooth(Fp) such that(

π∗2ω

π∗1ω

)
(P ) 6=

(
π∗2yV (x)

π∗1yV (x)

)
(P ), (4.27)

where the value infinity is allowed for both sides. Then E has a good twist
with respect to d and p.

Proof. From Proposition 4.22, with E replaced by E ′d, it follows that C ′d

has a Mestre point. By Remark 4.28, so does Cd. The result follows from
Lemma 4.6.

Proposition 4.32. Suppose that Ed has anomalous reduction at p. Assume
that −abd ∈ Q∗2p . Then E has a good twist with respect to d and p.

Proof. From Proposition 4.24, with E replaced by E ′d, it follows that C ′d

has a Mestre point. By Remark 4.28, so does Cd. The result follows from
Lemma 4.6.
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4.6.2 Ramified twists

If d ∈ Q∗p is such that vp(d) = 1, and p is greater than 7, it is very easy to
prove that E has good twists with respect to d and p.

Proposition 4.33. Let d ∈ Q∗p be an element of valuation one. Assume
also that either p > 7 or Ed

0(Qp) is topologically isomorphic to Zp. Then E
has a good twist with respect to d and p.

Proof. We know from Lemma 4.25 that Ed has Kodaira type I∗0, so that
Ed(Qp) fits inside an exact sequence

0→ Ed
0(Qp)→ Ed(Qp)→ Φ→ 0,

with Ed
0(Qp) topologically isomorphic to Zp, and Φ isomorphic to a subgroup

of (Z/2Z)2. Proposition 1.14(iv) shows that we have

Ed(Qp) ∼= Zp × Φ (4.28)

as topological groups. By (4.28) and since Φ is isomorphic to a subgroup of
(Z/2Z)2, we have that Φ is isomorphic to the torsion subgroup of Ed(Qp)[2].
If Φ is not isomorphic to the full (Z/2Z)2, then Ed(Qp) is a product of
two procyclic groups of coprime order, hence procyclic, and we may apply
Proposition 3.27 to find that E has good twists with respect to d and p. If
Φ ∼= (Z/2Z)2, we may apply Proposition 4.26 to find that Cd has a Mestre
point, and the result follows from Lemma 4.6 again.

4.7 A computer experiment

Propositions 4.29–4.33 provide five criteria implying the existence of good
twists of E, and hence the p-adic density of rational points on Km(E ×E)
by Theorem 3.20. These criteria are all formulated in terms of elliptic curves
over finite fields, and hence are well-suited to do a computer search. In this
section, we list the results of a computer search we have performed using
the open-source Computer Algebra System sage [35].

For the purpose of this section only, we will introduce the notion of a
lucky prime for E. Very loosely speaking, a prime p will be called lucky
for E if we can deduce from Propositions 4.29–4.33 and Theorem 3.20 that
E has good twists with respect to p. We keep the notation introduced in
Definition 4.27.
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Definition 4.34. We will call a prime p lucky (for E) if p is greater than 7,
the elliptic curve E can be given by a short Weierstrass equation

y2 = x3 + ax+ b (4.29)

with a and b in Q∗ such that vp(a) = vp(b) = vp(ab(4a
3 + 27b2)) = 0, and

for all d ∈ Q∗p with vp(d) ∈ {0, 1} at least one of the following criteria is
satisfied:

(C1) we have vp(d) = 0, the order of E ′d(Fp) is coprime to p, and there
exists P ∈ C ′d(Fp) such that π′d1 (P ) and π′d2 (P ) generate E ′d(Fp);

(C2) we have vp(d) = 0, and E ′d(Fp) is cyclic of order coprime to p;
(C3) we have vp(d) = 0, the order of E ′d(Fp) is equal to p, and for some

P ∈ C ′dsmooth(Fp) we have(
π∗2ω

π∗1ω

)
(P ) 6=

(
π∗2yV (x)

π∗1yV (x)

)
(P ), (4.30)

where ω is as in (4.26) and V is as in (4.25);
(C4) we have vp(d) = 0, the order of E ′d(Fp) equals p, and −abd ∈ Q∗2p ;
(C5) we have vp(d) = 1.

If p is not lucky for E, then we will call it unlucky (for E). Note that the
set of primes that are unlucky for E include the primes p for which E has
bad reduction.

The ultimate use of the above definition is recorded in the following
proposition.

Proposition 4.35. Let p be a lucky prime for E. If X = Km(E×E), then
X(Q) is dense in X(Qp).

Proof. By Theorem 3.20, it suffices to show that if d ∈ Q∗p, then E has
a good twist with respect to d and p. Obviously, we may assume that
vp(d) = 0 or vp(d) = 1. Choose an arbitrary d with vp(d) = 0 or vp(d) = 1.
One proceeds in a manner depending on d: if (C1) is satisfied, apply Propo-
sition 4.29; if (C2) is satisfied, apply Proposition 4.30; if (C3) is satisfied,
apply Proposition 4.31; if (C4) is satisfied, apply Proposition 4.32; if (C5)
is satisfied, apply Proposition 4.33.

Remark 4.36. In fact, to verify whether p is a lucky prime for E, we
only need to check the conditions (C1)–(C5) for d running through a set of
coset representatives of Q∗2p in Q∗p, which has only four elements. In fact,
since (C5) automatically holds for the two coset representatives for which
vp(d) = 1, it suffices to check the conditions (C1)–(C4) for a single d such
that d ∈ Z∗2p , and a single d for which d ∈ Z∗p − Z∗2p .
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4.7.1 Results of the experiment

In our search, we consider the set S5,5 of all elliptic curves Ea,b over Q given
by a short Weierstrass equation

Ea,b : y2 = x3 + ax+ b

with −5 ≤ a ≤ 5, where a 6= 0, and 0 < b ≤ 5, as well as the 299 prime
numbers p such that 7 < p < 2000. For each of the curves Ea,b and each
prime p in the sets just described, we have let the computer decide the
question whether p is lucky for Ea,b.

From the results of our experiments, it seems that the criteria developed
in this thesis always seem to yield the existence of good twists with respect
to p, roughly speaking, once p is large enough. The following table shows
this more precisely. For each of the 49 elliptic curves E in our search space,
we list the set of unlucky primes p with 7 < p < 2000, along with its
cardinality Na,b. The asterisks denote primes of bad reduction.

(a, b) Set of unlucky primes for Ea,b Na,b

(−5, 1) {11∗, 43∗, 73} 3
(−5, 2) {17, 23, 47} 3
(−5, 3) {257∗} 1
(−5, 4) {13, 17∗, 19, 43, 53, 67} 6
(−5, 5) {53} 1
(−4, 1) {37, 229∗} 2
(−4, 2) {37∗} 1
(−4, 3) {13∗, 17, 23, 29, 43} 5
(−4, 4) {11∗, 47} 2
(−4, 5) {43, 419∗} 2
(−3, 1) {17, 19, 37} 3
(−3, 3) ∅ 0
(−3, 4) {13, 53, 67} 3
(−3, 5) {23, 29} 2
(−2, 1) {11, 19, 29, 41} 4
(−2, 2) {19∗, 23} 2
(−2, 3) {11, 53, 109, 211∗} 4
(−2, 4) {13, 17, 29, 37} 4
(−2, 5) {643∗} 1
(−1, 1) {23∗} 1
(−1, 2) {13∗} 1
(−1, 3) {239∗} 1
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(a, b) set of unlucky primes for Ea,b Na,b

(−1, 4) {13, 29, 107∗} 3
(−1, 5) {11∗, 17, 43, 61∗} 4
(1, 1) {31∗} 1
(1, 2) {11, 23, 37, 43} 4
(1, 3) {13∗, 17, 19∗} 3
(1, 4) {109∗} 1
(1, 5) {11, 97∗} 2
(2, 1) {17, 59∗} 2
(2, 2) {17} 1
(2, 3) {11∗, 23, 31, 37, 47, 53, 67, 71} 8
(2, 4) {19, 29∗} 2
(2, 5) {101∗} 1
(3, 1) {47, 73} 2
(3, 2) {11, 29, 79} 3
(3, 3) {11, 13∗, 41} 3
(3, 4) {17, 19, 23, 53} 4
(3, 5) {29∗} 1
(4, 1) {71, 283∗} 1
(4, 2) {13∗} 1
(4, 3) {499∗} 1
(4, 4) {11, 13, 43∗, 47} 4
(4, 5) {11, 17, 19∗, 23, 43, 47, 61} 7
(5, 1) {11, 17∗, 19, 29, 31∗} 5
(5, 2) {19∗, 37, 47} 3
(5, 3) {37, 743∗} 2
(5, 4) {11, 233∗} 2
(5, 5) {37, 47∗, 53, 61} 4

Proof of Theorem 4.2. This follows from the table above. �

4.8 sage code

This section lists the sage source code that was used to perform the com-
putations described in section 4.7.



4.8. sage code 103

4.8.1 Looking for two-element sets of generators

This procedure takes as input two elements of an abelian group isomorphic
to Z/mZ ⊕ Z/nZ with m | n, and decides whether or not they generate it.

# Given a list of two elements P, Q of an abelian group A

# isom. to Z/m + Z/n, with m | n, check whether <P,Q> = A.

def isSetOfGenerators(A,elements):

P = elements[0]; Q = elements[1]

m = A.invariants()[0]; n = A.invariants()[1]

# we take n to be at least m

if m > n:

r = m

m = n

n = r

# if ord(P) < ord(Q), switch P and Q.

if P.order() != n:

R = P

P = Q

Q = R

# if ord(P) < n still holds, then <P,Q> != A.

if P.order() != n:

return false

# order of Q has to be multiple of m.

Q_order = Q.order()

if Q_order % m != 0:

return false

P_multiples = set([i*P for i in range(n)])

Q_multiples = set([j*Q for j in range(1,m)])

# check if {i*P} and {j*Q : 0<j<m} have empty int’n

return (P_multiples.intersection(Q_multiples) == set([]))
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4.8.2 Finding pairs in the image of C(Fp)
The following procedure takes an elliptic curve over Fp as input, and finds
the pairs (Q1, Q2) ∈ E(Fp) × E(Fp) such that Q1 = π1(P ) and Q2 = π2(P )
for some P ∈ C(Fp).

# given an elliptic curve E over F_p as input

# find the elements in the image of C(F_p) -> E(F_p) x E(F_p).

def findPairs(E):

a = E.a4(); b = E.a6()

K = a.base_ring()

R.<u> = PolynomialRing(K)

S.<x> = PolynomialRing(K)

p = K.characteristic()

alpha = K.multiplicative_generator()

gamma = -b/a

phi = gamma*(u^4+u^2+1)/(u^4+u^2)

f = x^3+a*x+b

# don’t need to consider u with u^4 + u^2 = 0

# (maps to infinity)

# also use the fact that u, u^-1, -u, -u^-1 all

# give the same pair of points on E: therefore

# u only needs to range up to (p-1)/4.

alpha_range = range(1,(p-1)/4)

u_list = [alpha^i for i in alpha_range]

pairsList = []

for u_0 in u_list:

x_0 = phi(u_0)

# is x_0 the x-coordinate of a point in E(F_p)?

f_0 = f(x_0)

if f_0.is_square() == false:

continue
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y_0 = f_0.sqrt()

# append the pair of points that was found

pairsList.append([[E.point([x_0,y_0]),E.point(

[u_0^2*x_0,u_0^3*y_0])],u_0])

return pairsList

4.8.3 The criteria involving anomalous reduction

The procedure checkAnomalousCurve takes an elliptic curve over Fp as
input, and determines whether either of Propositions 4.31–4.32 applies to
it. It returns 2 if this is the case, and 3 otherwise. The procedure computeV

computes the polynomial V from Lemma 4.21.

# given f in F_p[x], compute V

# such that x^p*V + A*x^(p-1) + U(x) = f(x)^((p-1)/2)

# with deg(U) < p-1

def computeV(f):

K = f.base_ring()

R.<x> = PolynomialRing(K)

p = K.characteristic()

g = f^((p-1)/2)

coeff_list = g.coeffs()

V = 0

for i in range(p,len(coeff_list)):

V += coeff_list[i]*x^(i-p)

return V

# input: elliptic curve E over GF(p) with j != 0 or 1728 and

# E.order() == p

# output: 2 if a good twist was found, 3 otherwise

def checkAnomalousCurve(E):
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a = E.a4(); b = E.a6()

K = a.base_ring()

p = K.characteristic()

if E.order() != p:

print("Number of points is wrong:",E.order())

return False

if a*b == 0:

return False

gamma = -b/a

# explicit criterion

if (gamma).is_square():

return 2

# Voloch’s criterion: need to enumerate points on C

R.<x> = PolynomialRing(K)

f = x^3 + a*x + b

phi = gamma*(x^4+x^2+1)/(x^4+x^2)

V = computeV(f)

alpha = K.multiplicative_generator()

alpha_range = range(1,(p-1)/4)

if (p-1) % 6 == 0 and p > 7:

alpha_range.remove((p-1)/6)

u_list = [alpha^i for i in alpha_range]

for u_0 in u_list:

x_0 = phi(u_0)

# is x_0 the x-coordinate of a point in E(F_p)?

# if yes, see if Voloch’s criterion holds there.
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if f(x_0).is_square():

# we have found a point, namely (u_0,v_0):

v_0 = f(x_0).sqrt()

# now check to see if (5.27) holds:

num_1 = u_0^3*(u_0^6 - 3*u_0^2 + 2)

denom_1 = -2*u_0^6 + 3*u_0^4 - 1

num_2 = u_0^3*v_0*V(u_0^2*phi(u_0))

denom_2 = v_0*V(phi(u_0))

if num_1*denom_2 != num_2*denom_1:

if not(num_1 == 0 and denom_1 == 0) and not(

num_2 == 0 and denom_2 == 0):

return 2

return 3

4.8.4 Wrapper code

The rest of the procedures are mainly non-mathematical in nature. The
procedure checkManyPrimes takes as input an elliptic curve E over Q and
upper and lower prime bounds max p and min p, and outputs a table listing,
among others, the primes of anomalous reduction that are lucky for E, the
primes of anomalous reduction that are lucky for the twist of E, the set of
primes that are unlucky for E, and the set of primes that are unlucky for
its twist.

# return e with

# e = 0 if E has bad reduction;

# e = 1 if E(F_p) has order 1;

# e = 2 if E is anomalous and satisfies C3 or C4;

# e = 3 if E is anomalous and can’t be dealt

# with by one of these criteria;

# e = 5 if E is non-anomalous and satisfies C1

# e = 6 if E is non-anomalous and can’t be dealt

# with by that criterion;
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# e = 7 if E(F_p) is cyclic non-anomalous (C2).

def checkSingleCurve(Ep,p):

A = Ep.abelian_group()

gen_orders = A.generator_orders()

if len(gen_orders) == 0:

return 1

n = gen_orders[0]

if len(gen_orders)==1:

if n == p:

return checkAnomalousCurve(Ep)

if (n % p) == 0 and n != p:

return 4

if (n % p) != 0:

return 7

pairsList = findPairs(Ep)

# check whether some pair is a set of generators;

# keep track of how many pairs

if pairsList == false:

return 8

else:

for pair in pairsList:

if isSetOfGenerators(A,pair[0]):

return 5

return 6

def checkManyPrimes(E,min_p,max_p):

counter = [0,0,0,0,0,0,0,0,0]

counter_t = [0,0,0,0,0,0,0,0,0]
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results = [range(1,500) for i in range(0,9)]

results_t = [range(1,500) for i in range(0,9)]

# p <= 7 is not allowed

min_p = max(11,min_p)

Delta = E.discriminant()*E.a4()*E.a6()

for p in prime_range(min_p,max_p):

F = GF(p)

alpha = F.multiplicative_generator()

if (Delta % p) == 0:

results[0][counter[0]] = p

counter[0] += 1

continue

Ep = E.change_ring(GF(p))

e = checkSingleCurve(Ep,p)

results[e][counter[e]] = p

counter[e] += 1

Ept = Ep.quadratic_twist(alpha)

e_t = checkSingleCurve(Ept,p)

results_t[e_t][counter_t[e_t]] = p

counter_t[e_t] += 1

badList = results[0][0:counter[0]]

oneList = results[1][0:counter[1]]

pGoodList = results[2][0:counter[2]]

pBadList = results[3][0:counter[3]]

two_pList = results[4][0:counter[4]]

lGoodList = results[5][0:counter[5]]

lBadList = results[6][0:counter[6]]

cyclicList = results[7][0:counter[7]]

oneList_t = results_t[1][0:counter_t[1]]

pGoodList_t = results_t[2][0:counter_t[2]]
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pBadList_t = results_t[3][0:counter_t[3]]

two_pList_t = results_t[4][0:counter_t[4]]

lGoodList_t = results_t[5][0:counter_t[5]]

lBadList_t = results_t[6][0:counter_t[6]]

cyclicList_t = results_t[7][0:counter_t[7]]

print(str([E.a4(),E.a6()])+":")

print("Primes of ’bad reduction’: "+str(badList))

print("Good anomalous primes: "+str(pGoodList))

print("Good anom. primes (twist): "+str(pGoodList_t))

print("Bad anomalous primes: "+str(pBadList))

print("Bad non-anomalous primes: "+str(lBadList))

print("Bad anom. primes (twist): "+str(pBadList_t))

print("Bad non-anom. primes (twist): "+str(lBadList_t))

badSet = list(set(badList).union(set(pBadList))

.union(set(lBadList)).union(set(pBadList_t))

.union(set(lBadList_t)))

badSet.sort()

howManyBad = len(badSet)

print("Set of bad primes / total number of primes: ")

print("("+E.a4().str()+","+E.a6().str()+") &"),

if howManyBad > 0:

print("\\{"),

for i in range(0,howManyBad-1):

print(str(badSet[i])+","),

print(badSet[howManyBad-1]),

print("\\}"),

else:

print("\\emptyset"),

print("& "+str(howManyBad)+" \\\\")

print(RR(100*(1-howManyBad/164)))



Chapter 5

Descent on a family of
superelliptic curves

Let q be a power of a prime p and let K be the rational function field Fq(t).
For each integer d > 1, define Kd = K(ζd, t

1/d), where ζd is a primitive
d-th root of unity. When d is clear from the context, we sometimes write
u for t1/d. The results in this chapter, notably Theorem 5.1, generalize
results of the paper [39] by Douglas Ulmer. The idea that the results in
this paper could be generalized is also due to Douglas Ulmer. The results
in this chapter are part of a larger, joint work together with Lisa Berger,
Chris Hall, Jennifer Park, Karl Rubin, Shahed Sharif, Alice Silverberg, and
Doug Ulmer. The people in this group have also contributed significantly
to the work presented in this chapter. The entire project was initiated at
the AIM conference “Cohomological Methods in Abelian Varieties”, which
was held in Palo Alto from 26–30 March 2012.

5.1 Definitions and statement of results

Choose an odd prime r different from p. Choose an integer ν and set
d = qν+1. Assume that r divides d. We will consider the smooth projective
curve C over K defined by the affine equation

yr = xr−1(x+ 1)(x+ t). (5.1)

Let Q∞ ∈ C(K) denote the point at infinity. We define

Pi,j =
(
ζ idt

1/d, ζ
jd/r+i
d t1/d(ζ idt

1/d + 1)d/r
)
.
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for 0 ≤ i ≤ d − 1 and 0 ≤ j ≤ r − 1. We verify that P0,j is an element of
C(Kd) for each j. Using repeatedly that d = qν + 1, and writing u = t1/d,
we have that (

ζ
jd/r
d u(u+ 1)d/r

)r
= ur(u+ 1)d

= ur(u+ 1)q
ν+1

= ur(u+ 1)(u+ 1)q
ν

= ur(u+ 1)(ud−1 + 1)

= ur−1(u+ 1)(u+ t).

Hence we have P0,j ∈ C(Kd) for all j. Observe that Pi,j is a Gal(Kd/K)-
conjugate of P0,j for all i and j, hence this computation shows that we have
Pi,j ∈ C(Kd) for all i and j.

Let J be the Jacobian of C. In this chapter, we will prove the following
result.

Theorem 5.1. The divisor classes [Pi,j] − [Q∞] generate a subgroup of
J(Kd) of rank (r − 1)(d− 2). Moreover, we have J(Kd)[r

∞] ∼= (Z/rZ)3.

Remark 5.2. We will show that our assumption that r divides d gives a
non-empty condition, in other words, that for all q there exists ν such that
d = qν + 1 is divisible by r. For such a ν to exist, it is necessary and
sufficient that r is an odd prime divisor of qµ + 1 for some integer µ; if
µ is the smallest such integer, we must have ν = µ` for some odd integer
`. There are infinitely many r that satisfy this condition, as can be seen
by observing that q2a + 1 and q2b + 1 are coprime integers for all distinct
positive integers a and b. Since qa + 1 divides qa` + 1 for any odd integer `,
there exist infinitely many integers ν such that d = qν + 1 is divisible by r.

5.2 Properties of C and J

We will use the projective model for C in P2
K defined by

C ′ : Y rZ = Xr−1(X + Z)(X + tZ).

The curve C ′ is non-singular at the unique point at infinity Q∞ = (0 : 1 : 0).
The normalization map C → C ′ is bijective on K-points; we will use this
fact to identify C(K) and C ′(K). Let Q0 = (0, 0), Q1 = (−1, 0), and
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Qt = (−t, 0) be points on C. Note that Q0 is the only singular point on C ′.
We write ∆ = {Q0, Q1, Qt}. We consider the covering

π : C → P1

of degree r induced by the function x. The ramification points of π are
Q0, Q1, Qt and Q∞, each with ramification index r. Applying Riemann–
Hurwitz gives that the genus of C is r− 1. Note that CKd has an automor-

phism given by (x, y) 7→ (x, ζ
d/r
d y); we denote this automorphism by ζr. The

automorphism ζr of CKd induces an automorphism ζr of JKd . The Rosati-
involution α 7→ α† on End(JKd) sends ζr to its inverse: this simply restates
the fact that ζr respects the polarization on JKd , which it does, coming
from an automorphism of CKd . We let φ : JKd → JKd be the endomorphism
1− ζr.

Proposition 5.3. The endomorphism φ is a separable isogeny of degree r2.
Its kernel is generated by [Q0]− [Q∞] and [Q1]− [Q∞].

Proof. Let g = r − 1 be the genus of C. We claim that the endomorphism
(1− ζr)r−1 and the separable isogeny [r] : J → J factor through each other.
This follows from the well-known fact from algebraic number theory that
the ideal (r) of the Dedekind domain Z[ζr] decomposes as (1 − ζr)r−1. It
follows that:

deg(1− ζr)r−1 = deg [r] = r2g = r2(r−1),

which proves that deg(1− ζr) = r2.
For the final assertion, one easily verifies that the divisor classes D0 =

[Q0]− [Q∞] and D1 = [Q1]− [Q∞] are contained in the kernel of φ. To see
that the mD0 +nD1 are distinct elements of J(Kd) for all pairs (m,n) with
m,n ∈ {0, 1, . . . , r − 1}, and hence that ker(φ) is generated by D0 and D1,
it suffices to show that xm(x + 1)n is not an r-th power in Kd(C) unless
r | m and r | n. This is a routine exercise in field theory.

Lemma 5.4. We have J [φ] = J [φ†], as group schemes.

Proof. The equality comes down to the observation that the endomorphisms
φ = 1 − ζr and φ† = 1 − ζ−1

r factor through each other. This follows from
the fact that (1− ζr)/(1− ζ−1

r ) ∈ Z[ζr]
∗.

5.3 Relating certain divisors on C

By ∼ we denote linear equivalence in Div(CKd).
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Lemma 5.5. We have the following relations in Div(CKd):

(r + 1)Q∞ ∼ (r − 1)Q0 +Q1 +Qt, (5.2)

d−1∑
i=0

(Pi,0 −Q∞) ∼ Q0 −Q1, (5.3)

and
d−1∑
i=0

(Pi,0 − Pi,−i) ∼ Q0 −Q∞. (5.4)

Proof. Equation (5.2) follows from considering div(y) ∼ 0. We define f, g ∈
Kd(C) as follows: f = y − x(x + 1)d/r and g = yxd/r−1 − ud/r(x + 1)d/r.
Then (5.3) follows from considering div(f/x) ∼ 0 and (5.4) follows from
div(f/xg) ∼ 0.

Lemma 5.6. Define D ∈ Div(CKd) by

D =
d−1∑
i=0

[−1−i]∑
j=0

(Pi,j −Q∞),

where [−1− i] ∈ {0, . . . , r − 1} is congruent to −1− i modulo r, then

(1− ζr)(D) ∼ Q0 −Q∞.

Hence the class of D is a (1− ζr)2-torsion element of J(Kd).

Proof. A straightforward calculation shows (1 − ζr)(
∑[−1−i]

j=0 Pi,j) = Pi,0 −
Pi,−i; this uses that ζr(Pi,j) = Pi,[j+1] for all i and j with 0 ≤ i ≤ d − 1
and 0 ≤ j ≤ r − 1, where [j + 1] denotes j + 1 if j < r − 1, and 0 if
j = r − 1. Hence (1 − ζr)(D) ∼ Q0 − Q∞ follows from (5.4) and the fact
that ζr(Q∞) = Q∞. The last statement follows from (1− ζr)[Q0−Q∞] = 0,
as noted in Lemma 5.3.

5.4 The homomorphism (x− T )
For any curve C, we will denote by Div(C) the group of Weil divisors on
C, and by Div0(C) ⊂ Div(C) its subgroup of degree-zero divisors. We will
define the pivotal homomorphism

(x− T ) : Div0(CKd)→
∏
Q∈∆

K∗d/K
∗r
d .
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Its properties are described in Proposition 5.7. For an element v of the
product

∏
Q∈∆K

∗
d/K

∗r
d , we conveniently write v = (v0, v1, vt), where vi is

the coordinate corresponding to Qi.
Let C◦Kd ⊂ CKd be the complement of ∆ ∪ {Q∞}. We define the homo-

morphism

(x− T )′ : Div(C◦Kd)→
∏
Q∈∆

K∗d/K
∗r
d

by defining it on a closed point P ∈ C◦Kd as follows

P 7→ (x(P )− x(Q))Q∈∆ ,

followed by taking the norm if the residue field of P is a proper field exten-
sion of Kd.

We now define the homomorphism

(x− T ) : Div0(CKd)→
∏
Q∈∆

K∗d/K
∗r
d

as follows: let D ∈ Div0(CKd) be a degree-zero divisor on CKd , then choose
D′ ∈ Div(C◦Kd) in such a way that D is linearly equivalent to D′. We define
(x− T )(D) to be (x− T )′(D′). For a proof that (x− T ) is well-defined, see
[5, 6.2.2].

5.4.1 Descent

We fix a separable closure Ksep
d of Kd, and we let G be the absolute Galois

group Gal(Ksep
d /Kd) of Kd. For a finite G-module M of cardinality coprime

to p, we denote by M∨ the dual G-module Hom(M,Ksep ∗
d ), and we will

abbreviate the Galois cohomology groups H i(G,M) by H i(M) for every
integer i ≥ 0.

Proposition 5.7. There exists a homomorphism α from H1(J [φ]) to the
group

∏
Q∈∆ K

∗
d/K

∗r
d such that the following diagram is commutative with

exact bottom row.

Div0(CKd)

����
(x−T )

��

J(Kd)/φJ(Kd)� _

∂
��

0 // H1(J [φ]) α //
∏

Q∈∆ K
∗
d/K

∗r
d

N // K∗d/K
∗r
d

// 0
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Here ∂ is induced by the Galois cohomology coboundary map for the isogeny
φ, and N is the map sending (a0, a1, at) to a1at/a0.

Proof. The proof is based on arguments from the paper [5], where the theory
of descent is developed in great generality.

Let E be (Z/rZ)∆, the G-module of Z/rZ-valued functions on ∆. Note
that the G-action on ∆ as well as E is trivial. There is a G-module map
α∨ : E → J [φ] defined by h 7→

∑
Q∈∆ h(Q)·[Q−Q∞]. Proposition 5.3 shows

that α∨ is surjective. Its kernel R is the Z/rZ-submodule of E generated
by the map ρ defined by Q0 7→ −1, Q1 7→ 1, Qt 7→ 1. The resulting short
exact sequence of G-modules

0→ R→ E
α∨→ J [φ]→ 0 (5.5)

is split-exact, since it consists of modules that are free as Z/rZ-modules
and have trivial G-action. Dualizing (5.5) and taking Galois cohomology,
we obtain a split-exact sequence

0→ H1(J [φ†])→ H1(E∨)→ H1(R∨)→ 0. (5.6)

By Lemma 5.4, H1(J [φ†]) is the same as H1(J [φ]). We compute that
H1(E∨) = H1(µ∆

r ) =
∏

Q∈∆ K
∗
d/K

∗r
d , where the last step is Hilbert 90.

Choosing the isomorphism Z/rZ ∼→ R given by 1 7→ ρ, we identify H1(R∨)
with H1(µr) = K∗d/K

∗r
d , where the last step is again Hilbert 90. With these

identifications, the short exact sequence (5.6) becomes the bottom row in
the diagram, and the map H1(E∨) → H1(R∨) corresponds to the N from
the statement of the proposition.

The fact that the diagram is commutative is the content of Proposition
6.4 in [5].

It follows from Proposition 5.7 that (x − T ) induces a map J(Kd) →∏
Q∈∆K

∗
d/K

∗r
d . We will also denote this map by (x− T ). The map (x− T )

can be seen as a computation-friendly substitute for the coboundary map
δ : J(Kd)→ H1(J [φ]), since we have (x−T ) = α◦δ, where α is the injective
map from Proposition 5.7. Moreover, Proposition 5.7 shows that the image
of (x − T ) is contained in the kernel of N , with N as in the statement of
the proposition.

5.4.2 Some values of (x− T )

The rest of this subsection is devoted to the computation of (x−T )(Q−Q∞)
for Q ∈ ∆.
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Lemma 5.8. Let D ∈ Div(C◦Kd). Then if (x − T )′(D) = (v0, v1, vt), we

have v1vt/v0 = vr−1
0 v1vt = 1.

Proof. From equation (5.1) it follows that, if P ∈ C◦Kd is a closed point,
then (the κ(P )/Kd-norm of) x(P )r−1(x(P ) + 1)(x(P ) + t) is contained in
K∗rd .

The following lemma states that (x − T ) can be “evaluated on the co-
ordinates on which it makes sense”.

Lemma 5.9. Let D ∈ Div(CKd) be a divisor supported outside of Q∞. If
Q ∈ ∆ is such that D is also supported outside of Q, then we have

(x− T )(D)Q =
∏
P

(x(P )− x(Q))ordP (D).

Proof. Choose a divisor D′ ∈ Div(C◦Kd) that is linearly equivalent to D.
Choose g ∈ Kd(C)∗ such that D′ = D + div(g). Observe that div(g) is
supported outside Q and Q∞. Then

(x− T )(D)Q = (x− T )′(D′)Q

=
∏
P

(x(P )− x(Q))ordP (D′)

=
∏
P

(x(P )− x(Q))ordP (D+div(g))

=
∏
P

(x(P )− x(Q))ordP (D)
∏
P

(x(P )− x(Q))ordP (g).

In the last expression however, the contribution of the second product is
trivial:∏

P

(x(P )− x(Q))ordP (g) =
∏
P

g(P )ordP (x−x(Q)) = g(Q)rg(∞)−r = 1,

where the first equality is due to Weil reciprocity and the second one rests
on the fact that for Q ∈ ∆ we have div(x − x(Q)) = r · Q − r · Q∞, as is
shown by direct calculation.

For future use, we apply Lemmas 5.8 and 5.9 to the computation of the
images under (x− T ) of the divisors Q1 −Q∞ and Pi −Q∞.

Proposition 5.10. We have (x−T )(Q1−Q∞) = (−1, 1/(1− t), t− 1) and
(x− T )(Pi,j −Q∞) = (ζ idu, ζ

i
du+ 1, ζ idu+ t).
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Proof. For • ∈ {0, 1, t,∞}, let D• ∈ Div(C◦Kd) be a divisor that is linearly
equivalent toQ•. Using Lemmas 5.8 and 5.9, one gets (x−T )′(D0) = (t, 1, t),
(x−T )′(D1) = (−1, 1/(1− t), t−1), and (x−T )′(Dt) = (−t, 1− t, t/(t−1)).
Applying (5.2), we then find (x− T )′(D∞) = (1, 1, 1). Hence (x− T )(Q1 −
Q∞) = (x− T )′(D1 −D∞) = (−1, 1/(1− t), t− 1).

Finally, we have (x − T )(Pi,j − Q∞) = (x − T )(Pi,j − D∞) = (x −
T )′(Pi,j)− (x− T )′(D∞) = (ζ idu, ζ

i
du+ 1, ζ idu+ t).

5.5 The image of (x− T )
For this section, let N ⊂ J(Kd) be the subgroup generated by the divisor
classes [Pi,j−Q∞], where i ∈ {0, . . . , d− 1} and j ∈ {0, . . . , r− 1}. Observe
that the known torsion elements [Q0 − Q∞], [Q1 − Q∞], [Qt − Q1] and

[D] = [
∑d−1

i=0

∑[−1−i]
j=0 (Pi,j−Q∞)] (the D is as in Lemma 5.6) are all contained

in N by Lemmas 5.5 and 5.6. Therefore N contains all elements of J(Kd)
described so far.

Proposition 5.11. We have dimFr(x− T )(N) = d.

Proof. Since (x− T )(Pi,j −Q∞) = (x− T )(ζjr (Pi,0−Q∞)) = (x− T )(Pi,0−
Q∞), the dimension certainly cannot be larger than d. To show that it
is precisely d, we project down from

∏
Q∈∆ K

∗
d/K

∗r
d to a finite-dimensional

quotient space of dimension d, and conclude by showing that the projection
is surjective.

For an irreducible polynomial π inside Kd, the valuation it induces on
K∗d is denoted valπ : K∗d → Z. We define the following map:

pr :
∏
Q∈∆

K∗d/K
∗r
d → Fdr

(v0, v1, vt) 7→ (valu+1(v1), valu+ζ−1
d

(v1), valu+ζ−2
d

(v1), . . . , valu+ζd(v1))

By Proposition 5.10, we have (x−T )(Pi,j−Q∞) = (ζ idu, ζ
i
du+1, ζ idu+ t).

We see that pr maps the image of Pi,j−Q∞ to the i-th basis vector. Hence pr
maps (x−T )(N) surjectively onto Fdr . This establishes the proposition.

Lemma 5.12. The image under (x − T ) of the subgroup generated by [D]
and [Q1 −Q∞] has Fr-dimension 2.

Proof. Since (x−T )(Pi,j−Q∞) = (x−T )(Pi,0−Q∞), as noted in the proof of

Proposition 5.11, we see that the image of D =
∑d−1

i=0

∑[−1−i]
j=0 Pi,j is the same
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as that of
∑d−1

i=0 (d − i)(Pi,0 − Q∞). If we resume the notation of the proof
of Proposition 5.11, we find pr((x−T )(D)) = (0,−1,−2, . . . ,−d+ 1) ∈ Fdr .

Proposition 5.10 gives (x−T )(Q1−Q∞) = (−1, 1/(1−t), t−1). Since in
Kd we have the factorization 1− t =

∏d−1
i=0 (1− ζ idu), we get pr((x−T )(Q1−

Q∞)) = (−1,−1,−1, . . . ,−1). The lemma now follows.

5.6 An algebraic lemma

We consider Fr as a Z[ζr]-module via the unique ring homomorphism Z[ζr]→
Fr, whose kernel is the maximal ideal generated by 1− ζr. Then ζr acts as
the identity on Fr.

Lemma 5.13. Let R = Z[ζr] and φ = 1− ζr. Let M and N be R-modules
with N ⊂M .

(i) There are positive integers ei such that

M [r∞] = M [φ∞] ∼=
t⊕
i=1

R/(φei)

as R-modules, where t = dimFr M [φ].

(ii) There is an exact sequence

0→ N [φ]→M [φ]→ (M/N)[φ]→
N ⊗R Fr →M ⊗R Fr → (M/N)⊗R Fr → 0,

where the middle map sends m+N to φm⊗ 1.

Let ρ = dimQ(ζr) N⊗ZQ be the rank of N as R-module, and let V ⊂M⊗RFr
be the image of the map N →M ⊗R Fr.

(iii) We have

ρ = dimFr V + dimFr(M/N)[φ]− dimFr M [φ].

Proof. Since the elements r and φr−1 of Z[ζr] generate the same ideal, they
differ by a unit, and hence we have M [r∞] = M [φ∞]. Localizing at the
prime ideal (φ), we find, by the structure theorem for finitely generated
modules over principal ideal domains:

M(φ)
∼= Rs

(φ) ⊕
t⊕
i=1

R/(φei),
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for some choice of non-negative integers s, t and ei. Since localizing at (φ)
does not affect φ-power torsion, we find M [φ∞] ∼=

⊕t
i=1R/(φ

ei). From the
isomorphism, it is clear that t = dimFr M [φ]. This proves part (i).

The exact sequence given in part (ii) is the long exact sequence that
results from applying −⊗R Fr to 0→ N →M →M/N → 0.

Truncating the exact sequence of part (ii) at the fifth term, we get the
exact sequence

0→ N [φ]→M [φ]→ (M/N)[φ]→ N ⊗R Fr → V → 0. (5.7)

Using

dimFr N ⊗R Fr = dimFr N(φ) ⊗R(φ)
Fr = ρ+ dimFr N [φ],

and the fact that the Fr-dimensions of the terms of (5.7) add up to zero, we
obtain part (iii). This concludes the proof.

5.7 Proof of the main theorem

As in section 5.6, we consider Fr as a Z[ζr]-module. Since the isogeny φ
was defined as 1 − ζr, we may write J(Kd)/φJ(Kd) = J(Kd) ⊗Z[ζr] Fr. By
Proposition 5.7, we have a commutative diagram

J(Kd)

(x−T )

))

// J(Kd)⊗Z[ζr] Fr� _

��∏
Q∈∆ K

∗
d/K

∗r
d

Let N be a Z[ζr]-submodule of J(Kd). Then the image of N under (x− T )
can be identified with the image of the map N → J(Kd)⊗Z[ζr] Fr.

We conclude by giving the proof of Theorem 5.1.

Proof of Theorem 5.1. First, we determine J(Kd)[r
∞]. By Proposition 5.3

and Lemma 5.13(i) we find that

J(Kd)[r
∞] ∼= Z[ζr]/(1− ζr)e1 ⊕ Z[ζr]/(1− ζr)e2

for some positive integers e1, e2. By Lemma 5.12, the classes of [D] and
[Q1 −Q∞] generate J(Kd)[r

∞]⊗Z[ζr] Fr, so by Nakayama’s lemma [D] and
[Q1 −Q∞] generate J(Kd)[r

∞].
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Let N ⊂ J(Kd) be the subgroup generated by the divisor classes [Pi,j −
Q∞], for 0 ≤ i ≤ d − 1 and 0 ≤ j ≤ r − 1. From Proposition 5.11 and
Lemma 5.13(iii) applied with M = J(Kd) we find:

rankZ[ζr](N) = d− 2 + dimFr(J(Kd)/N)[1− ζr].

Since N ⊗Z[ζr] Fp has dimension d, it follows from Proposition 5.11 that
N ⊗Z[ζr] Fp injects into J(Kd)⊗Z[ζr] Fp, which by Lemma 5.13(ii) implies

dimFr(J(Kd)/N)[1− ζr] = 0

Therefore, the Z-rank of N is equal to (r − 1)(d− 2). �
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[26] Luis Ribes and Pavel Zalesskii. Profinite Groups. Springer-Verlag,
Berlin-Heidelberg, 2010.

[27] P. Salberger and A. N. Skorobogatov. Weak approximation for surfaces
defined by two quadratic forms. Duke Math. J., 63(2):517–536, 1991.

[28] Per Salberger. Sur l’arithmétique de certaines surfaces de del Pezzo.
C. R. Acad. Sci. Paris, 303:273–276, 1986.
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Samenvatting

Mijn proefschrift gaat over rationale punten. Voordat ik daaraan toekom
moet ik het echter eerst hebben over rationale getallen.

Rationale getallen

Als je leert te tellen, begin je met de natuurlijke getallen:

1, 2, 3, . . . .

Later leer je van het bestaan van nul en de negatieve getallen. Samen met
de positieve getallen vormen deze de gehele getallen:

. . . ,−3,−2,−1, 0, 1, 2, 3, . . . .

Maar lang niet alle getallen die je in het dagelijks leven tegenkomt zijn
geheel. Een treinkaartje met korting van Den Haag naar Leiden kost bi-
jvoorbeeld e1,90. Op de basisschool leer je dan ook dat er naast de gehele
getallen breuken bestaan, die door wiskundigen ook wel rationale getallen
worden genoemd. Voorbeelden van rationale getallen zijn:

1

2
, −1

3
,

6

7
,

22

7
.

De gehele getallen zijn zelf ook rationale getallen, want het gehele getal 3
bijvoorbeeld kun je ook als een breuk schrijven:

3 =
3

1
.

Alle soorten getallen die we hierboven besproken hebben zijn dus voor-
beelden van rationale getallen.
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Irrationale getallen

Op de middelbare school leer je dat alle getallen die je tot dan toe kent een
plekje hebben op de getallenlijn:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Je moet je de getallenlijn voorstellen alsof hij zich oneindig ver naar links en
rechts uitstrekt. Hieronder geven we een aantal getallen op de getallenlijn
aan.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

1
2

6
7

−1
3

22
7

Wiskundigen hebben het niet vaak over de getallenlijn, maar ze hebben wel
een naam voor de getallen die je erop aantreft, namelijk reële getallen. Het
feit dat alle rationale getallen een plekje op de getallenlijn hebben zouden
wiskundigen liever als volgt formuleren: alle rationale getallen zijn reële
getallen.

Is het omgekeerd ook waar dat alle reële getallen rationaal zijn? Nee!
Hier is een reëel getal dat niet rationaal is:

√
2 = 1,41421356237 . . . .

Bovenstaand getal, de wortel van 2 genaamd, heeft de eigenschap dat als je
het met zichzelf vermenigvuldigt, je de uitkomst 2 krijgt. In een formule:

√
2×
√

2 = 1,41421356237 . . .× 1,41421356237 . . . = 2.

Anders gezegd,
√

2 is de lengte van een zijde van een vierkant met opper-
vlakte 2. In een plaatje:

opper–
vlakte 2

1,41421356237 . . .

De oude Grieken wisten al dat er geen enkele breuk is met bovenstaande
eigenschap. Het getal

√
2 is dus niet rationaal. Niettemin is

√
2 wel gewoon

een reëel getal: het heeft een plekje op de getallenlijn.
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−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

1
2

6
7

√
2−1

3
22
7

Reële getallen die niet rationaal zijn, zoals
√

2, noemen we ook wel irra-
tionale getallen.

Intermezzo: de irrationaliteit van
√
2

In deze paragraaf bewijzen we dat
√

2 een irrationaal getal is. Deze para-
graaf kan zonder problemen worden overgeslagen.

Het bewijs dat
√

2 irrationaal is, is een klassiek geval van een bewijs uit
het ongerijmde. Dit gaat zo. We nemen eerst aan dat

√
2 wél rationaal is,

om daarna op een tegenstrijdigheid uit te komen. De tegenstrijdigheid laat
zien dat onze aanname fout was; dus is

√
2 niet rationaal.

Stel dat
√

2 rationaal is. Dan zijn er gehele getallen m en n zodanig dat

√
2 =

m

n
.

Zoals je op de basisschool leert kun je sommige breuken vereenvoudigen, door
de teller en noemer door hetzelfde getal te delen. We mogen dus aannemen
dat m

n
niet meer verder vereenvoudigd kan worden. In het bijzonder zijn m

en n niet allebei even – waren ze dat wel, dan konden we ze allebei door 2
delen, waardoor de breuk vereenvoudigd zou worden.

We gaan nu met bovenstaande vergelijking aan de slag, eerst maar eens
door van beide leden het kwadraat te nemen:

2 =
m2

n2
.

Vervolgens vermenigvuldigen we beide leden met n2 en krijgen dan

2n2 = m2. (1)

Merk nu op: als m even is, dan is m2 ook even; als m oneven is, dan is m2

ook oneven. Hetzelfde geldt uiteraard als we m vervangen door n. Omdat
m en n niet allebei even waren, zijn m2 en n2 dus ook niet allebei even. Uit
bovenstaande vergelijking zien we dat m2 gelijk is aan 2n2, dus m2 is even,
en dus is m zelf even. We kunnen dus

m = 2k
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schrijven, waarbij k weer een zeker geheel getal is. Als we bovenstaande
invullen in vergelijking (1), dan krijgen we

2n2 = (2k)2,

oftewel, als we de haakjes wegwerken,

2n2 = 4k2.

Delen we de laatste vergelijking door 2, dan staat er

n2 = 2k2.

Hieruit volgt dat n2 even is, en dus n zelf ook. Maar dan zijn m en n dus
beide even. Dit is in tegenstrijdigheid met de eerdere opmerking dat m

n
een

vereenvoudigde breuk was. Dus
√

2 is irrationaal.

Dichtheid

We weten nu dus dat niet alle reële getallen rationaal zijn. Het is zelfs nog
erger dan dat: in de 19e eeuw bewees Georg Cantor dat bijna alle reële
getallen irrationaal zijn! Aan de andere kant, als je alle rationale getallen
op de getallenlijn zou aanstippen, dan zou je de hele getallenlijn met stipjes
bedekken. Als voorbeeld hebben we hieronder de rationale getallen

−60

10
, −58

10
, −56

10
, . . . ,

56

10
,

58

10
,

60

10

aangestipt:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

In bovenstaand plaatje zie je de afzonderlijke stipjes nog wel, maar als je
bijvoorbeeld de rationale getallen
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Hoe klein je de stipjes ook maakt – als je alle rationale getallen zou aanstip-
pen, dan zou de hele getallenlijn ingekleurd raken. We zeggen ook wel dat
de rationale getallen dicht liggen op de getallenlijn.

Het verschijnsel dichtheid staat centraal in dit proefschrift. Daarin wordt
echter niet meer gekeken naar de dichtheid van de rationale getallen op de
getallenlijn, maar naar de dichtheid van rationale punten op meetkundige
voorwerpen als krommen en oppervlakken.

Krommen

Een kromme is grofweg gesproken iets wat eruitziet als een uit de vrije hand
getekende (niet noodzakelijk rechte) lijn op papier. Bijvoorbeeld:

In dit proefschrift wordt met een kromme altijd een kromme bedoeld die
gedefinieerd is door algebräısche vergelijkingen. Voor het gemak zullen we
ons in deze samenvatting verder beperken tot krommen in het platte vlak.
Een punt in het platte vlak wordt aangegeven met (a, b), waarbij a de x-
coördinaat is, en b de y-coördinaat.

Voorbeeld: een cirkel

Als voorbeeld van een kromme bekijken we de cirkel C in het platte vlak
met straal 1 en middelpunt (0, 0). Deze heeft als vergelijking

x2 + y2 = 1.

De cirkel C bestaat dus uit alle punten (x, y) in het platte vlak die vol-
doen aan bovenstaande vergelijking. Hieronder is C getekend en zijn enkele
punten op C aangegeven.
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)(0, 1)
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(1, 0)(−1, 0)

Een rationaal punt op de cirkel C is een punt (a, b) dat op C ligt, en waar-
voor a en b rationale getallen zijn. Voorbeelden van rationale punten op C
zijn de punten (1, 0), (0, 1), (−1, 0), (0,−1) en

(
4
5
, 3

5

)
die boven aangegeven

staan. Andere rationale punten op C zijn
(

7
13
, 12

13

)
,
(
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25
, 24

25

)
en
(

20
29
, 21

29

)
, zoals

de lezer door een berekening zou kunnen nagaan.

Pythagoras

Er is iets grappigs aan de hand met de cirkel C en zijn rationale punten.
Neem het laatstgenoemde punt

(
20
29
, 21

29

)
. Dat het op C ligt betekent(

20

29

)2

+

(
21

29

)2

= 1.

Als we dit met 292 vermenigvuldigen, dan staat er

202 + 212 = 292.

Degenen die de stelling van Pythagoras kennen zullen zich nu realiseren dat
de driehoek met zijden 20, 21 en 29 rechthoekig is:

21
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29

Op dezelfde manier leidt het punt
(

4
5
, 3

5

)
tot de bekende rechthoekige driehoek

met zijdelengten 3-4-5, leidt het punt
(

7
13
, 12

13

)
tot de rechthoekige driehoek

met zijdelengten 7-12-13 en leidt het punt
(

9
25
, 24

25

)
tot de rechthoekige

driehoek met zijdelengten 9-24-25.
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Dichtheid van de rationale punten op de cirkel

We zullen laten zien dat C oneindig veel rationale punten heeft. Beschouw
de cirkel C, en laat Lt de lijn zijn door het punt (−1, 0) en met richtings-
coëfficiënt t. De vergelijking van deze lijn is y = t(x+ 1).

(−1, 0)

y =
t(x+

1)
P =

(
1−t2
1+t2

, 2t
1+t2

)

Zoals aangegeven snijdt de lijn de cirkel in het punt

P =

(
1− t2

1 + t2
,

2t

1 + t2

)
.

Als t een rationaal getal is, dan laat bovenstaande formule zien dat P een
rationaal punt is op C. Omdat je voor t oneindig veel verschillende rationale
getallen kunt invullen, liggen er oneindig veel rationale punten op C. Meer is
waar, want de rationale punten liggen zelfs dicht op C: als je elk rationaal
punt op C zou aangeven met een stipje, dan bedek je de hele cirkel met
stipjes:

Krommen in het algemeen

Een kromme Γ in het platte vlak wordt gegeven door een vergelijking

f(x, y) = 0,

waarbij f een polynoom met rationale coëfficiënten is, dat wil zeggen dat
f(x, y) een som is van termen van de vorm cxiyj, waarbij c een rationaal
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getal is en waarbij i en j niet-negatieve gehele getallen zijn. De rationale
punten op Γ zijn weer die punten op Γ waarvan de x- en y-coördinaten
rationale getallen zijn. We noemen Γ verder irreducibel wanneer f niet te
schrijven is als het product van twee niet-constante polynomen.

We kunnen irreducibele krommen indelen naargelang hun geslacht. Het
geslacht van een kromme is een niet-negatief geheel getal, dat nauw verbon-
den is met zijn meetkundige eigenschappen.

• De krommen van geslacht 0 zijn de kegelsneden, zoals de cirkel C van
eerder. Als een kromme Γ geslacht 0 heeft, en Γ bezit tenminste één
rationaal punt, dan liggen de rationale punten dicht op Γ.
• Als een kromme Γ van geslacht 1 een rationaal punt heeft, is het een

zogenaamde elliptische kromme. Op sommige elliptische krommen
liggen de rationale punten dicht, op andere niet.
• Een kromme Γ van geslacht groter dan 1 heeft eindig veel rationale

punten volgens een beroemd resultaat van Faltings uit 1983. De ra-
tionale punten liggen dus nooit dicht op een dergelijke kromme.

Of de rationale punten op een kromme Γ dicht liggen of niet wordt dus in
belangrijke mate bepaald door het geslacht van Γ.

Oppervlakken

De cirkel C van hierboven was gedefinieerd door middel van de vergelij-
king x2 + y2 = 1. Als we in plaats van vergelijkingen in x en y kijken naar
vergelijkingen in x, y en z, dan komen we uit bij de zogenaamde oppervlakken
in de driedimensionale ruimte. Als je een oppervlak zou tekenen zou je
bijvoorbeeld het volgende plaatje kunnen krijgen.

Rationale punten op oppervlakken

Ook bij een oppervlak kunnen we weer kijken naar zijn rationale punten.
Net zoals de rationale punten op de cirkel aanleiding gaven tot rechthoekige
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driehoeken met gehele zijdelengten, vinden ook rationale punten op opper-
vlakken vele toepassingen binnen de getaltheorie.

De vragen die ten grondslag liggen aan mijn onderzoek zijn vooral de
volgende twee. Voor welke typen oppervlakken mogen we verwachten dat
de rationale punten dicht liggen, en voor welke mogen we het juist niet
verwachten? Zijn er net als voor krommen eenvoudige meetkundige criteria
die voorspellen of de rationale punten al dan niet dicht liggen? Dit zijn zeer
veelomvattende vragen, en ik verwacht dat er zeker nog jarenlang onderzoek
voor nodig is om ze echt op te lossen.

Dichtheid van rationale punten op K3-oppervlakken

Met de resultaten uit mijn proefschrift kun je onder meer de volgende uit-
spraak bewijzen. Als a en b rationale getallen zijn waarbij a bovendien
positief is, en K is het oppervlak gegeven door

z2 = (x3 + ax+ b)(y3 + ay + b),

dan liggen de rationale punten dicht opK. Het oppervlakK is een voorbeeld
van een K3-oppervlak, zo genoemd naar de meetkundigen Kähler, Kodaira
en Kummer.



136 Samenvatting



Dankwoord

Ten eerste dank ik mijn promotor, Peter Stevenhagen, zowel voor het uit-
stekende onderzoeksklimaat aan het Mathematisch Instituut, waarvoor hij
als wetenschappelijk directeur verantwoordelijk is, als voor de vele ant-
woorden die hij gegeven heeft op mijn wiskundige vragen. Daarnaast wil
ik graag mijn copromotor Ronald van Luijk bedanken. Zijn inhoudelij-
ke vakkundigheid, zijn persoonlijke betrokkenheid en zijn onfeilbare oog
voor detail hebben mij gedurende de laatste vier jaar zowel geholpen als
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