3D active shape modeling for cardiac MR and CT image segmentation
Assen, Hans Christiaan van

Citation

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/4460

Note: To cite this publication please use the final published version (if applicable).
3D Active Shape Modeling
for Cardiac MR and CT
Image Segmentation
Colophon

This thesis was typeset by the author using \LaTeX. The main body of the text was set using a 9 points New Century Schoolbook font, and for the sans serif parts the Helvetica font was used; both fonts are © Adobe Systems Incorporated. Images were included formatted as Encapsulated Postscript, and represented either in grayscale, or in the CMYK color scheme. The output was converted to PDF and transferred to film for printing.

About the cover
The front and back covers were designed by Sandra Batelaan. The covers show an abstraction of a mesh representing a cardiac model. The nodes and edges symbolize the point distribution at its surface(s). When the back and front covers are seen together, from left to right a transition from chaos to order appears while the free nodes are attached to the structured mesh. This represents the formation of a model from a set of individual training shapes. The size of the nodes represents the amount of local variation, which varies from node to node.

3D Active shape modeling for cardiac MR and CT image segmentation
Assen, Hans Christiaan van

Printed by Optima Grafische Communicatie, Rotterdam, The Netherlands

© 2006 H.C. van Assen, Vught, The Netherlands, unless stated otherwise on chapter front pages. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the copyright owner.
3D Active Shape Modeling
for Cardiac MR and CT
Image Segmentation

Proefschrift
ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van de Rector Magnificus Dr. D.D. Breimer,
hoogleraar in de faculteit der Wiskunde en
Natuurwetenschappen, en die der Geneeskunde,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 10 mei 2006
klokke 15.15 uur

door

Ir. Hans Christiaan van Assen
geboren te Leeuwarden
in 1969
Promotiecommissie

promotor: Prof. dr. ir. J.H.C. Reiber
co-promotor: Dr. ir. B.P.F. Lelieveldt
referent: Prof. dr. M. Sonka
University of Iowa, Iowa, USA
overige leden: Prof. dr. A. de Roos
Dr. A.F. Frangi
Universitat Pompeu Fabra, Barcelona, Spanje

Financial support for the publication of this thesis was kindly provided by:
 Stichting Beeldverwerking Leiden
 Medis medical imaging systems B.V.
 Philips Medical Systems Nederland B.V. (Healthcare IT - Advanced Development)
Contents

Colophon

Contents

1 Introduction

1.1 Background
 1.1.1 Cardiac anatomy
 1.1.2 Heart disease
 1.1.3 Diagnosis: cardiac imaging and quantification
 1.1.4 Automation in diagnostic quantification

1.2 Automatic segmentation
 1.2.1 Knowledge-based solutions
 1.2.2 Statistical shape modeling

1.3 Motivation of this work

1.4 Structure of this thesis

2 3D-ASM Matching for LV Segmentation in Cardiac CT

2.1 Introduction

2.2 Methodology
 2.2.1 Model generation
 2.2.2 Matching Algorithm

2.3 Experimental setup
 2.3.1 Training data
 2.3.2 Evaluation data
 2.3.3 Model matching parameters

2.4 Results

2.5 Discussion and conclusions

3 Cardiac LV Segmentation Using a 3D ASM Driven by Fuzzy Inference

3.1 Introduction

3.2 Methodology
 3.2.1 3D model generation
 3.2.2 Model matching
 3.2.3 Edge detection using Fuzzy Inference

3.3 Experimental Setup

3.4 Results

3.5 Discussion and conclusions

4 A 3D-ASM driven by Fuzzy Inference applied to Cardiac CT and MR

4.1 Introduction

4.2 Background
 4.2.1 Shape Modeling
 4.2.2 Model matching
4.3 3D-ASM
4.3.1 Model generation 42
4.3.2 Model matching 43
4.3.3 Edge detection using Fuzzy Inference 45
4.3.4 Robust update selection 48
4.4 Experimental setup 50
4.4.1 Training and testing data 50
4.4.2 Matching parameters 50
4.4.3 Quantitative assessment indices 51
4.5 Results 53
4.5.1 Quantitative data 53
4.6 Discussion 55
4.7 Conclusion 59

5 Parametric Optimization of a Model-Based Segmentation Algorithm 61
5.1 Introduction 62
5.1.1 Shape Model 63
5.1.2 Appearance Model 63
5.1.3 Using sectorization in FCM 64
5.1.4 Matching Procedure 66
5.2 Parametric Optimization 66
5.2.1 Parameters Related to the Shape Model 66
5.2.2 Parameters Related to the Appearance Model 67
5.2.3 Fixed Settings 67
5.3 Evaluation Data Set 67
5.4 Grid Computing Approach 68
5.5 Quantitative Assessment 68
5.6 Conclusions 70

6 Assessment of an Autolandmarked Statistical Shape Model 71
6.1 Introduction 72
6.2 Construction of the Statistical Shape Models 73
6.2.1 Training Data Set 73
6.2.2 Model Building 74
6.3 PDM Parameterizations 74
6.4 Shape Model Characterization 76
6.4.1 Shape Analysis 76
6.5 Segmentation Performance Assessment 77
6.5.1 Evaluation Data Set 78
6.5.2 Segmentation Tests 79
6.6 Discussion 80
6.7 Conclusion 81

7 SPASM: 3D-ASM for Sparse and Arbitrarily Oriented MRI Data 83
7.1 Introduction 84
7.1.1 Purpose 84
7.1.2 Background 85
7.2 Methods 86
7.2.1 Shape Modeling 86
7.2.2 Atlas construction 88
7.2.3 Matching algorithm 88
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.4 Update propagation to undersampled surface regions</td>
<td>89</td>
</tr>
<tr>
<td>7.2.5 Feature point detection using Fuzzy Inference</td>
<td>92</td>
</tr>
<tr>
<td>7.3 Experimental setup</td>
<td>94</td>
</tr>
<tr>
<td>7.3.1 Test data and protocol</td>
<td>94</td>
</tr>
<tr>
<td>7.3.2 Matching experiments</td>
<td>97</td>
</tr>
<tr>
<td>7.4 Results</td>
<td>97</td>
</tr>
<tr>
<td>7.5 Discussion</td>
<td>101</td>
</tr>
<tr>
<td>7.5.1 Segmentation performance</td>
<td>101</td>
</tr>
<tr>
<td>7.5.2 Sensitivity to initial model placement</td>
<td>104</td>
</tr>
<tr>
<td>7.5.3 Protocol independence</td>
<td>105</td>
</tr>
<tr>
<td>7.5.4 Limitations</td>
<td>105</td>
</tr>
<tr>
<td>7.5.5 Comparison to other work</td>
<td>105</td>
</tr>
<tr>
<td>7.6 Conclusions</td>
<td>108</td>
</tr>
<tr>
<td>8 Efficient Reconstruction of Cardiac LV Surfaces Using SPASM</td>
<td>109</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>110</td>
</tr>
<tr>
<td>8.2 Methods</td>
<td>111</td>
</tr>
<tr>
<td>8.2.1 Background</td>
<td>111</td>
</tr>
<tr>
<td>8.2.2 SPASM model construction</td>
<td>111</td>
</tr>
<tr>
<td>8.2.3 SPASM matching: edge detection</td>
<td>112</td>
</tr>
<tr>
<td>8.2.4 SPASM matching: update propagation</td>
<td>112</td>
</tr>
<tr>
<td>8.2.5 Experiments</td>
<td>113</td>
</tr>
<tr>
<td>8.3 Results</td>
<td>115</td>
</tr>
<tr>
<td>8.4 Discussion and Conclusions</td>
<td>116</td>
</tr>
<tr>
<td>9 Summary and Conclusions</td>
<td>119</td>
</tr>
<tr>
<td>9.1 Summary</td>
<td>120</td>
</tr>
<tr>
<td>9.2 Conclusions and future work</td>
<td>124</td>
</tr>
<tr>
<td>10 Samenvatting en conclusies</td>
<td>125</td>
</tr>
<tr>
<td>10.1 Samenvatting</td>
<td>126</td>
</tr>
<tr>
<td>10.2 Conclusies en aanbevelingen</td>
<td>131</td>
</tr>
<tr>
<td>Bibliography</td>
<td>133</td>
</tr>
<tr>
<td>Publications</td>
<td>143</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>147</td>
</tr>
<tr>
<td>Curriculum vitae</td>
<td>149</td>
</tr>
</tbody>
</table>