3D active shape modeling for cardiac MR and CT image segmentation
Assen, Hans Christiaan van

Citation

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/4460

Note: To cite this publication please use the final published version (if applicable).
3D Active Shape Modeling
for Cardiac MR and CT
Image Segmentation
Colophon

This thesis was typeset by the author using \LaTeX. The main body of the text was set using a 9 points New Century Schoolbook font, and for the sans serif parts the Helvetica font was used; both fonts are © Adobe Systems Incorporated. Images were included formatted as Encapsulated Postscript, and represented either in grayscale, or in the CMYK color scheme. The output was converted to PDF and transferred to film for printing.

About the cover
The front and back covers were designed by Sandra Batelaan.
The covers show an abstraction of a mesh representing a cardiac model. The nodes and edges symbolize the point distribution at its surface(s). When the back and front covers are seen together, from left to right a transition from chaos to order appears while the free nodes are attached to the structured mesh. This represents the formation of a model from a set of individual training shapes. The size of the nodes represents the amount of local variation, which varies from node to node.

3D Active shape modeling for cardiac MR and CT image segmentation
Assen, Hans Christiaan van

Printed by Optima Grafische Communicatie, Rotterdam, The Netherlands

© 2006 H.C. van Assen, Vught, The Netherlands, unless stated otherwise on chapter front pages. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the copyright owner.
3D Active Shape Modeling
for Cardiac MR and CT
Image Segmentation

Proefschrift
ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van de Rector Magnificus Dr. D.D. Breimer,
hoogleraar in de faculteit der Wiskunde en
Natuurwetenschappen, en die der Geneeskunde,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 10 mei 2006
klokke 15.15 uur

door

Ir. Hans Christiaan van Assen
geboren te Leeuwarden
in 1969
Promotiecommissie

promotor: Prof. dr. ir. J.H.C. Reiber
co-promotor: Dr. ir. B.P.F. Lelieveldt
referent: Prof. dr. M. Sonka
University of Iowa, Iowa, USA
overige leden: Prof. dr. A. de Roos
Dr. A.F. Frangi
Universitat Pompeu Fabra, Barcelona, Spanje

Financial support for the publication of this thesis was kindly provided by:
Stichting Beeldverwerking Leiden
Medis medical imaging systems B.V.
Philips Medical Systems Nederland B.V. (Healthcare IT - Advanced Development)
Contents

Colophon ii

Contents v

1 Introduction 1
 1.1 Background 2
 1.1.1 Cardiac anatomy 2
 1.1.2 Heart disease 2
 1.1.3 Diagnosis: cardiac imaging and quantification 3
 1.1.4 Automation in diagnostic quantification 4
 1.2 Automatic segmentation 7
 1.2.1 Knowledge-based solutions 7
 1.2.2 Statistical shape modeling 7
 1.3 Motivation of this work 10
 1.4 Structure of this thesis 11

2 3D-ASM Matching for LV Segmentation in Cardiac CT 15
 2.1 Introduction 16
 2.2 Methodology 18
 2.2.1 Model generation 18
 2.2.2 Matching Algorithm 20
 2.3 Experimental setup 22
 2.3.1 Training data 22
 2.3.2 Evaluation data 22
 2.3.3 Model matching parameters 22
 2.3.4 Quantitative evaluation 23
 2.4 Results 24
 2.5 Discussion and conclusions 24

3 Cardiac LV Segmentation Using a 3D ASM Driven by Fuzzy Inference 27
 3.1 Introduction 28
 3.2 Methodology 30
 3.2.1 3D model generation 30
 3.2.2 Model matching 30
 3.2.3 Edge detection using Fuzzy Inference 31
 3.3 Experimental Setup 33
 3.4 Results 33
 3.5 Discussion and conclusions 35

4 A 3D-ASM driven by Fuzzy Inference applied to Cardiac CT and MR 37
 4.1 Introduction 38
 4.2 Background 41
 4.2.1 Shape Modeling 41
 4.2.2 Model matching 42