
System-level design methodology for streaming multi-processor
embedded systems
Nikolov, H.N.

Citation
Nikolov, H. N. (2009, April 16). System-level design methodology for streaming multi-
processor embedded systems. Retrieved from https://hdl.handle.net/1887/13729

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13729

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13729

System-Level Design Methodology
for Streaming Multi-Processor

Embedded Systems

Hristo N. Nikolov

System-Level Design Methodology for
Streaming Multi-Processor Embedded Systems

PROEFSCHRIFT

ter verkrijging van de graad van
Doctor aan de Universiteit Leiden, op gezag

van de Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties

te verdedigen op donderdag, 16 April 2009
te klokke 16.15 uur

door

Hristo N. Nikolov
geboren te Gabrovo, Bulgaria

in 1974

Samenstelling promotiecommissie:

promotor Prof.dr.ir. Ed F. Deprettere
co-promotor Dr.ir. Todor Stefanov

overige leden: Prof.dr. Daniel Gajski (University of California, Irvine, USA)
Prof.dr. Rainer Leupers (Aachen University of Technology, Germany)
Prof.dr.ir. Angel Popov (Technical University of Sofia, Bulgaria)
Prof.dr. Henk Corporaal (Technical University Eindhoven)
Prof.dr. Joost Kok
Prof.dr. Harry Wijshoff
Prof.dr. Frans Peters

The work in this thesis was carried out in the Artemisia project supported by PROGRESS/STW.

System-Level Design Methodology for Streaming Multi-Processor Embedded Systems
Hristo Nikolov Nikolov. -
Thesis Universiteit Leiden. - With ref. - With summary in Dutch

ISBN 978-90-9024163-0

Copyright c© 2009 by Hristo Nikolov Nikolov, Leiden, The Netherlands.
All rights reserved. No part of the material protected by this copyright notice may be repro-
duced or utilized in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system, without permission
from the author.

Printed in the Netherlands

To my daughters Michaela and Anetta;
To my wife Boyanka for all the support and understanding...

Contents

Acknowledgments xi

1 Introduction 1

1.1 Problem statement . 3

1.2 Solution approach . 4

1.2.1 Platform-based design at system level 8

1.2.2 Kahn Process Network model of computation 11

1.3 Scope of Work . 12

1.4 Research Contributions . 14

1.5 Related Work . 17

1.6 Dissertation Outline . 22

2 Embedded System-level Platform synthesis and Application Mapping – ESPAM 25

2.1 The Multiprocessor Platform . 26

2.1.1 Multiprocessor memory architecture 26

2.1.2 Data communication and synchronization mechanism 27

2.1.3 Platform interconnect protocol . 27

2.1.4 Implementation details . 28

2.1.5 System-level platform model . 32

2.2 Automated MPSoC Synthesis . 33

2.2.1 Platform specification . 34

viii Contents

2.2.2 Platform synthesis . 35

2.3 Automated Programming of MPSoCs . 43

2.3.1 Automated Derivation of Process Networks 44

2.3.2 Automated programming – input specification 46

2.3.3 Code generation: SW code for processors 47

2.4 Dedicated IP core integration with ESPAM 51

2.4.1 Uniform structure of a KPN process 52

2.4.2 IP Module – basic idea and structure 53

2.4.3 IP core types and interfaces . 56

2.5 Discussion . 56

2.5.1 Motivating example . 57

2.5.2 Process network instance . 58

2.5.3 Preserving the consistency of our PNs with dynamic parameters . . . 59

2.5.4 Respecting the conditions . 59

2.6 Conclusions . 61

3 Techniques for Narrowing the Design Space 63

3.1 System performance . 66

3.1.1 Process throughput and system performance 69

3.1.2 Throughput in case of merged processes 70

3.1.3 Buffer sizes and system performance 71

3.1.4 Dataflow feed-back loops . 74

3.2 Rules for MANY-TO-ONE mapping generation 75

3.3 Applying the mapping rules . 80

3.3.1 Polyhedral process networks (PPN) 81

3.3.2 Isolated average throughput of a PPN process 82

3.3.3 Process throughput in case of dataflow loops 83

3.3.4 Data rate of the streams in a PPN 85

3.3.5 Computing buffer sizes of the FIFO channels in PPNs 86

3.4 Conclusion . 90

4 Case studies 91

Contents ix

4.1 Experimental setup . 92

4.2 Homogeneous MPSoCs design with DAEDALUS 92

4.2.1 Design time . 93

4.2.2 Performance results and accuracy of the DSE numbers 94

4.2.3 Synthesis results . 96

4.2.4 Conclusions . 96

4.3 Heterogeneous MPSoCs design with DAEDALUS 97

4.3.1 Design time . 97

4.3.2 Performance results . 98

4.3.3 Synthesis results . 99

4.3.4 Conclusions . 99

4.4 Putting DAEDALUS to work . 100

4.4.1 Simulation-level DSE . 101

4.4.2 Implementation-level DSE . 104

4.4.3 Conclusions . 107

5 Summary and Conclusions 109

Bibliography 113

Samenvatting 119

Curriculum Vitae 121

Acknowledgments

It is my privilege and great pleasure to convey my gratitude to those who have, directly or
indirectly, supported me and helped me during the PhD study.

First, I would like to thank all the people I have worked with in Bulgaria and who have played
a role in building my knowledge, my experience and expertise. I am grateful to my teachers
for all the things I have learned from them and, in particular, to my mentors during the master
project I had at TU-Sofia for showing me the way to the scientific research, and especially,
for encouraging me to continue and to do a PhD. Also, I am thankful to all my colleagues and
friends at Innovative MicroSystems Ltd. and Fabless Ltd. who contributed to the successful
start of my engineering career. Many thanks for the great, enthusiastic atmosphere. Work-
ing for these companies complemented the background of knowledge I have obtained at the
University with industrial experience related to systems-on-chip design and digital design for
FPGAs. Now when I write these words, I realize how much the scientific and engineering
background I have built while studying and working in Bulgaria helped me during the PhD
research.

The work presented in this dissertation has been supported by PROGRESS, the embedded
systems and software research program of the Dutch Technology Foundation STW, under the
project ARTEMISIA (Project number LES 6389). I would like to acknowledge PROGRESS
and STW for financially supporting my research and the dissemination of the achieved results
at various scientific forums worldwide. In particular, special acknowledments go to all people
involved in the administration of the ARTEMISIA project.

This dissertation is the result of work conducted at the Leiden Institute of Advanced Com-
puter Science (LIACS), Leiden University, in collaboration with researchers from University
of Amsterdam and Delft University of Technology. For the successful collaboration, I express
my gratitude to all the people with whom I worked in the context of the ARTEMISIA project
and with whom I had very interesting discussions, both scientific and non-scientific. I would
like also to acknowledge the people from TU/e with whom I had interesting discussions at
several joint projects meetings organized by PROGRESS.

xii Acknowledgments

I am glad to say that I enjoyed the time of the PhD study in our group at LIACS. It was a
research path that, although it was not easy, led to fruitful results. Moreover, the conducted
research enriched my knowledge and expertise in multiprocessor systems-on-chip and design
automation for embedded multi-processor systems. It was pleasure working together with my
colleagues and my supervisor prof. Ed Deprettere. In addition, I want to thank our former
secretary Gonnie for helping me to settle in The Netherlands.

Many thanks to all my friends who know how much I appreciate our friendship. I am pleased
to note that for the past several years, it turned out that the two thousands kilometers between
Bulgaria and The Netherlands are nothing for real friendship and “every time we meet as we
have never separated”, as a friend of mine says. Also, I am lucky that some of my friends
are close to me, here in The Netherlands. Hereby, I express my special gratitude to them for
always giving me a helping hand when needed! In addition, I would like to thank my close
relatives and my family, especially my mother and my brother, for believing in me and for
their lifetime support.

Finally, with my deepest love I express my gratitude to Boyanka, my wife, for her love
and trust; For sacrificing her professional career in Bulgaria and following me in this PhD
adventure.

Hristo N. Nikolov
March, 2009
Leiden, The Netherlands

Chapter 1
Introduction

In a paper published in April 1965 [1], Gordon Moore discussed the future of electronics.
Among his predictions for integrated circuits was that the number of circuit components
fabricated on a single silicon chip would double every each year, reaching 65000 by 19751.
Moore’s prediction fit the facts so well that people began referring to it as Moore’s Law. It is
still known as Moore’s Law, even when Moore altered his projection to a doubling every two
years in 1975. Since then, the spectacular rate of progress in semiconductor technology has
made possible dramatic advances in computers and has led to the emerging of the embedded
(electronic) Systems-on-Chip (SoC) concept2, which in turn have significantly altered almost
all areas of human endeavor. In particular, the embedded systems have become the electronic
engines of modern consumer and industrial devices, from automobiles to satellites, from
washing machines to high-definition TVs, from cellular phones to complete base stations.

Through the years, the increasingly demanding complexity of applications have significantly
expanded the scope and the complexity of these SoCs, i.e., the more available resources
provided by every new generation of technology have been used to implement more and
more sophisticated and diverse system features. Currently, for modern embedded systems
in the realm of high-throughput multimedia, imaging, and signal processing, the complexity
of embedded applications has reached a point where the performance requirements of these
applications can no longer be supported by embedded systems based on a single process-
ing component. Thus, the emerging embedded SoC platforms are increasingly becoming
multiprocessor platforms (MPSoCs) encompassing a variety of hardware (HW) and software
(SW) components. The ever increasing requirements imply also that, for efficiency and per-
formance, in an MPSoC different application tasks have to be executed by different types
of processing components which are optimized for the execution of particular tasks. It is
a common knowledge that higher performance is achieved by a dedicated (customized and
optimized) HW IP core because it works more efficiently than programmable processors.

1 At that time, no chips had been manufactured with more than 60 components.
2 Embedded systems are application domain specific information processing systems that are tightly coupled to

their environment.

2 Introduction

Evidently, highest efficiency and performance is achieved by MPSoCs consisting of only
dedicated IP cores. However, dedicated IPs lack flexibility in making design modifications,
a feature playing an important role in the time-to-market competition. Therefore, most of to-
day’s MPSoCs are heterogeneous in nature, i.e., a constellation of programmable processors
and dedicated IPs, delivering high flexibility and high performance at the same time.

The long design cycle and the ever increasing time-to-market pressure impose clear require-
ments for systematic and, moreover, automated design methodologies for building heteroge-
neous MPSoCs. In such methodologies, the intrinsic computational power is not only used
effectively and efficiently, but also the time and effort to design a system containing both
hardware (HW) and software (SW) remains acceptable. Although embedded systems have
been designed for decades, the systematic design of such systems with well defined method-
ologies, automation tools and technologies has gained attention primarily in the last 10-15
years. For example, a well adopted approach to deal with the embedded SoC design complex-
ity is the Top-Down methodology which allows the designers to manage design complexity
at different (hierarchical) levels of implementation details. Currently, this approach is suc-
cessfully used together with the hardware/software (HW/SW) co-design methodology where
HW and SW are designed (almost) independently and concurrently. This allows hardware
and software integration testing during the early stages of design resulting in reduced number
of design cycles, and consequently, in reduced overall design time. Nowadays end, applying
the Top-Down and the HW/SW co-design methodologies with the support of electronic de-
sign automation (EDA) tools, is the most efficient design philosophy offering benefits such
as reduced design time, design reuse, flexibility in making design changes, faster exploration
of alternative architectures, and increased productivity.

Unfortunately, most of the current methodologies for multiprocessor system design are still
based on descriptions at register transfer level (RTL) of design abstraction created by hand
using, for example, VHDL or C. Such methodologies were effective in the past when SoC
platforms based only on a single processor or processor-coprocessor architectures were con-
sidered. However, applications and platforms used in many of today’s new system designs
are mainly based on heterogeneous multiprocessor platforms. As a consequence, the de-
signs are so complex that traditional design practices are now inadequate, because creating
RTL descriptions of complex MPSoCs is error-prone and time-consuming even by using the
Top-Down methodology. In addition, the complexity of high-end, computationally intensive
applications in the multimedia domain further exacerbates the difficulties associated with the
traditional hand-coded RTL design and HW/SW co-design methodologies. To execute an
application on a MPSoC, the system has to be programmed, which is performed in several
steps. First, the application is partitioned into tasks. Second, tasks are assigned (mapped on)
to processors (programmable and/or non programmable). Finally, based on the mapping, the
MPSoC is programmed, which requires writing program code for each of the programmable
processors using languages such as C/C++. The program code includes code implementing
the tasks’ behavior and code for synchronization the data movement between the tasks (pro-
cessing components, respectively). In recent years, a lot of attention has been paid to the
building of MPSoCs. However, insufficient attention has been paid to the development of
concepts, methodologies, and tools for efficient programming of such systems, so that the
programming still remains a major difficulty and challenge [2]. Today, system designers ex-
perience difficulties in programming MPSoCs because the way an application is specified by

1.1 Problem statement 3

System−Level

AssemblerLogic

RTL
H

ar
dw

ar
e

S
of

tw
ar

e

<=>

Automated

Manually

Manually

ApplicationPlatform

Implementation Gap

C/C++

ExecutableTransistor

Design
requirements,
constraints

Figure 1.1: The Implementation Gap.

an application developer, typically as a sequential program, does not match the way multi-
processor systems operate, i.e., multiprocessor systems contain processing components that
run in parallel.

1.1 Problem statement

For all the reasons stated above, we conclude that:

1) The use of an RTL specification as a starting point for multiprocessor system design
methodologies is a bottleneck. Although the RTL specification has the advantage that the
state of the art synthesis tools can use it as an input to automatically implement an MPSoC,
we believe that a multiprocessor system should be specified at a higher level of abstraction.
This is the only way to solve the problems caused by the low level (detailed) RTL specifica-
tion. The concept of system-level design of embedded systems, which raises the abstraction
level of the design process above RTL to cope with design complexity, has been around for
several years already and has shown a lot of potential. Despite of this, system-level design of
(heterogeneous) MPSoCs still involves a substantial number of challenging design tasks. For
example, MPSoCs need to be modeled and simulated to study system behavior in order to
evaluate a variety of different design options. Once a good candidate has been found, it needs
to be implemented, which involves the synthesis of its architectural components. However,
moving up from the detailed RTL specification to a more abstract system-level specification
opens (typically a large) gap between the deployed system-level specifications and actual
physical implementations. We call it implementation gap which is illustrated in Fig-
ure 1.1. Indeed, on the one hand, the RTL specification is very detailed and close to an
implementation, thereby allowing an automated synthesis path from RTL specification to im-
plementation. This is obvious if we consider the current commercial synthesis tools where
the RTL-to-netlist synthesis is very well developed and efficient. On the other hand, the com-

4 Introduction

plexity of today’s embedded systems forces us to move to higher levels of abstraction when
designing a system, but currently, there exists no mature methodologies, techniques, and tools
to move down from the high-level system specification to an implementation. Therefore, the
implementation gap has to be closed by devising a systematic and automated way to convert
a system-level specification effectively and efficiently to an RTL specification.

2) Programming multiprocessor systems is a tedious, error-prone, and time consuming pro-
cess. On the one hand, the applications are typically specified by application developers
as sequential programs using imperative programming languages such as C/C++ or Matlab.
Specifying an application as a sequential program is relatively easy and convenient for ap-
plication developers. However, the sequential nature of such specification does not reveal
the available concurrency in an application because only a single thread of control is con-
sidered. Also, memory is global and all data resides in the same memory source. On the
other hand, system designers need parallel application specifications, because when an ap-
plication is specified using a parallel model of computation (MoC)3, the programming of
multiprocessor systems could be done in a systematic and automated way. This is so because
the multiprocessor platforms contain processing components that run in parallel, and a par-
allel MoC represents an application as a composition of concurrent tasks with a well defined
mechanism for inter-task communication and synchronization.

The facts discussed above suggest that to program an MPSoC, system designers have to par-
tition an application into concurrent tasks starting from a sequential program (delivered by
application developers) as a reference specification. Then, they have to assign the application
tasks to different processors4 and to write specific program code for each programmable pro-
cessor. Partitioning of an application into tasks consumes a lot of time and effort because the
system designers have to study the application in order to identify possible task- and/or data-
level parallelism that is available, and to reveal it. Moreover, an explicit synchronization for
data communication between the application tasks is needed. This information is not avail-
able in the sequential program and has to be specified by the designers explicitly. Therefore,
an approach and tool support are needed for application partitioning and code generation, i.e.,
(C/C++) code for each processor of an MPSoC, to allow systematic and automated program-
ming of MPSoCs. Currently, for a wide range of processors, the path from C/C++ to final
executable code is fully automated.

In this dissertation, we address the issues of design, program, and implementation of MPSoCs
in a specific way which allows us to devise a particular solution of closing the implementation
gap. A motivation and an overview of the solution is presented in the next section.

1.2 Solution approach

In this section, we give an overview of the solution approach we propose in order to close
the implementation gap described in Section 1.1. The ideal approach would be a tool (or
set of tools) that could automatically identify a set of application tasks and map them onto
a multiprocessor platform guaranteeing the correct functionality and timing with optimal re-

3 A model of computation is the definition of the set of allowable operations used in computation.
4 This step may also involves SW/HW partitioning decisions.

1.2 Solution approach 5

source utilization. This tool should take a design description at the pure functional level
together with performance and other constraints, and considering a target platform, it should
produce optimized implementation. The ideal situation is not fulfilled (yet) for the general
case, however, in this dissertation we present our methodology in which the issues of au-
tomated design, programming, and implementation of MPSoCs are addressed in a particular
way, focusing on a particular application domain. Based on its characteristics, we make some
assumptions (see section “Scope of work”) which enabled the development of techniques to
close the implementation gap.

As we mentioned already, the state of the art Top-Down and HW/SW co-design methodolo-
gies have been a topic of interest for years, but the proposed methodologies lack productivity
and effectiveness when targeting MPSoCs design. In addition, these methodologies fail in
raising the level of abstraction above RTL. Therefore, a new design philosophy is needed to
address the aforementioned design challenges. At the same time, we believe that this new
design philosophy must exploit the great potential and the advantages of the Top-Down and
HW/SW co-design methodologies (see Section 1) that they offer for single-processor systems
design.

In this dissertation we propose a methodology, implemented in a tool-flow called DAEDALUS
[3,4], for automated design, programming, and implementation of MPSoCs starting at a high
level of abstraction. The methodology is built on the concept of Platform-Based Design
(PBD) [5] being a promising new approach to master the ever growing complexity of today’s
embedded systems. The main idea is starting from a functional specification of an application
and a description of an MPSoC at system level, to refine and translate them to lower RTL
descriptions in a systematic and automated way. The proposed methodology is illustrated in
Figure 1.2. It starts with an application written as a sequential C program which represents
the required system behavior at functional level. In DAEDALUS, there are specifications at
three additional levels of abstraction, namely at SYSTEM-LEVEL, RTL-LEVEL, and GATE-
LEVEL.

Definition 1.2.1 (System level)
System level is a level of abstraction above RTL including both hardware and software.

The SYSTEM-LEVEL specification in DAEDALUS consists of three parts written in XML
format:

1. Application Specification, describing an application in a parallel form as a set of com-
municating application tasks.

2. Platform Specification, describing the topology of a multiprocessor platform. The type
of platforms we consider is presented in Section 2.1.5.

3. Mapping Specification, describing the relation between all application tasks in Appli-
cation Specification and all components in Platform Specification.

The application specification captures the initial application in a parallel form. For this pur-
pose, we use the Kahn Process Network (KPN) [6] model of computation, i.e., a network
of concurrent processes communicating via FIFO channels. For applications specified as

6 Introduction

Pµ

Pµ Pµ

System−level
specification

specification
V

al
id

at
io

n
/ C

al
ib

ra
tio

n

Gate−level
specification

RTL
specification

MemMem

HW IP

MPSoC

connect
Inter−

Functional

in XML
Mapping spec.

in XML

Sequential
program in C

Li
br

ar
y

IP
 c

om
po

ne
nt

s

RTL
Models

Models
High−level

Platform spec.

Automated system−level synthesis: Espam

netlist
Platform

in VHDL
IP cores

processors
C code for Auxiliary

files

RTL synthesis: commercial tool, e.g. Xilinx Platform Studio

PNgen
Parallelization:

Application spec. in XML
Kahn Process Network

System−level design space exploration:
Sesame

Manually creating a KPN

Figure 1.2: DAEDALUS System Design Flow.

parameterized static affine nested loop programs in C (a class of programs discussed in Sec-
tion 2.3.1), KPN descriptions can be derived automatically by using the PNGEN tool [7], see
the top right part in Figure 1.2. In case the application does not fit in this class of programs,
the application specification needs to be derived by hand. The platform and the mapping
specifications can be created manually or can be generated automatically. Specifying a mul-
tiprocessor platform by hand is a simple task that can be performed in a few minutes, because
the high-level platform specification does not contain any details about the MPSoC com-
ponents and, e.g., their physical interfaces. Describing a mapping in XML format is even
simpler than writing a platform specification.

The components in the platform specification are taken from a library of IP components, see
the left part of Figure 1.2. The library consists of predefined generic parameterized com-
ponents which constitute the platform model in the DAEDALUS design flow. The platform
model is a key component in the proposed solution approach because it allows alternative
MPSoCs to be easily built by instantiating components, connecting them, and setting their
parameters in an automated way. The components in the library are represented at two lev-
els of abstraction: High-level models are used for constructing and modeling multiprocessor
platforms at system level. Low-level models of the components are used in the translation of
the multiprocessor platforms to RTL, ready for final implementation.

The platform and the mapping specifications can be generated automatically as a result of
a design space exploration. For this purpose, we use the SESAME tool [8] (see the top of

1.2 Solution approach 7

Figure 1.2) developed at the University of Amsterdam. As input, SESAME uses the KPN
application specification and the high-level models of the components from our library. The
output is a set of pairs, i.e., a platform specification and a mapping specification, each pair
representing an optimal mapping of the initial application onto a particular MPSoC in terms
of performance and given certain constraints.

The SYSTEM-LEVEL specification of an MPSoC is systematically and automatically trans-
lated to RTL-LEVEL in several steps. In the beginning, the platform specification is used
to construct a platform instance. The platform instance is an abstract model of an MPSoC
because, at this stage, no information about the target physical platform is taken into account.
The model defines only the key system components of the platform and their attributes. Then,
the abstract platform model is refined to an elaborate (detailed) parameterized RTL model
which is ready for an implementation on a target physical platform. The refined system
components are instantiated by setting their parameters based on the target physical plat-
form features. Finally, program code for each programmable processor in the multiprocessor
platform is generated in accordance with the application and mapping specifications. The
described SYSTEM-LEVEL to RTL-LEVEL translation is performed by the ESPAM tool [9],
see Figure 1.2. Details about the platform model and ESPAM are given in Chapter 2.

As output, ESPAM delivers a hardware (synthesizable VHDL code) description of an MP-
SoC and software (C/C++) code to program each processor in the MPSoC. The hardware
description, namely a RTL-LEVEL specification of a multiprocessor system, is a model that
can adequately abstract and exploit the key features of a target physical platform at the reg-
ister transfer level of abstraction. It consists of two parts: 1) Platform topology, a netlist
description defining in greater detail the MPSoC topology; 2) Hardware descriptions of IP
cores, containing predefined and custom IP cores (processors, memories, etc.) used in Plat-
form topology selected from Library IP Cores. Also, it generates custom IP cores needed as
a glue/interface logic between components in the MPSoC. ESPAM converts the XML appli-
cation specification to efficient C/C++ code including code implementing the functional be-
havior together with code for synchronization of the communication between the processors.
This synchronization code contains a memory map of the MPSoC, and read/write synchro-
nization primitives. The generated program C/C++ code for each processor in the MPSoC is
given to a standard GCC compiler to generate executable code.

A commercial synthesizer can convert the generated hardware RTL-LEVEL specification to
a GATE-LEVEL specification, thereby generating the target platform gate-level netlist, see
the bottom part of Figure 1.2. This GATE-LEVEL specification is actually the system im-
plementation. The current version of ESPAM facilitates automated multiprocessor platform
synthesis and programming targeting Xilinx FPGA technology, and thus, we use development
tools (a GCC compiler and a VHDL synthesizer) provided by Xilinx [10] to generate the fi-
nal bit-stream file that configures a specific FPGA. We use the FPGA platform technology
for prototyping purpose, however, the generated FPGA MPSoC implementations may also
be the final system implementation if, e.g., certain system requirements are met. In addition,
the results we obtain from prototyping are used for validation/calibration of the high-level
models in order to improve accuracy of the design space exploration process. The techniques
in the ESPAM tool are flexible enough to target other physical platform technologies.

8 Introduction

With DAEDALUS, we propose a model-driven design methodology and below we highlight
its key characteristics:

• To address the challenges associated with the programming of MPSoCs presented in
Section 1.1, in the proposed design methodology we use a parallel model of compu-
tation, namely the Kahn Process Network (KPN) MoC [6], to represent an application
as a set of (concurrent) application tasks. These tasks are further mapped onto pro-
grammable (ISA) and non-programmable (dedicated IPs) processing components of
an MPSoC. Exploiting the KPN MoC, we propose techniques for programming the
ISA processors in an automated way.

• DAEDALUS facilitates design of heterogeneous systems where both programmable and
non-programmable processors are used as processing components. In case of non-
programmable processing components, we propose an approach for automated inte-
gration of predefined (third-party) dedicated IP cores. An IP core can be created by
hand or it can be generated automatically from C descriptions using high-level synthe-
sis tools like, e.g., the PICO tool from Synfora [11]. High-level (behavioral) synthesis
is out of the scope of this dissertation and the DAEDALUS system design methodology.

• To facilitate automated implementation of MPSoCs, we have identified a platform
model which captures very well the operational semantics of the KPN MoC. This al-
lows system-level platform descriptions to be refined and translated to detailed RTL
descriptions in an automated way. The good match between the KPN MoC and our
platform model results in efficient implementations when KPNs are executed on such
platforms;

• Our PBD methodology starts with application, platform, and mapping specifications
at system level. By applying our techniques, the system-level models are translated
to HW platform descriptions at RTL, and SW code executed on the processors of the
platform. From RTL to final implementation, DAEDALUS utilizes state of the art (com-
mercial) synthesis and compiler tools;

• By using the proposed application and platform models, a design space exploration at
system level is enabled. It allows evaluating the performance of different application
to platform mappings and alternative HW/SW partitionings. Such exploration result
in a number of promising system design candidates, each defined by an application, a
platform, and a mapping specification.

The PBD concept and the KPN MoC are motivated in the following sections. Our platform
model is discussed in detail further in this dissertation.

1.2.1 Platform-based design at system level

The concept of a platform encapsulates the notion of reuse, facilitating the adaptation of a
common design to a variety of different (domain specific) applications [5,12]. The platform-
based design at system level is a powerful approach that has the potential of addressing the

1.2 Solution approach 9

MPSoC design challenges, in both HW and SW design, in a unified way. We chose PBD
because this approach:

• Includes both hardware and embedded-software design;

• Favors the use of high levels of abstraction for the initial design specification;

• Facilitates effective design exploration;

• Achieves detailed implementation by refinement.

The principles of PBD in our approach consist of starting at the highest level of abstraction,
i.e., System-level in Figure 1.1, which includes application and platform specification, hiding
unnecessary details of an implementation. In PBD, important parameters of the implementa-
tion are summarized in an abstract model(s) and design space exploration is limited to a set
of available components, i.e., the IP library in Figure 1.2. Furthermore, the design is carried
out as a sequence of refinement steps that go from the initial specification towards the final
implementation using platforms at various levels of abstraction.

Below, we give definitions associated with the PBD approach of our design methodology
presented in this dissertation.

Definition 1.2.2 (Platform)
The platform is a library of components that can be assembled to generate a design. The
library contains processing blocks that carry out the appropriate computation and also com-
munication blocks and memory blocks that are used to interconnect the processing blocks.

Definition 1.2.3 (Platform model)
The platform model includes the library of components, and defines the way the components
can be assembled assuming particular (inter-component) communication and synchronization
mechanisms.

Definition 1.2.4 (Platform instance)
A platform instance is a set of components that is selected from the the platform and whose
parameters are set. The components in a platform instance are connected in accordance with
the platform model.

Definition 1.2.5 (Platform instance refinement)
Refinement is a process of adding (implementation) details to the original platform instance.

The refined platform instance does not necessarily represent a final implementation, however,
it is closer than the original platform instance since it contains more details about the target
implementation.

Definition 1.2.6 (Mapping)
In the proposed methodology, mapping is an assignment of application tasks to processing
components of a platform instance.

10 Introduction

The notion of a platform is associated with a set of potential solutions to a design problem
where each platform instance implements a design point, i.e., a particular solution. Therefore,
we need to capture the process of mapping functionality, i.e., what the system is supposed
to do, to platform computational, communication, and memory components that will be used
to build a platform instance. This process is an essential step for refinement, which provides
a mechanism to proceed towards implementation by closing the implementation gap in a
structured way. In addition, taking into account the MPSoC design challenges, we advocate
that in order to allow systematic and automated system design where the fundamental steps
of functional partitioning, allocation of computational resources, integration, and verification
are supported,

1. Applications have to be specified in some parallel model of computation (MoC), at a
high level of abstraction;

2. Platform instances have to be specified in a parameterized abstract form (a platform
model);

3. Methods have to be provided to map the former onto the latter.

A well known principle in designing complex systems is the separation of concerns, initially
introduced by Edsger Dijkstra in his essay from 1974 ”On the role of scientific thought” [13].
Separation of concerns is one of the key principles in software engineering and object ori-
ented programming. However, it is an important principle in PBD as well [14]. The main
goal is to design systems so that different kinds of concerns are identified and separated (op-
timized independently) in order to cope with complexity, and to achieve the required quality
factors such as robustness, adaptability, maintainability, and reusability. The principle can be
applied in various ways. For instance, in PBD, it is important to keep communication and
computation components well separated as different methods are usually needed and used
to represent and to refine these components. Communication plays a fundamental role in
determining the properties of models of computation. Subsequently, special care is needed
in defining the communication mechanism of a platform model since it may help or hinder
design/components reuse and performance.

Based on the foregoing discussion, we state that the PBD at system level is an attractive
candidate to form the basis for new design methodologies. Moreover, if linked to the Top-
Down and HW/SW co-design methodologies at RTL, it results in a synergy that can be very
productive. In our case, we create this link by closing the implementation gap. In addition,
the main goals of reduced design time, design re-use, flexibility in making design changes,
faster exploration of alternative platform instances and mappings, and increased productivity,
can not be achieved without tools supporting this new design methodology. Therefore, in our
approach we are equally interested in developing techniques for:

• Raising the design abstraction to system level by utilizing the platform-based design
concept to deal with design complexity;

• Automated translation of the system-level models to RTL descriptions, therefore, clos-
ing the implementation gap in a systematic and automated way.

1.2 Solution approach 11

1.2.2 Kahn Process Network model of computation

As discussed in Section 1.1, programming multiprocessor systems is a tedious, error-prone,
time consuming process and we argued that in order to facilitate an automated programming,
a parallel MoC is required for application representation.

But what should this MoC be ?

Many parallel MoCs exist [15], and each of them has its own specific characteristics. Evi-
dently, to make the right choice of a parallel MoC, we need to take into account the application
domain we target. In this dissertation, we consider only data-flow dominated applications in
the realm of multimedia, imaging, and signal processing that naturally contain tasks commu-
nicating via streams of data. Such applications are very well modeled by using the parallel
data-flow MoC called Kahn Process Network (KPN) [6, 16].

Gilles Kahn defined a formal model for networks of concurrent processes that communicate
through unbounded First-In First-Out (FIFO) channels carrying streams of data tokens [6,
16]. Processes produce tokens and send them along a communication channel where they
are stored until the destination process consumes them. Communication channels are the
only method processes may use to exchange information. For each channel there is a single
process that produces tokens and a single process that consumes tokens. Multiple producers
or multiple consumers connected to the same channel are not allowed. Kahn requires the
execution of a process to be suspended when it attempts to get data from an empty input
channel. At any given point, a process is either enabled or it is blocked waiting for data on
only one of its input channels. When enabled, a process may access only one channel at a
time and when blocked on a channel, a process may not access other channels.

Kahn showed that requiring processes to block when attempting to read from empty channels
allows processes to be represented as continuous functions over a complete partial order (the
set of streams of data elements with a prefix order). A program graph can be represented as a
collection of equations that have a unique minimum solution that corresponds to the history
of all tokens produced on all streams. Thus, systems that obey Kahn’s model are determinate:
the history of tokens produced on the communication channels is uniquely determined by the
equations representing the program graph and does not depend on the execution order [6].
This implies that as long as blocking reads are enforced, the results of a computation are
unique and correct whether the processes are executed sequentially, concurrently, or in par-
allel. The number of tokens produced, and their values, are determined by the definition of
the system and not by the scheduling of operations. However, the number of data elements
that must be buffered on the communication channels during execution does depend on the
execution order and is not completely determined by the KPN definition.

Because process networks expose parallelism and make communication explicit, they are
well suited for targeting MPSoC implementations of a variety of signal processing and sci-
entific computation applications such as embedded signal and image processing. Many re-
searchers [8,17–21] have already indicated that KPNs are suitable for efficient mapping onto
multiprocessor platforms. In addition, we motivate our choice of using the KPN MoC by
observing that the following characteristics of a KPN can take advantage of the parallel re-
sources available in multiprocessor platforms:

12 Introduction

• The KPN model is determinate: Irrespective of the schedule chosen to evaluate the
network, the same input/output relation always exists. This gives a lot of scheduling
freedom that can be exploited when mapping process networks onto multi-processor
architectures;

• Distributed Control: The control is completely distributed to the individual processes
and there is no global scheduler present. As a consequence, distributing a KPN for
execution on a number of processing components is a simple task;

• Distributed Memory: The exchange of data is distributed over FIFO channels. There
is no notion of a global memory that has to be accessed by multiple processes (pro-
cessors). Therefore, resource contention is greatly reduced if systems with distributed
memory are considered;

• Simple synchronization: The synchronization between the processes in a KPN is done
by a blocking read mechanism on FIFO channels. Such synchronization can be realized
easily and efficiently in both hardware and software.

1.3 Scope of Work

In this section, we outline the assumptions and restrictions regarding the work presented in
this dissertation. Most of them are discussed in further detail, where appropriate, throughout
the dissertation.

Applications

One of the main assumptions is that we consider only data-flow dominated applications in
the realm of multimedia, imaging, and signal processing, that naturally contain tasks com-
municating via streams of data. The streams can represent any type of information, such as
audio samples, image blocks, or video frames. Typically, the streams have one source and
one sink, and must be non-lossy. Usually, reordering of data items (tokens) in streams is
not acceptable. The transformations that are performed on data streams can be quite complex
and their granularity is design-dependent. These transformations may consume data from any
number of streams and produce data to any number of streams. Such applications are very
well modeled by using the KPN data-flow model of computation [6]. We consider KPNs
that are input-output equivalent to static affine nested loop programs. The properties of such
programs are discussed in Section 2.3.1. We are interested in this subset of KPNs because
they are analyzable at design time, e.g., FIFO buffer sizes and execution schedules are decid-
able. Moreover, such KPNs can be derived automatically from the corresponding sequential
programs [7, 22–24].

1.3 Scope of Work 13

Application and platform models

The KPN choice as an application model is very important since it influences the platform
model and the work/techniques presented in this dissertation. KPNs assume unbounded com-
munication buffers. Writing is always possible and thus a process blocks only on reading
from an empty FIFO. In the physical implementation, however, the communication buffers
have bounded sizes, and therefore, a blocking write synchronization mechanism is used as
well. The problem of deciding whether a general Kahn Process Network can be scheduled
with bounded memory is undecidable [25, 26]. However, in our case this is possible because
the process networks are derived by using the PNGEN tool from static affine nested loop pro-
grams (SANLPs), which programs require finite amount of memory to execute. In SANLPs,
loop bounds, variable indexing functions, and condition expressions are all affine functions5

of loop iterators and (static) parameters. This enables such programs to be modeled in terms
of polyhedral domains, i.e., to represent a KPN, we use polyhedral descriptions. Therefore,
the process networks we consider in this dissertation are actually polyhedral process net-
works (PPNs)6, being a subset of the Kahn process networks. In addition, we compute buffer
sizes of the FIFO channels (see Section 3.3.5) such that a deadlock-free execution of the con-
sidered KPNs on our platform instances is guaranteed. The scheduling of process networks
using bounded memory has been discussed in [25, 27]. Also, a number of tools and libraries
have been developed for executing KPNs [28, 29]. In contrast to these approaches, the plat-
form model we propose and use to construct (multiprocessor) platform instances does not
require scheduling and run-time deadlock detection and resolution. Instead, the processing
components in our platform model are self-scheduled following the KPN operational seman-
tics using a blocking read/write synchronization mechanism, i.e., the KPNs are self-scheduled
when executed on the MPSoCs. The main objective in devising the platform model was to
allow building of MPSoCs which execute KPNs efficiently. In the proposed approach, we do
not target particular processing components design rather than integrating such (taken from
an IP library) in MPSoCs. Therefore, the main goal in order to achieve efficient KPN exe-
cution, is to enable efficient data communication between the processing components, i.e.,
a communication with minimum communication overhead. We achieved this by taking the
main characteristics of the KPN MoC (see Section 1.2.2) into account when devising the
platform model.

Multiprocessor platform instances – MPSoCs topology and execution model

With respect to the proposed application and platform models, we consider MPSoCs in which
the processing components, i.e, programmable processors and/or HW IP cores, communicate
data only through distributed memory units. Each memory unit can be organized as one or
several FIFOs. The data communication among the processing components is realized by
blocking read and write implemented in software and hardware. Such MPSoCs match and
support very well the KPN operational semantics, thereby achieving high performance when
KPNs are executed. If the number of processing components in a platform instance is less

5 Affine functions represent vector-valued functions of the form: f(x1, ..., xn) = A1x1 + ... + A2x2 + b.
6 For brevity, in this dissertation, we keep the notation ’KPN’ because both, the PPNs and the KPNs, obey the

same semantics. Some details about PPNs are given in Section 2.3.1 and Section 3.3.1.

14 Introduction

than the number of processes of a KPN, then some of the programmable processors execute
more than one process. These processes are scheduled at compile time and the generated
program code for a given processor does not require/utilize an operating system. In our
approach, we do not consider (high-level, behavioral) synthesis of HW IP cores. Instead, we
propose an automated integration of predefined (third-party) HW IPs into (heterogeneous)
MPSoCs. We do not impose restrictions on how the IP cores are created, i.e., by hand or
by employing high-level design tools. In order an IP core to be added to the components
library, however, an IP core has to implement the computation of only a single KPN process.
We do not support sharing of an IP core between several KPN processes, i.e., more than one
KPN processes to be implemented by a single dedicated IP. Additional requirements for the
considered IP cores and their interfaces are discussed in Section 2.4.3. The programmable
processors and the HW IP cores in our platforms can be connected in crossbar, point-to-point,
or shared bus communication topologies. Details are given in Section 2.1.5.

Tool inputs

The input to the PNGEN tool is an application written as a static affine nested loop pro-
gram (SANLP) in C. SANLP is a sequential program with some restrictions, discussed in
Section 2.3.1. These restrictions allow for automated derivation of KPNs from SANLPs as
described in Section 2.3.1. The PNGEN tool partitions a SANLP into processes only at func-
tion boundaries, i.e., the programmer divides the SANLP into functions, thus guiding the
granularity of the automatically derived processes. Many applications in the considered do-
main (see above) can be represented as SANLPs. The ESPAM tool accepts as an input three
specifications: an application specification, a platform specification, and a mapping spec-
ification. The application specification is a KPN either derived by PNGEN or a manually
created. The platform specification is restricted in the sense that it must contain only compo-
nents taken from the library of predefined parameterized components. The library allows and
ensures that many alternative (multiprocessor) platform instances can be constructed and all
of them fall into the class of MPSoCs we consider (see above). The mapping specification
gives the relation between processes and processing components. Based on this, ESPAM de-
termines automatically the most efficient mapping of FIFO channels onto distributed memory
units. The platform and the mapping specifications can be created manually or automatically
generated by the SESAME tool as a result of a design space exploration.

1.4 Research Contributions

The work presented in this dissertation focuses on the design, programming, and implemen-
tation of multiprocessor systems (MPSoCs) starting from high (system) level of abstraction.
Below, we outline our main contributions:

1.4 Research Contributions 15

Closing the implementation gap

In this dissertation, we present our methods and techniques [9] for systematic and automated
multiprocessor system design, programming, and implementation. They bridge the gap be-
tween the system-level specification and the RTL specification in a particular way which we
consider as the main contribution of the dissertation. These methods and techniques have
been implemented in a tool called ESPAM (Embedded System-level Platform synthesis and
Application Mapping). More specifically, with ESPAM a system designer can specify a mul-
tiprocessor platform instance at a high level of abstraction in a short amount of time, say a
few minutes. Then, ESPAM refines this specification to a real implementation, i.e.,

1. Generates a synthesizable (RTL) HW description of the MPSoC and

2. Generates SW code for each processor,

in an automated way, thereby closing in a particular way the implementation gap mentioned
earlier. This reduces the design and programming time from months to hours. As a con-
sequence, an accurate exploration of the performance of alternative multiprocessor platform
instances becomes feasible at implementation level in a few hours.

System-level platform model matching the KPN programming (application) model

Our methods and techniques to closing the implementation gap are based on the underlying
programming model and system-level platform model we use. Recall that ESPAM targets
data-flow dominated (streaming) applications for which we use the Kahn Process Network
(KPN) [6] model of computation as a programming (application) model. By carefully exploit-
ing and efficiently implementing the simple communication and synchronization features of
a KPN (see Section 1.2.2), we have identified and developed a set of generic parameter-
ized components which we call a platform [9]. The platform and the way its components
can be connected and synchronized comprise our platform model. We consider the platform
model an important contribution of this dissertation because the set of components allows
system designers to specify (construct) fast and easily many alternative multiprocessor plat-
form instances that are implemented and programmed by ESPAM. The approach we propose
is general enough and allows for building heterogeneous MPSoCs, i.e., different types of
programmable processors and dedicated (third-party) HW IP cores, connected together in
different communication topologies. In addition, the good match between the KPN MoC
and the platform model results in efficient implementations when KPNs are executed on the
considered MPSoCs.

Computing minimum KPN FIFO sizes that guarantee maximum performance

The automated MPSoC design and programming is enabled by using the KPN MoC. How-
ever, deriving a KPN specification is a time consuming process and confirmation of this fact
can be found in the many system-level design approaches that use the KPN model [28–36].

16 Introduction

The KPN model has been widely studied in our group at Leiden Embedded Research Center
(LERC)7 for almost a decade. The work presented in [37] is the first approach, known in the
literature, to derive a KPN specification from a static affine nested loop program (SANLP).
Several years of research in this direction resulted in techniques implemented in the COM-
PAAN tool [22, 24] for automated translation of SANLPs written in Matlab to KPN specifi-
cations. Although these techniques are very advanced, they do not address the problem of
what the buffer sizes of the communication FIFO channels should be. This is a very impor-
tant problem because if the FIFO buffers are undersized, this leads to a deadlock in the KPN
behavior.

Recently, we have developed techniques for improved derivation of KPNs [7] from appli-
cations specified as sequential C programs. These techniques, implemented in the PNGEN
tool [7], allow for automated computation of efficient buffer sizes that guarantee deadlock-
free execution of our KPNs. In addition, in this dissertation we present an approach to com-
pute minimum buffer sizes that guarantee maximum performance when KPNs are executed
onto the considered MPSoCs. This is another important contribution of this dissertation be-
cause we are interested in high-performance multiprocessor systems and with our approach,
the highest (theoretical) performance is achievable with reduced memory requirements.

Systematic mapping of application tasks to processing cores

The decision of mapping application tasks to processing components is crucial in order to
achieve high performance of the MPSoCs at reduced cost. Assuming that the data commu-
nication is efficient and does not introduce communication overhead, the maximum perfor-
mance is achieved when every task is executed on a separate processor. However, this may
introduce large resource overhead because due to task data dependences, most of the time
processors may stay idle waiting for data. Therefore, the purpose of the mapping is to group
tasks and assign them to processing components in a way that the number of processing com-
ponents is minimized and the workload is balanced between the components without (or with
reasonable) penalty in the overall performance.

Mapping application tasks to processors in an ad-hoc manner may lead to efficient imple-
mentations, however, it heavily depends on the expertise of the designer. In addition, for
large design space, e.g., an application consisting of many application tasks and a platform
that offer different types of processing components, the most efficient mapping can be easily
overlooked. This motivated us to research techniques that aim at systematically mapping of
application tasks to processing cores in an MPSoC. We devised an approach which exploits
the properties of our application and platform models to narrow the design space in a sys-
tematic way. More precisely, we defined mapping rules used to create mappings that require
fewer number of processing cores without compromising the achieved system performance.
Moreover, the proposed approach can be effectively used to complement the techniques in
the SESAME tool for reducing the design space that need to be traversed in the design space
exploration process.

7 Leiden University, The Netherlands

1.5 Related Work 17

1.5 Related Work

Systematic and automated application-to-platform mapping has been widely studied in the
research community. The closest to our work is the SystemC-based design methodology
presented in [38]. The proposed methodology consists of an automated design space explo-
ration, performance evaluation, and automatic platform based system generation. But unlike
DAEDALUS, [38] does not allow for automated parallelization of applications (it requires ap-
plications to be specified by hand in SystemC), nor design space exploration at application
level. Similarly to our approach, the input for the design flow in [38] contains an executable
application specification (written in SystemC), a target architecture template (in both ap-
proaches built from components taken from a component library) and mapping constraints
of the SystemC modules (in our methodology we have a mapping giving a relation between
the application and the architecture). In order to automate the design process, the SystemC
application has to be written in a synthesizable subset of SystemC, called SysteMoC [39],
whereas our restriction of the initial C program is to be a SANLP (see Section 2.3.1). The
synthesizable subset of SystemC is required because for the IP core generation the authors
use high-level synthesis tools, e.g, Mentor CatapultC or Forte Cynthesizer which is a major
difference with our concept for heterogeneous MPSoCs design. Instead, in this dissertation
we propose an approach for dedicated IP core integration based on an HW Module generation
consisting of a wrapper around a predefined IP core.

The Eclipse work [40] defines a scalable architecture template for designing stream-oriented
multiprocessor SoCs using the KPN model of computation to specify and map data-dependent
applications. The Eclipse template is slightly more general than the templates presented in
this dissertation. However, the Eclipse work lacks an automated design and implementa-
tion flow. In contrast, our work provides such automation starting from a high-level system
specification.

Recent work related to multi-processor system design for data-streaming applications is the
MAMPS flow presented in [41]. Applications in MAMPS are described as SDF graphs in
xml format. These graphs express topological features only without capturing any functional
behavior. This is a major difference with DAEDALUS design flow in which applications are
specified as fully-functional sequential C programs, automatically parallelized (as KPNs) by
the PNGEN tool. The functional specification of an application enables fully-automated pro-
gramming of the target multi-processor systems. That is, the ESPAM tool generates software
code including computation code implementing the functional behavior and control code
for synchronization of the communication between the processors of an MPSoC. In contrast,
the automated software code generation in MAMPS includes only the control code, i.e., the
model of the SDF actor execution and arbitration. Another difference with the DAEDALUS
design flow is that the work presented in [41] targets only homogeneous MPSoCs comprised
of MicroBlaze processors [42] connected point-to-point through dedicated FIFO links while
DAEDALUS supports homogeneous and heterogeneous MPSoCs with processing components
being MicroBlaze processors, PowerPC processors [43], and/or dedicated HW IP cores.
Moreover, the connections between the processing components can be either point-to-point,
crossbar, or shared bus. The work in [41] focuses on multiple (SDF) applications executed on
the same platform. In addition, the authors take into account the fact that these applications

18 Introduction

may not always run simultaneously by considering multiple use-cases. With DAEDALUS,
multiple applications can be mapped on the same platform, however, DAEDALUS does not
support “use-cases” as defined in [41].

In our automated design flow for MPSoC programming and implementation, we use a paral-
lel model of computation to represent an application and to map it onto alternative MPSoC
architectures. A similar approach is presented in [44]. Jerraya et al. propose a design flow
concept that uses a high-level parallel programming model to abstract hardware/software in-
terfaces in the case of heterogeneous MPSoC design. Details are presented in [45] and [46].
In [45] a design flow for the generation of application-specific multiprocessor architectures is
presented. This work is similar to our approach in the sense that we also generate multipro-
cessor systems based on instantiation of generic parameterized architecture components as
well as communication controllers to connect processors to communication networks. How-
ever, many steps of the design flow in [45] are performed manually. As a consequence, a full
implementation of a system comprising 4 processors connected point-to-point takes around
33 hours. In contrast, our design flow is fully automated and a full implementation of a sys-
tem comprising several processors connected point-to-point, or via a crossbar or a shared bus,
takes around 2 hours.

The Polis environment [47] provides an automated design flow starting from high-level spec-
ifications and targeting optimized machine code for reconfigurable architectures. It uses a
model of computation (MoC) called Extended Finite State Machines (EFSM). This is a ma-
jor difference from our work since we use the KPN MoC. The EFSM MoC is well suited for
control dominated applications whereas the KPN MoC is most suitable for stream oriented
applications.

C-HEAP is a top-down design methodology presented in [18]. It generates instances of an
architecture template containing multiple processing devices, local cache memories, global
shared memory, and a communication network. This work is similar to our approach in the
sense that we also generate platform instances based on our platform model. In their work
however problems with the cache coherence are reported. In our approach we do not use
global shared memory and local cache memories, thus memory contention is avoided.

System-level semantics for system design formalization is presented in [48]. It enables de-
sign automation for synthesis and verification to achieve a required design productivity gain.
Using Specification, Multiprocessing, and Architecture models, a translation from behavior
to structural descriptions is possible at system level of abstraction. Our approach is similar
but in addition, it defines and uses application and platform models that allow an automated
translation from the system level to the RTL level of abstraction.

In [46] Gauthier et al. present a method for the programming of MPSoCs by automatic
generation of application-specific operating systems (OS), and automatic targeting of the ap-
plication code to the generated OS. In the proposed method, the OS is generated from a
OS library and includes only the OS services specific to the application. The input to the
code generation flow consists of structural information about the MPSoC, allocation infor-
mation (memory map of the MPSoC), and high-level task descriptions. By contrast, in our
programming approach we do not use operating systems. For each processor of a MPSoC
our tool generates sequential code that contains control (for communication, synchronization,

1.5 Related Work 19

and task scheduling) and application specific code. Another major difference is that in our
approach the allocation information (the memory map of a MPSoC) and the task descriptions
are generated automatically.

The Multiflex system presented in [49] is an application-to-platform mapping tool. It tar-
gets multimedia and networking applications and integrates a system-level design exploration
framework. Multiflex uses Symmetric Multi Processing (SMP) and Distributed System Ob-
ject Component (DSOC) programming models. SMP supports concurrent threads accessing
shared memory. DSOC model supports heterogeneous distributed computing using message
passing. The MultiFlex tools map these models onto the StepNP MPSoC platform architec-
ture. The relation to our work is that ESPAM also targets the mapping of multimedia and
data streaming applications onto a particular MPSoC platform. A design space exploration is
included in our design flow as well. However, in our design flow we use Kahn Process Net-
works as the parallel programming model instead of SMP and DSOC used in Multiflex. The
benefit of using KPNs is related to the KPN model properties that allow us to derive KPNs
in an automated way from applications specified as sequential programs. Multiflex does not
support at all automatic derivation of SMP or DSOC. In [49] a design time of 2 man-months
is reported for a MPEG4 multiprocessor system. The design time includes manual appli-
cation partitioning, automated architecture exploration and optimization. In this paper, we
show that by using our design flow a complete design including partitioning, exploration,
implementation, and programming of a similar multiprocessor system (a JPEG encoder) is
achieved within 2 hours.

There are several approaches for HW design based on the ANSI C standard such as Handel-C
and SpecC. Handel-C is a C-based hardware description language commercialized by Celox-
ica [50]. In contrast to our approach for multiprocessor systems design, Handel-C targets
dedicated HW implementations on FPGAs. To express parallelism and event sensitivity in
Handel-C, a designer has to use annotations (construct par) in the programming code. In our
approach, a designer specifies an application as a sequential program using a subset of the
ANSI C standard without any special annotations. The parallelism is revealed by our PNGEN
tool and determined by the granularity of the function calls used by the designer. Another
difference is that Handel-C is based on Hoare’s communicating sequential processes (CSP)
model [51] while we use the KPN MoC. In both models, processes communicate through
channels, yet the synchronization is different. In Handel-C data transfer can only complete
when both the source and destination are ready for it. In the KPN model, a channel is or-
ganized as a FIFO buffer where write and read operations perform in parallel as long as the
buffer is not full or empty, leading to more independent parallel execution of the processes.

The SpecC language, as introduced in [52], is a modeling language for the specification and
design of embedded systems at system level. In [52] the authors propose a design methodol-
ogy based on a library of reusable components that includes several steps such as partitioning,
scheduling, communication refinement, code generation. This is similar to our methodology
and design flow in the sense that we also use a library of predefined components and our
methodology includes similar steps. The main difference, however, is that SpecC is an ex-
tension of the C programming language implying that the designer has to study it, although
he/she might be familiar with the ANSI C standard. Also, with SpecC the designer has to
specify the possible parallelism of an application in an explicit way. In contrast, the appli-

20 Introduction

cation specification in our methodology is a C program written using a subset of the ANSI
C standard, i.e., SANLP explained in Section 2.3.1. In addition, the parallelization and the
communication refinement steps in our design methodology are automated by the PNGEN
and ESPAM tools.

A method for automatic generation of embedded software is presented in [53]. The proposed
design flow consists of several software refinement steps and intermediate models to gener-
ate efficient ANSI C code from system specification written in a SLDL language. This work
is similar to our work in the sense that our ESPAM tool generates efficient C/C++ code for
processors in a MPSoC. The difference is that some of the software refinement steps in [53]
have to be performed manually whereas our software generation is fully automated. More-
over, we generate software for processors in a MPSoC starting from an application specified
as sequential program in the widely accepted C language. In [53] a designer has to specify
an application using the specific SLDL language.

The Task Transaction Level (TTL) interface presented in [54] is a design technology for
programming of embedded multi-processor systems. A multi-tasking application program-
ming interface (API) is provided for parallel execution of streaming applications in a shared
memory space. The interaction between application tasks is performed by using communi-
cation primitives with different semantics, allowing blocking or non-blocking calls, in-order
or out-of-order data access, and direct access of data in a channel to avoid unnecessary data
movement. Our programming approach is similar to TTL in the sense that we also target
streaming applications and we also use communication primitives. However, in our approach
we consider only MPSoC architectures with distributed memory because such architectures
give better timing performance compared to shared memory architectures. TTL is more flexi-
ble because it supports many communication primitives but programming a MPSoC by using
TTL requires a lot of manual work which is hard (in some cases even impossible) to au-
tomate. In [6] Kahn proved that by using infinite FIFO queues, the blocking read in-order
mechanism is sufficient to realize communication and synchronization in any streaming ap-
plication modeled as a process network. Due to practical reasons, blocking write is needed as
well because a FIFO implementation can not have an infinite size. However, using a blocking
write mechanism and finite memory resources may lead to deadlock of a KPN when executed.
Therefore, we developed techniques for computing FIFO sizes such that a deadlock-free ex-
ecution of our KPNs on our platforms is guaranteed – see Section 3.3.5. In this sense, the
blocking read and write, both in-order, form the minimum set of communication primitives
realizing the communication mechanism of a process network when targeting real imple-
mentations. Other communication/synchronization mechanisms add more flexibility but at
a certain price. In comparison with TTL, our platform model supports only the two basic
primitives which allows us to fully automate the programming of MPSoCs as we will show
in this dissertation.

A recent work describing an exploration framework for building efficient FPGA multipro-
cessor systems for data-flow and stream oriented applications is presented in [55, 56]. This
framework explores architectures and allocates application tasks to maximize throughput.
The architecture topologies are limited to a network of MicroBlaze processors intercon-
nected using buses (the slow On-chip Peripheral Bus – OPB) and direct FSL links. This work
is related to our work in the sense that (for prototyping) we also target FPGA multiproces-

1.5 Related Work 21

sor systems for data-flow and stream oriented applications using MicroBlaze processors.
However, we have developed a different concept of how to connect processors into a ho-
mogeneous or heterogeneous multiprocessor system. Our concept relies on communication
controllers and memories for communication and synchronization between processors that
allow to connect not only MicroBlaze processors using buses and FSL links but also to
connect MicroBlaze processors, HW IP cores, and/or PowerPC processors connected in a
point-to-point network or, e.g., via a crossbar. In addition, our concept is fully implemented,
i.e., our ESPAM tool generates automatically a synthesizable (RTL) specification of a mul-
tiprocessor system along with the program code executed on each processor. In [55, 56],
the authors do not discuss if they generate automatically RTL-synthesizable multiprocessor
systems and how the systems are programmed.

Companies such as Xilinx and Altera provide approaches and design tools attempting to fa-
cilitate efficient implementations of processor-based systems on FPGAs. These tools are
the Embedded Development Kit (EDK) [10] for Xilinx chips, and the System On a Pro-
grammable Chip (SOPC) builder [57] for Altera chips. A recent survey of multiprocessor
solutions [58] shows that these state-of-the-art tools support only processor-coprocessor sys-
tems and shared memory bus-based multiprocessor systems which can not always meet the
performance requirements of todays (streaming) applications. In contrast, our work proposes
a platform model that supports different communication topologies (not only a shared bus)
and allows different types of processors to be connected in heterogeneous multiprocessor
platforms. In addition, we use a parallel model of computation to represent an application
and to map it onto multiprocessor platforms. Exploiting the properties of our platform and
application models allows for automated MPSoC synthesis and implementation, application
dependent self-scheduling of the platform resources, and fully automated MPSoC program-
ming.

SPIRIT [59] is a consortium which aims at ”Enabling Innovative IP Re-use and Design Au-
tomation”. It defines several standards, e.g., IP-XACT, and one of the main purposes of this
consortium is to provide a well-defined XML Schema for meta-data that documents the char-
acteristics of IPs. While the consortium is focused mainly on the general IP-XACT standard,
we target automated IP core integration in our multiprocessor systems. IP-XACT allows to
use general interfaces for connection between the IPs, where for each interface a reference
bus definition is required. Depending on the complexity of an interface, a bus definition may
require a lot of error-prone and time consuming manual work. In order to simplify and au-
tomate the IP core integration in our MPSoCs, we define and support only two interfaces,
i.e., one data interface and one control interface, that an IP core has to provide. We do not
consider this as a limitation of our approach because 1) these interfaces allow an efficient
IP core integration in the multiprocessor platforms we consider and 2) the two interfaces are
sufficient for integration of IP cores performing computations in the domain we are interested
in, i.e., multimedia, image, and signal processing.

There are several initiatives such as VISA [60] and OCP-IP [61] aiming at specifying ”open”
interface standards, which will ease the integration effort required to incorporate IP cores
into a system-on-chip (SoC). The Open Core Protocol (OCP) defines a bus-independent in-
terface between IP cores that reduces design time, design risk, and manufacturing costs. The
OCP is equivalent to VSIA’s proposed Virtual Component Interface (VCI). While the VCI

22 Introduction

addresses only data flow aspects of core communications, the OCP is a superset of VCI that
also supports configurable sideband control signaling and test harness signals. Although OCP
and VCI could remove some of our IP interfacing issues, we do not use these interfaces in
our DAEDALUS framework because in many cases they do not comply with our main goal,
which is, to integrate IPs in our multiprocessor systems in such a way that the highest pos-
sible overall system performance is achieved for a given application. Indeed, the main focus
of OCP or VCI is to guarantee interoperability and re-usability of a wide variety of IP cores
in a ”plug-and-play” fashion but this is achieved at the expense of more general, application-
independent, and relatively slow interfaces and protocols. In our approach, we provide a
mechanism to integrate third-party dedicated HW IP cores into heterogeneous systems by
means of HW modules generated by ESPAM. Each HW module contains a wrapper around
a third-party IP core. Our IP wrappers developed in ESPAM are not meant to be as general
as OCP and VCI, i.e., our wrappers support efficient integration of the specific type of IPs
defined in Section 2.4.3. This fact and the fact that our wrappers are customized for every
application, i.e., they are automatically generated according to the KPN specification of an
application, guarantee that the highest possible overall system performance is achieved.

1.6 Dissertation Outline

The remaining part of this dissertation is organized as follows. Chapter 2 presents the ap-
proach we propose to close the implementation gap between the System and the RTL abstrac-
tion levels of description introduced in Section 1.1. The chapter describes in great details the
models, methods, and techniques we have developed and implemented in the ESPAM tool for
systematic and automated multiprocessor system design, programming, and implementation.
First, we motivate the choice of the target multiprocessor systems with a discussion about
the mechanism for efficient data communication and synchronization between the process-
ing components allowing efficient execution of KPNs. Then, we introduce the system-level
platform model used in ESPAM to construct (abstract) MPSoC instances at system level and
present how these instance are translated MPSoC descriptions at RTL. This is followed by
a discussion about the automated programming of the MPSoCs and we give details on how
ESPAM converts processes to software code for every processor in a homogeneous MPSoC.
In this chapter, we also present the approach for building heterogeneous MPSoCs with ES-
PAM where both programmable processors and dedicated IP cores are used as processing
components.

Exploiting the fact that we target MPSoCs executing applications modeled as Kahn process
networks, in Chapter 3, we propose techniques for mapping processes to processing com-
ponents, i.e., mapping rules, which aim at utilizing as less MPSoC components as possible
without compromising the performance of the system when executed. By applying the map-
ping rules, the design space is effectively pruned to a set, consisting of the most promising
design points from which, based on certain criteria, the designer can choose the best one for
final implementation. First, we explain what system performance means when we consider
MPSoCs that execute KPNs. Next, we comment on the factors that affect system perfor-
mance. Then, after presenting the mapping rules, we discuss how the rules can be applied in
practice considering the KPN application model we use.

1.6 Dissertation Outline 23

In Chapter 4, we present three case studies that we conducted in order to demonstrate, val-
idate, and evaluate the methods and techniques for automated MPSoC design presented in
Chapter 2 in terms of overall design time, achieved performance, and HW resource uti-
lization. In addition, we comment on the accuracy of the results obtained by performing
high-level system simulations (during the DSE process) compared to real implementation
numbers. The first case study illustrates a complete design flow with DAEDALUS for a JPEG
encoder application, starting from a sequential program, performing system-level DSE with
SESAME, synthesizing design instances with ESPAM, and prototyping them by using com-
mercial synthesis and compiler tools. In the second case study, we address heterogeneous
MPSoCs where both programmable processors and dedicated IP cores are used as processing
components in MPSoCs executing a JPEG encoder, a Sobel edge detection, and a Discrete
Wavelet Transform. We illustrate the approach, discussed in Section 2.4, for integrating of
predefined IP cores into heterogeneous systems by using automatically generated IP Modules.
The purpose of the last case study is to push DAEDALUS “to the limit” in order to check how
large and complex systems can be designed using the proposed methodology and considering
the constraints imposed by the FPGA technology we currently use for prototyping.

Finally, we conclude this dissertation in Chapter 5 with a summary of the presented research
work along with some concluding remarks.

24 Introduction

Chapter 2
Embedded System-level Platform
synthesis and Application Mapping
– ESPAM

In this chapter, we motivate and present in detail the platform model and the target MPSoCs
we consider, together with methods and techniques for systematic and automated multipro-
cessor system design, programming, and implementation. These methods and techniques
bridge in a particular way the gap between the system level and the register-transfer level
(RTL) of design abstraction introduced in Section 1.1. The approach is implemented in the
ESPAM tool (Embedded System-level Platform synthesis and Application Mapping) which is
the core tool in the DAEDALUS design flow presented in Section 1.2.

This chapter is organized as follows. First, we motivate the choice of the target MPSoCs. This
is done by a discussion about the mechanism for efficient data communication and synchro-
nization between the processing components allowing efficient execution of KPNs. Then,
in Section 2.1.5, we introduce the system-level platform model used in ESPAM to construct
(abstract) MPSoC instances at system level. In Section 2.2, we present how the abstract
high-level platform instance is refined and translated systematically and automatically to an
MPSoC instance at RTL. This is followed by a discussion in Section 2.3 about the automated
programming of the MPSoCs generated by ESPAM. It includes a brief introduction of the
static affine nested loop programs (SANLP) and the automated generation of KPNs using the
PNGEN tool. Furthermore, we present details on how ESPAM converts processes in this KPN
model to software code for every processor in a homogeneous MPSoC. In Section 2.4, we
present our approach for building heterogeneous MPSoCs where both programmable proces-
sors and dedicated IP cores are used as processing components. We conclude the chapter in
Section 2.6.

26 Embedded System-level Platform synthesis and Application Mapping – ESPAM

2.1 The Multiprocessor Platform

The advancement from single core to multi-core processors is expected to continue resulting
in many-core chips with up to hundreds or thousands of cores per chip. This progress raises
new important questions concerning new designing and programming paradigms. Connect-
ing the cores, determining the right memory subsystem, ensuring coherence and consistency
of data, all require a deep understanding of issues and innovative application of ideas. In this
section, we address these issues in a particular way by motivating and defining the type of
multiprocessor platform we consider. We target data-flow dominated (streaming) applications
which we model in an explicit parallel form using the Kahn Process Network (KPN) model
of computation. At the same time, we target high-performance multiprocessor systems to ex-
ecute these applications. Therefore, the main objective is to devise a multiprocessor platform
for efficient execution of applications specified as Kahn process networks, and subsequently,
to enable automated multiprocessor systems design and implementation. We achieve this by
exploiting the properties and the operational semantics of a KPN, and translating it to the
topology and the execution model, i.e., the communication and synchronization mechanism,
of the target multiprocessor platform. More precisely, in this section we discuss the MPSoC
memory architecture, the mechanism for data communication and inter-processor synchro-
nization, and the MPSoC interconnect topology and protocol.

2.1.1 Multiprocessor memory architecture

Increasing the number of the processing components in an MPSoC, increases the possibility
of more computation to be carried out in parallel. However, by increasing the number of
the processing components, the access to data becomes the system bottleneck that limits the
available parallelism and the achieved overall performance, respectively. At the heart of the
trouble is the so-called memory wall, i.e., the disparity between how fast a processor can
operate on data and how fast it can get the data it needs. This is the major factor limiting the
performance of systems when they rely on a single memory shared between the processing
cores and used to load and store data. Increasing the number of processing components in
such shared memory MPSoCs only exacerbates this problem. Therefore, boost in memory
bandwidth is needed which can be achieved only by considering different memory units,
distributed between different processing components. Consequently, in this dissertation we
propose MPSoC platform with distributed memory architecture.

A multiprocessor system with distributed memory can deliver higher performance compared
to a shared memory system. However, a major drawback of distributed memory systems
arises when it comes to program them due to difficulties associated with multiprocessor syn-
chronization and validity of data located in different parts of the distributed memory. We ad-
dress this important issue, and in Section 2.3, we present an approach for automated program-
ming of the target MPSoCs. Automated programming of MPSoC with distributed memory is
facilitated by the fact the KPN MoC we use as an application model also assumes distributed
memory, i.e., data is stored either in private memory of processes or in communication FIFO
channels.

2.1 The Multiprocessor Platform 27

2.1.2 Data communication and synchronization mechanism

The applications in the multimedia domain we target, are often characterized by having a
complex array index manipulation scheme and a large number of data accesses [62] where a
processing component needs to generate the addresses of the memory locations in order to
retrieve and store data. Address calculations often involve linear and polynomial arithmetic
expressions which have to be calculated during program execution. Memory address com-
putation can significantly degrade the performance and increase power consumption [63,64].
Therefore, it is very important to carry out the memory accesses and the related address com-
putations in an effective way.

With respect to this, accessing the memory in a FIFO-like manner is the most efficient way
because, in this case, address computation is limited only to increment operation, and conse-
quently, the address generators are comprised by simple counters. Moreover, FIFO commu-
nication has proven to be very efficient and it has been widely used in digital signal/image
processing and multimedia systems for decades. Therefore, in the MPSoC platform we pro-
pose, data between the processing components is communicated through FIFO buffers. This
matches very well the KPN operational semantics, thus, leading to minimal communication
overhead when KPNs are executed on the target MPSoCs. That is, the synchronization be-
tween the processing components is realized by simple blocking read and blocking write
operations on empty and full FIFO buffers, respectively. In addition, this synchronization
mechanism enables an important feature of the considered MPSoC platform, i.e., being self-
synchronizing in a local-synchronous, global-asynchronous fashion.

Another benefit of using FIFOs for communication between processing components is that
the simple FIFO interface, i.e., a data bus and two control signals only (empty and read
signals, or full and write signals, respectively) facilitates efficient heterogeneous MPSoC
design in which different types of processing components communicate data through FIFO
channels. We exploit this property in the approach we present in Section 2.4 for dedicated IP
core integration in heterogeneous MPSoCs.

2.1.3 Platform interconnect protocol

Recall that we target multiprocessor systems which allow efficient execution of KPNs. Since
a KPN is a set of concurrently executing processes communicating data among them, pro-
viding efficient data communication (with low overhead) is crucial for multiprocessor sys-
tem executing KPNs. A data stream in a KPN has a source: The process that writes data
to it, and a sink: The process that reads data from it. The inter-processor communication
protocol realizing the streaming data between processing components in an MPSoC is sim-
plest, i.e., it introduces the lowest communication overhead, when components are connected
point-to-point. However, point-to-point inter-processor communication links may not be al-
ways feasible in general, and sharing memories and links for data communication may be
necessary. Therefore, we need to devise an alternative approach to connect processing com-
ponents (by sharing communication memories and links) with the objective to reduce the
interconnection complexity in a way that keeps the communication overhead low. In the con-
sidered MPSoCs, data communication between the processing components is materialized

28 Embedded System-level Platform synthesis and Application Mapping – ESPAM

in a communication structure which allows for point-to-point, shared bus, crossbar, or even
network-on-chip communication topologies. We do not advocate any of these communica-
tion topology types, though each and every type has its own efficiency merits. Consequently,
the MPSoC (communication) performance depends on the properties of the used communi-
cation topology type and the corresponding communication and synchronization mechanism.
Considering the distributed memory and the FIFO communication in the target MPSoCs as
well as the KPN model, below we motivate the communication mechanism we propose which
leads to low overhead and reduced complexity of the communication structure.

Data between the processing components is communicated through dedicated (distributed)
memories, i.e., communication memories (CM), in which the communication FIFOs are lo-
cated. All CMs in an MPSoC are connected through a communication structure. In order
to achieve data communication with low overhead in the target MPSoCs, we devised an ap-
proach that keeps the communication and synchronization as close as possible to the KPN op-
erational semantics because it guarantees the highest possible communication performance.
More precisely, we propose a request-based mechanism for accessing communication mem-
ories through the communication structure. In this approach, a processing component is
connected to a CM, being its local CM, and all other CMs are seen as remote CMs of that
processing component because the remote CMs are accessible only through the communi-
cation structure. Hence, a processing component has a direct access only to its local CM.
Consequently, we consider that each processing component can write only to its local com-
munication memory and has to rely on the communication structure to read data from all
other communication memories. Thus, a processing component can always write if there is
room in its local CM. If this CM is large enough, the processing component may never block
on writing, which mimics the infinite FIFOs of the KPN model.

In addition, the FIFO communication between the processing components in the target MP-
SoCs and the restriction that the processing components use the communication structure
only for reading data from remote CMs, allow the communication structure to be very sim-
ple. That is, it implements connections in one direction only between communication mem-
ories and processing components. A data interface of a processing component consists of
address, data, and control buses. However, in the proposed FIFO communication mechanism
where the CMs are organized as FIFOs buffers, the addresses to these buffers are generated
locally as a result of the memory accesses, see Section 2.1.4. Therefore, there is no need
to propagate the address bus through the communication structure, which results in reduced
number of signals that needs to be switched. Moreover, the uni-directional communication
(for reading data) reduces the load on the communication structure because write accesses are
performed locally, and at the same time, reduces the complexity of the switch matrix since
data buses only in one direction needs to be switched.

2.1.4 Implementation details

A simplified example of an instance of the multiprocessor platform we propose, is depicted
in Figure 2.1. For brevity, this example of three processing components (uP) and memories
(CM) connected through a communication structure (Interconnect) shows only details that
matter to illustrate the main features of the MPSoC platform discussed above, and leading to

2.1 The Multiprocessor Platform 29

CM3CM2

uP2

CM1

uP3uP1

CC2 CC3CC1

I n t e r c o n n e c t

Figure 2.1: Example of a target MPSoC platform instance.

efficient executions of KPNs. Communication and synchronization are the essentials in any
MoC. In the KPN MoC, inter-process communication and synchronization is by means of
blocking FIFO channels. In the proposed platform the processing components communicate
data through (distributed) communication memories (CM), see Figure 2.1. Each CM is or-
ganized as one or more FIFO buffers. The inter-processor synchronization in the platform is
implemented in a simple and efficient way by blocking read/write operations on empty/full
FIFO buffers located in the communication memory. The efficiency is achieved by employing
the separation of concern principle discussed in Section 1.2.1, i.e., a processing component
(active component) is used to implement the KPN process behaviors, and the communica-
tion and synchronization is managed by a communication controller (CC). As illustrated in
Figure 2.1, a CC connects a communication memory to the data bus of the processor (uP) it
belongs to, and to an interconnect component. In addition, each CC implements the multi-
FIFO organization of a CM as well as the processors local bus-based protocol for accessing
the CM and the interconnect component. The latter is used to access FIFO buffers located in
remote CMs. The usage of a CC is convenient for efficient implementation of the communi-
cation and synchronization mechanism, independent of the type of processing components.

Data communication and synchronization

We propose an efficient inter-processor synchronization mechanism for data communica-
tion in our platform exploiting the fact that the target MPSoC execution platform instances
execute KPNs in which the data streams are modeled in FIFO channels. The proposed syn-
chronization policy is a simple FIFO blocking write and read protocol. For better efficiency,
we propose dual port communication memories, i.e., the CMs in Figure 2.1. In systems with
a point-to-point interconnect topology, dual port FIFO buffer memories avoid arbitration of
memory access because a memory connects only two processing components. Hence, both
components in this case can perform a FIFO operation simultaneously (via a communication
controller CC in Figure 2.1), the synchronization being blocking write/read operations on the
FIFO buffers.

In case the system communication topology is not point-to-point, the memories and the com-
munication links are shared between different processing components. We have devised a
general approach to connect and to synchronize processing components that communicate
data through distributed communication memories (CM). Assuming dual port memories, one

30 Embedded System-level Platform synthesis and Application Mapping – ESPAM

communication memory port is dedicated to a processing component (therefore, the memory
becomes its local CM) and the other memory port is connected (through a CC) to the com-
munication component. In this case, arbitration of memory access is significantly reduced
because a processing component always can access its own (local) communication memory.
Arbitration is required when other processing components need to access the memory using
the communication component. We have developed a request-based synchronization mech-
anism for accessing remote communication memories. A processing component accesses a
remote CM in three steps:

1. Request a connection to a remote communication memory (CM);

2. Transfer data from the remote CM;

3. Release the connection after the data transfer is completed.

A request to read from a FIFO located in a remote CM is generated to the communication
component. A connection to the CM is granted only if the communication line is currently
available and there is data in the corresponding FIFO. When a connection is not granted, the
processing component blocks (its execution is suspended) until the connection is granted.
Once the request is granted, the processing component has a direct connection to the remote
CM. After transferring the data, the connection has to be released in order for other processing
components to be able to read data from different FIFOs located in the same CM. A CM is not
used by the processing components as a local memory for processing data. Instead, a CM and
a communication link are used only to copy data locally for further processing which reduces
the load on the communication component of the system. The request-based mechanism for
synchronization and data communication between processing components in the MPSoC is
implemented by the proposed communication controller (CC). In case a processing compo-
nent is a programmable processor, we propose a SW/HW implementation mechanism. It
consists of SW synchronization primitives that interact with HW communication controllers.

Communication controller

The structure of the communication controller (CC) we propose is shown in Figure 2.2. It
consists of two main parts: INTERFACE Unit and FIFOs Unit. The INTERFACE Unit
contains a Control Module, i.e., an address decoder, fifos’ control logic, and logic to generate
read requests to the communication component, and a processor interface (PI) module that
implements the data bus protocol of a particular processing component. When a processing
component has to write data to its local communication memory (CM), it first checks if there
is room in the corresponding FIFO by reading its status. If the FIFO is full, the processing
component blocks. Otherwise, it sends the data to the CC. The Control Module decodes the
FIFO address sent by the processing component along with the data and generates control
signals (select FIFO, write data, or read status) to the Write Module of the FIFOs Unit. The
latter implements the multi-FIFO behavior. For each FIFO buffer, the FIFOs Unit contains
read and write counters that indicate the read and write positions into the buffer. These
counters are used as read and write address generators and their values are used to determine
the status (empty or full) of a FIFO. The FIFOs Unit also includes a memory interface (MI)

2.1 The Multiprocessor Platform 31

......
A

ddr

R
ead

Full

W
rite

A
ddr

Module
Write

Module
Read

FIFO Status

.

D
ata

INTERFACE Unit

PI
Data’ Bus

Addr Bus

Data Rd Bus

D
ata

MI

Control Module

FIFOs UnitControl

Empty’

Read’
Request

FIFO Sel
Read
Empty

Data Bus

Data Wr Bus
Rd/Wr

Communication Memory Side

P
rocessing C

om
ponent S

ide

C
om

m
unication C

om
ponent S

ide

Figure 2.2: Proposed communication controller structure.

module that implements the access protocol to the communication memory connected to the
CC, see the bottom part of Figure 2.2. Notice that since we consider dual-port memories and
separate read and write logic, a FIFO in a CM can be accessed for read and write operations
simultaneously by different processing components or two FIFOs in a CM can be accessed
at the same time – one for read operation and one for write operation.

The structure of the CC is devised in a way that if a new type of a processing component
is to be added to the platform, then that requires changes only to the PI module of the
INTERFACE Unit of the CC. Modification is needed in order to implement the data bus
protocol of the new processing component and to translate it to the interface of the Control
Module of the CC. Similarly, if a CM is implemented by another type of memory component,
e.g., a single-port (static or dynamic) memory, then – again – only the memory interface (MI)
part of the FIFOs Unit has to be modified in order to match the timing characteristics and the
physical interface of the new memory component. For a single-port memory, the MI module
would also contain a simple arbiter for accessing the memory. A priority on writing is an
appropriate policy to resolve access contention.

Recall that a processing component can access FIFOs located in other CMs via a communi-
cation component only for read operations. First, the processing component checks if there is
any data in the FIFO the processor wants to read from. When a processor checks for data, the
INTERFACE Unit sends a request to the communication component for granting a connec-
tion to the CM in which the FIFO is located. A connection is granted only if a communication
line is available and there is data in the FIFO. When a connection is not granted, the process-
ing component blocks until a connection is granted. When a connection is granted, the CC
connects the data bus of the communication component to the data bus of the processing
component and the latter reads the data from the CM where the FIFO is located. After the
data is read the connection has to be released in order to allow other processing components
to access the same CM. When data is read from a FIFO in a CM, the signals to the Read
Module of the FIFOs Unit (FIFO Sel and Read) signals are generated by the communica-
tion component via the bottom part of the communication component side as a response to a
request from another CC (processing component respectively), see Figure 2.2.

32 Embedded System-level Platform synthesis and Application Mapping – ESPAM

2.1.5 System-level platform model

The multiprocessor platform model we propose consists of a library of generic parameter-
ized components and defines the way the components can be assembled assuming the (inter-
component) communication and synchronization mechanisms discussed in Section 2.1.4.
The platform model is used in the ESPAM tool for automated multiprocessor systems design
and implementation. To enable efficient execution of KPNs with low overhead, the platform
model allows for building MPSoCs that strictly follow the KPN semantics. Moreover, the
platform model allows easily to construct platform instances at a high level of abstraction
and to refine and translate them systematically and automatically to MPSoCs instances at
RTL. This is achieved by applying techniques which are presented in Section 2.2. The gen-
erated MPSoCs are compliant with the multiprocessor platform we consider and discussed
above. In addition, the platform model allows, together with the the KPN MoC we use as
an application (programming) model, the generated platform instances to be programmed
automatically by ESPAM.

Platform components

To support systematic and automated synthesis of MPSoCs, we have carefully identified a
set of components which comprise the multiprocessor platform we consider. It contains the
following components.

• Processing Components. The processing components implement the functional be-
havior of an MPSoC. The platform supports two types of processing components,
namely programmable (ISA) processors and non-programmable, dedicated IP cores.
The processing components have several parameters such as type, number of I/O ports,
program and data memory size, etc.

• Memory Components. Memory components are used to specify the local program
and data memories of the the programmable processors and to specify data communi-
cation storages (buffers) between the processing components (Communication Mem-
ories). In addition, the platform supports dedicated FIFO components used as com-
munication memories in MPSoCs with a point-to-point topology. Important memory
component parameters are type, size, and number of I/O ports.

• Communication Components. A communication component determines the inter-
connection topology of a multiprocessor platform instance. Some of the parameters of
a communication component are type and number of I/O ports.

• Communication Controller. Compliant with our approach to build MPSoCs execut-
ing KPNs, communication controllers are used as glue logic realizing the synchroniza-
tion of the data communication between the processors at hardware level. A commu-
nication controller implements an interface between processing, memory, and commu-
nication components. There are two types of CCs in our library. In case of a point-to-
point topology, a CC implements only an interface to the dedicated FIFO components
used as communication memories. If an MPSoC utilizes a communication component,

2.2 Automated MPSoC Synthesis 33

then the communication controller realizes a multi-FIFO organization of the commu-
nication memories. The structure of this type of communication controller was already
discussed in Section 2.1.4. Important CC parameters are number of FIFOs and the size
of each FIFO.

• Memory Controllers. Memory controllers are used to connect the local program and
data memories to the ISA processors. Every memory controller has a parameter size
which determines the amount of memory that can be accessed by a processor through
the memory controller.

• Peripheral Components and Controllers. They allow data to be transferred in and out
of the MPSoC platform, e.g., a Universal Asynchronous Receive-Transmit (UART).
We have also developed a multi-port interface controller allowing for efficient (DMA-
like) data communication between the processing cores by sharing an off-chip memory
organized as multiple FIFO channels [65]. General off-chip memory controller is also
part of this group of library components. In addition, Timers can be used for profil-
ing and debugging purposes, e.g., for measuring execution delays of the processing
components.

• Links. Links are used to connect the components in our system-level platform model.
A link is transparent, i.e., does not have any type, and connects ports of two or more
components together.

In our approach, we do not consider the design of processing components. Instead, we use IP
cores (programmable processors and dedicated IPs) developed by third parties and propose a
communication mechanism that allows efficient data communication (low latency) between
these processing components. The devised communication mechanism is independent of
the types of processing and communication components used in the platform instance. This
results in a platform model that easily can be extended with additional (processing, commu-
nication, etc.) components.

2.2 Automated MPSoC Synthesis

Using the proposed platform model, a system designer can construct many alternative plat-
form instances at a high (system) level of abstraction by connecting processing, memory,
and communication components together using permissive interconnection rules. These plat-
form instances are then automatically synthesized (i.e., translated to RTL descriptions) and
programmed by ESPAM. Recall that for system design, ESPAM requires three input specifica-
tions: the Application, Platform, and Mapping Specifications. The application specification
is in terms of a Kahn Process Network (KPN), the platform specification provides the topol-
ogy of a multiprocessor platform, and the mapping associates components in the application
specification and the platform specification together. In the mapping specification, mapping
of KPN channels to communication memories is not specified explicitely. This mapping is
implicit in the way processes are assigned to processors, see Section 2.3.3. Below, we give
details about the platform specification which is followed by description of the system-level

34 Embedded System-level Platform synthesis and Application Mapping – ESPAM

name = "CB" type = "Crossbar"><network

name = "IO3"/><port
name = "IO2"/><port

<port name = "IO1"/>

</network>

name = "BUS1">

</link>

<link
name = "CB"<resource
name = "uP1"<resource

port = "IO1"
port = "IO1"

/>
/>

name = "uP2"<resource port = "IO1" />
<resource name = "CB" port = "IO2" />

<link />name = "BUS2"

</link>

name = "uP3"<resource port = "IO1" />

<link />name = "BUS3"
port = "IO3"<resource name = "CB" />

</link>

25

30

35

40

45

<port name = "IO1"/>

<port name = "IO1"/>

<port name = "IO1"/>

name = "UART"<resource port = "IO1" />

1

5

10

20

</platform>

name =<platform "myPlatform">

>

15

<processor name = "uP2" type = "MB"
dm = "20000" pm = "4000"

</processor>

>

<processor name = "uP3" type = "MB"
dm = "6000" pm = "5000" >

</processor>

</peripheral>

name="OMC" type="ZBTCTRL" size="1M"<peripheral

<port

<port

</peripheral>

<port

name="UART" type="UART" size="256"<peripheral >

name = "IO1" type = "OPB"

name = "IO2" type = "OPB"

<processor name = "uP1" type = "MB"
dm = "18000" pm = "48000"

</processor>

>

<link name = "BUS4"
<resource name = "uP3"
<resource name = "OMC"

</link>

port = "IO2"
port = "IO1" />

/>
/>

/>

/>

name = "IO1" type = "OPB" />

Figure 2.3: Platform specification.

to RTL MPSoC synthesis steps performed by ESPAM. The XML format of the application
and the mapping specifications are discussed further, where appropriate, in this chapter.

2.2.1 Platform specification

For the discussions in this section, we use an example of a multiprocessor platform instance
containing 3 processing components. The system-level specification of this MPSoC instance
is depicted in Figure 2.3. The specification is written in XML format and consists of four
parts which define processing components (three processors, lines 2-16), peripheral compo-
nents (lines 18-24), communication (network) component (Crossbar, lines 25-29), and links
(lines 30-48). The links specify the connections of the processors to the communication com-
ponent. Every component has an instance name and different parameters characterizing the
component. For example, all the processing components are MicroBlaze programmable
processors (type = “MB“) and every core has the program (pm) and data (dm) memory
size specified. The memory size affects the way the memory system is synthesized and opti-
mized which is explained further in this chapter. Every processor has one port (IO1) which
represents the local memory bus (LMB) of a processor. This port type is the default type in
ESPAM, therefore, in the platform specification it can be omitted. Processor uP3 has another
port specified (IO2) which is of type on-chip peripheral bus (OPB). This type represents the
processor’s peripheral bus and it is used to connect peripheral components to the processor.
In our example there are two peripherals, i.e., an off-chip memory controller OMC and a
universal asynchronous receive transmit UART . The right part of Figure 2.3 specifies the
connections between the components, i.e., the processors are connected to the communica-
tion component and the peripherals are connected to processor uP3.

2.2 Automated MPSoC Synthesis 35

Note that in the specification, a designer does not have to take care of memory structures,
interface controllers, and communication and synchronization protocols. Our ESPAM tool
takes care of this in the platform synthesis process by implementing our general approach
to connect and synchronize processing cores of arbitrary types via a communication com-
ponent and communication controllers as discussed in Section 2.1. In this way, unnecessary
details are hidden at the beginning of the design, keeping the abstraction of the input platform
specification very high.

2.2.2 Platform synthesis

The automated translation of the high-level specifications to RTL descriptions of an MPSoC
goes in several steps. They are illustrated in Figure 2.4 and are grouped in:

• Models initialization. Using the platform specification, an MPSoC instance is created
by initializing an abstract platform model in ESPAM. Based on the application and
the mapping specification, three additional abstract models are initialized: application,
schedule, and mapping models.

• Platform synthesis. ESPAM elaborates and refines the abstract platform model to a
detailed parameterized platform model, compliant with the approach discussed in Sec-
tion 2.1. Based on the application and the mapping models, a parameterized process
network model is created as well.

• Platform generation. Parameters are set and ESPAM generates a platform instance
implementation using the RTL version of the components in our library. In addition,
ESPAM generates program code for each programmable processor.

Models initialization consists of two steps, i.e., initializing the internal models in ESPAM that
capture platform, application, and mapping information, and running a consistency check
on the models in order to detect errors and to facilitate correct-by-construction MPSoC de-
signs. Platform synthesis is comprised of several steps as well. These are platform and
mapping models elaboration, process network synthesis (PN), and platform instance refine-
ment steps. As a result of the platform elaboration, ESPAM creates a detailed parameterized
model of a platform instance. After the elaboration, a refinement (optimization) step is ap-
plied by ESPAM in order to improve resource utilization and efficiency. In our approach, the
mapping specification gives the relation between KPN processes and processing components
only. Then, ESPAM determines automatically the most efficient mapping of FIFO channels to
communication memories. This is done in the mapping elaboration step, in which the map-
ping model is analyzed and augmented with the mapping of FIFO channels to communication
memories. The PN synthesis is a translation of the Approximated Dependence Graph (ADG)
model and the Schedule Tree (STree) model into a (parameterized) process network model.
The platform generation consists of setting parameters step which completely determines a
platform instance, and code generation step which generates hardware and software descrip-
tions of an MPSoC. Each of these steps is described below in detail. Automated programming
and SW code generation are discussed in Section 2.3.

36 Embedded System-level Platform synthesis and Application Mapping – ESPAM

synthesis
System

RTL
specification

Platform generation
(Back−end)

(Front−end)
Model initialization

specification
System−level

Refined Platform Model

Platform specification
in XML

Kahn Process Network
in XML

Parsers and (Cross−)Consistency Check

Elaborate Platform

Platform model

Process Network Synthesis

Parameterized PN Model

Mapping model ADG model STree model

Elaborated Mapping Model

Elaborate Mapping

Refine Platform

Platform Instance

processors
C code forPlatform IP cores

netlist
Memory

Mapin VHDL

Setting Parameters and External Interface

Code Generation

Mapping specification
in XML

Elaborated Platform Model

C
om

po
ne

nt
s

Li
br

ar
y

of
 IP

Figure 2.4: System-level to RTL MPSoC synthesis steps performed by ESPAM.

Models initialization

Models initialization is the first step in ESPAM for implementing an MPSoC. In this step,
ESPAM constructs a platform instance from the input platform specification by initializing an
abstract platform model. This is done by instantiating and connecting the components in the
specification using abstract components from the library. The abstract model represents an
MPSoC instance without taking target execution platform details into account. The model
includes key system components and their attributes as defined in the platform specification.
A graphical representation of an abstract MPSoC instance is depicted in Figure 2.5(a). It
consists of 3 processing components (uP1, uP2, and uP3) connected to a crossbar (CB)
communication component, and two peripheral components (OMC and UART) connected
to uP3.

2.2 Automated MPSoC Synthesis 37

There are three additional abstract models in ESPAM which are also created and initialized,
i.e., an application model, a schedule model, and a mapping model, see the top of Figure 2.4.
The application specification consist of two annotated graphs, i.e., a KPN represented by
an Approximated Dependence Graph (ADG) and a Schedule Tree (STree) representing one
valid global schedule of the KPN. Consequently, the ADG and the STree models in ESPAM
are initialized, capturing in a formal way all the information that is present in the application
specification. The mapping model is constructed and initialized from the mapping specifica-
tion. The objective of the mapping model in ESPAM is to capture the relation between the
KPN processes in an application and the processing components in an MPSoC instance on
the one hand, and the relation between FIFO channels and communication memories on the
other. The mapping model in ESPAM contains important information which enables the gen-
eration of the memory map of the system in an automated way. This is a crucial part of the
automated MPSoC programming that ESPAM provides. Recall that after initialization, the
mapping model contains information about the mapping of the KPN processes to processing
components only. Mapping of communication channels is related to the way processes are
mapped to processing components, and therefore, the mapping of channels can not be arbi-
trary. This is performed by ESPAM automatically, i.e., during the mapping model elaboration
step, ESPAM analyses the mapping model and determines the mapping of FIFO channels to
communication memories.

After initializing the internal models, ESPAM runs a consistency check on the constructed
platform model (instance) and cross-consistency check between the platform, the application
and the mapping models. The consistency check on the platform is to find incorrect connec-
tions as well as to check whether all the used components are part of the library. In addition,
all the ports connected to the same link have to be of the same type, e.g., local memory bus
type or peripheral bus type. The cross-check guarantees that to every processing component
in the mapping model corresponds a processing component in the platform model, and the
processes in the mapping model correspond to the processes in the application model, re-
spectively. In addition, every process has to be assigned to a processing component. The
consistency check is an important step towards correct-by-construction designs.

Platform model elaboration

In this step, ESPAM elaborates the abstract platform model to a detailed parameterized model.
The details in this model come from additional components added by ESPAM in order to con-
struct a complete system. The elaborate step is illustrated in Figure 2.5(b). For brevity, only
one processor (uP3) is shown. First, ESPAM generates the processors’ memory subsystem,
i.e., it automatically attaches memories (MEM) and memory controllers (MCs) to each
processor. In addition, based on the type of the processors instantiated in the first step, the
tool automatically synthesizes, instantiates, and connects all necessary communication con-
trollers (CCs) and communication memories (CMs) compliant with our approach discussed
in Section 2.1. Also, ESPAM provides an infrastructure for observability and control of the
generated platform instances. For example, when execution delays are to be measured, a
timer (TMR) peripheral component is connected to every processor. Using timers or not in
our MPSoCs is controlled by a flag in the ESPAM tool when synthesizing a platform.

38 Embedded System-level Platform synthesis and Application Mapping – ESPAM

CC

CM

UART OMC

uP1

uP2 uP3

UART

MC

(a) Construct (b) Elaborate − processor subsystem (uP3)

CC

CM

MC

MC

MEM

uP − Microprocessor

MEM − Program and Data Memory
MC − Memory Controller

CC − Communication Controller
CM − Communication Memory
CB − Crossbar Component
OMC − Off−chip Memory Controller
UART − Universial Reveive Transmit
TMR − Timer Counter

Legend:

TMR

uP3

UART OMC

CB

(c) Refine memory structures (uP3)

TMR

uP3

CB
BUS1

BUS2
B

U
S

4
BUS3

OMC

CB

MEM

Figure 2.5: An MPSoC instance at different levels of details in ESPAM.

Since in the elaborate step ESPAM uses abstract models of the components, the created elab-
orate model is still abstract in the sense that no target specific issues are considered.

Process network synthesis

This step is a translation of the Approximated Dependence Graph (ADG) model and the
Schedule Tree (STree) model into a (parameterized) process network (PN) model. The start-
ing point for this PN synthesis step is the information captured in the ADG and the STree.
This information is enough to generate a set of process networks with different topologies
and degree of exploited parallelism which is determined by the mapping model. The process
network model is created gradually by creating the PN topology, followed by creating the PN
behavior. The topology of the process network is created by grouping nodes and edges of
the ADG into processes and channels in the PN. The grouping is based on the information
delivered by the mapping model. The behavior of the PN is created using procedures [66–68]
that operate on the PN model and use the information from the STree. The sequential behav-
ior of a process [6] implies that the function calls that have to be executed inside a process
are executed in a sequential order. In this PN synthesis step, such order is derived from the
STree in a way that the PN execution is deadlock free. For details about the process network
synthesis, we refer to [66].

2.2 Automated MPSoC Synthesis 39

Mapping model elaboration

Elaboration of the mapping model is required in order to generate an assignment of FIFO
channels to communication memories. Since the initialized mapping model gives only the
relation between the processes and the processing components, mapping of FIFO channels to
memories is implicit. The latter is performed automatically by ESPAM following the principle
that a processor can write only to its local communication memory. As a result, the mapping
model is augmented with channels which give the relation between the FIFO channels from
the application model and the communication memories in the platform model. Recall that a
communication controller (CC) organizes a communication memory as multiple FIFO chan-
nels. Therefore, the created FIFO mapping is used for determing important CC parameters,
i.e., the number of channels of each CC and the size of each channel. This information is
further used in the generation of the memory map of the system, i.e., for generation of the
physical read and write addresses of the FIFO channels (described in Section 2.3.3).

Platform model refinement

After elaboration, the constructed platform model contains enough information to proceed
with the generating of the system implementation at RTL. However, based on the type of
the components used to build a platform instance, a refinement (optimization) of the detailed
parameterized platform model is applied by ESPAM in order to improve resource utilization
and efficiency. The refinement step includes program and data memory refinement and com-
paction in case of processing components with RISC architecture, memory partitioning, and
building the communication topology in case of point-to-point MPSoCs.

Memory refinement and compaction. To keep the abstract model and the elaborate proce-
dure general, we assume that a processor has a continuous address space used for program
and data. Therefore, ESPAM instantiates initially a single memory and a memory controller
connected to the data bus of the processor as shown in Figure 2.5(b). However, processors
with a RISC architecture have separate program and data address spaces and use dedicated
instruction and data busses for independent access to program and data. This is the case with
the MicroBlaze processor we use in the example. Therefore, ESPAM refines the processor
memory system by instantiating and connecting to the processor an additional memory con-
troller and a memory. This is followed by the memory compaction step which exploits the
dual-port feature of the memory component we consider. ESPAM combines the program and
the data memories of a programmable processor into a single memory unit, i.e., one memory
port is connected to the instruction bus and the other to the data bus of a processor. Because of
the dual port feature, the memory can still be accessed simultaneously allowing the processor
to fetch opcode and data without compromising performance.

Using the proposed refinement, a single memory gives the opportunity for better utilization
of the available memory resources. Consider uP1 from the example. It requires 18 KB
of memory for data and 48 KB for program (see Figure 2.3). However, a single memory
component, may have a size which is only a power of 2. Therefore, ESPAM would instantiate
32 KB for data and 64 KB for the program memory of uP1 if separate memories would be
used. This means that 30 KB more than the required amount of memory is dedicated to uP3.
By combining program and data into a single memory, only one memory of 64 KB is used
which is exactly the required amount of memory.

40 Embedded System-level Platform synthesis and Application Mapping – ESPAM

B C
CH2 CH3

CH1

A

(a) Process Network

MCMEM

MC
uP2

B

uP1
AMCMEM

MC

MC

MC

MEM
CM
CH3

CH1
CMCM

CH2

MC

CC
MEM

CM

− Memory Controller

− Communication Controller
− Communication Memory

− Program and Data Memory

uP − Microprocessor

Legend:

uP3
C

CC2

CC1

CC3

(b) MPSoC instance with a point-to-point communication topology

Figure 2.6: Point-to-Point Platform Synthesis Example.

Memory partitioning. The memory compaction alone does not lead to optimal memory
utilization if we consider, e.g., processor uP2. It requires 20 KB of data and 4 KB of program
memories. Even if both memories are combined (requiring 24 KB), ESPAM would instantiate
32 KB which is 8 KB more that the required amount. To cope with this issue, ESPAM applies
another refinement on the memory system, i.e., it automatically partitions the memory using
multiple controllers and memories. For processor uP2, ESPAM partitions the memory system
into two memories (16 KB and 8 KB) each having a size which is a power of 2, using two
program and two data memory controllers. Note that this refinement of the memory system
does not depend on the type of the processor.

As a result of the memory refinement steps described above, there may be several program
and data memory controllers connected to a processor and several physical memories com-
prising its program and data address space. These refinement steps, as illustrated in Fig-
ure 2.5(c), lead to better utilization of the memory resources which is very important in
multiprocessor embedded system design. In [69], we made the important observation that
the available on-chip memory (of an FPGA) is the only major factor limiting the size of an
MPSoC that can fit on a single chip. Therefore, without paying special attention to the mem-
ory distribution between the processors in an MPSoC, it is not a matter of how efficient the
system is implemented but whether it can be implemented at all. By applying the proposed
refinement steps, memory savings can be substantial (and they increase with the number of
processors) allowing to build larger MPSoCs.

Synthesis of a point-to-point communication topology. In case of a point-to-point commu-
nication topology, the number of direct connections between the processing components in
an MPSoC is the same as in the Kahn process network it executes. Since there is no commu-
nication component such as a crossbar or a bus, there is no sharing of communication links,
and consequently, there are no requests for granting connections. Therefore, no additional
communication delay is introduced in the platform instance. Because of this, the highest
possible communication performance can be achieved in such multiprocessor platforms.

Under the conditions that each communication memory (CM) contains only one FIFO chan-
nel and each processing component writes data only to its local CM (in compliance with the
approach discussed in Section 2.1.4), the ESPAM tool synthesizes a communication topology

2.2 Automated MPSoC Synthesis 41

with point-to-point connections in the following automated way. First, for each process in
the KPN, ESPAM instantiates a processor together with the processor’s memory system and
a communication controller (CC). This is done in the platform model elaboration step of the
MPSoC synthesis as previously described. The memory refinement step is applied as well.
Then, ESPAM finds all the channels which a process writes to. For every such channel, the
tool instantiates a CM and assigns the channel to this CM. Finally, ESPAM connects the CM
to the already instantiated CC of the corresponding processor.

In Figure 2.6(b), we give an example of a point-to-point multiprocessor platform instance
generated by ESPAM. The MPSoC implements the KPN depicted in Figure 2.6(a) where each
process is executed on a separate processor. There are three channels that have to be assigned
to three CMs. Following the procedure above, ESPAM finds that CH1 and CH2 are written
to by process A – see Figure 2.6(a). Assume that process A is assigned to be executed onto
processor uP1 (process B onto processor uP2, and C onto uP3 respectively). Therefore,
CMs corresponding to CH1 and CH2 are instantiated and connected to communication
controller CC1 of processor uP1. Similarly, a CM corresponding to CH3 is instantiated
and connected to CC2 of uP2. Process C is assigned to uP3 and since process C only reads
data from CH1 and CH3 no more CMs are instantiated and connected. The communication
controller of uP3 (CC3) is simply connected to the already instantiated CMs corresponding
to CH1 and CH3. Similarly, CC2 is connected to the CM corresponding to CH2. Notice
from Figure 2.6(b) that a CC is connected to more than one CM. When a CM contains only
one FIFO, it is implemented as a dedicated FIFO component from the library which is more
efficient than using the pair CC – CM. In order to connect one or more dedicated FIFO
components to a processor, as in the case of a point-to-point communication topology, we
use a simplified version of the communication controller (CC) described in Section 2.1.4.
The simplified controller only translates the processor data bus signals to FIFO input/output
signals.

Setting parameters and external interface

Setting the parameters of the components in the platform model completes a platform in-
stance which allows an MPSoC description to be generated, ready for final implementation.
Important parameters that are set at this step are:

• Memory size. Sets the size of the program and data memory components. Based on the
mapping information, the size of the FIFO buffers in every communication controller
are set as well;

• Address space of the programmable processors. Based on the size of the program
and data memories, ESPAM sets proper addresses of all memory controllers of a pro-
cessor as well as the address of the communication controller and all peripheral com-
ponents;

• Memory map of the system. Based on the MPSoC topology and the addresses of the
communication controllers, ESPAM sets the memory map of the system, i.e., the values
of the physical read and write addresses of each FIFO chanel of the system are defined.

42 Embedded System-level Platform synthesis and Application Mapping – ESPAM

CC

CM CM

MC

MC

MEM MC

MC

MEM

CM

CC

MC

MCMEM

UART

TMR

uP2 uP3

Done

OMC

FINTMR FIN

FIN

uP1

TMR

RST ...

Status Mux Ctrl

Add / Data

Done

Done

...

...

To Ext.

Mem

To Host

CC

MUX

CB

S
ta

tu
s

UnitCLKs
Host

Figure 2.7: The target MPSoC platform instance generated by ESPAM.

In addition, based on the target physical platform features, ESPAM instantiates and connects
to the platform instance external interface components realizing a connection between the
platform instance and its environment, e.g., a host PC. This allows for sending of reset, start,
or stop commands to the MPSoC, as well as reading the status of the MPSoC, reading and
writing to the MPSoC memories, etc. If we consider again the platform specification example
in Figure 2.3, a graphical representation of the final platform instance generated by ESPAM
is shown in Figure 2.7. It consists of three processor subsystems synthesized by ESPAM as
previously discussed in this section together with some external interface components. There
are additional (FIN) controllers connected to the data bus of each processor indicating that
a processor has finished an execution. This information is collected by a special Status
entity which generates the status of the MPSoC instance (see the top part in Figure 2.7). The
other part of the interface (MUX) realizes an access to an external memory attached to the
multiprocessor system.

Code generation: HW description of a platform instance generated by ESPAM

The final step in the platform synthesis process performed by ESPAM to convert the system-
level specifications to RTL descriptions is the actual platform instance generation, i.e., hard-
ware and software descriptions of the system as illustrated in Figure 2.4. The HW description
generated by ESPAM consists of two parts:

• Platform topology. This is a netlist description defining the multiprocessor platform
topology that corresponds to the platform instance synthesized by ESPAM, e.g., the in-
stance in Figure 2.7. This description contains the components of the platform instance
with the appropriate values of their parameters, and the connections between the com-
ponents in the form compliant with the input requirements of the commercial tool used
for low-level synthesis.

2.3 Automated Programming of MPSoCs 43

• Hardware descriptions of the MPSoC components. To every component in the plat-
form instance corresponds a detailed description at RTL. Some of the descriptions are
predefined (e.g., processors, memories, etc.), and ESPAM selects them from the library
of components and sets their parameters in the platform netlist. However, some de-
scriptions are generated by ESPAM, e.g., an IP Module used for integrating a third party
IP core as a processing component in an MPSoC (discussed in Section 2.4). Based on
the application specification, the IP Module description is generated by ESPAM every
time an MPSoC instance is synthesized.

In ESPAM, a software engineering technique called Visitor [70] is used to visit the PN and
platform model structures and to generate code. This code can be expressed in any program-
ming language, i.e., ESPAM generates VHDL for the HW part and C/C++ for the SW part
of the MPSoC description. The C/C++ software generated by ESPAM for each processor in
the system consists of code implementing the functional behavior together with code for syn-
chronization of the communication between the processors. The program code generated by
ESPAM is given to a standard GCC compiler to generate executable code for each processor.
The automated MPSoC programming and software code generation is discussed in the next
section.

2.3 Automated Programming of MPSoCs

In this section, we present in detail our approach for systematic and automated programming
of MPSoCs synthesized with ESPAM. Recall that we use the KPN MoC as programming
model in ESPAM. Such model is created automatically by the PNGEN tool from sequential,
static affine nested loop programs (SANLP). In order to program an MPSoC, ESPAM converts
this KPN model to software (C/C++) code including computation code implementing the
functional behavior and control code for synchronization of the communication between the
processors. The synchronization code contains a memory map of the MPSoC, i.e., physical
addresses of the FIFO channels, and read/write synchronization primitives. These primi-
tives interact with the communication controllers, and together, they implement the blocking
read/write synchronization mechanism. The primitives are inserted automatically by ESPAM
in the places of the processors’ code where read/write access to a FIFO is performed.

This section is organized as follows. First, we discuss the class of static affine nested loop
programs we consider as well as how we derive KPNs from such SANLPs. Then, for the
sake of clarity, we explain the main steps in the ESPAM programming approach by going
through an illustrative example. First, we give an example of input application and mapping
specifications for ESPAM. Next, from these example specifications we show how the SW
code for each processor in an MPSoC is generated, and present our SW synchronization and
communication primitives inserted in the code. Finally, we explain how the memory map of
the MPSoC is generated.

44 Embedded System-level Platform synthesis and Application Mapping – ESPAM

2.3.1 Automated Derivation of Process Networks

The techniques we have recently developed for derivation of KPNs were implemented in the
PNGEN tool [7]. The input to PNGEN is a SANLP written in C and the output is a KPN
specification in XML format – see Figure 1.2. Below, we introduce the SANLPs with their
restrictions and explain how a KPN is derived based on a modified data-flow analysis. We
have modified the standard data-flow analysis in order to derive KPNs that have less inter-
process communication FIFO channels compared to the KPNs derived by using previous
work [22, 24].

SANLPs and modified data-flow analysis

SANLPs are programs that can be represented in the well-known polytope model [71]. That
is, a SANLP consists of a set of statements and function calls, each possibly enclosed in loops
and/or guarded by conditions. The loops need not be perfectly nested. All lower and upper
bounds of the loops as well as all expressions in conditions and array accesses have to be
affine functions of enclosing loop iterators and static parameters. The parameters are sym-
bolic constants, i.e., their values may not change during the execution of the program. The
above restrictions allow a compact mathematical representation of a SANLP through sets and
relations of integral vectors defined by linear (in)equalities, existential quantification and the
union operation. In particular, the set of iterator vectors for which a function call is executed
is an integer set called the iteration domain. The linear inequalities of this set correspond
to the lower and upper bounds of the loops enclosing the function call. For example, the
iteration domain of function F1 in Figure 2.8(a) is {i | 0 ≤ i ≤ N − 1}. Iteration domains

for (int i=0; i<N; i++)

if (i>0)
(int i=0; i<N; i++)for {

tmp = b[i−1];
else tmp = b[i];

}
F2(b[i], tmp, &c[i]);

b[i] = F1();

(a) Example of a SANLP

F1
b

F2

b_1

c

(b) Corresponding KPN

Figure 2.8: SANLP fragment and its corresponding KPN.

form the basis of the description of the processes in our KPN model, as each process corre-
sponds to a particular function call. For example, there are two function calls in the program
fragment in Figure 2.8(a) representing two application tasks, namely F1 and F2. Therefore,
there are two processes in the corresponding process network as shown in Figure 2.8(b). The
granularity of F1 and F2 determines the granularity of the corresponding processes. The
FIFO channels are determined by the array (or scalar) accesses in the corresponding function
call. All accesses that appear on the left hand side or in an address-of (&) expression for
an argument of a function call are considered to be write accesses. All other accesses are
considered to be read accesses.

2.3 Automated Programming of MPSoCs 45

To determine the FIFO channels between the processes, we may perform standard array data-
flow analysis [72]. That is, for each execution of a read operation of a given data element in
a function call, we need to find the source of the data, i.e., the corresponding write operation
that wrote the data element. However, to reduce communication FIFO channels between
different processes, in contrast to the standard data-flow analysis and in contrast to [22, 24],
we also consider all previous read operations from the same function call as possible sources
of the data. That is why we call our approach a modified array data-flow analysis. The
problem to be solved is then: given a read from an array element, what was the last write to or
read from that array element? The last iteration of a function call satisfying some constraints
can be obtained using Parametric Integer Programming (PIP) [73], where we compute the
lexicographical maximum of the write (or read) source operations in terms of the iterators of
the “sink” read operation. Since there may be multiple function calls that are potential sources
of the data, and since we also need to express that the source operation is executed before the
read (which is not a linear constraint, but rather a disjunction of n linear constraints, where n
is the shared nesting level), we actually need to perform a number of PIP invocations.

For example, the first read access in function call F2 of the program fragment in Figure 2.8(a)
reads data written by function call F1, which results in a FIFO channel from process F1 to
process F2, i.e., channel b in Figure 2.8(b). In particular, data flows from iteration iw of
function F1 to iteration ir = iw of function F2. This information is captured by the integer
relation

DF1→F2 = {(iw, ir) | ir = iw ∧ 0 ≤ ir ≤ N − 1}

For the second read access in function call F2, after elimination of the temporary variable
tmp, the data has already been read by the same function call after it was written. This
results in a self-loop channel b_1 from F2 to itself described as

DF2→F2 = {(iw, ir) | iw = ir − 1 ∧ 1 ≤ ir ≤ N − 1} ∪ {(iw, ir) | iw = ir = 0}

In general, we obtain pairs of write/read and read operations such that some data flows from
the write/read operation to the (other) read operation. These pairs correspond to the channels
in our process network. For each of these pairs, we further obtain a union of integer relations

m⋃

j=1

Dj(iw, ir) ⊂ Zn1 × Zn2 ,

with n1 and n2 the number of loops enclosing the write and read operation, respectively, that
connect the specific iterations of the write/read and read operations such that the first is the
source of the second. As such, each iteration of a given read operation is uniquely paired off
to some write or read operation iteration.

46 Embedded System-level Platform synthesis and Application Mapping – ESPAM

2.3.2 Automated programming – input specification

Recall that the input to ESPAM consists of platform instance, application, and mapping spec-
ifications. The platform specification was already discussed in Section 2.2 and an example
was given in Figure 2.3. In this section, we give an example of application and mapping
specifications. We will use this example also in our discussion about the program code gen-
erated by ESPAM in the next section. Consider an application specified as a KPN consisting
of five processes communicating through seven FIFO channels. A graphical representation
of the application is shown in Figure 2.11(a). Part of the corresponding XML application
specification for this KPN is shown in Figure 2.9(a). Recall that this KPN in XML format is
generated automatically by our PNGEN tool using the techniques presented in Section 2.3.1.
For the sake of clarity, we show only the description of process P1 and channel FIFO1 in
the XML code. The other processes and channels of the KPN are specified in an identical
way. P1 has one input port and one output port defined in lines 3-8. P1 executes a function
called compute (line 9). The function has one input argument (line 10) and one output argu-
ment (line 11). There is a strong relation between the function arguments and the ports of a
process given at lines 4 and 7. The information how many times function compute has to be
fired during the execution of the application is determined by a parameterized iteration do-
main (see Section 2.3.1) which is captured in a compact (matrix) form at lines 12-15. There
are two matrices representing the function domain which corresponds to a nested for-loop
structure. It originates from the structure of the initial (static and affine) nested loop program.
In this particular example, there is only one for-loop with index k and parameter N . The
parameter is used in determining the upper bound of the loop. The range of the loop index k
is determined at line 13. This matrix represents the following two inequalities:

k − 2 ≥ 0
−k + 2N − 1 ≥ 0

and therefore, 2 ≤ k ≤ 2N − 1. In the same way, the matrix at line 14 determines the range
of parameter N , i.e., 3 ≤ N ≤ 384. Similar information for each port is used to determine at
which iterations an input port has to be read and consequently, at which iterations, an output
port has to be written. However for brevity, this information is omitted in Figure 2.9(a).
Lines 19-24 show an example of how the topology of a KPN is specified: FIFO1 connects
processes P1 and P3 through ports p1 and p4.

An example of a mapping specification is shown in Figure 2.9(b). It assumes an MPSoC with
four processing components, namely, uP1, uP2, uP3, and uP4, and five KPN processes:
P1, P2, P3, P4, and P5. The XML format of the mapping specification is very simple.
Process P4 is mapped onto processor uP1 (see lines 3-5), processes P2 and P5 are mapped
onto processor uP2 (lines 7-10), process P3 is mapped for execution on processor uP3, and
finally, process P1 is mapped on processor uP4. In the mapping specification, the mapping
of channels to communication memories is not specified. Recall that this mapping is related
to the way processes are mapped to processors, and therefore, the mapping of channels to
communication memories can not be arbitrary. The mapping of channels is performed by
ESPAM automatically which is discussed in the next section.

2.3 Automated Programming of MPSoCs 47

</application>

1
name =<process >"P1"

<var name = "in_0" type = "myType" />

<var />name = "out_0" type = "myType"
direction = "out"<port name = "p1" />

<port name = "p2" direction = "in" />

name = "P3"<toProcess />
<toPort name = "p4" />
<fromProcess name = "P1" />

<application >"myKPN"name =

<fromPort name = "p1" />

<process_code name = "compute" >
<arg name = "in_0" type = "input" />

name = "out_0" type = "output" /><arg

</port

</port

<!−− other processes omitted −−>

<!−− other channels omitted −−>
</channel>

<channel name = FIFO1 size = "1">

<loop parameter = "N" >index = "k"
<loop_bounds matrix = "[1, 1,0,−2;

</loop
</process_code

</process>

<par_bounds matrix = "[1,0,−1,384;
1,−1,2,−1]"
1,0, 1, −3]" />

/>

5

15

10

20

25

(a) Application specification

name = "uP3" ><processor

</processor>
<proces name = "P3" />

<processor name = "uP1" >

</processor>
name = "P4"<process />

<processor name = "uP2" >

</processor>

name = "P2"<process
<process name = "P5"

/>
/>

</processor>

<processor name = "uP4" >
name = "P1"<process />

<mapping name = "myMapping" >1

5

10

15

</mapping>

(b) Mapping specification

Figure 2.9: Example of Application and Mapping Specifications.

2.3.3 Code generation: SW code for processors

ESPAM uses the initial sequential application program, the corresponding KPN application
specification, and the mapping specification to generate automatically software (C/C++) code
for each processor. The code for a processor contains control code and computation code.
The computation code transforms the data that has to be processed by a processor and it
is grouped into function calls in the initial sequential program. ESPAM extracts this code
directly from the sequential program. The control code (for-loops, if -statements, etc.)
determines the control flow, i.e., when and how many times data reading and data writing
have to be performed by a processor as well as when and how many times the computation
code has to be executed in a processor. The control code of a processor is generated by
ESPAM according to the KPN application specification and the mapping specification as we
explain below.

According to the mapping specification in Figure 2.9(b), process P1 is mapped onto pro-
cessor uP4 (see lines 16-18). Therefore, ESPAM uses the XML specification of process
P1 shown in Figure 2.9(a) to generate the control C code for processor uP4. The code is
depicted in Figure 2.10(a). At lines 4-7, the type of the data transferred through the FIFO
channels is declared. The data type can be a scalar or more complex type. In this exam-
ple, it is a structure of 1 boolean variable and a 64-element array of integers, a data type
found in the initial sequential program. There is one parameter (N) that has to be declared
as well. This is done at line 8 in Figure 2.10(a). Then, at lines 10-19 in the same figure,
the behavior of processor uP4 is described. In accordance with the XML specification of

48 Embedded System-level Platform synthesis and Application Mapping – ESPAM

#include "primitives.h"
#include "memoryMap.h"

struct myType {
bool flag;
int data[64];

};

int N = 384;

myType in_0;
myType out_0;

}
}

write(p1, &out_0, sizeof(myType));

5

1

10

15
compute(in_0, &out_0);
read(p2, &in_0, sizeof(myType));

for {(int k=2; k<=2*N−1; k++)

19

main()void {

(a) Control code for processor uP4

read(int* port, void* data, int length)void
int *req_&_rd = 0xE0000000; // Address in a CC

*req_&_rd = 0x80000000 | (port); // Write a request

while (*isEmpty) { }

for (int i=o; i<length; i++) {
// reading is blocked if a FIFO is empty

(byte* data)[i] = *req_&_rd; // read from a FIFO

}

1

5

15

}
*req_&_rd = 0x7FFFFFFF&(inPort);10

void write(int* port, void* data, int length)

for
int *isFull = port + 1;

// writing is blocked if a FIFO is full
while

(int i=o; i<length; i++)

(*isFull) { }

{

port = (byte data)[i]; // write to a FIFO
}

}20

int *isEmpty = req_&_rd + 1;

{

{

(b) Read and write communication primitives

Figure 2.10: Source code generated by ESPAM.

process P1 in Figure 2.9(a), the function compute is executed 2 ∗N − 2 times. Therefore, a
for-loop is generated in the main routine for processor uP4 in lines 14-18 in Figure 2.10(a).
The computation code in function compute is extracted from the initial sequential program.
This code is not important for our example, hence, it is not given here for the sake of brevity.
The function compute uses local variables in 0 and out 0 declared in lines 11 and 12 in Fig-
ure 2.10(a). The input data comes from FIFO2 through port p2 and the results are written
to FIFO1 through port p1 – see Figure 2.11(a). Therefore, before the function call, ESPAM
inserts a read primitive to read from FIFO2 initializing variable in 0 and after the func-
tion call, ESPAM inserts a write primitive to send the results (the value of variable out 0) to
FIFO1 as shown in Figure 2.10(a) at lines 15 and 17. When several processes are mapped
onto one processor, a schedule is required in order to guarantee a proper execution order of
these processes onto one processor. The ESPAM tool automatically finds a local static sched-
ule from the STree model (see Section 2.2.2) based on the grouping technique for processes
presented in [23].

SW communication and synchronization primitives

Recall that the FIFO channels are mapped onto the communication memories of our MPSoC
platform instances and the multi-FIFO organization of a communication memory is realized
by the corresponding communication controller (CC) as described in Section 2.1.4. A FIFO
channel is seen by a processor as two memory locations in its communication memory ad-
dress space. A processor uses the first location to read the status of the FIFO. The status
indicates whether a FIFO is full (data cannot be written) or empty (data is not available).
This information is used for the inter-processor synchronization. The second location is used
to read/write data from/to the FIFO buffer, thereby, realizing inter-processor data transfer.

2.3 Automated Programming of MPSoCs 49

The described behavior is realized by the SW communication and synchronization primitives
interacting with the HW communication controllers. The code implementing the read and
write primitives used in lines 15 and 17 in Figure 2.10(a), is shown in Figure 2.10(b). Both
read and write primitives have 3 parameters: port, data, and length. Parameter port is the
address of the memory location through which a processor can access a given FIFO channel
for reading/writing. Parameter data is a pointer to a local variable and length specifies the
amount of data (in bytes) to be moved from/to the local variable to/from the FIFO channel.

The primitives implement the blocking synchronization mechanism between the processors
in the following way. First, the status of a channel that has to be read/written is checked.
A channel status is accessed using the locations defined in lines 3 and 14. The blocking
is implemented by while loops with empty bodies in lines 7 and 17. A loop iterates (does
nothing) while a channel is full or empty. Then, in lines 8 and 18 the actual data transfer is
performed.

The read primitive in Figure 2.10(b) implements also the read request mechanism for access-
ing remote CMs using a communication component as discussed in Section 2.1.4. This is
done in several steps. Variable req & rd, initialized at line 2, is a pointer to the communica-
tion controller. This pointer is used to write read requests to the CC and to read data from a
remote CM. The request data has a special format which can be seen at line 4. It consists of
the address (port) of the requested FIFO and a read request flag located at the most significant
bit of the request word. The physical addresses of the FIFOs in our MPSoCs are discussed in
the next section. Setting the request flag at line 4 triggers the generation of a read request by
the CC to the communication component. At the same time, the CC asserts the status of the
requested FIFO to empty until the connection to the remote memory is granted1. This blocks
the processor in the while-loop at line 7. When the connection is granted, the CC propagates
the actual status of the FIFO, and the processor reads the data performing the synchronization
in the same way as described in the previous paragraph. Once the data has been transferred,
the connection is released which is done at line 10 by clearing the request flag in the CC.

Note that the request mechanism for reading data is used only in MPSoCs utilizing a commu-
nication component (e.g. a crossbar or a bus). Therefore, in MPSoCs with a point-to-point
communication topology, there are no read requests generated. In this case, the read synchro-
nization primitive used by ESPAM has a simplified structure which is identical to the write
primitive in Figure 2.10(b).

Memory map generation

Each FIFO channel in our MPSoCs has separate read and write ports. A processor accesses
a FIFO for read operations using the read synchronization primitive. The parameter port
specifies the address of the read port of the FIFO channel to be accessed. In the same way,
the processor writes to a FIFO using the write synchronization primitive where the parameter
port specifies the address of the write port of this FIFO. The FIFO channels are implemented
in the communication memories (see Section 2.1.5), therefore, the addresses of the FIFO ports
are located in the processors’ address space where the communication memory segment is

1Recall that a connection is granted if the communication line is available and there is data in the requested FIFO.

50 Embedded System-level Platform synthesis and Application Mapping – ESPAM

p8p7

FIFO2

FIFO7

F
IF

O
3

FIFO1

FIFO5

FIF
O6

P2 P4

P5

p3

p1

p6

p4 p9

p13p2

p12FIFO4
P1

p5

p14

p10
p11

P3

(a) Kahn Process Network

MC2 MC4

MEM3

MEM4

MEM1

MC1 MC31

2

3

4

MEM2

uP1

uP2

uP3

uP4

CC4

CC3

FIFO4

FIFO1

CC2

CC1

FIFO5

FIFO2

FIFO6

FIFO3

FIFO7

IN
T

E
R

C
O

N
N

E
C

T

(b) Example Platform

Figure 2.11: Mapping Example.

defined. The memory map of a MPSoC generated by ESPAM contains the values defining the
read and the write addresses of each FIFO channel in the system.

The first step in the memory map generation is the mapping of the FIFO channels in the
KPN application specification onto the communication memories (CMs) in the multiproces-
sor platform. This mapping can not be arbitrary. ESPAM maps FIFO channels onto CMs
of processors in the following automated way. First, for each process in the application
specification ESPAM finds all the channels this process writes to. Then, from the mapping
specification ESPAM finds which processor corresponds to the current process and maps the
found channels in the processor’s local CM. For example, consider the mapping specification
shown in Figure 2.9(b) which defines only the mapping of the processes of the KPN in Fig-
ure 2.11(a) to the processors in the platform shown in Figure 2.11(b). Based on this mapping
specification, ESPAM maps automatically FIFO2, FIFO3, and FIFO5 onto the CM of
processor uP1 because process P4 is mapped onto processor uP1, and process P4 writes
to channels FIFO2, FIFO3, and FIFO5. Similarly, FIFO4 is mapped onto the CM of
processor uP3, and FIFO1 is mapped onto the CM of uP4. Since both processes P2 and
P5 are mapped onto processor uP2, ESPAM maps FIFO6 and FIFO7 onto the CM of this
processor.

After the mapping of the channels onto the CMs, ESPAM generates the memory map of the
MPSoC, i.e., generates values for the FIFOs’ read and write addresses. For the mapping
example illustrated in Figure 2.11(b), the generated memory map is shown in Figure 2.12.
Notice that FIFO1, FIFO2, FIFO4, and FIFO6 have equal write addresses (see lines
4, 6, 10, and 14). This is not a problem because writing to these FIFOs is done by different
processors and these FIFOs are located in the local CMs of these different processors, i.e.,
these addresses are local processor write addresses. The same applies for the write addresses
of FIFO3 and FIFO7. However, as explained in Section 2.1.5, all processors can read
from all FIFOs via a communication component. Therefore, the read addresses have to be
unique in the MPSoC memory map and the read addresses have to specify precisely the CM
in which a FIFO is located. To accomplish this, a read address of a FIFO has 2 fields: a
communication memory (CM) number and a FIFO number within a CM.

Consider for example FIFO3 in Figure 2.11(b). It is the second FIFO in the CM of processor
uP1, thus this FIFO is numbered with 0002 in this CM. Also, the CM of uP1 can be accessed

2.4 Dedicated IP core integration with ESPAM 51

#define p6 0x00010002 //read addr. FIFO3

#ifndef _MEMORYMAP_H_

#define p13 0x00010003 //read addr. FIFO5

_MEMORYMAP_H_#define

#define p1 0xe0000008 //write addr. FIFO1

p7 0xe0000008 //write addr. FIFO2#define
#define p2 0x00010001 //read addr. FIFO2

#define p12 0x00030001 //read addr. FIFO4

#define p4 0x00040001 //read addr. FIFO1

#define p10 0xe0000018 //write addr. FIFO5

#define p11 0x00020001 //read addr. FIFO6

#define p5 0x00020002 //read addr. FIFO7

#endif

1

5

19

10

15

#define p8 0xe0000010 //write addr. FIFO3

#define p9 0xe0000008 //write addr. FIFO4

#define p14 0xe0000008 //write addr. FIFO6

#define p3 0xe0000010 //write addr. FIFO7

Figure 2.12: The memory map of the MPSoC platform instance generated by ESPAM.

for reading through port 1 of the communication component INTERCONNECT as shown in
Figure 2.11(b), thus this CM is uniquely numbered with 0001. As a consequence, the unique
read address of FIFO3 is determined to be 0x00010002 – see line 9 in Figure 2.12, where
the first field 0001 is the CM number and the second field 0002 is the FIFO number in this
CM. In the same way, ESPAM determines automatically the unique read addresses of the rest
of the FIFOs that are listed in Figure 2.12.

2.4 Dedicated IP core integration with ESPAM

With the foregoing discussions in this chapter, we presented our methodology for multipro-
cessor system design implemented in ESPAM. It considers automated generation of homo-
geneous multiprocessor platforms, i.e., the processing components are only programmable
(ISA) processors. However, in many cases, a homogeneous system may not meet the per-
formance requirements of an application. For better performance and efficiency, in a mul-
tiprocessor system different tasks may have to be executed by different types of processing
components which are optimized for execution of particular tasks. It is common knowledge
that higher performance may be achieved by relying on dedicated (customized and optimized)
IP cores. Moreover, many companies already provide dedicated customizable IP cores op-
timized for a particular functionality that aim at saving design time and increasing overall
system performance and efficiency. Therefore, our platform model supports also dedicated
IP cores as processing components. The idea of using dedicated IP cores in heterogeneous
systems is very appealing because these systems deliver high flexibility and high perfor-
mance at the same time. However, two major problems emerge, namely how to design and
how to program heterogeneous MPSoCs. The lack of standard interfaces that an IP core has
to provide in order to allow seamless integration, and the lack of automated programming
approaches for heterogeneous multiprocessor systems only exacerbates these problems.

52 Embedded System-level Platform synthesis and Application Mapping – ESPAM

With ESPAM, we solve the problems mentioned above, and we provide an automated de-
sign and programming of heterogeneous multiprocessor systems where both programmable
processors and dedicated IP cores are used as processing components. In our approach, we
developed techniques for automated generation of an IP Module which consists of a wrap-
per around a dedicated and predefined IP core. This approach originates from the general
idea implemented in Laura [74], i.e., generating of IP Modules based on the properties of
the KPN model we use. Although using the same concept in ESPAM, we developed different
techniques in order to enable systematic and automated IP core integration and connection
to the other components of the system, i.e., programmable processors and different commu-
nication components. The structured, highly modularized, and parameterized IP Module we
propose has been devised by carefully exploiting and efficiently implementing the simple
communication and synchronization mechanisms of the KPN model. We have identified and
developed an IP Module library which is a set of generic parameterized components used by
ESPAM to compose an IP Module. This is done in the same way as ESPAM constructs an
MPSoC instance, i.e., by instantiating components from the IP Module library, connecting
them, and setting their parameters in correspondence with the KPN application specification.
In addition, we defined clear interfaces of the components in an IP Module. This helped us
to devise an efficient mechanism for connecting and synchronizing the components within an
IP Module keeping high performance of the integrated IP cores. By making the IP Module
structured and modularized, its components become more independent and loosely coupled.
Therefore, we are able to design and optimize each component of the IP Module separately.

We have already presented our approach to design and programming of homogeneous MP-
SoCs. Based on that, in this section we present our approach to augment these MPSoCs with
dedicated IP cores in a systematic and automated way. The basic idea in our approach is
presented in Section 2.4.2. It is followed by a discussion on the type of the IPs supported by
ESPAM, and the interfaces these IPs have to provide in order to allow automated integration.
For details about the internal structure and the implementation of the IP Module we refer
to [75].

2.4.1 Uniform structure of a KPN process
Our methodology and tool-flow for multiprocessor system design allow automated synthe-
sis, programming, and implementation of multiprocessor platforms. As we have shown in
Section 2.3, to automatically program an MPSoC the ESPAM tool generates program code
for each processor in the system, generates the memory map of the system, and generates
code that implements the synchronization and communication between the processors. In
our methodology and design flow, the first step is partitioning of an application into concur-
rent tasks in the form of a Kahn process network (KPN) where the inter-task communica-
tion and synchronization is explicitly specified in each task. Such partitioning, discussed in
Section 2.3.1 and performed automatically by the PNGEN tool [7], allows each task (Kahn
process) or group of tasks to be compiled separately by a standard C compiler in order to
generate an executable code for each processor in the platform. Regardless of the functional
behavior specified by processes in a KPN generated by PNGEN, always ESPAM takes each
process specification and generates a specific code for each process where the structure of
the code is the same for all processes. This uniform structure is the basis of the proposed IP
Module, and below, it is explained by an example.

2.4 Dedicated IP core integration with ESPAM 53

CH4

IP1
IP2

OP1
OP2P2

CH2

P1
CH1

IP1

OP1 CH3
IP1

OP1
P3

(a) Kahn Process Network example

void main() {
(int k=1; k<=L; k++) {for

1
2
3
4
5
6
7

// Process P1

execute(in_0, out_0);
read(IP1, in_0, size);

write(OP1, out_0, size);
} }

(b) Program code for process P1

Figure 2.13: Example of a KPN and program code.

Consider the KPN shown in Figure 2.13(a). Three processes (P1, P2, and P3) are connected
through four FIFO channels (CH1, CH2, CH3, and CH4). Program code representing
process P1 is shown in Figure 2.13(b). The structure of the code generated by ESPAM for
each process is the same and consists of a CONTROL part, a READ part, an EXECUTE part,
and a WRITE part. The same structure can be seen also for process P2 in Figure 2.15(a).
The difference between P1 and P2, however, is in the specific code in each part. For exam-
ple, the CONTROL part of P1 has only one for-loop whereas the CONTROL part of P2
has two for-loops. The blocking synchronization mechanism of our KPNs is implemented
by read/write synchronization primitives. They are the same for each process and were dis-
cussed in detail in Section 2.3. The primitives are automatically generated and inserted in the
program code by ESPAM in the places where a process has to read/write data from/to a FIFO
channel. The READ part of P1 has one read primitive executed unconditionally whereas the
READ part of P2 has two read primitives and if -conditions specifying when to execute these
primitives.

2.4.2 IP Module – basic idea and structure

As we explained earlier, in the multiprocessor platforms we consider, the processors execute
code implementing KPN processes, and communicate data between each other through FIFO
channels mapped onto communication memories. Using communication controllers, the pro-
cessors can be connected either point-to-point or via a communication component. We follow
a similar approach to connect an IP Module to other IP Modules or programmable proces-
sors in our MPSoCs. We illustrate our approach with the example depicted in Figure 2.14.
We map the KPN in Figure 2.13(a) onto the heterogeneous platform shown in Figure 2.14(a).
Assume that process P1 is executed by processor uP1, P3 is executed by uP2, and the func-
tionality of process P2 is implemented as a dedicated (predefined) IP core embedded in an
IP Module. Based on this mapping and the KPN topology, ESPAM automatically maps FIFO
channels to communication memories (CMs) following the rule that a processing component
only writes to its local CM. For example, process P1 is mapped onto processing component
uP1 and P1 writes to FIFO channel CH1. Therefore, CH1 is mapped onto the local CM of
uP1 – see Figure 2.14(a). In order to connect a dedicated IP core to other processing compo-
nents, ESPAM generates an IP Module (IPM) that contains the IP core and a wrapper around
it. Such an IPM is then connected to the system using communication controllers (CCs) and
communication memories (CMs), i.e., an IPM writes directly to its own local FIFOs and uses
CCs (one CC for every input of an IP core) to read data from FIFOs located in CMs of other
processors. The IPM that realizes process P2 is shown in Figure 2.14(b).

54 Embedded System-level Platform synthesis and Application Mapping – ESPAM

CM1

CM2

uP1

uP2

FIFO

FIFO

CCCC2

CC1
IN

T
E

R
C

O
N

N
E

C
T

IP1

IP2

CH3

CH2

HW Module

CH4

CH1

OP2

OP1

(a) Heterogeneous MPSoC

CONTROL

READ WRITE
IP1

IP2 OP2

OP1

(IP core)
EXECUTE

(b) Top-level view of the IP Module

Figure 2.14: Example of heterogeneous MPSoC generated by ESPAM.

As explained in Section 2.3.1, our KPNs are derived automatically and the processes in our
KPNs have always the same structure. It reflects the KPN operational semantics, i.e, read-
execute-write using blocking read/write synchronization mechanism. Therefore, an IP Mod-
ule realizing a process of a KPN has the same structure, shown in Figure 2.14(b), consisting of
READ, EXECUTE, and WRITE components. A CONTROL component is added to capture
the process behavior, e.g., the number of process firings, and to synchronize the operation of
components READ, EXECUTE, and WRITE. The EXECUTE component of an IP Module
(IPM) is actually a dedicated IP core to be integrated. It is not generated by ESPAM but it is
taken from a library. The other components READ, WRITE, and CONTROL constitute the
wrapper around the IP core. The wrapper is generated fully automatically by ESPAM based
on the specification of a process to be implemented by the given IPM. Each of the compo-
nents in a IPM have a particular structure which we illustrate with the example in Figure 2.15.
Figure 2.15(a) shows the specification of process P2 in Figure 2.13(a) generated by ESPAM
if P2 would be executed on a programmable processor. We use this code to show the rela-
tion with the structure of each component in the IP Modules generated by ESPAM, shown in
Figure 2.15(b), when P2 is realized by an IP Module.

In Figure 2.15(a), the read part of the code is responsible for getting data from proper FIFO
channels at each firing of process P2. This is done by the code lines 5–8 which behave like
a multiplexer, i.e., the internal variable in 0 is initialized with data taken either from port
IP1 or IP2. Therefore, the read part of P2 corresponds to the multiplexer MUX in the
READ component of the IP Module in Figure 2.15(b). Selecting the proper channel at each
firing is determined by the if-conditions at lines 5 and 7. These conditions are realized by the
EVALUATION LOGIC READ sub-component in component READ. The output of this sub-
component controls the MUX sub-component. To evaluate the if-conditions at each firing, the
iterators of the for-loops at lines 3 and 4 are used. Therefore, these for-loops are implemented
by counters in the IP Module – see the COUNTERS sub-component in Figure 2.15(b).

The write part in Figure 2.15(a) is similar to the read part. The only difference is that the
write part is responsible for writing the result to proper channels at each firing of P2. This
is done in code lines 10–13. This behavior is implemented by the de-multiplexer DeMUX
sub-component in the WRITE component in Figure 2.15(b). DeMUX is controlled by the
EVALUATION LOGIC WRITE sub-component which implements the if-conditions at lines
10 and 12. Again, to implement the for-loops, ESPAM uses a COUNTERS sub-component.

2.4 Dedicated IP core integration with ESPAM 55

void main() {
// Process P21

2

} // for j14
// main}15

if (i−2 == 0)

if (i−3 >= 0)

if (−i+N−1 >= 0)

if (i−N == 0)

(int i=2; i<=N; i++)for3
4 (int j=1; j<=M+i; j++)for { CONTROL

read(IP1, in_0, size);

read(IP2, in_0, size);

5
6
7
8

READ

execute(in_0, out_0);9 EXECUTE

write(OP1, out_0, size);

write(OP2, out_0, size);

10
11
12
13

WRITE

(a) Program code for process P2

COUNTERSCOUNTERS

EVALUATION

LOGIC READ

EVALUATION

LOGIC READ

M
U

X

OP2IP2

IP1

D
eM

U
X

DoneN,M
CONTROL

EXECUTE

OP1

WRITEREAD

IP CORE

(b) IP Module Structure

Figure 2.15: Example of a IP Module and its components’ structure.

Although, the counters correspond to the control part of process P2, ESPAM implements them
in both the READ and WRITE blocks, i.e., it duplicates the for-loops implementation in the
IP Module. This allows the operation of components READ, EXECUTE, and WRITE to
overlap, i.e., they can operate in pipeline which leads to better performance of the IP Module.

The execute part in Figure 2.15(a) represents the main computation in P2 encapsulated in the
function call at code line 9. The behavior inside the function call is realized by the dedicated
IP core depicted in Figure 2.15(b). As explained above, this IP core is not generated by
ESPAM but it is taken from a library of predefined IP cores provided by a designer. An IP
core can be created by hand or it can be generated automatically from C descriptions using
high-level synthesis tools like, e.g., the PICO tool from Synfora [11]. In the IP Module, the
output of sub-component MUX is connected to the input of the IP core and the output of the IP
core is connected to the input of sub-component DeMUX. In the example, the IP core has one
input and one output. In general, the number of inputs/outputs can be arbitrary. Therefore,
every IP core input is connected to one MUX and every IP core output is connected to one
DeMUX.

Notice that the loop bounds at lines 3–4 in Figure 2.15(a) are parameterized. The CONTROL
component in Figure 2.15(b) allows the parameter values to be set/modified from outside
the IP Module at run time or to be fixed at design time. Another function of component
CONTROL is to synchronize the operation of the IP Module components and to make them
to work in pipeline. Also, CONTROL implements the blocking read/write synchronization
mechanism. Finally, it generates the status of the IP Module, i.e., signal Done indicates that
the IP Module has finished an execution.

56 Embedded System-level Platform synthesis and Application Mapping – ESPAM

2.4.3 IP core types and interfaces

In this section we describe the type of the IP cores that fit in our IP Module idea and structure
discussed above. Also, we define the minimum data and control interfaces these cores have to
provide in order to allow automated integration in MPSoC platforms designed with ESPAM.

1. In the IP Module, an IP core implements the main computation of a KPN process which
in the initial specification is represented by a function call. Therefore, an IP core has
to behave like a function call as well. This means that for each input data, read by the
IP Module, the IP core is executed and produces output data after an arbitrary delay.

2. In order to guarantee seamless integration within the data-flow of our heterogeneous
systems, an IP core must have unidirectional data interfaces at the input and the output
that do not require random access to read and write data from/to memory. Good ex-
amples of such IP cores are the multimedia cores at http://www.cast-inc.com/cores/. In
addition, the PICO tool [11] can generate IPs that fall into the class of the considered
IP cores from specifications written in C, i.e., PICO allows for synthesis of IP cores
providing the required unidirectional data interfaces.

3. To synchronize an IP core with the other components in the IP Module, the IP core has
to provide Enable/Valid control interface signals. The Enable signal is a control
input to the IP core and is driven by the CONTROL component in the IP Module to
enable the operation of the IP core when input data is read from input FIFO channels.
If input data is not available, or there is no room to store the output of the IP core to
output FIFO channels, then Enable is used to suspend the operation of the IP core.
The Valid signal is a control output signal from the IP and is monitored by component
CONTROL in order to ensure that only valid data is written to output FIFO channels
connected to the IP Module.

2.5 Discussion

Recall that the initial applications in the DAEDALUS system design methodology are re-
stricted to parameterized static affine nested loops programs (SANLP). This restriction is
imposed by the PNGEN tool in order to allow automated KPN derivation and computation of
buffer sizes that guarantee deadlock-free KPN behavior. However, ESPAM and the techniques
for MPSoC synthesis presented in this chapter are not restricted to KPNs equivalent to this
class of sequential programs. The presented techniques can be applied on more general KPNs
as well. For example, we have developed techniques for converting weakly dynamic nested
loop programs (WDNLP) to equivalent KPN specifications [23]. Similar to an SANLP, in a
WDNLP loop boundaries and variable indexing functions are affine functions of loop iterators
and static parameters, while the expressions in condition statements are arbitrary functions
of loop iterators, parameters, and data variables. The inclusion of data variables makes the
programs dynamic. The generation of such process networks is not automated yet.

Recall that the SANLPs may contain parameters, but their values may not change during
the execution of the program, therefore, they are static parameters. The same is also true

2.5 Discussion 57

for (i=0;i<N;i++) {
1
2

4

6

8
7

3

5

9

while(1) {

x = f2(b);
if

c = x;
(p=true)

else
d = x;

}}

f1(a[i], &b, &p);

(a) Sequential program

N=4 N=6

N

c

N

b
P2

...
d

a
P1

p

(b) Equivalent KPN with dynamic parameters

Figure 2.16: Motivating example.

for WDNLPs. Similarly, most deterministic data-flow models, whether static or dynamic
and whether actor-based or process-based [76] do not support dynamic configuration of pa-
rameters. However, many realistic streaming-data applications that are naturally specified in
terms of data-flow models require parameterization. For example, a function p = f(token)
in an active entity (thread or process) may return a value for the parameter p which is the
upper bound of a loop for(i = 1, i ≤ p, i + +) in another active entity. The restriction
for the parameters to be static does not allow modeling of such behavior with our KPN
model which significantly limits its expressiveness, and consequently, the applicability of
the DAEDALUS approach to real-life applications. This motivated us to extend our approach
to programs/KPNs that can deal with dynamic parameters. This is the topic of the next sub-
section. Automated derivation of such KPNs is out of the scope of this discussion.

2.5.1 Motivating example

Consider the program shown in Figure 2.16(a). This program processes an input data stream
a and produces output data streams c and d. The while(1) construct at line 1 indicates that
the streams may be infinite. The data is processed in blocks by functions f1() at line 3 and
f2() at line 4. The size of the blocks is determined by the for-loop at line 2. In this program,
there are five data variables (a, b, c, d, and x) and two control variables, i.e., N , used as an
upper bound for the for-loop at line 2 and p, used in the evaluation of the if -condition at line
5. Values for p are produced by function f1(). A functionally equivalent process network is
depicted in Figure 2.16(b). It consists of processes P1 and P2 that execute functions f1()
and f2(), respectively. There is a direct relation between the control variables used in the
sequential program and the dynamic parameters in the KPN with dynamic parameters. In
such KPNs, if data is involved in control statements, we consider it as a dynamic parameter.
We distinguish two types of parameters: global and local. A global parameter is an external
parameter, i.e., not produced by any process in the network. A local parameter is an internal
parameter, i.e., it is produced and consumed by processes in the network. According to these
definitions, in the example in Figure 2.16(b), N is a global parameter, and p is a local param-
eter, both being dynamic (control) parameters. To transfer the parameter values between the
processes in the network, we use control (FIFO) channels. In this example, there are three
control channels: two channels for parameter N and one channel for parameter p.

58 Embedded System-level Platform synthesis and Application Mapping – ESPAM

1 // Process P1
2
3 while(1) {
4 N = read_N(); // global parameter
5 for(i=1;i<=N;i++) {
6 a(i) = read_a();
7 f1(a[i], &b, &p);
8 write_p(); // local parameter
9 write_b();
10 }
11 }

12 // Process P2
13 while(1) {
14 N = read_N(); // global parameter
15 for(i=1;i<=N;i++) {
16 b = read_b();
17 x = f2(b);
18 p = read_p(); // local parameter
19 if(p=true)
20 write_x_to_c();
21 else
22 write_x_to_d();
23 } }

Figure 2.17: Proposed structure of the processes in Figure 2.19(b).

The functionality and the structure of processes P1 and P2 is shown in Figure 2.17. P1
reads and transforms a block of data (lines 6 and 7), which size is determined by the value of
the global parameter N . Values for N are generated outside the network at run time. P1 and
P2 read N (lines 4 and 14) which is to become the upper bound in a loop in both processes.
Function f1() in process P1 outputs the local parameter p (line 8) which is of type Boolean,
and data b (line 9). Process P2 reads data b (line 16), the parameter p (line 18), and sends the
output of its function f2() to one of the process outputs (c, d) depending on the value of the
local parameter p (lines 19-22).

As is the case with all data-flow models, the main question here is whether the PNs with
dynamic parameters are consistent, and can execute in bounded memory. Consistency has
to do with a balancing of the production and consumption of tokens in the network. When
this balancing is dependent on dynamic parameters, consistency conditions may be violated.
Execution in bounded memory is a necessary condition for the processing of infinite streams
(non-terminating execution). Our KPNs with dynamic parameters execute in bounded mem-
ory and below, we address the consistency problem only.

2.5.2 Process network instance

Consider the KPN representing a producer-consumer pair, shown in Figure 2.18(a). N1 and
N2 are FIFO channels of the global parameters N1 for process P1 and N2 for process P2,
respectively. Each parameter can take values within a fixed range. PN(N1, N2) denotes an
instance of the KPN2. There is generally a relation between the parameters, in this example
N1 and N2. Therefore, some instances PN(N1, N2) are invalid instances. For the PN network
in Figure 2.18(a), all different instances are shown in Figure 2.18(b). Instances PN(2, 1),
PN(3, 1), and PN(3, 2) are invalid because they violate the condition N2 ≥ N1. Similarly,
an instance PN(2, 4) is invalid because N2 is out of its range. Figure 2.18(c) shows the
structure of a process we propose to deal with dynamic parameters. Network instances are
selected by reading parameter values at run time. For this purpose, we add a read parameters
phase, see line 4, prior to the actual processing at lines 5-9. Because reading parameters
and data processing are repeated (possibly infinite number of times), we call it a process
execution cycle (lines 3-9). When all actors in a PN have performed an execution cycle, a
network instance has performed an execution.

2 From now on, we consider the terms PN and KPN to be equivalent.

2.5 Discussion 59

ba c
x y x yP1 P2

N1 N2

N1 N2

(a) KPN with dynamic parameters

PN(3,1); PN(3,2); PN(3,3);

PN(2,1); PN(2,2); PN(2,3);

PN(1,1); PN(1,2); PN(1,3);

PN instance − PN(N1,N2):

1 < N2 < 3
1 < N1 < 3

N2 > N1

Range of the parameters:

(b) Different PN instances

1 // Execution of process P1
2 while(1) {

4

6

8
7

3

5

9
10

// Execution cycle
read_parameter(N1);

}

read(a, x);

write(y, b);
}

for (int i=1; i<=N1; i=i+1) {

execute_P1(x, &y);

(c) Structure of a process

Figure 2.18: A producer-consumer example of a PN with dynamic parameters.

Definition 2.5.1 (Consistency of a PN instance)
A PN instance is consistent if after an execution, the number of tokens written to any channel
is equal to the number of tokens read from it.

2.5.3 Preserving the consistency of our PNs with dynamic parameters

The validity of the PN instances is a necessary but not a sufficient condition to preserve the
PN consistency when changing parameter values at run time. A valid set of parameters corre-
sponds to a valid (and consistent) PN instance. However, the transition from a valid instance
to another valid instance at an arbitrary point may violate the consistency of the instances.
Therefore, we defined the following three conditions which are sufficient to preserve consis-
tency when changing parameter values dynamically at run time.

C1: Parameter sets have to correspond to valid network instances.

C2: A valid parameter set has to initiate a network instance execution.

C3: Processes may read new parameters from a valid set (corresponding to the selection of
a new valid network instance) after they have completed a process execution cycle.

In other words, parameter values may be changed either before or after an execution cycle
of the processes. This is taken into account by the proposed execution cycle of a process
illustrated in Figure 2.18(c).

2.5.4 Respecting the conditions

Because a PN may have many dynamic parameters distributed over different processes, re-
specting condition C1 may not be feasible. For example, in PN(2, 1) discussed in Sec-
tion 2.5.2, the values of the parameters are within the specified range (N1, N2 ∈ [1..3]).
However, because of the condition N2 ≥ N1, instance PN(2, 1) is not valid. Since N1 is
a parameter only for P1 and N2 is a parameter only for P2, it is not possible to check in
each process whether (N1, N2) = (2, 1) is a valid parameter set. Therefore, to respect the

60 Embedded System-level Platform synthesis and Application Mapping – ESPAM

ba c
x y x yP1 P2

N1 N2

ch2ch1
(N1,N2)

N2N1

ch4

P0
N1N2

ch3

(a) A control process in a PN

1 // Process P0
2 while(1) {

4

6

8
if (par_not_OK) go to 4 ;
par_not_OK = check(N1, N2);
read_parameter(ch2, N2);

// Read and check parameters

// Propagate parameters
7

3

5

9
10
11 }

write_parameter(N1, ch3);
write_parameter(N2, ch4);

read_parameter(ch1, N1);

(b) Structure of the control process

Figure 2.19: Introducing a control process in our PNs with dynamic parameters.

three conditions above, we introduce a control process P0 as depicted in Figure 2.19(a). This
process reads global parameter values (N1, N2) and propagates them to the other processes
only when the set is valid. Process P0 reads and writes from and to Kahn FIFO channels,
called control channels (ch1, ch2, ch3, and ch4). The behavior of the control process in
Figure 2.19(a) is given in Figure 2.19(b). It consists of two parts, namely read and check
parameters (lines 3-7), and propagate parameters (lines 8-10). The process body respects
conditions C1 and C2 in the following way. First, P0 reads values for parameters N1 and
N2 from the control channels ch1 and ch2, respectively, using a blocking read synchroniza-
tion mechanism. Then, at line 6, it is checked whether the parameter values define a valid
PN instance. If not, then an error is indicated (not shown in the example) and parameters are
read again (see line 7). This behavior respects condition C1. Notice that a parameter set may
be not valid because of just one parameter value. Nevertheless, all the parameters have to
be read again: The current PN instance is invalidated (discarded) and a new set of parameter
values is read again. After reading and successfully passing the validity check, the values
of parameters N1 and N2 are written (lines 9 and 10) to the control channels ch3 and ch4

which will take them to the destination processes P1 and P2. Thus, the combined writing
of parameter values by the control process P0, and the reading of these parameters by the
destination processes respects condition C2, because only a valid parameter set will cause a
process to initiate an execution cycle and, consequently, an execution of a PN instance.

The FIFO organization of the control channels and the blocking synchronization mechanism
(the KPN semantics) keep the right order of selecting new network instances, i.e., the or-
der in which the parameter sets are generated outside the network and written to the control
channels. Since new parameter values are read by the processes after performing an execu-
tion cycle, parameter values selecting alternative PN instances may be written to the control
channels while a PN instance is being executed. In addition, the proposed mechanism allows
the processes to read the parameter values independently of each other without violating the
conditions we defined for preserving the consistency. However, these conditions are valid
only for consistent PN instances. Therefore, a consistency check is required, either at design
time or at run time. In our approach, a consistency check is performed at design time and
only checking for selection of valid instances is performed by the control actors at run time.

2.6 Conclusions 61

For more details about the consistency check and our approach to deal with dynamic param-
eters at run time, we refer to [77] where the presented approach is generalized for the SBF
MoC [78]. Although the presented PNs have to be created currently by hand, the proposed
structure and execution cycle of a process can be used as guidance in describing process
networks with dynamic parameters and employing such PNs in the DAEDALUS design flow.

2.6 Conclusions

In this chapter, we presented our system design methods and techniques implemented in
the ESPAM tool for automated multiprocessor system design, implementation, and program-
ming. Using a platform model and specifications at system level of abstraction, ESPAM can
automatically synthesize and program heterogeneous MPSoCs in which both programmable
processors and dedicated IP cores are used as processing components. This automation sig-
nificantly reduces the design time and with DAEDALUS, i.e., starting from a sequential ap-
plication and going down to complete implementation, e.g., to an MPSoC prototyped on an
FPGA, is only a matter of hours. In addition, the high level of the input specifications allows
a system designer easily to construct many alternative platforms instances which are automat-
ically implemented by ESPAM. As we will show in Chapter 4, this enables fast exploration
of design points at implementation level with 100% accuracy during the early stages of de-
sign. At the same time, using high-level input specifications is less error-prone compared to
lower levels of abstraction, e.g., RTL, at which MPSoC designs are captured, analyzed, and
synthesized from.

62 Embedded System-level Platform synthesis and Application Mapping – ESPAM

Chapter 3
Techniques for Narrowing the
Design Space

In Chapter 2, we presented methods and techniques for systematic and automated multi-
processor system design, programming, and implementation for closing the implementation
gap introduced in Section 1.1. The application and the platform models considered in the
presented approach, were also discussed in this chapter. The proposed system-level design
methodology for systematic and automated MPSoC design is implemented in the DAEDALUS
design flow presented in Section 1.2. Designing an MPSoC with DAEDALUS includes essen-
tially an MPSoC instance generation (see Chapter 2) and mapping (assignment) of application
tasks to processing components of that instance. In the MPSoC design process, different num-
bers and types of processing components (from the platform model) can be used to construct
an MPSoC instance as well as different mappings can be considered. This leads (usually) to
a large number of potential alternative designs. That is, given an application specified as a
KPN, there are many different MPSoC implementation possibilities. The set of all different
possibilities comprises the so called design space. Evidently, some of the points in this design
space will correspond to MPSoC instances that satisfy the initial requirements and some will
correspond to MPSoCs which do not. The key issue here is to reduce the number of different
implementation possibilities to a subset, consisting of the most promising design points from
which, based on certain criteria, the designer can choose the best one. Then, the question is
how to find this subset of design points. Naı̈vely, all the points of the design space need to be
evaluated and some of them have to be selected. However, traversing the whole design space
may not be always feasible. Therefore, an alternative way to evaluate the design space is re-
quired. This can be achieved by a design space exploration (DSE) approach which provides
mechanisms for:

• Guided selection of a design point, i.e., a mechanism to ’selectively walk’ through the
design space without visiting all design points;

• Evaluation of a design point in order to accept or discard the point based on some
performance/cost constraints.

64 Techniques for Narrowing the Design Space

Ideally, one would employ an analytic procedure for computing an optimal design point for
a given problem. However, in most practical situations this is not possible. An alternative
approach to find a good solution is to construct a parameterized system model, where the
set of parameters represents a design point, and to simulate it. However, simulating many
alternative design points is costly, both in terms of the effort it takes to create these design
points in the first place, and also in terms of the time it takes to simulate a large number of
design points. In particular, when the design space is very large, constructing all possible
design points quickly becomes infeasible, therefore, better search techniques are needed to
reduce the number of alternatives to be explored. Apart from exhaustive simulation (being a
non selective exploration), there are many ways of realizing design space exploration which
employ different kind of search strategies, e.g., from simple hill climbing to more complex
methods such as genetic algorithms, simulated annealing, etc.

In DAEDALUS, DSE can be performed by the SESAME tool [8], illustrated at the top of Fig-
ure 1.2. The DSE is performed at system level by selecting design points and simulating
high-level models of these points. Recall that with DAEDALUS, the design time for imple-
menting an MPSoC instance is significantly reduced, which enables a DSE at implementation
level as well. Therefore, in DAEDALUS a design space exploration can be performed at two
different levels of abstraction, i.e.,

• At system level through high-level simulations by using the SESAME tool;

• At implementation level by prototyping design points and measuring actual numbers.

On the one hand, evaluation of design points at system level is (relatively) fast, however, the
accuracy of the results is compromised. On the other hand, the results from the implementation-
level DSE are accurate, yet, the exploration process may become slow when many design
points have to be implemented and evaluated. Therefore, in DAEDALUS we apply the follow-
ing strategy when designing an MPSoC:

1. Perform a DSE at system level to narrow down the design space to a few points, given
particular performance/cost constraints;

2. Perform 100% accurate exploration in the narrowed design space by real MPSoCs
implementations and measurements of actual numbers;

3. Select the design point which leads to the best MPSoC implementation.

The design space in the DAEDALUS design flow is defined by a 3-tuple (T , C, M), where
T is the set of the application tasks, i.e., the Kahn processes, C is the set of the platform
components, and M is the set of possible mappings (the elements of T to elements of C).
Although with the platform-based design approach in DAEDALUS, design space exploration
is limited to these three sets only, the design space is potentially huge and very complex, i.e.,
T and C may be large, hence M may be extremely large.

An open issue in DAEDALUS is how to ’walk’ efficiently through this large design space.
At implementation level, guidance comes from SESAME, i.e., we implement all the points

65

selected by the system-level DSE performed by using the SESAME tool. At system level, cur-
rently SESAME applies searching methods and techniques employing genetic algorithms to
select points from the design space for evaluation in order to select the most promising ones.
However, these methods are not tailored to the specific KPN model we use, and consequently,
for large T and C sets, the whole design exploration process may take unreasonable amount
of time.

In this chapter, we propose techniques to prune the design space by reducing the size of
set M . More precisely, by exploiting the fact that we target MPSoCs executing applications
modeled as Kahn process networks, we devised techniques for mapping processes to process-
ing components based on mapping rules1. The main goal when mapping an application to an
MPSoC is to minimize cost and to maximize performance, i.e., to utilize as less MPSoC com-
ponents as possible without compromising the performance of the system when executed. By
applying the mapping rules we propose in this chapter, the design space is effectively pruned
by reducing the number of the possible mappings, guaranteeing that only the design points
delivering highest performance are considered for further exploration (by using the SESAME
tool).

Mapping of KPNs to MPSoC instances

Mapping is a process of binding the application (KPN) and the platform models together2,
i.e., the mapping gives the relation between the processes and the channels in a KPN, and the
components in an MPSoC instance. We consider two types of mapping, namely ONE-TO-
ONE and MANY-TO-ONE.

Definition 3.0.1 (ONE-TO-ONE mapping)
In a ONE-TO-ONE mapping, each process is mapped onto only one processing component,
and each processing component has only one process mapped onto it. A KPN channel is
mapped onto a communication memory in the MPSoC and each communication memory has
only one channel mapped onto it, so that all the connections are point-to-point connections.

Definition 3.0.2 (MANY-TO-ONE mapping)
In a MANY-TO-ONE mapping, two or more processes are mapped onto one processing com-
ponent and/or two or more channels are mapped onto one communication memory.

Notice that in a MANY-TO-ONE mapping, assignment of several processes to a single pro-
cessing component is possible for programmable (ISA) processors only. This is because,
according to our assumptions in Section 1.3, with DAEDALUS we do not support sharing of
a dedicated IP core between several KPN processes.

In a ONE-TO-ONE mapping, each process is executed on a separate processing component,
implying that all the parallelism expressed by a KPN is directly translated to the multipro-
cessor platform instance. With this respect, ONE-TO-ONE mapping (and a given set of plat-
form components) leads to maximum performance when the MPSoC is implemented and

1 The proposed mapping rules do not consider mapping of FIFO channels to communication memories because
this is done automatically by ESPAM (see Section 2.3.3).

2 The application and the platform models we consider were presented in Chapter 2.

66 Techniques for Narrowing the Design Space

executed. In a MANY-TO-ONE mapping, platform computation and communication compo-
nents are shared between multiple Kahn processes and FIFO channels, respectively. This
allows for implementation of an MPSoC with less processing and communication compo-
nents, i.e., with reduced implementation cost, however, with additional execution overhead.
Consequently, the performance (in terms of execution time) of a MANY-TO-ONE mapping,
given the same type of platform components, can not be higher than the performance of the
ONE-TO-ONE mapping. With the techniques we propose for pruning the set M , we allow
MANY-TO-ONE mappings of a KPN to MPSoC instances that do not compromise perfor-
mance. More precisely, the mapping rules guarantee that if respected, the resulting MPSoC
instances deliver performance equal to the performance of the MPSoC corresponding to a
ONE-TO-ONE mapping for the same KPN. Hence, the MPSoC instances defined by ONE-TO-
ONE mapping and MANY-TO-ONE mappings which comply with the mapping rules, form the
set of design points representing the pruned design space.

The remaining part of the chapter is organized as follows. First, we explain what system
performance means in the context of MPSoCs that execute KPNs. With respect to this, we
introduce some terminology that we use throughout the chapter. Also, in order to motivate
and clarify the devised mapping rules, we comment on the factors that affect system perfor-
mance. Then, in Section 3.2, the mapping rules are presented. This is followed by a discus-
sion in Section 3.3 about how the rules can be applied in practice considering the specific
(polyhedral) KPN application model we use. We conclude the chapter in Section 3.4.

3.1 System performance

Recall that we consider data-flow dominated applications in the realm of multimedia, imag-
ing, and signal processing. These applications naturally consists of computational tasks trans-
forming partial streams to partial streams that are passed from tasks to tasks.

Definition 3.1.1 (Data token)
A data token is a packet of data that can represent any type of information.

Definition 3.1.2 (Data stream)
A data stream is a sequence of data tokens.

A stream is characterized by its data (token) rate.

Definition 3.1.3 (Data rate of a stream, ρstr)
The data rate (ρ) of a stream (str) is determined by the time-distance between two consecutive
data tokens in the stream.

That is, ρstr =
1
T

, where T is the time-distance. Usually, the time-distance is given as
an average value over some period of time. A stream has a source that puts data tokens to
the stream, and a destination (sink) that consumes data tokens from the stream. Consider
the example in Figure 3.1. It depicts a system with one input stream (in) and one output
stream (out). For clarity of the discussion, we introduce systems with multiple input and

3.1 System performance 67

...
Tokens

Data streams

...in

Tokens

System
T Tin out

en
vi

ro
nm

en
t

en
vi

ro
nm

en
t

inρ outρinρ outρS Senv env

Figure 3.1: Example of a system.

output streams further in this chapter. The environment of the system produces data tokens to
stream in at a rate ρin

env and the system consumes the tokens at rate ρin
S . Similarly, the system

produces data tokens to stream out at a rate ρout
S and the environment consumes the tokens

at rate ρout
env . Producing/consuming data to/from a stream can be performed at different rates,

therefore, the actual rate of the stream is

ρstr = min(ρstr
src, ρstr

snk), (3.1)

where, ρstr
src is the rate at which the source (src) of the stream (str) produces data tokens to

the stream, and ρstr
snk is the rate at which the sink (snk) of the stream (str) consumes data

tokens from the stream.

Recall that we model streaming applications by using the Kahn process network (KPN) data-
flow model of computation [6] where the application tasks are processes and passing of partial
streams is over FIFO buffered channels. Therefore, when we use the term system, we assume
an MPSoC executing a KPN. Also, we consider systems that consume tokens from (possibly
infinite) input streams and produce tokens to (possibly infinite) output streams. If input data
is not available when a system attempts to consume it, then the process connected to the
corresponding input stream is suspended, waiting for the data. In addition, we associate the
term system performance with the throughput of the system.

Definition 3.1.4 (System throughput, τS)
The throughput (τS) is the sustained rate of data tokens at the output stream(s).

The data rate is given as an average value over some period of time. In case a system has
multiple outputs, then the system throughput represents the sum of the data rates of all output
streams. If input data is not available when a system attempts to consume it, then the rate at
which the system generates results may be reduced (due to the delay introduced by waiting
for the input data) which consequently may limit the performance of the system. Therefore,
in order to capture the maximum (achievable) system performance, we introduce the term
isolated throughput τ ′S .

Definition 3.1.5 (Isolated system throughput, τ ′S)
The isolated throughput (τ ′S) is the system throughput when isolated from its environment.

68 Techniques for Narrowing the Design Space

The isolated throughput indicates the (theoretical) maximum performance that can be achieved
by the system since it depends only on the system itself and does not depend on its environ-
ment (like in case always input data is available). In addition, we express the rate of con-
suming data tokens from an input stream and the rate of producing data tokens to an output
stream as a function of the isolated system throughput τ ′S :

ρin
S = kin.τ ′S ,

ρout
S = kout.τ

′
S ,

where kin and kout are coefficients. For example, if the system in Figure 3.1 performs down-
sampling of a signal, then kin > 1. Since we defined the isolated throughput of a system
with multiple output streams as the sum of the data rates of all output streams, then the value
of the coefficients of the output streams in such systems will be less than 1. Note that the
system in Figure 3.1 has only one output stream, therefore, kout = 1. The coefficients that
determine the streams data rate are further discussed in Section 3.3.4.

Based on the foregoing discussion, we can summarize that system performance depends on
the rates at which both the environment and the system produce and consume data tokens
to/from data streams. According to Definition 3.1.4, we associate system performance τS

with the data rate of the output stream ρout which can be expressed in the following way:

τS = ρout = min(ρin
env, ρin

S , ρout
S , ρout

env)
= min(ρin

env, kin.τ ′S , kout.τ
′
S , ρout

env). (3.2)

Recall that we are interested in techniques for narrowing down the design space in a way
that preserves the design points corresponding to the MPSoC instances delivering maximum
performance. We target MPSoCs executing applications modeled as Kahn process networks
and, to narrow down the design space, we propose rules for mapping processes to processing
components in a way that performance is not compromised. In order to achieve this, the
mapping rules are devised by taking into account the factors that affect the performance of
such systems. For motivation and better understanding of the mapping rules which we discuss
in Section 3.2, we first present these factors and comment on their role in affecting system
performance. The performance of a KPN executed on an MPSoC, is affected by the:

• Throughput of individual processes when executed on processing components;

• Throughput of processes when merged (grouped) for execution on a single processing
component;

• Buffer sizes of the FIFO channels;

• Cycles in the KPN topology.

3.1 System performance 69

Bτ ’

en
vi

ro
nm

en
t

A

Aτ ’

en
vi

ro
nm

en
t ρa1

a1
A

a1
B

C

Cτ ’

B
b

C
b

ρb

C
outin

envρ
in

ρ
A
in

A
a2

C
a2 outρ out

envρ

B

a1
...a2 ...

b
... ...in out

a2

ρ

ρ ρ

ρ

ρρ ρ ρρ

Figure 3.2: System as a process network.

3.1.1 Process throughput and system performance

Below, we show how the performance of a system, i.e., a process network executed on an MP-
SoC, depends on the performance of the individual processes when executed on processing
components. Consider the example in Figure 3.2 which represents the system in Figure 3.1 as
a process network consisting of three processes (A, B, and C). We may consider every pro-
cess in this system as a subsystem that consumes data from input stream(s) and produces data
to output stream(s). Therefore, Equation 3.2 which was defined for a system holds for the
processes as well and every process is characterized by its isolated throughput (performance).

Definition 3.1.6 (Isolated process throughput, τ ′P)
The isolated throughput (τ ′P) of a process P is its (maximum) throughput when isolated from
the process network.

Note that the isolated throughput is not a metric of a process itself but it represents process
performance when executed on a particular processing component.

Definition 3.1.7 (Data path)
A data path is a sequence of connected processes such that data from an input stream is
transformed and propagated (through intermediate streams) to an output stream.

Hence, there are two data paths in Figure 3.2, i.e., (A−B − C) and (A− C).

In order to express the performance of this system (process network), we first associate the
system performance τS with the data rate of its output stream out (see Definition 3.1.4),
which actually is the output stream of process C. Therefore, by considering process C as a
(sub)system, we apply Equation 3.2:

τS = τC = ρout = min(ρa2, ρa2
C , ρb, ρb

C , ρout
C , ρout

env). (3.3)

In the same way, by following the data paths of the system, we can express the rate of all data
streams. More precisely, we can apply the same approach by considering processes B and A
as subsystems. By considering process B as a subsystem, we associate the performance τB

with the data rate of stream b. Tokens are consumed by the the environment of subsystem B
at rate ρb

C , see Figure 3.2. Consequently, we express ρb as:

70 Techniques for Narrowing the Design Space

ρb = min(ρa1, ρa1
B , ρb

B , ρb
C). (3.4)

Similarly, by considering process A as a subsystem, we can express the rate of streams a1
and a2 as:

ρa1 = min(ρin
env, ρin

A , ρa1
A , ρa1

B), (3.5)

ρa2 = min(ρin
env, ρin

A , ρa2
A , ρa2

C). (3.6)

Finally, we substitute Equations 3.4, 3.5, and 3.6 in Equation 3.3 and obtain:

τS = min(ρin
env, ρin

A , ρa1
A , ρa1

B , ρa2
A , ρa2

C , ρb
B , ρb

C , ρout
C , ρout

env). (3.7)

That is, the throughput of the system is determined by the stream with the lowest data rate.
This stream is referred to as the bottleneck stream. Consequently,

Definition 3.1.8 (Bottleneck process)
The bottleneck process is the process that causes the bottleneck stream in a system.

Therefore, system performance is limited by the isolated throughput of the bottleneck pro-
cess. Note that if the bottleneck is caused by the environment (through ρin

env or ρout
env), then

the system does not have a (real) bottleneck process.

3.1.2 Throughput in case of merged processes

Recall that the isolated throughput of a process P is determined by the time-distance TP

between consecutive tokens generated by the process. TP is called also an execution time
of process P to produce one data token. In case of a ONE-TO-ONE mapping in which every
process is executed on a separate processing component, TP is determined by the complexity
of the process and the computational power of the processing component. However, in the
MANY-TO-ONE mappings we target, several processes are merged together for concurrent
execution on a single processing component. In this case, the throughput of the merged pro-
cesses (compared to the throughput before merging) is affected as follows. Concurrent execu-
tion is achieved by interleaving the execution of the processes on the processing component
over time. This produces the appearance of simultaneous (parallel) execution of the pro-
cesses. In contrast with the real parallel execution however, the concurrent execution causes
the time-distance between the generated tokens by the individual processes after merging to
increase, and therefore, the isolated throughput of the processes to drop.

Assume that processes A and B in the example in Figure 3.2 are merged together. If some
fair schedule (e.g. ROUND-ROBIN) is used for the execution of the merged processes, then
the execution time can be represented by T(AB) = TA + TB . Consequently,

3.1 System performance 71

τ ′(AB) =
1

T(AB)
, where (3.8)

τ ′(AB) < τ ′A and τ ′(AB) < τ ′B

Consequently, for the example in Figure 3.2 when process A is merged with process B, the
system throughput is expressed by

τS = min(ρin
env, kin.τ ′(AB), k1.τ

′
(AB), k2.τ

′
(AB), k3.τ

′
(AB), k4.τ

′
C , k5.τ

′
(AB), k6.τ

′
C , kout.τ

′
C , ρout

env)

Merging of processes does not affect system performance as long as the new (compound)
process does not become the bottleneck process of the system.

3.1.3 Buffer sizes and system performance

In a KPN, data is communicated through unbounded FIFO channels. For synchronization,
the processes use a blocking read communication mechanism, i.e., if a process attempts to
consume data that is not available, the process blocks (it is suspended) until data arrives.
Blocking (on read) of the process execution means increasing the time-distance between con-
secutive tokens generated by the process. The increased time-distance reduces the process
throughput. As a consequence, the process is no longer able to maintain its isolated through-
put which is in line with the discussion presented in Section 3.1.1.

Although communication FIFO channels are unbounded in the formal definition of a KPN,
they must be bounded in actual implementations. Therefore, to guarantee correct execution
of a KPN, a blocking write synchronization mechanism is required as well. Blocking on read
bounds the system performance to a performance determined by the isolated throughput of
the bottleneck process, and blocking on write (due to finite buffer sizes) may additionally
reduce system performance. However, in this section we show that there is a (lower) bound
on the buffer sizes that guarantees the performance determined by Equation 3.7. Consider
the example in Figure 3.3. It depicts a KPN consisting of four processes and four channels
as shown in Figure 3.3(a). In this discussion, we consider that the environment is not the
bottleneck, i.e., the data rate of the input stream (omitted in the figure) is higher than the rate
of the data streams in the system. We also consider that the processes are executed on separate
processing components, i.e., a ONE-TO-ONE mapping, and have equal isolated throughput.
Figure 3.3(b) represents the performance curve as a function of the buffer sizes. In this figure,
every point on the memory axis represents the sum of all FIFO buffer sizes of the KPN. The
points on the performance axis (τ) illustrate the achieved throughput (in number of tokens
per unit of time) given particular buffer sizes.

A KPN can execute in bounded memory if a deadlock-free execution is obtained with partic-
ular buffer sizes. Therefore, for such process networks, there is a point Mmin representing
the amount of memory distributed between the buffers of the FIFO channels in a way that
deadlock-free execution is achieved. It has been shown in [79] that the performance of a
KPN is a monotonic function of the FIFO buffer sizes. That is, for any point M , if

72 Techniques for Narrowing the Design Space

A

B C

D

a

b

c

d

B

C

A

D

B

C

A

D

B

C

A

D

τ

τ6τ5

5 τ 6 τ7τ ’ " "4τ

B

C

A

D
τ4

τ

(a) A KPN example

4 5 6 7

(b) Memory vs performance

Memory

d=3

d=2

d=1

3
4

5

6

7

τ

2

1

1 2 3

τ 7τ5τ

Time unit

(c) Unbounded FIFO sizes

(e) Fifo sizes: a=1, b=1, c=1, d=2

Time unit

(f) Fifo sizes: a=1, b=1, c=1, d=3

...

... ...

Time unit

6’ ’

τ τ7

Blocking on write to d

(d) Fifo sizes: a=1, b=1, c=1, d=1

...

Time unit

Blocking on write to d

6

Mmin M

Figure 3.3: Memory vs performance.

Memory: Mmin ≤ M < ∞,

then for the performance of the KPN, the following relation holds:

Throughput: τMmin ≤ τM ≤ τ∞.

Below we show that a point M < ∞ exists such that τM = τ∞. In addition, we illustrate
how different buffer sizes affect system performance. Figure 3.3(c) shows the throughput
of the processes in case of unbounded FIFO buffers. The ticks on the graph represent the
production of data tokens by the corresponding processes (process names are given on the
left of the figure) when executed on processing components. The output generated by process

3.1 System performance 73

D represents the time-distance between the tokens leaving the system, and consequently, the
throughput τ∞ of the system. For the chosen unit of time in this example, the KPN generates
7 tokens. Note that since the FIFO channels are unbounded, blocking on write does not occur
and the performance is determined by the bottleneck process according to Equation 3.7.

Figure 3.3(d) illustrates the system performance corresponding to buffer sizes equal to 4
(point τ4), i.e., a = 1, b = 1, c = 1, and d = 1. These are the minimum buffer sizes in this
example that guarantee deadlock-free execution of the process network, Mmin = 4. Assume
that processes A always produce data to channels a and d, and process D always consumes
data from channels c and d 3. In this way, setting the buffer sizes of all FIFOs to 1, leads to
temporally blocking of the processes during execution as we explain below. When process
A produces a token, it is written to FIFO buffers a and d. This enables process B which
reads data from a and writes data to b. Consequently, process C reads data from b and writes
to c. Until then, process D is blocked on reading, and consequently, FIFO buffer d is full.
Therefore, next time process A attempts to write to d, it will block on writing until D reads
the data from it, see Figure 3.3(d). The blocking increases the time-distance between tokens
generation and overall, the system performance is reduced to 4 tokens for the chosen time
unit as the figure shows.

Figure 3.3(e) illustrates the system performance (τ5) when the size of FIFO buffer d is in-
creased to 2. The way processes block in this case leads to improved performance compared
to point τ4, however, since blocking on write still occurs, it is less than the performance
when using unbounded FIFOs (τ∞). Note that the blocking on write is avoided when the
size of FIFO buffer d is increased to 3 (τ6) which is illustrated in Figure 3.3(f). As a result,
the achieved performance is equal to the performance when using unbounded FIFOs, i.e.,
τ6 = τ∞ and further increasing the size of any FIFO buffers does not lead to better perfor-
mance. Note also that the achieved performance depends on the memory distribution between
the FIFO buffers. For example, τ5 corresponds to a memory distribution a = 1, b = 1, c = 1,
and d = 2. If the buffer size of channel c is increased to 2, then the overall memory becomes
6, however, the achieved performance is τ ′6, see Figure 3.3(b). Note that τ ′6 = τ5 which
means that the performance has not been improved with increasing the memory from 5 to 6.
The performance of τ6 is achieved only if the size of channel d ≥ 3.

In our example, at point τ6 no processes block on write. Therefore, τ6 and point M represent
the minimum buffer sizes that guarantee maximum performance determined by the bottleneck
process. However, we assume that the processes have equal isolated throughput which in real
systems is not very likely to be the case. When the processes have different throughput,
some of them may still temporally block on write. Therefore, it might be assumed that
this will lead to further drop in performance. It might be assumed also that increasing the
buffer sizes would compensate for differences in the isolated throughput of the processes,
and consequently, blocking on write would be avoided. However, this is not the case and
increasing the buffer sizes above point M where the size of channel d is 3, is not needed,
see point τ6 in Figure 3.3(b). What will happen during execution is that data tokens will
fill buffers ahead of the bottleneck process and the buffers after the bottleneck process will
become almost empty. It means that always the bottleneck process will have data to consume

3 In general, at different iterations processes of the polyhedral process networks we consider, may pro-
duce/consume data tokens to/from different FIFO channels.

74 Techniques for Narrowing the Design Space

D

C
B

C

A

D

CYCT =T +T +TDCB

...
Blocking on read

...

(b) Sequential execution

b

a
dA

c

outin
B

(a) Feed−back loop in a KPN

Figure 3.4: Dataflow cycle in a KPN topology.

and space where to write data. Therefore, the buffer sizes corresponding to τ6 and point
M guarantee that the bottleneck process will sustain its isolated throughput and the system
performance is determined by Equation 3.7 (notwithstanding that other processes may block
on writing). In Section 3.3.5, we present how these buffer sizes are computed for KPNs
derived from SANLPs.

3.1.4 Dataflow feed-back loops

In the previous sections, we showed that the performance of a KPN executed on an MPSoC
is determined by the throughput of the bottleneck process and the size of the FIFO channels
used to communicate data between the processes. For brevity of the discussion, we assumed
KPNs having a single input stream and a single output stream, and that the processes are
connected in series. However, the data-flow in a KPN may form data-flow feed-back loops,
which influence the performance of the KPN in a particular way when executed. Consider
the example in Figure 3.4(a). It depicts a KPN containing four processes (A, B, C, and D)
and four FIFO channels (a, b, c, and d). The execution time of the processes to transform
a single data token is TA, TB , TC , and TD, respectively. The network has one input (in),
one output (out), and one data path (A − B − C − D). Note that B − C − D forms a
data-flow loop, i.e., a cycle in the KPN topology. Below, we show how such cycles affect
the performance. Assume that in the beginning, in order to execute, process B needs a token
from channel a only, and after that, it continues reading tokens from both channels a and d.
Note that process B will block on reading from either channel a or the feed-back channel d if
data is not available when the process attempts to consume it. In this example, data produced
by process B enables process C, and data produced by process C enables process D. Until
then, process D is blocked on reading from channel c. This introduces a delay of process D
(compared to process B) to start producing tokens on channel d. The delay causes process
B to block on reading from channel d after producing a token on channel b4. The blocking
on the feed-back channel d leads to a sequential execution of the processes involved in the
cycle as illustrated in Figure 3.4(b), i.e., in this case the execution of processes B, C, and
D is performed one after another. From now on, we refer to such cycles as true cycles. The

4 Assume that process A produces tokens at a rate such that blocking of process B on reading from channel a is
avoided.

3.2 Rules for MANY-TO-ONE mapping generation 75

sequential execution of these processes increases the time-distance between the output tokens
generated out of the cycle (in our example, by process D) to a value we associate with the
cycle: TCY C = TB + TC + TD. Consequently, the isolated throughput of the cycle (τ ′CY C)
in Figure 3.4(a) is:

τ ′CY C =
1

TB + TC + TD
,

meaning that the isolated throughput of a true cycle is lower than the isolated throughput of
any of the processes involved in the cycle. It implies also that the isolated throughput of a
true cycle can be lower than the isolated throughput of the bottleneck process. This is an
important observation because, in such a case, the throughput of the true cycle will determine
the KPN performance. Formally, according to Equation 3.7, for the example in Figure 3.4 we
can write:

τS = min(ρin
env, ρin

A , ρa
A, ρa

B , ρb
B , ρb

C , ρc
C , ρc

D, ρd
D, ρd

B , ρout
D , ρout

env).

However, due to the sequential execution of the processes involved in the true cycle,

τ ′CY C < τ ′B ,
τ ′CY C < τ ′C ,
τ ′CY C < τ ′D,

and we may consider the execution of the true cycle as a single entity, e.g., a process CY C
with a throughput τ ′CY C . Consequently, for the KPN in Figure 3.4, we can apply Equation 3.7
in the following way:

τS = min(ρin
env, kin.τ ′A, k1.τ

′
A, k2.τ

′
B , k3.τ

′
B , k4.τ

′
C , k5.τ

′
C , k6.τ

′
D, k7.τ

′
D, k8.τ

′
B , kout.τ

′
D, ρout

env)

= min(ρin
env, kin.τ ′A, k1.τ

′
A, k2.τ

′
CY C , kout.τ

′
CY C , ρout

env) (3.9)

3.2 Rules for MANY-TO-ONE mapping generation

Based on the discussion in Section 3.1, we devised mapping rules for creating of MANY-TO-
ONE mappings that guarantee maximum performance, i.e., performance equal to the perfor-
mance of ONE-TO-ONE mapping. The main idea of generating MANY-TO-ONE mapping is
to exploit the difference in the isolated throughput of the processes and to merge processes
for execution on a single processing component (reducing the implementation cost) such that
all the new (compound) processes have balanced throughput compared to each other. With
respect to this, and in order to guarantee that a MANY-TO-ONE mapping results in an MP-
SoC instance that delivers performance which matches the performance of the system with
ONE-TO-ONE mapping, we propose the following mapping rules:

76 Techniques for Narrowing the Design Space

1. Merge (group) processes in a way that the resulting (compound) process does not
become a bottleneck. According to Equation 3.7 and Equation 3.9, the overall system
performance is determined by the bottleneck of the system, i.e., the process or the
true cycle that produces or consumes data tokens from the stream having the lowest
data rate. Therefore, the performance of the MPSoC will be negatively affected if a
compound process (created as a result of the merging) becomes the process causing
the lowest rate of a stream in the system, i.e., becomes the bottleneck.

2. Do not merge the bottleneck process with other processes. Recall that the execution
time of the processes after merging is greater than the execution time of the processes
before merging (see Section 3.1.2). Evidently, if the bottleneck process is merged
(grouped) with other processes of the KPN, the resulting execution time of the new
(compound) process will be higher than the execution time of the bottleneck process,
and consequently, the isolated throughput of the new process will be lower than the
isolated throughput of the bottleneck process before merging. This will further reduce
the rate of the bottleneck stream, and thus, the overall system performance.

3. Merge (group) the processes of a true cycle on a single processing component. We
have shown that the KPN processes involved in a true cycle (see Section 3.1.4) are
executed sequentially one after another. Therefore, there is no benefit in mapping the
processes of a true cycle on separate processing components since they will execute
in sequence. Moreover, an additional delay to the execution time of the true cycle
will be introduced if processes of a true cycle are grouped with other processes of the
network (see Section 3.1.2). Therefore, the most appropriate approach is to merge the
processes of a true cycle together, keeping the sequential execution of the cycle on a
single processing component.

4. Merge (group) processes along a data path with neighboring processes. This means
to merge only processes that have direct connections between each other. Merging
processes of a data path that do not have direct connections introduces cycles in the
KPN topology after merging. As we already showed, when these cycles are true cycles,
system performance is compromised.

To check whether Rule 1 is respected after merging of processes, Equation 3.1 has to be re-
evaluated for all the streams connected to the new process. Note that the rate of a stream (str)
accessed by a process (mrg) created after merging is

ρstr
mrgd = k.τ ′mrgd,

where τ ′mrg is the isolated throughput define by Equation 3.8. The data rate of the streams
have to be compared with the data rate of the bottleneck stream in order to check whether
the merging has created a new bottleneck stream. If this is the case, then the merging is not
valid. Note that mapping Rule 2 does not consider the data rate of the input stream(s). In this
way, the created mappings correspond to MPSoCs delivering the (theoretical) maximum per-
formance. If however, the data rate of the input stream is known, and it is lower than the data
rate of the bottleneck stream, then Rule 2 can be relaxed because the bottleneck is actually

3.2 Rules for MANY-TO-ONE mapping generation 77

AB

a

b

D

B

C

A
a

c

in

75 tok/s 50 tok/s

0.013 s

out

25 tok/s 75 tok/s

0.013 s

0.02 s

0.04 s

(a) One−to−one, DP(A, B, C, D)

bBC

A

75 tok/s

0.013 s

D
out

25 tok/s

30 tok/s

0.033 s
in

a

c

0.04 s

(c) Many−to−one, DP(A, BC, D)

b

D Cc

out

25 tok/s 75 tok/s

0.013 s

30 tok/s

in
0.033 s

0.04 s

(b) Many−to−one, DP(AB, C, D)

Figure 3.5: Three design points (case 1) compliant with the mapping rules.

the source of the input data (the environment) which is not part of the system. In this case,
still Rules 1, 3, and 4 have to be respected. Relaxing Rule 2 may result in a reduced num-
ber of processing components of the MPSoC instances, and therefore, in more cost-efficient
implementations. An implication of Rule 4 is that the direct connections (FIFO channels) be-
tween the merged neighboring processes along a data path become self-loops after merging
which, as we will show in Section 3.3.3, are not true cycles. In addition, respecting Rule 4
improves data locality, i.e., less data is communicated between the processing components in
an MPSoC which means less communication overhead.

Example illustrating the mapping rules

Below, we use an example to illustrate how the mapping rules allow the design space to
be reduced. Consider the process network in Figure 3.5(a). It consists of four processes
(A, B, C, and D) connected in series, three FIFO channels (a, b, and c), and one input
(in) and one output stream (out). Consequently, there is one data path in this KPN, i.e.,
A−B−C−D. In order to have a small design space for the purpose of the example, assume
that this KPN can be mapped onto MPSoCs with only one type of processing components
and the connections are point-to-point. Every process is annotated with two numbers, i.e.,
the process execution time and the isolated throughput when executed on this processing
component. For brevity, the isolated process throughput is equal to the rate of consuming
and producing data tokens from/to the corresponding channels, i.e., all the coefficients that
determine the data rate of the streams are equal to 1. Consequently, the bottleneck process in
this example is process D with an isolated throughput 25 tokens/sec. Note that since there
is only one type of processing component, there is no need to specify to which instance of
a processing component in the MPSoC a process is mapped on, i.e., a design point (DP) is
defined only by the number of processing components and the mapping. To represent a design
point, we use the following notation: The design point corresponding to a ONE-TO-ONE
mapping is specified as DP (A, B,C, D), and a design point corresponding to a MANY-TO-
ONE mapping is specified as DP (AB, C, D) when processes A and B are merged together.
Defined in this way, the design space consists of 14 design points, i.e., there are 14 different
implementation possibilities. The possibilities range from all processes mapped on a single
processing component, i.e., DP (ABCD), to every process mapped on a separate processing
component: DP (A,B, C,D). In this example, we consider one case to illustrate the pruning
of the design space by applying all mapping rules and one case in which mapping Rule 2 can
be relaxed, i.e.,

78 Techniques for Narrowing the Design Space

30 tok/s

(0.055 s)
18 tok/s

(0.086)
11 tok/s

18 tok/s 0.033 s

30 tok/s 18 tok/s

0.053 s

CD

c
0.055 s

18 tok/s

0.053 s

18 tok/s
AB

a

0.086 s

(b) Many−to−one, DP(AB, CD) − true cycle is avoided(a) Many−to−one, DP(AD, BC) − true cycle

AD BC b

c

a
out

in

Tcyc=T +T +T +TA B C D

(0.053 s) (0.033 s)

b
in out

P1 ...

a a

idle idle

P2 ...

b b

idle

c

0.086 s

P1 ...

P2 ...

c
a a

c c
a b b b

A D A

C CB B

BA B BA A

C C CD D D

Figure 3.6: Case 2: Two design points.

1. Input data rate is higher than the rate of the bottleneck stream, therefore, process D is
the bottleneck process.

2. Input data rate is lower than the rate of the bottleneck stream, therefore, process D is
not a (real) bottleneck process.

In case 1, there are only three design points that comply with the defined mapping rules,
i.e., do not merge the bottleneck process and do not introduce new bottleneck processes.
These points, DP (A,B, C, D), DP (AB, C,D), and DP (A,BC,D), are illustrated in Fig-
ure 3.5. Note that the latter two points correspond to MPSoCs with three processing com-
ponents which implies a reduced implementation cost. For case 2, assume that the data
rate of the input stream is 18 tokens/sec (execution time=0.055 sec). In this case, the bot-
tleneck is not process D but the input stream which allows for relaxing mapping Rule 2,
i.e., to merge process D with other processes as well in order to achieve more cost efficient
implementations. This results in the following additional design points: DP (A,B, CD),
DP (AD,B,C), DP (ABC, D), DP (AD, BC), and DP (AB, CD). The latter two points
correspond to MPSoCs with only two processing components. These points are shown in
Figure 3.6. Note that point DP (AD,BC) violates Rule 4. We use this design point as an
example to illustrate the importance of mapping Rule 4. By merging processes A with D and
B with C, we create a true cycle (AD-BC) in the KPN topology which is shown at the top
of Figure 3.6(a). The implication of this is that although the execution time of the merged
processes results in isolated throughput which is higher than the input data rate, the system
performance is limited to 11 tokens/sec. The reason is that processes A, B, C, and D are ex-
ecuted sequentially, one after another, as shown at the bottom part of the figure. In contrast, if
we respect Rule 4 and merge processes A with B and C with D, see Figure 3.6(b), a true cy-
cle is avoided. The isolated throughput of the merged processes (C and D) matches the input
data rate, hence, this mapping is optimal, i.e., with respect to the rate of the input data stream,
maximum performance is achieved with minimum number of processing components.

3.2 Rules for MANY-TO-ONE mapping generation 79

D

B

C

A

E

out1

out2
out3

in1
in2

in3

a1

a2

b1

b2

c1

c2

Figure 3.7: System with multiple input and output streams.

The mapping rules for systems with multiple input and output streams

In Section 3.1, we showed that the system performance is determined by the bottleneck pro-
cess. For brevity of the discussion, we assumed that the system, i.e., the process network,
had a single input and a single output. The static and affine nested loop programs (SANLP)
that we use to derive process networks however, may result in KPNs with multiple input and
output streams, and multiple data paths which have to be taken into account when applying
the mapping rules. Consider the example in Figure 3.7. It represents a KPN with three input
streams and three output streams. Also, some of the processes consume data from two inputs
and some produce data to two outputs. Consequently, there are multiple data paths (see Def-
inition 3.1.7) in this KPN topology as well. Since in such systems a single input stream may
contribute to the generation of tokens on several output streams and several input streams
may contribute to the generation of tokens to a single output stream, in order to apply the
mapping rules defined is Section 3.2, we need to:

1. Identify for every output stream, a set of data paths contributing to the generation of
tokens to that stream;

2. Identify the bottleneck, a process or a true cycle, for every set of data paths.

That is, for KPNs with multiple output streams, we need to identify a set of bottleneck pro-
cesses (and/or true cycles) and to apply the mapping rules accordingly. The set of data paths
that has to be considered for a single output stream is comprised by all data paths that end
at the process generating data to that stream. Consider the example in Figure 3.7. The set of
data paths for output stream out1 consists of the following paths:

(A−D),
(A− C −D),
(B − C −D).

Data to output streams out2 and out3 is generated by process E, and consequently, both
streams lead to the same set of data paths:

80 Techniques for Narrowing the Design Space

(A− C − E),
(B − C − E),

(B − E).

Consequently, to apply the mapping rules, we need to find the bottleneck (a process or a true
cycle) for every set of data paths. More precisely, we need to apply Equation 3.7 for every
set of data paths in order to find the stream with the lowest data rate in the system and the
process which causes the lowest data rate of the stream, respectively. Therefore, we need the
values of the isolated throughput of the processes, and the rate of the data streams, i.e., values
of the coefficients in the equation.

3.3 Applying the mapping rules

The mapping rules proposed for pruning the design space are general for process networks.
However, pruning the design space in principal depends on the decidability of the considered
model of computation. In the previous section, we only showed that there is a room for
pruning of the design space, i.e., by respecting the proposed mapping rules, the number of
different implementation possibilities is reduced. In order to apply the mapping rules, we
need to find the bottleneck process(es) and to identify true cycles in the KPN topology. In
order to do so, we need a mechanism to estimate the throughput of the individual processes
and the processes when merged, the throughput of the true cycles, and the rate of the data
streams. In addition, the presented discussion in the previous section assumes buffer sizes
that do not affect performance (ideally, unbounded). Consequently, when bounded in an
implementation, we need buffer sizes that guarantee maximum performance. Unfortunately,
the (general) KPN MoC is not decidable at design time, therefore, the required information
can not be obtained (at design time). In this section, we present how the mapping rules can
be applied in practice considering specific properties of the application and platform models
we use in the DAEDALUS design flow.

To represent KPNs, we use polyhedral descriptions, therefore, we call our KPNs polyhedral
process networks (PPN). The PPNs are specific case of KPNs, i.e., PPNs are static and ev-
erything about the execution of the process networks is known at compile time. Moreover,
the PPNs execute in finite memory and the amount of data communicated through the FIFO
channels is also known. This enables techniques to estimate throughput of the processes
when executed on processing components, to identify true cycles and their throughput, and
to calculate buffer sizes, therefore, to apply the mapping rules. The approach is explained
in the remaining part of this section. In Section 3.3.1, we present details about the represen-
tation of the PPNs we consider. In Section 3.3.2, we present an approach to calculate the
isolated throughput of processes when executed on particular processing component, and the
throughput when processes are merged. This is followed by a discussion in Section 3.3.3
how to identify true cycles in the considered PPNs and how to estimate the throughput of the

3.3 Applying the mapping rules 81

processes involved in the cycles. Computing the data rate of the streams in a PPN is discussed
in Section 3.3.4. Finally, in Section 3.3.5, we present how to compute the minimum buffer
sizes that guarantee maximum performance for PPNs derived from SANLPs.

3.3.1 Polyhedral process networks (PPN)

Recall that we consider KPNs that are input-output equivalent to static affine nested loop
programs (SANLPs). Such process networks can be derived from SANLPs using the PNGEN
tool. The PNGEN tool partitions a SANLP into processes only at function boundaries, i.e., the
programmer divides the SANLP into functions (application tasks), thus guiding/determing
the granularity of the automatically derived processes. Therefore, the parallelism in our KPN
is expressed at the level of the application tasks as a process implements a single application
task only. A process of a PPN consists of a function, input ports, output ports, and control.
The function specifies how data tokens from input streams are transformed to data tokens to
output streams. The function also has input and/or output arguments. The input and output
ports are used to connect a process to FIFO channels in order to read data tokens initializing
the function input arguments and to write data generated as a result of the function execution.
The control specifies how many times the function is executed, which input ports to read and
which output ports to write every time the function is executed. As a result of the restrictions
imposed by the SANLPs discussed in Section 2.3.1, the control of a process can be compactly
represented mathematically (using the polytope model [71]) in terms of linearly bounded sets
of iterator vectors. A process has a Process Domain (DMP) which is the set of all iterator
vectors. Each iterator vector corresponds to one and only one integral point in a polytope5.
The integral points are called also iterations because they correspond to the loop iterations in
the initial SANLP. A function has a Function Domain (DMF) which is a subset of DMP .
Similarly, input and output ports to which function arguments are bound, have Input and
Output Port Domains (DMIP and DMOP , respectively) that are subsets of DMP . The
integral points in DMIP (and DMOP , respectively) specify the iterations in which a port is
read (written respectively). Formally,

DM = {P (p) ∩ Zn}, (3.10)

where P (p) is a parametric polytope,

P (p) = {i ∈ Qn, p ∈ Zm | Ai ≥ Bp + C}, (3.11)

where i is an iteration vector, A, B and C are integral matrices of appropriate dimensions,
and p is a static parameter vector with an affine range,

R(p) = {p ∈ Zm | Dp ≥ E}, (3.12)

where D and E are integral matrices of appropriate dimensions. Also, DMF ⊆ DMP

subject to A′ ≥ B′i + C ′. In the same way, DMIP ⊆ DMP and DMOP ⊆ DMP . The

5 Actually a linearly bounded lattice. Without loss of generality, we assume lattice matrices to be the identity.

82 Techniques for Narrowing the Design Space

number of integral points in a domain DMX is denoted by IX . For example, for a function
domain DMF , IF represents the number of times function F is executed, and for an input
port IP , IIP represents the number of tokens consumed from the FIFO channel (the stream
respectively) connected to this port.

To every function argument corresponds a set of input (or output) ports bound to the argu-
ment. In every execution of function F , its input arguments have to be initialized. At different
iterations, an input argument may be initialized reading data from different ports bound to the
function argument. However, at any iteration only one port may be used to initialize an input
argument. Also, an input/output port may be bound to only one input/output argument. At
any iteration, the value of an output argument may be written to more than one output ports.
Formally,

1. An input argument of a function may be bound to more than one input port IPx with
the following relations:

DMIP1 ∪ DMIP2 ∪ ... ∪DMIPn ≡ DMF ,

DMIP1 ∩ DMIP2 ∩ ... ∩DMIPn ≡ ∅

2. An output argument of a function may be bound to more than one output port OPx

with the following relations:

DMOP1 ∪ DMOP2 ∪ ... ∪DMOPm ≡ DMF ,

DMOP1 ∩ DMOP2 ∩ ... ∩DMOPm ⊇ ∅

3.3.2 Isolated average throughput of a PPN process

Recall that system performance is determined by the isolated throughput of the bottleneck
process (τ ′P). Below, we present how to determine the value of τ ′P for PPN processes when
targeting MPSoC execution. The isolated process throughput τ ′P is determined by the execu-
tion time TP which is the time-distance between generation of output data tokens:

τ ′P =
1

TP
(3.13)

The value of τ ′P represents the isolated throughput of a process when executed on a partic-
ular processing component in our platform model. Therefore, the throughput is determined
by both, the function that a process realizes and the type of the processing component that
executes the process. Moreover, the execution time TP can vary in different iterations of
the process due to data dependent execution time of the function transforming the input data
tokens. In [80], it has been shown that data streaming architectures with varying processing
delay (in which PPN implementations result) take advantage of average performance rather
than worst case performance. Therefore, in PPNs we use the isolated average throughput of
a process which is defined by the average execution time Tavrg over the function domain
DMF :

3.3 Applying the mapping rules 83

Tavrg =
1
IF

IF∑

i=1

TFi (3.14)

where IF is the number of integral points in the function domain DMF , i.e., the number of
iterations in which function F is executed, and TFi is the function execution time at iteration
i. In order to determine its value, a particular processing component from the platform model
has to be considered. The value of Tavrg can be obtained by executing function F on the
target processing component using some representative data set for a given function domain
and measuring execution times. In addition, due to the uniform process structure presented in
Section 2.4.1, always a process reads some ports (initializing input function arguments) prior
executing the function and writes to some ports after the function is executed. Therefore,
the process execution time TP used in Equation 3.13, includes the delay TRD to read a data
token from an input FIFO, the average execution time of the function execution Tavrg, and
the delay TWR to write a data token to an output FIFO in the following way:

TP = IN.TRD + Tavrg + OUT.TWR, (3.15)

where IN is the number of input function arguments and OUT is the number of output ports
to which the results are written.

Definition 3.3.1 (Isolated average throughput of a PPN process, τ ′P)
The isolated average throughput of a PPN process is the process throughput defined by Equa-
tion 3.13, Equation 3.14, and Equation 3.15.

Defined in this way, the isolated process throughput τ ′P represents the maximum rate at which
data tokens are produced (to any output stream), i.e., τ ′P represents how often a process may
execute its function and generate output data. We use τ ′P to compute the rate of the individual
output streams of a process. Details are given in Section 3.3.4.

When processes are merged (grouped together) in order to execute on a single processing
components, we assume a fair ROUND-ROBIN schedule. Therefore, according to the discus-
sion in Section 3.1.2, the isolated throughput of the processes after merging is

τ ′merged =
1

Tmerged
=

1
n∑

i=1

TPi

,

where TPi is the execution time of a process i defined by Equation 3.15, and n is the number
of the processes that are merged.

3.3.3 Process throughput in case of dataflow loops

As we showed in Section 3.1.4, if the data dependences between processes in a process net-
work form a cycle, this may lead to a sequential execution of the processes involved in the

84 Techniques for Narrowing the Design Space

D

C
b

a
dA

c

outin
B

B

C

A

D

B

C

A

D

(a) Feed−back loop in a PPN (c) Not a true cycle(b) True cycle execution

... ...

Figure 3.8: Execution of a PPN containing cycles.

cycle. We call these cycles true cycles. Consider the example in Figure 3.8(a). The process
network consists of four processes (A, B, C, and D). There is a cycle including processes
B, C, and D. Figure 3.8(b) shows a true cycle execution in which process B reads in the
beginning data from process A and then continues to read data from process D. This leads to
the sequential execution of processes B, C, and D. Therefore, according to the discussion in
Section 3.1.4,

τ ′cyc =
1

TB + TC + TD
(3.16)

where TB , TC , and TD are the execution time (defined by Equation 3.15) to process one data
token of processes B, C, and D, respectively. Consequently, the processes in a true cycle
have equal throughput, i.e, τ ′B = τ ′C = τ ′D = τ ′cyc.

Notice that in PPNs, not always a cycle leads to a sequential execution of processes, i.e.,
not all cycles are true cycles. If in the beginning of an execution, a sufficient number of
data tokens are injected into the cycle, then it is not a true cycle. The number of tokens
required to avoid an execution as a true cycle is equal to (or larger than) the number of
processes involved into the cycle. For the example in Figure 3.8, we need to check for the
third execution of the function realized by process B how many tokens have been consumed
from stream a. Using the function domain DMF and the corresponding input port domain
DMa, this can be done in a formal way. More technically, this can be done by computing
Ehrhart polynomials (available in the polylib library) which allows for counting the number
of integer points contained in a parameterized polyhedron [81]. If process B in Figure 3.8(a)
reads sufficient data in the beginning of the execution from outside the cycle (from channel
a) such that it provides enough data in order all processes to work in parallel, then the cycle
actually does not limit the performance as indicated by Equation 3.16, i.e., the processes of
the cycle will continue to execute in parallel even after process B starts reading data from
the feed-back channel d. Therefore, the cycle is not a true cycle. This case is illustrated in
Figure 3.8(c). In the beginning, process B reads 3 data tokens from channel a and feeds 3
data tokens to the cycle, respectively. This enables the parallel execution of the 3 processes
involved in the cycle as the figure shows.

A self-loop is a special case of a dataflow feed-back loop (cycle). A self-loop in a PPN occurs
when data produced by a process executing its function in one iteration is used by the same
function in another iteration. According to the discussion above, a cycle is not a true cycle if

3.3 Applying the mapping rules 85

10
τP

’4
=

P
a2ρ

10
τP

’6
=a1ρP 10

τP
’7

=b1ρP

τ ’
P

a1

=4I

I

a2

=6

FI =10
Pτ ’

a1

a2

(a) PPN process consuming and producing
data from 2 input and 2 output streams

a2

a1 b1

b2

b1

b2
=

P
b2ρ

Process P
function F

a1

a2 DM a2

DM a1

(b) Consumption of tokens from input streams
according to input port domains

(d) Production of tokens to output streams

DM

DM b2

b1

according to output port domains

b1
b1I

=10b2I

=7
b2

(c) Average rate of consuming tokens
over the function domain DM over the function domain DM

(e) Average rate of producing tokens

F F

PT
time

Figure 3.9: Average data rate of consuming and producing tokens from/to data streams.

in the beginning, the process first “injects” a number of data tokens equal to the number of
processes involved in the cycle, and then starts consuming data from the feed-back channel.
This actually is the case of self-loops, i.e., in a self-loop, there is only one process involved
into the cycle and data is first written to the cycle and then consumed (otherwise it will lead
to deadlock). Therefore, a self-loop is not a true cycle and the existence of a self-loop does
not influence the isolated throughput of the corresponding process.

3.3.4 Data rate of the streams in a PPN

In Section 3.1.1, it was said that if a process network has multiple input/output streams and
multiple data paths, then in order to apply the mapping rules we need to find a set of data
paths for every output stream, and to identify the bottleneck process for every set of data
paths. Recall that the bottleneck process is the process which consumes/produces tokens
from/to the stream with the lowest data rate. In Section 3.1, we expressed the data rate of a
stream as a function of the isolated throughput of the process that produces data to the stream
and the process that consumes data from the stream. That is,

ρstr = min(ρstr
P1 , ρstr

P2) = min(k1.τ
′
P1, k2.τ

′
P2),

where, ρstr
P1 = k1.τ

′
P1 is the rate at which process P1 produces data to stream str, and ρstr

P2 =
k2.τ

′
P2 is the rate at which process P2 consumes data from the same stream, respectively. If

a process of a PPN has multiple input/output ports, then in different iterations, data tokens
are consumed/produced from/to different ports (streams) defined by the port domains. We
illustrate this with an example in Figure 3.9(a) of a PPN process (P) with two input ports
(a1, a2) and two output ports (b1 and b2). The process executes function F as the function
domain DMF has 10 integral points (IF = 10). Consuming data tokens from the input ports
is shown in Figure 3.9(b). During the function executions defined by the domain DMF , the
process reads 6 tokens from port a1 and 4 tokens from port a2. Producing data tokens to
the output ports is shown in Figure 3.9(d): Process P generates 7 tokens to output port b1
and 10 tokens to port b2. Because consuming and producing tokens is application dependent,
the term ρstr

P actually represents an average rate of consuming/producing tokens over the
function domain DMF , see Figure. 3.9(c) and Figure 3.9(e). Recall that

86 Techniques for Narrowing the Design Space

ρstr
P = k.τ ′P ,

where k is a coefficient and τ ′P is the isolated throughput of process P . In Section 3.3.2,
we have already shown how to compute the isolated throughput τ ′P of a PPN process. To
find the value of coefficient k, we use the corresponding port domain (DMport) and function
domain (DMF) in the following way. Recall that the number of integral points in the port
domain (Iport) represents the number of data tokens produced/consumed to/from a stream,
and the number of integral points in the function domain (IF) represents the number of times
(iterations) the function F is executed. Therefore,

k =
Iport

IF
,

and consequently,

ρstr
P =

Iport

IF
.τ ′P , (3.17)

where τ ′P is the isolated process throughput. Always

DMport ⊆ DMF ,

and consequently, always Iport ≤ IF . Therefore, the value of k is between 0 and 1, and

ρstr
P ≤ τ ′P .

Note that if Iport = IF , then ρstr
P = τ ′P as illustrated in Figure 3.9(d). This is also the case

when a process has a single input port and/or single output port.

3.3.5 Computing buffer sizes of the FIFO channels in PPNs

The formal definition of the KPN MoC assumes unbounded communication FIFO channels.
However, they must be bounded in actual implementations. This implies a major problem
when implementing a KPN because for the general KPN model, buffer sizes are not decidable
at design time. Fortunately, for the considered PPNs, we devised an approach to compute a
minimum buffer sizes that guarantee deadlock-free execution [7]. Note that minimum buffer
sizes does not mean maximum performance because during execution, the processes may
temporally block on write which additionally increases the execution delay of the processes
(see Section 3.1.3). As a result, it is difficult to reason which process is the real bottleneck
of the system. Therefore, in order to apply the mapping rules, we need buffer sizes that do
not limit performance. Recall that the PPNs we consider, have finite process, function, and
port domains. In particular, we can exploit the fact that the number of integral points of an

3.3 Applying the mapping rules 87

input/output port domain6 (Iport) is finite. It means that if the corresponding FIFO channel
has size equal to Iport, then blocking on write is avoided. Consequently, if all buffers are set
to have sizes equal to the integral points of the corresponding port domains, then the PPN
executes as it would have unbounded FIFO channels. That is:

Memory: Mmin ≤ Mmax < ∞,

where Mmin corresponds to the minimum deadlock-free buffer sizes computed by PN-
GEN [7], and Mmax is the memory requirements defined by the port domains. Then, the
relation of the performance determined by different buffer sizes of the PPN is:

Throughput: τMmin
≤ τMmax

= τ∞.

Note that Mmax corresponds to buffer sizes that do not limit performance, therefore, we
can use these buffer sizes when applying the mapping rules. However, depending on the
application, the value of Mmax = Iport can be very large and impractical to use. Fortunately,
for PPNs, we can compute buffer sizes, if they exists, corresponding to memory M such that

Mmin ≤ M < Mmax,
τMmin ≤ τM = τMmax .

The approach is presented below. First, we present the basic idea of computing minimum
deadlock-free buffer sizes. Then, we present the way we compute buffer sizes that lead to
maximum performance.

Computing minimal deadlock-free buffer sizes

Computing minimal deadlock-free buffer sizes is a non-trivial global optimization problem.
This problem becomes easier if we first compute a deadlock-free schedule and then compute
the buffer sizes for each channel individually. Note that this schedule is only computed for
the purpose of computing the buffer sizes and is discarded afterwards because the processes
in our PPNs are self-scheduled due to the blocking read/write synchronization mechanism.
Although the schedule we compute may not be optimal, our computations do ensure that a
valid schedule exists for the computed buffer sizes. The schedule is computed using a greedy
approach. This approach may not work for process networks in general, but it does work for
PPNs derived from the static affine nested loop programs we consider.

The basic idea is to place all iteration domains in a common iteration space at an offset such
that the dependences in the initial program are respected. The offset is computed by the
scheduling algorithm described in [82]. By fixing the offsets of the iteration domain in the
common space, we have therefore fixed the relative order between any pair of iterations from
any pair of iteration domains. The algorithm starts by computing for any pair of connected
processes, the minimal dependence distance vector, being the difference between a read op-
eration and the corresponding write operation. Then, the processes are greedily combined,
ensuring that all minimal distance vectors are (lexicographically) positive. The end result

6 In PPNs, for any input port (IP) and output port (OP) connected to a FIFO channel, IIP = IOP , see also
Definition 2.5.1.

88 Techniques for Narrowing the Design Space

main()void {
for (int i=0; i<N; i++)

a[i] = A();

D

C

B

A

for (int j=1; j<=N; j++) {

k

j

j

i
1

}

}

N−1

N

N

N

. . .

. . .

. . .

. . .2

2

1

2

1

1

0

1

b[j] = B(a[j−1]);

c[j] = C(b[j]);

(a) Sequential program (b) Representation of the data dependences

for (int k=1; k<=N; k++)
10 D(a[k−1], c[k]);

5

iterations

0

01

0

01 01

0

01

1 1 1 11

0 0

dependence distance

01

Figure 3.10: Example of a sequential program for the PPN in Figure 3.3(a).

is a schedule that ensures that every data element is written before it is read. For more in-
formation on this algorithm, we refer to [82], where it is applied to perform loop fusion on
SANLPs.

Consider the sequential program in Figure 3.10(a). It results in the process network in Fig-
ure 3.3(a). Recall that we used this process network as an example to illustrate how buffer
sizes affect performance. For illustrative purposes, we use the same process network to show
how the minimum deadlock-free buffers as well as the buffer sizes that guarantee maximum
performance are computed. The data dependences are depicted in Figure 3.10(b). The hor-
izontal axes illustrates the single dimension of the iteration domains of the processes (func-
tion calls) A, B, C, and D, and the arrows show the data dependences. The value of the
dependence distances are shown next to each arrow. As a next step, a valid global sched-
ule is computed by combining processes together in a way that keeps the distance between
write operations and the corresponding read operations minimal7. The result is shown in
Figure 3.11(a). In this figure, next to each arrow, we also show the FIFO channels used to
propagate the corresponding data at each iteration, e.g., FIFO a is used to propagate data
between processes A and B. In the common iteration space, the horizontal axis represents
the single dimension of the problem and the vertical axis represents the additional dimension
that orders the statements inside the inner loop.

To compute the buffer sizes, we compute the number of read iterations R(i) that are executed
before a given read operation i and subtract the resulting expression from the number of write
iterations W (i) that are executed before the given read operation:

#elements in FIFO at operation i : W (i)−R(i)

This computation can be performed entirely symbolically using the barvinok library [83]
that efficiently computes the number of integer points in a parametric polytope. The result is
a piecewise (quasi-)polynomial in the read iterators and the parameters. Then, the required
buffer size is the maximum of this expression over all read iterations:

FIFO size = max(W (i)−R(i))
7 For the scheduling of processes having domains with different dimensions, all iteration domains are embedded

in spaces of the same dimension (i.e. the dimensions are equalized), with a fixed coordinate value for the extra
“dummy” dimensions. This is equivalent to (virtually) adding extra loops containing only one iteration.

3.3 Applying the mapping rules 89

D

C

B

A

D

C

B

A 0 1 N+20 1
common iteration space common iteration space

(a) Schedule for minimum buffer sizes (b) Schedule for maximum performance

a

b

aa a aa a a aa

ccc

d d d
d

b

d

b

dd

b

d

b

c c c c c

b d b d b

. . .2 3 . . .2 3

b

c

b

c

i i
N

Figure 3.11: Two schedules for the PPN in Figure 3.3(a) used to compute minimum deadlock-
free buffer sizes (a), and buffer sizes guaranteeing maximum performance (b).

To compute the maximum symbolically, we apply Bernstein expansion [84] to obtain a para-
metric upper bound on the expression.

Below, we show how the buffer sizes are computed based on the schedule in Figure 3.11(a).
Consider FIFO a. Let the number of elements written to the FIFO by process A before
iteration i is denoted as W a

A(i) and the number of elements read from the same FIFO by
process B before iteration i is denoted as R a

B (i). Then, for every iteration i, i ∈ [1, N], we
compute the difference W a

A(i)−R a
B (i) and assign the maximum difference as the buffer size

of FIFO channel a. For example, consider the fourth iteration of the common iteration spaces
(i = 3). Then,

W a
A(3) = 3,

R a
B (3) = 2,

W a
A(3)−R a

B (3) = 3− 2 = 1.

Due to the uniform data dependences in the example, W a
A(i) − R a

B (i) = 1, ∀i ∈ [1, N] and
consequently the size of FIFO channel a = max(W a

A(i) − R a
B (i)) = 1. In the same way,

we compute the buffer sizes of the remaining FIFOs, i.e.,

size of FIFO channel b = max(W b
B(i)−R b

C(i)) = 0,
size of FIFO channel c = max(W c

C(i)−R c
D(i)) = 0,

size of FIFO channel d = max(W d
A(i)−R d

D(i)) = 1.

Because a buffer size can not be zero, buffer sizes 1 are assigned to all FIFO channels being
the minimum buffer sizes that guarantee deadlock-free execution of the process network (see
also Section 3.1.3).

Computing buffer sizes that guarantee maximum performance
If we look at Figure 3.11(a), we see that the scheduling algorithm scheduled processes B,
C, and D for execution at the same iterations of the common iteration space. This means

90 Techniques for Narrowing the Design Space

that write and the corresponding read operations are scheduled at the same iterations where
correctness is guaranteed by the lexicographical order and the blocking semantics. This leads
to the minimal buffer sizes, however, as we showed in Section 3.1.3, these buffer sizes also
lead to temporal blocking on write during the execution of the processes and therefore, to
reduced performance. Recall that after process A writes data to channels a and d, it blocks
on writing to (the full) channel d until process D reads data from it. In order to guarantee
maximum performance, we need to compute buffer sizes such that the temporal blocking of
the execution is avoided (as in the case of unbounded FIFOs). This easily can be achieved
by modifying the scheduling algorithm in the following way: When processes are combined
(in the common iteration space), the algorithm ensures that no write and read operations of a
write-read pair are scheduled at the same iterations. That is, the algorithm “shifts” the read
operations at further iterations with relation to the corresponding write operations.

For the process network we use as an example, the shifting is depicted in Figure 3.11(b).
Once the schedule is found, the buffer sizes are computed in the same way as we already
described: FIFO size = max(W (i) − R(i)). For the example, this results in buffer
size 1 for FIFO channels a, b, and c; and buffer size 3 for FIFO channel d. As we already
discussed in Section 3.1.3, these buffer sizes avoid blocking on write. Consequently, these are
the minimum buffer sizes that guarantee maximum performance determined by the bottleneck
process.

3.4 Conclusion

In this chapter, we presented techniques to prune the design space by reducing the number of
implementation possibilities of MPSoC instances where each MPSoC instance is defined by
an application (KPN), a platform, and a mapping. In the presented approach, the design space
is reduced by limiting the number of possible mappings to a set of MANY-TO-ONE mappings
which deliver the same (maximum) performance as the ONE-TO-ONE mapping for the same
application and platform. Also, in this chapter, we discussed the factors that affects system
performance. Taking these factors into account and given the knowledge we have about our
application and platform models, we proposed mapping rules that allow for creating MANY-
TO-ONE mappings while keeping the performance of ONE-TO-ONE mapping. In addition,
we discussed how the mapping rules can be applied in practice considering the KPN appli-
cation model and the polyhedral descriptions we use to represent a KPN. An assumption of
the presented discussion in this chapter is that the FIFO channels are bounded to sizes guar-
anteeing maximum performance. Consequently, for KPNs derived from static affine nested
loop programs, we presented how such FIFO sizes are computed at design time.

In this chapter, we showed that the devised mapping techniques can effectively prune the de-
sign space without compromising the quality of the generated results (i.e., the design points
representing MPSoC instances). Therefore, the presented mapping approach can be used to
complement the techniques in the SESAME tool in order to improve the design space explo-
ration in the DAEDALUS design flow.

Chapter 4
Case studies

In this dissertation, we proposed methods and techniques to close the implementation gap
(introduced in Chapter 1) between the System and the RTL abstraction levels of description.
These methods and techniques are implemented in the DAEDALUS framework presented in
Section 1.2. With DAEDALUS, the implementation gap is closed in a particular way because
we target only embedded multiprocessor systems that execute data-streaming applications
in the domain of multimedia and signal processing using the KPN MoC as a programming
model. DAEDALUS offers a fully integrated tool-flow for very fast exploration and imple-
mentation of alternative MPSoCs, where design space exploration (DSE), system-level syn-
thesis, application mapping, and system prototyping of MPSoCs are highly automated. In
this chapter, we present three case studies which demonstrate the potential and the efficiency
of our methods and techniques for automated MPSoC design in terms of overall design time,
achieved performance, and HW utilization. Also, we comment on the accuracy of the results
obtained by performing high-level system simulations (during the DSE process) compared to
real implementation numbers.

The first case study uses a JPEG encoder application to show the steps in DAEDALUS to
close the implementation gap in the system-level MPSoC design. It illustrates a complete
flow, starting from a sequential program, performing system-level DSE with SESAME, syn-
thesizing design instances with ESPAM, and prototyping them by using commercial synthesis
and compiler tools. In this case study, we illustrate the design time and the efficiency, in terms
of HW resource utilization, of our approach for connecting processing cores using commu-
nication component, memories, and controllers. In addition, we comment on the accuracy of
the models used in the system-level DSE process by comparing the achieved results with the
results we have obtained by measuring actual numbers from real implementations.

In the second case study, we address heterogeneous MPSoCs where both programmable pro-
cessors and dedicated IP cores are used as processing components. We illustrate the approach,
discussed in Section 2.4, for integrating of predefined IP cores into heterogeneous systems
by using automatically generated IP Modules. We show its efficiency by implementing three

92 Case studies

applications, namely, the JPEG encoder application used in the first case study, a Sobel edge
detection, and a Discrete Wavelet Transform (DWT). In this case study, we comment on the
design time, IP core integration time, resource utilization of the prototyped systems, and the
obtained performance results.

The purpose of the last case study is to push DAEDALUS “to the limit” in order to check how
large and complex systems can be designed using the proposed methodology and considering
the constraints imposed by the FPGA technology we use. In this case study, we are interested
in the maximum performance that can be achieved, therefore, we consider MPSoCs with a
point-to-point communication topology only. We report on the size, in terms of number of
processing components, and the performance achieved by several alternative homogeneous
and heterogeneous MPSoC instances. In this experiment, the MPSoC instances realize the
JPEG encoder application exploiting both task and data parallelism.

4.1 Experimental setup

Currently, for fast prototyping in order to validate our approach, we use the Xilinx VirtexII
and VirtexII-Pro FPGA technology. Therefore, our library of processing components include
the two programmable processors supported by Xilinx. These are the MicroBlaze [42]
soft-core processor and the PowerPC [43] hard-core processor. In addition, our platform
(library of components) contains several dedicated predefined IP cores. Our approach for
IP core integration imposes several requirements for these IPs discussed in Section 2.4. The
communication part of our platform model contains several communication components, i.e.,
a point-to-point network, a crossbar switch, and a shared bus component with several arbitra-
tion schemes. These communication components are mutually exclusive and determine the
communication topology of a multiprocessor platform instance.

In the experiments presented in this chapter, we used an FPGA prototyping board connected
to a Pentium based personal computer (PC) through a PCI interface. The FPGA board con-
tains 6 banks of static memory, 256K x 32bits each. The memory can be accessed either from
the PC or the FPGA and it is used for data communication between the PC and the FPGA
board. The PC serves only as a host to the FPGA board, i.e., the PC is used to configure
the FPGA, and to organize the input and the output data transfers. The output generated by
ESPAM is used to generate the bit-stream file that configures the FPGA for which we use a
GCC compiler and a VHDL synthesizer provided by Xilinx [10].

4.2 Homogeneous MPSoCs design with DAEDALUS

To demonstrate the steps in the DAEDALUS system design flow, in this case study we use
real-life example, namely a JPEG encoder application. The main objective of this exper-
iment is to show that DAEDALUS successfully closes the aforementioned implementation
gap. In this case study, we evaluate the effectiveness of the design flow for automated MP-
SoC synthesis, programming, and implementation in terms of total design time, i.e., how
fast alternative multiprocessor systems can be synthesized, programmed, and implemented.

4.2 Homogeneous MPSoCs design with DAEDALUS 93

Also, we comment on the HW resource utilization of the implemented MPSoCs employing
our approach to connect processors using a communication component, memories, and con-
trollers. In addition, we validate, in terms of accuracy, the high-level simulation models used
in SESAME to explore the design space targeting MPSoCs with MicroBlaze (MB) and
PowerPC (PPC) processors, and crossbar communication topology. We present a com-
parison between the results obtained by running system-level simulations (during the design
space exploration) and real implementations of the JPEG encoder application. The system
design steps in DAEDALUS are outlined below.

1. KPN generation. Starting from a sequential C program of the JPEG encoder, an equiv-
alent KPN specification is derived automatically by the PNGEN tool. Recall that the
input of PNGEN are sequential programs restricted to the class of static affine nested-
loop programs which were discussed in Section 2.3.1.

2. System-level DSE. The derived KPN specification is used by SESAME to perform
system-level DSE using high-level models of the components from the platform model
presented in Section 2.1.5. SESAME allows for quickly evaluating the performance of
different application-to-MPSoC mappings, HW/SW partitionings, and target MPSoC
topologies. The exploration results in a number of promising MPSoC design instances,
candidates for implementation.

3. System-level MPSoC synthesis. A system-level description of an MPSoC is translated
to RTL by the ESPAM tool, presented in Chapter 2. The input to ESPAM is the KPN
specification and the high-level system specifications, i.e., a platform and a mapping
for an MPSoC instance. Using these specifications and together with the RTL version
of the platform components, ESPAM automatically generates synthesizable VHDL that
implements each candidate MPSoC instance. In addition, ESPAM generates C code for
these KPN processes that are mapped onto programmable cores.

4. Final implementation. The output generated by ESPAM is subsequently used by com-
mercial synthesis tools and compilers to generate the final implementation of the MP-
SoC instances. Since with DAEDALUS we currently use the Xilinx FPGA technology,
the MPSoCs are prototyped on a Xilinx FPGA using the Xilinx Platform Studio (XPS)
tool [10].

4.2.1 Design time

As explained in Section 1.2, ESPAM needs three input specifications, namely an application
specified as a KPN, a platform specification, and a mapping specification. Table 4.1 shows
that the KPN specification of the JPEG application was derived in 22 seconds from sequential
C code using our PNGEN tool [7]. A small manual modification (taking no longer than 30
minutes) to the initial C code was necessary to meet the PNGEN tool input requirements.
Generating the KPN specification is a one-time effort since the same specification is used for
all subsequent exploration and implementation steps.

The platform and the mapping specifications were generated by SESAME after performing
design space exploration using the derived KPN specification of the JPEG application as an

94 Case studies

Table 4.1: Processing Times (hh:mm:ss).
Design Tools in KPN Plat./Map. System to Physical Manual
steps DAEDALUS Deriv. Deriv. RTL conv. Implement. Modific.

Step 1 PNGEN 00:00:22 — — — 00:30:00
Step 2 SESAME — 01:26:00 — — —
Step 3 ESPAM — — 00:25:00 — —
Step 4 XPS — — — 18:29:00 —

input. We explored heterogeneous, crossbar-based MPSoC platforms with up to 4 proces-
sors (MB or PPC). In our design space exploration, we used three degrees of freedom,
namely the number of processors in the platform (1 to 4), the type of processors (MB ver-
sus PPC), and the mapping of application processes onto the processors. This resulted in a
design space consisting of 10148 design points. In this experiment, the mapping rules pre-
sented in Chapter 3, are not applied. Instead, by using SESAME and performing system-level
simulations, we exhaustively explored the resulting design space. The reason of exploring
the whole design space is to verify the proposed mapping rules which we do in the following
way: Evaluate all design points from the design space, select the best found design points,
and check whether they actually comply with the proposed mapping rules.

As illustrated in Table 4.1, the complete design space sweep took 1.5 hours. We selected
11 design points that represent 11 alternative MPSoCs with the best found application-to-
MPSoC mappings in terms of performance of the application executed on these MPSoCs.
Then we checked, and the results confirmed that the mapping of the selected 11 best design
points comply with the mapping rules presented in Chapter 3. The generated platform and
mapping specifications for each of the selected 11 design points, together with the application
specification (KPN), are used by ESPAM to synthesize, program, and generate 11 multipro-
cessor systems at RTL. This process took 25 minutes, see Table 4.1. The generated files were
automatically imported to the Xilinx Platform Studio (XPS) tool for physical implementation,
i.e., mapping, place, and route onto the FPGA. For prototyping in this experiment we used an
FPGA board with the Xilinx VirtexII-Pro-20 device. It took the XPS tool more than 18 hours
to implement the 11 MPSoCs. All tools ran on a Pentium IV machine at 1.8GHz with 1GB
of RAM. The figures in Table 4.1 show that a complete implementation and programming of
all 11 MPSoCs starting from high abstraction system-level specifications can be obtained in
just about 22 hours using our system design flow. So, a significant reduction of design time
is achieved.

4.2.2 Performance results and accuracy of the DSE numbers

Performance results are shown in Figure 4.1. The performance numbers obtained during
design space exploration by simulations of system-level models for the selected MPSoCs are
shown in Figure 4.1(a). The real performance numbers for the same MPSoCs implemented
and run on the FPGA are shown in Figure 4.1(b). In both figures the left axis shows the
performance numbers (in clock cycles) of each alternative MPSoC. The right axis shows
how many processors an MPSoC contains and the bottom axis shows how many of them are
MicroBlaze processors. For example the bar with right coordinate 4 and bottom coordinate

4.2 Homogeneous MPSoCs design with DAEDALUS 95

(a) Simulation results (SESAME) (b) Prototyping results (ESPAM)

Figure 4.1: Validation experiment: simulation results vs. actual measurements.

2 (4,2) represents the performance of a system that has 4 processors where 2 of them are
MicroBlazes. It means that the other 2 are PowerPC processors. The empty points in the
figures represent non-implementable design points, i.e., point (3,4) means a system with 3
processors and 4 of them to be MicroBlazes.

The performance numbers in Figure 4.1 show that with a 4-processor MPSoC, a performance
improvement close to the theoretical maximum (4x) is attainable. An important observation,
however, is that the performance degrades with increasing the number of PowerPC pro-
cessors. This is because on the Xilinx FPGAs, a PowerPC processor uses a single (shared)
memory for storing instructions and data, although, the PowerPC architecture allows for us-
ing separate memories. The shared memory needs arbitration which amortizes the efficiency
and the higher working frequency of the PowerPC processor compared to a MicroBlaze
processor. Comparing the simulation numbers with the implementation numbers, we see that
the system-level simulations adequately show the correct performance trends, with an aver-
age error of 13% and worst-case error of 28%. The inaccuracies in terms of absolute cycle
numbers are caused by the high-level modeling of the processors’ behavior (mainly of the
PowerPC shared memory) and the request-based communication mechanism. Actually, ac-
curacy is the price we have to pay in order to achieve very fast simulations and design space
exploration.

Using ESPAM and the XPS tools, we implemented, ran, and measured the performance of the
alternative MPSoCs described above in approximately 2 days. This fact indicates that in a
relatively short amount of time we were able to explore the performance of alternative multi-
processor systems through real implementations and measurements of actual numbers. These
numbers are 100% accurate. Gathering these numbers is faster than running cycle accurate
simulations of the MPSoCs. We do not know how much time is needed for an experienced
designer to verify an RTL simulation of several hardwired components and several processors
running in parallel and executing different programs. However, we know that only setting up
and performing such simulation may take days. Of course, performing simulation at a higher
level of abstraction is faster than implementation and measurement of real performance but
the 100% accuracy of the numbers cannot be achieved as we showed above.

96 Case studies

4.2.3 Synthesis results

In Table 4.2 we present the overall resource utilization of the multiprocessor systems with
4 processors we consider in this experiment. We also present the utilization results for the
communication controllers (CC) and a 4-port crossbar component (CB). The FPGA resources
are grouped into slices that contain 4-Input Look-Up tables and Flip-Flops. The first row in
the table show that the multiprocessor systems utilize around 40% of the slices in the FPGA.
Also, the last three rows show that our communication component (CB) together with the
CCs in each system utilize a minor portion of the FPGA slices – only 5%. These numbers
clearly indicate that the approach to connect processors through communication components
and communication memories, proposed in this dissertation, is very efficient in terms of slice
utilization. The last column in Table 4.2 shows a relatively high overall utilization (60%)

Table 4.2: Resource Utilization.
#Slices #4-Input LUT #Flip-Flops #BRAMs

4 Proc. & Crossbar 3653 (39%) 4748 (25%) 2357 (12%) 85 (60%)
4 CCs & CMs 288 (2%) 468 (2%) 116 (1%) 9 (7%)

4 Port Crossbar 397 (3%) 587 (3%) 56 (1%) —

of the on-chip memory. This high utilization is not related to inefficiency in our approach
to connect processors via communication memories because for each JPEG system we use
a maximum of 9 BRAM blocks (out of 85) to implement FIFO buffers, distributed over 4
communication memories. The high BRAM utilization is due to the fact that almost all
BRAM blocks are used for the program and data memory of the 4 processors in our MPSoCs.

4.2.4 Conclusions

In this case study, we used the JPEG encoder application targeting crossbar-based MPSoCs.
We illustrated the design time and the efficiency of our approach, in terms of HW resource
utilization, for connecting processing cores using communication component, communica-
tion memories (CMs), and communication controllers (CCs). In addition, we commented on
the accuracy of the models used in the system-level DSE process. Based on the experiments
conducted in this case study, we conclude that the automation achieved with DAEDALUS sig-
nificantly reduces the design time starting from system-level specification and going down
to complete implementation. That is, we are able systematically, automatically, and quickly
to implement and to program a multiprocessor system within 2 hours. Moreover, the pre-
sented results show that the proposed approach of connecting processors through CCs and
CMs is efficient in terms of HW utilization and performance speed-up. For the JPEG en-
coder application implemented with four processors, the communication logic utilizes only
5% of the resources and the achieved speedup is close to the theoretical maximum as com-
pared to a single-processor system. Based on these results, we conclude that the main lim-
itation on the size of a multiprocessor system that can be built on a single FPGA chip still
remains the amount of on-chip memory. Using the FPGA on-chip memory instead of exter-
nal memories is crucial for the high-performance multiprocessor systems we target because
external memories are slower than on-chip BRAMs and usually the external memories have

4.3 Heterogeneous MPSoCs design with DAEDALUS 97

to be shared between multiple processors which further limits the performance. In addition,
the system-level simulation results adequately show the correct performance trends. For the
JPEG encoder application, the average error is 13% and the worst-case error is 28%.

4.3 Heterogeneous MPSoCs design with DAEDALUS

In this section, we present some of the results we have obtained by implementing and execut-
ing three applications, namely the JPEG encoder application used in the previous case study,
a Sobel edge detection, and a Discrete Wavelet Transform (DWT), onto homogeneous and
heterogeneous multiprocessor systems. The main objective of this experiment is to evaluate
the approach, discussed in Section 2.4, for integrating of predefined IP cores into heteroge-
neous systems by using automatically generated IP Modules. More precisely, we evaluate the
effectiveness of the proposed HW IP core integration in terms of design time, achieved per-
formance, and HW resource utilization of the generated IP Modules. For prototyping purpose
we use an FPGA board with one VirtexII-6000 device.

4.3.1 Design time

In this case study, we started with the three applications (Sobel, DWT, and JPEG) given as
sequential C programs and automatically derived the Application Specifications, i.e., KPNs
using the PNGEN tool in 5 minutes. Details about the derived KPNs are presented in [7].
For each application, the system-level Platform and Mapping Specifications were written by
hand in XML format in 10 minutes. In this experiment, each of the three homogeneous MP-
SoCs contains 5 MicroBlaze processors connected via crossbar communication component.
Having all three input specifications for each application, the ESPAM tool generated and pro-
grammed a homogeneous multiprocessor system at RTL, which was imported to the Xilinx
XPS tool for physical implementation onto the prototyping FPGA. The overall design and
implementation time of each homogeneous system was about an hour.

We have performed similar actions as described above in order to generate three hetero-
geneous multiprocessor systems using our design flow. We had to modify only the initial
system-level Platform and Mapping Specifications for each application in order to replace
some of the MicroBlaze processors with dedicated HW IP cores. This took us less than 5
minutes. For the Sobel application, we used 3 MicroBlaze processors and 2 dedicated IP
cores. The IP cores estimate the first derivative of an image intensity function. For the DWT
application, we used 1 MicroBlaze processor and 4 dedicated IP cores. The IP cores are 2
Low and 2 High Pass filters. For the JPEG application, we used 4 MicroBlaze processors
and 1 Discrete Cosine Transform (DCT) IP core. Again, the overall design and implementa-
tion time of each heterogeneous system was about an hour.

As explained above, in the heterogeneous systems we used several dedicated HW IP cores.
They were written in synthesizable VHDL. For the Sobel and DWT applications, the IP cores
have a simple structure, i.e., they implement convolution based operations. These IP cores
have been developed and added to the library of platform components in about one working

98 Case studies

�������������
�� ����	
�
���
�
��	
�
�� ����������������� ��� � �!

(a) Performance results

Q

���������	
 ������� ����������������������
VLE�������� ������������� �� ��������������� ���!��!��!����� ���������!����� ��� ���!�

(b) JPEG tasks utilization

Figure 4.2: Experimental performance and synthesis results.

day. For the JPEG application, we used an IP core that performs a DCT operation. We have
downloaded this IP core from the Xilinx website [85]. In order to add this IP core to the
component library in DAEDALUS, we had to make small modification related to the control
(Enable/Valid) interface discussed in Section 2.4.3. The DCT IP core provided by Xilinx
has Valid signal but it does not have Enable signal. This signal was added to the IP core
and the IP core to the library within 30 minutes.

4.3.2 Performance results

The performance numbers we have obtained for the implemented multiprocessor systems are
shown in Figure 4.2(a). For each multiprocessor system we measured the exact number of
clock cycles needed to process an image of size 128x128 pixels. As one may expect, the
numbers in the figure show that the heterogeneous systems achieve better performance. This
is because the dedicated HW IP cores we use, work more efficiently than the MicroBlaze
processors for the same functionality. What is more important to discuss here is the achieved
speed-up depicted in Figure 4.2(a) above the bars of the heterogeneous systems in order
to show the efficiency of our approach for IP Module generation and IP core integration.
Consider the performance results of the JPEG systems. The JPEG application consists of 5
tasks, i.e., VideoIn, DCT, Quantization (Q), Variable-length encoding (VLE), and VideoOut.
The left part of column HOMOGENEOUS in Figure 4.2(b) shows how many thousands of
clock cycles it takes for a MicroBlaze processor to execute each task by processing one
data token – an image block of 8x8 pixels. The numbers in the next column show the same
information in percentage of the overall processing time utilized by each task. It can be seen
that the DCT is the bottleneck of the system taking more than 50% of the whole processing
time for one block and consequently, for the whole image. These 50% mean that if the DCT is
substituted with more efficient implementation, theoretically, the overall performance of the
system can be increased at most 2 times. The column HETEROGENEOUS in Figure 4.2(b)
shows the clock cycles and the percentage of each task performed by the heterogeneous JPEG
system where the DCT is implemented by a very fast dedicated HW IP core and integrated
using our IP Module generation approach. In this system, the DCT utilizes less than one
percent of the whole processing time. In this case, Figure 4.2(a) shows that the overall speed-

4.3 Heterogeneous MPSoCs design with DAEDALUS 99

up compared to the homogeneous system is 1.9x which is close to the theoretical maximum
2x for the heterogeneous system where only the DCT is a dedicated IP core. This clearly
shows the efficiency of our approach for IP core integration by generating IP Modules.

4.3.3 Synthesis results

Recall that an IP Module generated by the ESPAM tool consists of an IP core and a wrap-
per around it where the IP core is given and only the wrapper is generated by ESPAM, see
Section 2.4. Therefore, we present only the HW resource utilization of our generated wrap-
pers in order to show how efficient our wrappers are in terms of utilized HW. In Table 4.3,
we present the resource utilization of the IP wrappers of six IP cores that we used in our
experiments. Each row (Wrapper1–Wrapper6) in Table 4.3 corresponds to an IP wrapper.
The utilized FPGA resources are grouped into Slices that contain 4-Input Look-Up tables
and Flip-Flops – see columns 2, 3, and 4, respectively. The numbers show low HW resource
utilization which on average is 241 slices. Moreover, the resources utilized by a wrapper
does not depend on the size of the IP core it integrates, i.e., a larger IP core does not require
a larger wrapper. For example, Wrapper3 of the DCT core utilizes only 208 slices whereas
the DCT IP core itself utilizes 1369 slices. Wrapper2 of the IP core that estimates the first
derivative in Sobel utilizes 240 slices, whereas the IP core itself utilizes 424 slices.

Table 4.3: HW resource utilization of the IP wrappers.
#Slices #4-Input LUT #Flip-Flops

Wrapper1 221 371 190
Wrapper2 240 371 192
Wrapper3 208 361 147
Wrapper4 274 412 173
Wrapper5 269 390 173
Wrapper6 236 351 157

In general, the HW complexity of our wrappers is determined mainly by the number of MUX
and DeMUX components, the number of counters implementing for-loops of a KPN process,
and the number of behavioral parameters of a KPN process. The three applications we used in
our experiment process images. We specified the applications with two nested for-loops that
iterate through an image and we used two behavioral parameters as loop bounds, i.e., image
width and height. Since the number of for-loops and behavioral parameters is the same for
all wrappers in our experiment, the difference in the resource utilization of our wrappers is
caused by the different input/output ports of the wrappers and by the different input/output
ports of the IP cores they integrate.

4.3.4 Conclusions

The purpose of the case study presented in this section was to illustrate the method and tech-
niques implemented in ESPAM for automated integration of dedicated hardwired IP cores into
heterogeneous multiprocessor systems where both programmable processors and dedicated

100 Case studies

IPs are used as processing components. The integration is based on an IP Module generation
that consists of predened dedicated IP core and a wrapper around it. The proposed IP core
integration approach was applied on three real-life applications, i.e., a Sobel edge detection,
a Discrete Wavelet Transform, and a JPEG encoder. Based on the obtained results, we con-
clude that the IP core integration in ESPAM is efficient in terms of achieved performance and
HW resource utilization.

4.4 Putting DAEDALUS to work

The previous two case studies confirm that the methods and techniques implemented in the
DAEDALUS design flow successfully close the implementation gap introduced in Chapter 1.
Moreover, both case studies show that the DAEDALUS methodology is efficient in terms of
design time, HW resource utilization, and achieved results for both homogeneous and het-
erogeneous MPSoC designs. Subsequently, the purpose of the experiment conducted in this
case study is to push DAEDALUS ”to the limit“ in order to check how large and complex sys-
tems, in terms of number of processing components, we can design and implement given the
constraints imposed by the FPGA technology we currently use for prototyping. In addition,
we are interested to find out what is the maximum performance that can be achieved given
the application (in this case study, the JPEG encoder), the design methodology, and the con-
straints of the used FPGA technology. Metrics in this case study are the speed-up achieved
by the considered MPSoCs compared to the JPEG application executed on a single-processor
system and the efficiency of these MPSoCs, where

efficiency =
speed − up

processing components
.

Based on the performance results obtained in the previous two case studies, we realized that
given the JPEG application and the components in the IP components library, by exploiting
task-level parallelism only, the maximum attainable speed-up is around 5x. Therefore, in
order to achieve higher speed-up, we need to consider data parallelism as well. Data paral-
lelism means that several identical tasks (e.g., DCT) process different data. Unfortunately,
the JPEG algorithm does not allow multiple V LE tasks to work in parallel which becomes
the potential bottleneck of the application when considering data parallelism. Therefore, the
only way to achieve higher performance is to split the input image in tiles and each tile to be
processed independently. The JPEG KPN for a single tile can exploit task-level parallelism by
pipelining tasks as well as data-level parallelism by performing multiple DCT and Q tasks
in parallel. This requires a modification (transformation) of the initial sequential program,
which we performed manually before using the PNGEN tool to generate the corresponding
KPN. By processing the input image in tiles, the performance can increase linearly with the
number of tiles processed simultaneously, which means also, with the number of processing
components in an MPSoCṪhe latter is limited by the available resources in the target (FPGA)
technology which is considered in the high-level design space exploration step in DAEDALUS
performed by SESAME.

4.4 Putting DAEDALUS to work 101

4.4.1 Simulation-level DSE

The design space considered in the following DSE experiments is determined by the target
MPSoC implementations and it is currently constrained by:

1. The amount of the available memory. In order to achieve high performance, in our
MPSoCs we use on-chip memory for processors’ program and data segments, includ-
ing buffers for inter-processor data communication. We do not consider using exter-
nal (off-chip) memory because of its large latency compared to the on-chip memory.
Moreover, usually there is a limited number of available external memory banks which
requires the external memory to be shared between several processors. This fact sig-
nificantly limits the overall MPSoC performance. We use external memories only for
communication with the environment (source of data and destination of the generated
results). An average size FPGA nowadays has around 200–300KB of on-chip mem-
ory distributed on several blocks. In our experiments, we use a Xilinx VirtexII-6000
FPGA, and therefore, we constrain the total MPSoC memory to be up to 288KB, being
the amount of on-chip memory of this FPGA.

2. The type of the processing components. The MPSoCs are built of components from
our library. The library is under development and currently contains two programmable
processors: PowerPC (IBM) and MicroBlaze (Xilinx). In addition, the library con-
tains several dedicated HW IP cores. However, for the JPEG encoder we can use
only one, i.e., the Discrete Cosine Transform (DCT) IP. For the considered FPGA,
PowerPC processors can not be used. Therefore, the processing components of the
MPSoCs are limited to MicroBlaze processors and DCT HW IP cores only.

In this experiment, we assume that the image that needs to be compressed is tiled, and that
multiple JPEG encoders can process these tiles in parallel. This is illustrated in Figure 4.3,
which also shows the corresponding KPN of the JPEG encoder application for one tile. The
number of KPN processes and the constraints discussed above result in a design space con-
sisting of a huge number of design points which makes the approach applied in the first case
study, i.e., evaluating the whole design space, infeasible in reasonable time. Therefore, in
this experiment we consider the subset of the design space defined by the mapping rules pre-
sented in Chapter 3. For example, we do not consider design points in which process VIN

is merged with any Q, V LE, or VOUT processes, and design points in which any DCT
process is merged with V LE or VOUT processes. In addition, we found that increasing
data-parallelism beyond 4 parallel DCT -Q streams (see Figure 4.3) will not improve perfor-
mance as the V LE becomes the bottleneck. Note that the proposed mapping rules do not
consider any physical constraints, e.g., the amount of the available memory. This was taken
into account in the performed SESAME-based exploration, in which we also varied the type
of processors in the MPSoC instances: All KPN tasks to be executed on a MicroBlaze,
while for the DCT , Q and V LE tasks we also assessed dedicated HW IP implementations.
Evidently, the simulation-level DSE also explores non-implementable design instances. That
is, design instances that cannot be further implemented by ESPAM since these instances use
HW IP components that are not (yet) available in the library of RTL IP components.

102 Case studies

...

...

...

...DCT1

Q8

Q1

Q2 VLE Vout

JPEGTile

Vblock = 64 pixelsCompressed byte sequence for Tile

Yblock = 64 pixels,

Legend:

MacroBlock = 2 Yblocks + 1Ublock + 1Vblock

Packet of bytes

Tile

IMAGE

DCT2

DCT8

Vin

Ublock = 64 pixels,

JPEG

JPEG

Tile = 128 MacroBlocks

...

Figure 4.3: The JPEG application KPN.

Figure 4.4 shows a scatter plot with the performance results of the explored design instances
plotted against the expected memory utilization of each design instance once implemented
on the targeted FPGA. The memory utilization of the design instances was estimated using a
simple accumulative model that has been calibrated with numbers from implementation-level
experiments (see Section 4.2). Since the memory utilization of all design points in Figure 4.4
is below 288KB, they will all fit memory-wise on the targeted FPGA. But, as will be shown
further on, the real MPSoC will consist of a combination of multiple of these (single JPEG
encoder) design instances working in parallel, which, of course, may not necessarily fit on
the FPGA. The points in Figure 4.4 can be classified as three types of design instances:

1. Design instances that are implementable (do not use HW IPs for Q and V LE), but are
not part of the Pareto front;

2. Implementable design instances that are part of the Pareto front;

3. Design instances that are non-implementable, i.e., contain HW IP components for the
implementation of Q or V LE.

Moreover, the homogeneous design instances, i.e., the platforms only using MicroBlaze
processors, are tagged with circles.

A number of observations can be made from Figure 4.4. The (implementable) Pareto optimal
solutions are all heterogeneous designs, containing one or two DCT HW IP components.
Two of these Pareto optimal solutions are shown in Figures 4.6(b) and 4.6(d). Clearly, the
(non-implementable) design instance in which the DCT , Q and V LE tasks are all imple-
mented by a HW IP core is the fastest and most memory efficient. When considering the ho-
mogeneous design points in Figure 4.4, another observation can be made: The design points
with a memory utilization less than 75KB are the designs that exploit task-level parallelism
only. The speed-up due to task-level parallelism levels off at a performance of around 18

4.4 Putting DAEDALUS to work 103

0

5

10

15

20

25

30

35

40

0 25 50 75 100 125 150 175 200 225
Memory utilization (KB)

implementable
implementable pareto front
non-implementable
homogeneous

Figure 4.4: DSE for performance/memory utilization trade-offs.

Mcycles/tile. But, when data-parallelism is also exploited, the speed-up levels off at around
7 Mcycles/tile at the cost of increased memory utilization.

As mentioned and as will be illustrated in Section 4.4.2, the design points in Figure 4.4 are
the building blocks for the entire system, in which multiple of these instances, possibly in a
hybrid constellation, are encoding image tiles in parallel. For example, the most optimal, but
(currently) non-implementable, system would consist of multiple JPEG encoders with HW
IPs for the DCT , Q and V LE tasks. The projected performance of this system, considering
the targeted FPGA, equals to an execution time of about 6 Mcycles to encode an image with
a 1 Mpixel resolution. For implementable solutions, the Pareto optimal design instances
from Figure 4.4 are obvious candidate building blocks for the MPSoC. Four of these building
blocks are depicted in Figure 4.6.

Figure 4.5 shows the estimated maximum performance – in terms of speed-up over a single
JPEG encoder executed on one MicroBlaze – for different JPEG compression MPSoCs
realized with a combination of implementable design instances from Figure 4.4. The x-axis
indicates the number of processing cores (either MicroBlaze or HW IP) in the MPSoC, and
the y-axis shows the estimated speed-up for the optimal combination of design instances for
a specific number of cores in the MPSoC which still adheres to the memory constraints of the
targeted FPGA. Furthermore, a distinction is made between homogeneous systems (i.e., only
MicroBlazes) and heterogeneous systems (i.e., containing also DCT HW IP components).
For example, the optimal homogeneous 4-core system is a combination of four sequential
JPEG design instances, i.e. a system containing four MicroBlazes that all perform a full
JPEG on different image tiles in parallel. In Section 4.4.2, more examples of, sometimes
hybrid, combinations of design instances will be discussed.

Essentially, Figure 4.5 provides a projection of the feasible system performance, given the
constraints of the targeted FPGA. For homogeneous solutions, the high-level simulations
predict that a speed-up of around 10x to 12x is attainable. The memory utilization model
indicates that scaling the homogeneous system beyond 24 cores is not possible because of the
memory constraints. For heterogeneous systems, the memory model indicates that the system
can be scaled to 30 cores since the HW IP components only use a fraction of the memory

104 Case studies

0

2

4

6

8

10

12

14

16

18

20

22

24

2 4 6 8 10 12 14 16 18 20 22 24

Number of processing cores in MP-SoC

Homogeneous MP-SoCs
Heterogeneous MP-SoCs

Figure 4.5: Estimated speed-ups.

used by a MicroBlaze. Here, the predictions show that a speed-up of around 20x to 22x is
feasible. The results from the simulation-level DSE, as displayed in Figures 4.4 and 4.5, are
used in the next section for steering the implementation-level DSE. These implementation-
level experiments will also provide a validation of the simulation-based predictions.

Performing DSE at a high-level of abstraction by simulation can not deliver 100% accurate
performance/cost numbers but it can rapidly narrow down the design space to a few promising
design points. Thus, we perform 100% accurate exploration in the narrowed design space
by generating real MPSoC prototypes and we measure the actual performance/cost in order
to select the optimal MPSoC designs given a set of physical implementation constraints.
Below, we present our implementation-level DSE results for MPSoCs implemented on a
Xilinx FPGA.

4.4.2 Implementation-level DSE

Due to the aforementioned implementation-level constraints, some of the best design points
found by the simulation-level DSE (see Figure 4.4) could not be implemented, e.g., all ap-
plication tasks to be realized as HW IPs. Therefore, we considered the implementable de-
sign instances depicted in Figure 4.5. From them, we selected only the instances that have
efficiency above 0.8. This selection resulted in implementations of homogeneous MPSoCs
consisting of up to 13 MicroBlaze processors and heterogeneous MPSoCs with up to 24
cores. Evidently, better performance is delivered by the heterogeneous systems, however,
the homogeneous systems add more flexibility when, for example, trade-off between perfor-
mance and cost is needed.

Homogeneous systems

The implementation results for the homogeneous MPSoCs are depicted in Figure 4.7. The x-
axis represents the number of MicroBlaze processors in an MPSoC and the y-axis depicts
the number of clock cycles (in millions) to compress one image consisting of 32 tiles of

4.4 Putting DAEDALUS to work 105

Vin

DCT,Q

DCT,Q

DCT,Q

32KB8KB

4x16KB

VLE,Vout

4x2KB

4x2KB

DCT

Vin

Q

DCT Q

VLE,Vout

2KB

2KB2KB 2KB

8KB

8KB

8KB
2KB 2KB

32KB

Q,VLE,Vout

16KB 32KB
2KB

DCT

32KB

0KB

0KB

0KB2x2KB

DCT,Q

Vin,DCT Vin,Q,VLE,Vout

(a) 2−MicroBlaze MPSoC, 50KB of memory

(c) 6−MicroBlaze MPSoC, 120KB of memory (d) 4 MicroBlazes, 2 HW DCT, 68KB of memory

(b) 1 MicroBlaze, 1 HW DCT, 36KB of memory

Figure 4.6: Alternative Pareto front design instances to process one tile.

128x128 pixels each. Above the bars, we indicated the achieved speed-up of the particular
MPSoC compared to a single MicroBlaze system (the leftmost bar). At the top of the figure,
we present the amount of memory utilized by each MPSoC.

As mentioned before, our JPEG encoding MPSoCs process the input image in tiles. We
started with a single MicroBlaze system (processing all the tiles) and then we increased
the number of processors by selecting the best points found by the simulation-level DSE.
These points exploit data-level parallelism, i.e., several MicroBlazes process different tiles.
This is the most efficient way to increase performance because if we increase the number
of processors that process independent tiles, then the speed-up increases linearly with the
number of processors. To execute the JPEG application, a single MicroBlaze processor
system requires 40KB of memory. Therefore, we were able to implement systems with up
to 7 processors on the considered FPGA (7x40=280KB), achieving speed-ups (see the first 7
bars in the Figure 4.7) up to 7x.

By exploiting only data-level parallelism, with 7 MicroBlazes processing 7 tiles in parallel,
we reached the limit of the available memory in our FPGA. Then, the question is whether
there are design points that give even better performance (with more processors) and still
match the resource constraints. We were able to increase the number of processors to more
than 7 by selecting points that exploit both data-level parallelism between tiles and also task-
level parallelism within the tiles. For this purpose, we used the 2-MicroBlaze architecture
depicted in Figure 4.6(a), where the V in and all DCT processes (see Figure 4.3) are executed
on the first processor and the remaining processes on the second one. By exploiting task-level
parallelism, reaching linear speed-up is not possible due to data dependencies between the
tasks. However, the total memory requirement of the system is reduced because the applica-
tion tasks are distributed, and each processor executes a portion of the initial application. As a
result, larger systems can be built, and consequently, larger overall speed-up can be achieved.
For instance, a single-processor system needs 40K to execute the JPEG encoder, while a two-
processor system – exploiting task-level parallelism – needs a total amount of 50KB for the

106 Case studies

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13

#MicroBlaze processors

��8040 ��120 ��160 ��200 ��240 ��280
Memory utilization (KB)

���� �� ���� ���� 	���
����
260 270 280 260 240 280

Figure 4.7: Performance results: homogeneous MPSoCs.

same application, on average 25KB per processor. Thus, by exploiting the reduced memory
requirement, we were able to increase the number of processors and to implement systems
with up to 11 MicroBlaze processors. The selected points are actually combinations of a
1-MicroBlaze system per tile and a 2-MicroBlaze system per tile. The MPSoCs with 8 to
11 MicroBlazes process 6 tiles in parallel. The achieved speed-ups are not linear, e.g., 7.4x
for an 8-processor MPSoC and 8.4x for an 11-processor MPSoC, but they are higher than the
speed-up of the 7-processor system.

In order to implement even larger systems, we exploited data-level parallelism between the
tiles and data- and task-level parallelism within the tiles. We selected and implemented points
representing 12 and 13 processor systems with total memory requirements that match our
physical constraints. The 12-processor system processes 2 tiles in parallel where each tile
is processed by a 6-MicroBlaze architecture depicted in Figure 4.6(c). This architecture
requires 120KB of memory. The 13-processor MPSoC utilizes an additional MicroBlaze
processor (additional 40KB), therefore, increasing the number of tiles processed in parallel to
3. The results are shown at the right part (the two rightmost bars) of Figure 4.7. The achieved
speed-up of 12- and 13-MicroBlaze systems is 9.7x and 10.3x respectively, compared to a
1-MicroBlaze system.

Heterogeneous systems

The implementation results for the heterogeneous MPSoCs are depicted in Figure 4.8. The
notation is the same as in Figure 4.7 with the only difference that the x-axis of Figure 4.8
indicates how many of the used cores are MicroBlaze processors and how many DCT HW
IPs. By exploiting data- and task-level parallelism, we implemented heterogeneous MPSoCs
consisting of up to 24 cores. As a reference number to estimate the speed-up of each MPSoC,
we again used the number of clock cycles of the 1-MicroBlaze system (see the leftmost bar
in Figure 4.7). We started with a 2-core system consisting of 1 MicroBlaze and 1 DCT IP
as depicted in Figure 4.6(b). It exploits task-level parallelism within a tile, which affects the
achieved speed-up. Although the DCT IP core is very efficient and fast in terms of perfor-
mance, the overall speed-up is only 1.9x (see the leftmost bar in Figure 4.8), which actually
is in line with Amdahl’s law. Similarly to the experiments with the homogeneous systems,

4.4 Putting DAEDALUS to work 107

0

100

200

300

400

500

600

700
Memory utilization (KB)

���������	
���� � ���� ���� ���� ���� ���� ���� ���� ��� ����� ����� �����
36���� 72 108 144 180 216 252

�����
288 244 240 276 272���� ���� ���� ���� ����� ����� ��� � ��� � ����� �����

Figure 4.8: Performance results: heterogeneous MPSoCs.

we continued with points that exploit data-level parallelism between the tiles, increasing the
number of tiles processed in parallel. The 2-core MPSoC requires 36KB of memory, i.e., the
DCT IP core reduces the MicroBlaze memory requirement to 32KB but with an additional
4KB used for communication buffers, see Figure 4.6(b). Therefore, with 288KB of memory,
we were able to implement systems with up to 8 MicroBlazes and 8 DCT IPs (16 cores,
processing 8 tiles in parallel). The achieved speed-up linearly scales from 1.9x for 2 cores to
15.2x for 16 cores as illustrated in Figure 4.8.

Like in the previous experiment, with the given constraints larger MPSoCs can be imple-
mented (and higher speed-ups can be achieved respectively) by exploiting data-level paral-
lelism between the tiles and data and task parallelism within the tiles. The most efficient
heterogeneous MPSoC instance found by the simulation-level DSE to exploit data- and task-
level parallelism within a tile is depicted in Figure 4.6(d). It consists of 4 MicroBlaze
processors and 2 DCT IP cores. The total memory requirement of this system is 68KB. We
selected and implemented the 18-, 20-, 22-, and 24-core systems in Figure 4.5 which actu-
ally are combinations of 2-cores per tile (2-CPT) and 6-cores per tile (6-CPT) platform
instances illustrated in Figure 4.6(b) and Figure 4.6(d) respectively. The 18-core system con-
sists of 11 MicroBlazes and 7 DCT IPs. It processes 5 tiles in parallel: 3 tiles are processed
by three 2-CPT instances and 2 tiles are processed by two 6-CPT instances. The speed-up
of this MPSoC is 15.2x. The 20-core system processes 4 tiles in parallel: 1 tile is processed
by one 2-CPT instance and 3 tiles are processed by three 6-CPT instances. In total, 13
MicroBlazes and 7 DCT IPs achieve a speed-up of 15.9x. The speed-up of the 22-core
system is 17.7x. This MPSoC consists of 14 MicroBlazes and 8 DCT IPs that process 5
tiles in parallel: 2 tiles are processed by two 2-CPT instances and 3 tiles are processed by
three 6-CPT instances. The 24-core MPSoC, consisting of 16 Microblazes and 8 DCT
IPs, processes 4 tiles in parallel utilizing four 6-CPT instances. The achieved speed-up by
this system is 19.7x compared to a 1-MicroBlaze system.

4.4.3 Conclusions

In this section, we presented a case study demonstrating the efficiency of the system de-
sign methods and techniques proposed in this dissertation for automated multiprocessor sys-

108 Case studies

tem synthesis, implementation, and programming. The level of automation achieved with
DAEDALUS significantly reduces the design time starting from system-level specifications
and going down to complete implementation. All presented DSE experiments and the real
implementations of 25 MPSoCs on FPGA were performed in a short amount of time, 5 days
in total. Around 70% of this time was taken by the low-level commercial synthesis and place-
and-route FPGA tools. The obtained results confirm that the high-level MPSoC models used
in SESAME are capable of accurately predicting the overall system performance. By exploit-
ing the data and task parallelism in the JPEG application, DAEDALUS can deliver scalable
MPSoC solutions in terms of performance and cost. We were able to achieve a performance
speed-up of up to 20x compared to a single processor system. The MPSoC performance
was limited by the available on-chip FPGA memory resources and the available IP cores in
DAEDALUS RTL library. To achieve higher performance speed-up, the RTL library has to be
extended with more dedicated HW IP cores.

Chapter 5
Summary and Conclusions

In this dissertation, we have presented a methodology implemented in the DAEDALUS tool-
flow (see Section 1.2), for automated design, programming, and implementation of MPSoCs
starting at a high level of abstraction. The methods and techniques in DAEDALUS bridge the
gap between the system level and the register-transfer level of design abstraction introduced
in Section 1.1, which was the main objective and it is the main contribution of this disser-
tation. With DAEDALUS, this (implementation) gap is closed in a particular way because
we target only embedded multiprocessor systems that execute data-streaming applications in
the domain of multimedia and signal processing. DAEDALUS offers a fully integrated tool-
flow for very fast exploration and implementation of alternative MPSoCs, where design space
exploration (DSE), system-level synthesis, application mapping, and system prototyping of
MPSoCs are highly automated. The main idea is starting from a functional specification of
an application and a description of an MPSoC at system level, to refine and translate them to
lower RTL descriptions in a systematic and automated way. This is achieved by applying a
model-driven, platform-based approach, where

• We use a parallel model of computation, namely the Kahn Process Network (KPN)
MoC [6], to represent an application as a set of (concurrent) application tasks. Having
an application in a parallel form allows for mapping it onto the processing compo-
nents of an MPSoC which can be programmable (ISA) processors as well as non-
programmable, dedicated IP cores. We proposed techniques for programming the ISA
processors in an automated way based on the KPN MoC. Moreover, in case of non-
programmable processing components, we proposed an approach for automated inte-
gration of predefined (third-party) dedicated IP cores;

• By carefully exploiting and efficiently implementing the simple communication and
synchronization features of a KPN, we have identified a platform model which cap-
tures very well the operational semantics of the KPN MoC. This allows system-level
descriptions of platform instances to be refined and translated to detailed RTL descrip-
tions in an automated way. The good match between the KPN MoC and our platform
model results in efficient implementations when KPNs are executed on such platforms;

110 Summary and Conclusions

• We use a mapping model to express the relation between the processes and the commu-
nication channels in the application (KPN) and the processing and memory components
of the platform. In the proposed approach, the communication mapping is implicit, i.e,
ESPAM analyses the mapping of processes to processing components and automati-
cally finds an optimal mapping of communication FIFO channels of the application
onto memory components of the platform.

DAEDALUS provides new embedded system design/programming paradigm. It includes plat-
form specification in a way that the designer does not have to deal with platform specific
details. Yet, DAEDALUS gives system designers the opportunity to control platform specific
issues in order to enforce performance and cost metrics. DAEDALUS uses a data-flow (KPN)
MoC to specify the application in a parallel form. This allows the exposed parallelism to
be exploited in different ways as processes can be mapped on different processing cores and
the cores can be arranged in different communication topologies. Designing an MPSoC with
DAEDALUS includes essentially an MPSoC instance generation (see Chapter 2) and mapping
(assignment) of application tasks to processing components of that instance, where the paral-
lel KPN representation of an application is automatically derived from a sequential program
by the PNGEN tool. More specifically, a system designer can specify a multiprocessor plat-
form instance and a mapping specification at a high level of abstraction in a short amount of
time, say a few minutes. Then, ESPAM refines these specifications to a real implementation,
i.e., it generates a synthesizable (RTL) HW description of the MPSoC and it generates SW
code for each processor, in an automated way. This reduces the design and programming
time from months to hours. As a consequence, an accurate exploration of the performance of
alternative multiprocessor platform instances becomes feasible at implementation level in a
few hours.

In the design process, different number and type of platform components can be used to
construct an MPSoC instance as well as different mappings can be considered. This leads
(usually) to large and complex design space which represents a large number of different
MPSoC implementation possibilities. Then, the key issue is to reduce the number of differ-
ent implementation possibilities to a subset, consisting of the most promising design points
from which, based on certain criteria, the designer can choose the best one. Traversing the
whole design space or applying general techniques for design space exploration may not be
always feasible (in reasonable time) for large and complex design space. This motivated us,
and in Chapter 3 of this dissertation, we proposed techniques to narrow down the design space
in a systematic way by exploiting the properties of the application and the platform models
we use. More precisely, we defined (mapping) rules for mapping of application tasks to pro-
cessing components in the target MPSoCs such that less number of processing components
are used without compromising the achieved system performance. The proposed approach
can be used to complement the techniques in the SESAME tool for reducing the design space
that need to be considered in the design space exploration process in the DAEDALUS design
flow.

In this dissertation, we have presented three case studies in order to validate and evaluate
the proposed design methodology. That is, we have used the case studies to demonstrate
the potential and the efficiency of our methods and techniques for automated MPSoC design
in terms of overall design time, achieved performance, and HW utilization. Also, we have

111

commented on the accuracy of the results obtained by performing high-level system simula-
tions (during the DSE process) compared to real implementation numbers. The case studies
have clearly shown that our research work presented in this dissertation can be applied suc-
cessfully on real-life industrially relevant applications. The case studies, the corresponding
experiments, and the obtained results have been reported in Chapter 4.

With the first case study, we have illustrated a complete design flow with DAEDALUS for a
JPEG encoder application, starting from a sequential program, performing system-level DSE
with SESAME, synthesizing design instances with ESPAM, and prototyping them by using
commercial synthesis and compiler tools. The second case study has been used to illustrate
the method and techniques for automated integration of dedicated hardwired IP cores into
heterogeneous MPSoCs where both programmable processors and dedicated IPs are used
as processing components. The proposed IP core integration approach has been applied on
three real-life applications, i.e., a Sobel edge detection, a Discrete Wavelet Transform, and a
JPEG encoder. The purpose of the last case study was to push DAEDALUS “to the limit” in
order to check how large and complex systems can be designed using the proposed method-
ology and considering the constraints imposed by the FPGA technology we currently use for
prototyping.

Based on the experience we have gained by conducting the three case studies and the results
we have obtained, we draw the following conclusions:

• The level of automation achieved with DAEDALUS significantly reduces the design
time starting from system-level specifications and going down to complete implemen-
tation. That is, starting from a sequential application and going down to complete
implementation, e.g., to an MPSoC prototyped on an FPGA, is only a matter of hours;

• The high level of abstraction of the input specifications allows a system designer easily
to construct many alternative platforms instances which are automatically implemented
by ESPAM. This, and the reduced design time, enables fast exploration of design points
at implementation level with 100% accuracy during the early stages of design;

• The proposed approach of connecting processing components through communication
controllers and communication memories is efficient in terms of HW resource utiliza-
tion and performance speed-up;

• The proposed techniques for automated integration of dedicated IP cores by generating
IP Modules (wrappers around the IP cores) lead to efficient integration in terms of
achieved performance and HW resource utilization;

• The obtained results by using DAEDALUS are as good as the components in the IP
component library. Recall that in the third case study, we could not implement the best
design points found by the design exploration process because the required dedicated
IP cores were not available in the DAEDALUS IP component library;

• The devised mapping techniques can effectively prune the design space by preserving
the MPSoC instances that deliver highest performance.

112 Summary and Conclusions

The name DAEDALUS

Daedalus and Icarus,
by Charles Paul Landon, 1799.

Finally, we conclude this dissertation with the story
of Daedalus from the ancient Greek mythology,
which motivated us for the name of the proposed
system design flow. DAEDALUS means cunning
worker (in Latin) and he was an innovator in many
arts. The myth goes that Daedalus built a labyrinth
for King Minos, but afterward lost the favor of the
king, and was shut up in a tower on island of Crete.
Daedalus contrived to make his escape, but could
not leave Crete by sea because the king kept strict
watch on all the vessels leaving the island. “Minos
may control the land and sea,” – said Daedalus –
”but not the regions of the air. I will try that way.”
Daedalus set to work to fabricate wings for him-
self and his young son Icarus. He tied feathers to-
gether, from smallest to largest as the larger ones
he secured with thread and the smaller ones with
wax. When both were prepared for flight, Daedalus
warned Icarus not to fly too high, because the heat
of the sun would melt the wax, nor too low because the sea foam would make the wings wet
and they would no longer fly. “Keep near me and you will be safe.” – said Daedalus to Icarus,
and the father and son flew away. However Icarus, exulting in his ability to fly, began to leave
the guidance of his father and rose upward into the air. The blazing sun softened the wax
which held the feathers together, they came off and Icarus fell into the sea.

The analogy: with the DAEDALUS system design flow, we propose new, disruptive technol-
ogy which is based on the following assumptions:

• It is meant for data-flow (streaming) applications;

• Applications specified in the form of static affine nested loop programs;

• Targets distributed memory MPSoC implementations, utilizing communication mem-
ories and communication controllers;

• The results are as good as the components in the IP library.

The DAEDALUS design flow makes system-level design ”take-off“. However, the assump-
tions need to be well understood and respected in order to avoid ”falling into the sea“!

Bibliography

[1] Gordon E. Moore. Multidimentional synchronous dataflow. In Eletronics, volume 38,
April 1965.

[2] G. Martin. Overview of the MPSoC Design Challenge. In Proc. DAC, July 2006.

[3] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu,
and E. Deprettere. Daedalus: Toward composable multimedia mp-soc design. In In
Proc. 45th ACM/IEEE Int. Design Automation Conference (DAC’08), pages 754–579,
Anaheim, USA, June 8-13 2008.

[4] Daedalus system-level design, http://daedalus.liacs.nl/.

[5] Alberto Sangiovanni-Vincentelli and Grant Martin. A Vision for Embedded Systems:
Platform-Based Design and Software Methodology. IEEE Design and Test of Comput-
ers, 18(6):23–33, 2001.

[6] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In Proc.
IFIP Congress 74. North-Holland Publishing Co., 1974.

[7] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: A Tool for Improved Derivation of
Process Networks. EURASIP Journal on Embedded Systems, 2007:Article ID 75947,
13 pages, 2007. doi:10.1155/2007/75947.

[8] A. Pimentel et. al. A Systematic Approach to Exploring Embedded System Architec-
tures at Multiple Abstraction Levels. IEEE Transactions on Computers, 55(2), 2006.

[9] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and automated multiprocessor
system design, programming, and implementation. In IEEE Trans. on CAD of Inte-
grated Circuits and Systems, volume 27, March 2008.

[10] Xilinx, Inc. Xilinx Platform Studio and the Embedded Development Kit, EDK version
8.1i edition. www.xilinx.com/ise/embedded design prod/platform studio.htm.

[11] Synfora Inc. PICO Technology. http://www.synfora.com/.

114 Bibliography

[12] A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, and M. Sgroi. Benefits and
challenges for platform-based design. In Proc. DAC, pages 409 – 414, June 2004.

[13] Edsger W. Dijkstra. Selected writings on Computing: A Personal Perspective. Springer-
Verlag, New York, USA, 1982. ISBN 0-387-90652-5.

[14] Kurt Keutzer, Sharad Malik, Richard Newton, Jan Rabaey, and Alberto Sangiovanni-
Vincentelli. System-Level Design: Orthogonalization of Concerns and Platform-Based
Design. IEEE Transactions on CAD of Integrated Circuits and Systems, 19(12):1523–
1543, 2000.

[15] Edward Lee and Alberto Sangiovanni-Vincentelli. A Framework for Comparing Mod-
els of Computation. IEEE Transactions on CAD of Integrated Circuits and Systems,
17(12):1217–1229, 1998.

[16] G. Kahn and D.B. MacQueen. Coroutines and Networks of Paralel Processes. In Proc.
IFIP Congress 77, pages 993 – 998, Toronto, Canada, August 1977. North-Holland
Publishing Co.

[17] T. Stefanov et al. System Design using Kahn Process Networks: The Compaan/Laura
Approach. In Proc. DATE, pages 340–345, February 2004.

[18] A. Nieuwland et al. C-HEAP: A Heterogeneous Multi-processor Architecture Template
and Scalable and Flexible Protocol for the Design of Embedded Signal Processing Sys-
tems. Kluwer Publishers, 2002.

[19] Erwin de Kock. Multiprocessor Mapping of Process Networks: A JPEG Decoding Case
Study. In Proc. ISSS, pages 68–73, October 2002.

[20] K. Goossens et. al. Guaranteeing the Quality Of Services in Networks On Chip. In
Networks on Chip, pages 61–82. Kluwer Publishers, 2003.

[21] B. Dwivedi et. al. Automatic Synthesis of System on Chip Multiprocessor Architectures
for Process networks. In Proc. CODES+ISSS, September 2004.

[22] B. Kienhuis et al. Compaan: Deriving Process Networks from Matlab for Embedded
Signal Processing Architectures. In Proc. CODES, May 2000.

[23] T. Stefanov and E. Deprettere. Deriving Process Networks from Weakly Dynamic Ap-
plications in System-Level Design. In Proc. CODES+ISSS, pages 90–96, October 2003.

[24] A. Turjan et al. Translating Affine Nested-loop Programs to Process Networks. In Proc.
CASES, September 2004.

[25] T. Parks. Bounded Scheduling of Process Networks. Technical report, University of
California, EECS Dept., Berkeley, CA, 1995. PhD Thesis.

[26] J. Buck and E. Lee. Scheduling Dynamic Data Flow Graphs with Bounded Memory
using the Token Flow Model. In Proc. IEEE Conf. on Acoustics, Speech, and Signal
Processing, pages 429–432, April 1993.

Bibliography 115

[27] M. Geilen and T. Basten. Requirements on the Execution of Kahn Process Networks.
LNCS, Springer, vol. 2618/2003, pp. 319-334, 2003.

[28] E. de Kock et al. YAPI: Application modeling for signal processing systems. In Proc.
DAC, pages 402–405, June 2000.

[29] E.A. Lee et al. Ptolemy II: Heterogeneous Concurrent Modeling and Design in Java.
Technical report, University of California at Berkeley, 1999. UCB/ERL M99/40.

[30] Andy Pimentel, Paul Lieverse, Pieter van der Wolf, and Ed F. Deprettere. Explor-
ing Embedded-Systems Architectures with Artemis. IEEE Computer, 34(11):57–63,
November 2001.

[31] Erwin de Kock. Multiprocessor Mapping of Process Networks: A JPEG Decoding Case
Study. In Proc. 15th Int. Symposium on System Synthesis (ISSS’2002), pages 68–73,
Kyoto, Japan, October 2-4 2002.

[32] Pieter van der Wolf, Paul Lieverse, Mudit Goel, David La Hei, and Kees Vissers. An
MPEG-2 Decoder Case Study as a Driver for a System Level Design Methodology. In
Proc. 7th Int. Workshop on Hardware/Software Codesign (CODES’99), Rome, Italy,
May 3-5 1999.

[33] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere. System Level Design with
SPADE: an M-JPEG Case Study. In Proc. ICCAD, pages 31–38, November 2001.

[34] Paul Lieverse, Pieter van der Wolf, Kees Vissers, and Ed Deprettere. A Methodology for
Architecture Exploration of Heterogeneous Signal Processing Systems. Int. Journal of
VLSI Signal Processing for Signal, Image and Video Technology, 29(3):197–207, 2001.

[35] Martijn J. Rutten, Jos T.J. van Eijndhoven, and Evert-Jan D. Pol. Design of Multi-
Tasking Coprocessor Control for Eclipse. In Proc. 10th Int. Symposium on Hard-
ware/Software Codesign (CODES’02), pages 139–144, Estes Park, Colorado, USA,
May 6-8 2002.

[36] Cagkan Erbas, Selin C. Erbas, and Andy D. Pimentel. A Multiobjective Optimiza-
tion Model for Exploring Multiprocessor Mappings of Process Networks. In Proc.
IEEE-ACM-IFIP Int. Conference on Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS’03), pages 182–187, Newport Beach, California, USA, October 1-3
2003.

[37] Edwin Rijpkema, Ed F. Deprettere, and Bart Kienhuis. Deriving Process Networks from
Nested Loop Algorithms. Parallel Processing Letters, 10(2):165–176, 2000.

[38] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubuhr, A. Deyhle, A. Hadert, and
J. Teich. A SystemC-Based Design Methodology for Digital Signal Processing Sys-
tems. EURASIP Journal on Embedded Systems, 2007:Article ID 47580, 22 pages, 2007.
doi:10.1155/2007/47580.

[39] J. Falk, C. Haubelt, and J. Teich. Efficient representation and simulation of model-based
designs in SystemC. In Proc. of the International Forum on Specification & Design
Languages (FDL 06), pages 129–134, Darmstadt, Germany, September 2006.

116 Bibliography

[40] M.J. Rutten et al. A Heterogeneous Multiprocessor Architecture for Flexible Media
Processing. IEEE Design & Test of Computers, 19(4), 2002.

[41] Akash Kumar, Shakith Fernando, Yajun Ha, Bart Mesman, and Henk Corporaal. Mul-
tiprocessor systems synthesis for multiple use-cases of multiple applications on fpga.
ACM Trans. Des. Autom. Electron. Syst., 13(3):1–27, 2008.

[42] The Xilinx’s Microblaze Soft Core Processor. http://www.xilinx.com/products/de-
sign resources/proc central/microblaze arc.htm.

[43] IBM PowerPC Wite Paper. http://www-01.ibm.com/chips/techlib/techlib.nsf/products/
PowerPC 405 Embedded Cores.

[44] A. Jerraya, A. Bouchhima, and F. Ptrot. Programming Models and HW-SW Interfaces
Abstraction for MultiProcessor SoC. In Proc. DAC, July 2006.

[45] D. Lyonnard et al. Automatic Generation of Application-Specific Architectures for
Heterogeneous Multiprocessor System-on-Chip. In Proc. DAC, June 2001.

[46] L. Gauthier, S. Yoo, and A. Jerraya. Automatic Generation and Targeting of Application
Specific Operating Systems and Embedded Systems Software. IEEE Trans. on CAD,
20, November 2001.

[47] F. Balarin et al. Hardware-Software Co-design of Embedded Systems – The POLIS
approach. Kluwer Academic Publ., 1997.

[48] A. Gerstlauer and D. Gajski. System-level abstraction semantics. In Proc. ISSS, pages
231–236, October 2002.

[49] P. Paulin et al. Parallel Programming Models for a Multiprocessor SoC Platform Ap-
plied to Networking and Multimedia. IEEE Trans. on VLSI Systems, 14(7), July 2006.

[50] Celoxica Web Page:. http://www.celoxica.com.

[51] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Englewood Cliffs,
New Jersey, 1985.

[52] J. Zhu, R. Domer, and D. Gajski. Syntax and Semantics of the SpecC Language. In
Proc. of the Synthesis and System Integration of Mixed Technologies, Osaka, Japan,
December 1997.

[53] H. Yu, R. Domer, and D. Gajski. Embedded Software Generation from System Level
Design Languages. In Proc. ASPDAC, pages 463–468, January 2004.

[54] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink. Design and
Programming of Embeded Multiprocessors: an Interface-Centric Approach. In Proc.
CODES+ISSS, September 2004.

[55] Y. Jin, N. Satish, K. Ravindran, and K. Keutzer. An Automated Exploration Framework
for FPGA-based Soft Multiprocessor Systems. In Proc. IEEE-ACM International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), New
Jersey, USA, September 19-21 2005.

Bibliography 117

[56] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer. An FPGA-based Soft Multiproces-
sor System for IPv4 Packet Forwarding. In Proc. International Conference on Field
Programmable Logic and Applications (FPL), Tampere, Finland, August 24-26 2005.

[57] Altera, Inc. Quartus II Handbook Volume 4: SOPC Builder, Dec 2005.
www.altera.com/literature/quartus2/lit-qts-sopc.jsp.

[58] Multiprocessor Solutions with FPGAs. White paper, FPGA and Programmable Logic
Journal, 2005, www.fpgajournal.com/whitepapers 2005/altera 20050224.htm.

[59] SPIRIT Web Page:. http://www.spiritconsortium.org.

[60] VSIA Web Page:. http://www.vsi.org.

[61] OCP Web Page:. http://www.ocpip.org.

[62] Algorithms, complexity analysis and VLSI architectures for MPEG-4 estimation. Klu-
ver, 2004.

[63] S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man. Power Exploration for Data
Dominated Video Applications. In In Proc. of the 1996 international symposium on
low power electronics and design (ISLPED’96), pages 359–364, Piscataway, NJ, USA,
1996.

[64] D. Moolenaar, L. Nachtergaele, F. Catthoor, and H. De Man. System-level Power Ex-
ploration for MPEG-2 Decoder on Embedded Cores: A Systematic Approach. In IEEE
workshop on signal processing systems (SIPS’97), pages 395–404, Leicester, UK, 1997.

[65] H. Nikolov, T. Stefanov, and E. Deprettere. Efficient External Memory Interface for
Multi-processor Platforms Realized on FPGA Chips. In 17th Int. Conference on Field
Programmable Logic and Applications (FPL’07), Amsterdam, The Netherlands, Au-
gust 27-29 2007.

[66] T. Stefanov. Converting Weakly Dynamic Programs to Equivalent Process Network
Specifications. Leiden Institute of Advanced Computer Science (LIACS), Leiden Uni-
versity, The Netherlands, December, 2004.

[67] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Realizations of the Extended Lin-
earization Model. in Domain-Specific Embedded Multiprocessors (Chapter 9), Marcel
Dekker, Inc., 2003.

[68] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A Technique to Determine Inter-
process Communication in the Polyhedral Model. In Proc. Int. Workshop on Compilers
for Parallel Computers (CPC’03), Amsterdam, The Netherlands, January 8-10 2003.

[69] H. Nikolov, T. Stefanov, and E. Deprettere. Efficient Automated Synthesis, Program-
ming, and Iplementation of Multi-processor Platforms on FPGA Chips. In 16th Int.
Conference on Field Programmable Logic and Applications (FPL’06), pages 323–328,
Madrid, Spain, August 28-30 2006.

[70] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

118 Bibliography

[71] Paul Feautrier. Automatic parallelization in the polytope model. In The Data Parallel
Programming Model, volume 1132 of LNCS, pages 79–103, 1996.

[72] Paul Feautrier. Dataflow Analysis of Scalar and Array References. Int. Journal of
Parallel Programming, 20(1):23–53, 1991.

[73] Paul Feautrier. Parametric Integer Programming. Operations Research, 22(3):243-268,
1988.

[74] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere. LAURA: Leiden Architec-
ture Research and Exploration Tool. In Proc. FPL, September 2003.

[75] H. Nikolov, T. Stefanov, and E. Deprettere. Automated Integration of Ded-
icated Hardwired IP Cores in Heterogeneous MPSoCs Designed with ESPAM.
EURASIP Journal on Embedded Systems, 2008:Article ID 726096, 15 pages, 2008.
doi:10.1155/2008/726096.

[76] Edward A. Lee and Thomas M. Parks. Dataflow Process Networks. Proceedings of the
IEEE, 83(5):773–799, May 1995.

[77] H. Nikolov and E. Deprettere. Parameterized Stream-Based Functions Dataflow Model
of Computation. In 6th Int. Workshop on Optimizations for DSP and Embedded Systems
(ODES-6), Boston, USA, April 6 2008.

[78] B. Kienhuis and E. Deprettere. Modeling stream-based applications using the sbf model
of computation. Journal of VLSI Signal Processing, 34(3), July 2003.

[79] Eric Cheung, Harry Hsieh, and Felice Balarin. Automatic Buffer Sizing for Rate-
Constrained KPN Applications on Multiprocessor System-on-Chip. In IEEE Workshop
on High Level Design Validation and Test (HLVDT’07), pages 37–47, November7 9
2007.

[80] D. Kearney and N. Bergmann. Performance evaluation of asynchronous logic pipelines
with data dependant processing delays. In Proc. 2nd Working Conference on Asyn-
chronous Design Methodologies (ASYNC’95), May 1995.

[81] P. Clauss, V. Loechner, and D. Wilde. Deriving formulae to count solutions to pa-
rameterized linear systems using ehrhart polynomials: Applications to the analysis of
nested-loop programs. Technical report, Laboratoire Image et Calcul Parallle Scien-
tifique, 1997. Rapport Technique RR 97-05, URL: http://icps.u-strasbg.fr/PolyLib.

[82] S. Verdoolaege et al. Multi-dimensional incremental loop fusion for data locality. In
Proc. ASAP, pages 17–27, June 2003.

[83] S. Verdoolaege et al. Analytical computation of Ehrhart polynomials: Enabling more
compiler analyses and optimizations. In Proc. CASES, pages 248–258, September 2004.

[84] P. Clauss et al. Symbolic polynomial maximization over convex sets and its application
to memory requirement estimation. ICPS Research Report 06-04, Université Louis
Pasteur, October 2006.

[85] Xilinx’ DCT HW IP Core. www.xilinx.com/bvdocs/appnotes/xapp 610.zip.

Samenvatting

De dissertatie gaat over methoden en middelen voor het ontwerpen van multiprocessor sys-
temen die zijn geı̈ntegreerd in een enkele chip, voor de verwerking van signalen en beelden
in ingebedde multimedia toepassingen. Deze toepassingen kunnen het best worden gekarak-
teriseerd als een verzameling van rekentaken die data uitwisselen in de vorm van datastromen.
In de meeste van deze toepassingen zijn doorstroomsnelheden van cruciaal belang waardoor
rekentaken snel en, indien mogelijk, gelijktijdig moeten worden uitgevoerd. Deze eisen lei-
den vanzelf tot implementatiestructuren die bestaan uit meerdere, vaak ongelijke, processoren
die autonoom rekenen en zijn aangesloten op een communicatie, synchronisatie, en geheugen
infrastructuur voor de uitwisseling van data.

De complexiteit van zulke ingebedde multiprocessor systemen heeft een niveau bereikt waar-
bij het noodzakelijk is geworden om het programmeren van deze systemen methodologiën te
onderbouwen met het oog op een systematische en automatische uitvoering van deze belan-
grijke stap in het proces van systeemontwerp.

De dissertatie beschrijft een nieuwe ontwerpmethodologie, evenals de methoden en tech-
nieken voor de praktische uitvoering ervan. Deze zijn geı̈ntegreerd in het ontwerppakket
DAEDALUS dat het onderwerp is van het eerste hoofdstuk. Met dit pakket kan een on-
twerp – inclusief de programmering en de implementatie – automatisch worden uitgevoerd,
uitgaande van een abstracte specificatie. Met DAEDALUS wordt de afstand tussen abstracte
en gedetailleerde specificatie automatisch overbrugd. De methoden en technieken in het
DAEDALUS ontwerp pakket omvatten exploratie van de ontwerpruimte, synthese op systeem
niveau, afbeelden van functionele specificatie modellen (toepassingen), op extrafunctionele
implementatie modellen (architecturen), en prototypereen van het ontworpen multiprocessor
chip-systeem.

De toepassingen worden gespecificeerd in termen van datastroom procesnetwerken, in het bij-
zonder Kahn Proces Netwerken die goed passen bij de beoogde datastroom applicaties. De
multiprocessor architecturen worden gespecificeerd in termen van componenten die beschik-
baar zijn in een bibliotheek van componenten voor de evaluatie en synchronisatie van func-
ties, en de communicatie en opslag van data. De organisatie van de processornetwerk is
zo gekozen dat procesnetwerken met de hoogst mogelijke prestatie kunnen worden doorg-

120 Samenvatting

erekend. Abstracte specificaties van toepassing (procesnetwerk) en architectuur (processor-
netwerk), en de abstracte relatie tussen deze twee specificaties is alles wat nodig is om het
chip-systeem – software en hardware – te implementeren; kennis van specifieke details is niet
nodig.

Het tweede hoofdstuk behandelt de specificatie van een multiprocessor architectuur organ-
isatie, de relatie tussen processen en processoren, en de afleiding van het procesnetwerk
uitgaande van een specificatie van de toepassing in de vorm van een traditioneel sequen-
tieel programma. Deze drie componenten vormen samen de abstracte chip-systeem specifi-
catie. De DAEDALUS methode en de ESPAM techniek zorgen daarna voor een verfijning van
deze specificatie tot een implementatiespecificatie op het niveau van synthetiseerbare regis-
ter transfer code, en processor code. Met ESPAM kan de ontwerp- en programmeertijd van
multiprocessor chip-systemen worden gereduceerd van maanden tot uren.

Een gegeven toepassing kan op vele manieren abstract worden gespecificeerd als een pro-
cesnetwerk, een processornetwerk, en de relatie tussen deze twee netwerken. Het is daarom
noodzakelijk de verzameling van mogelijke specificaties te herleiden tot een paar specificaties
die veelbelovend zijn in termen van gekozen optimalisatie criteria. Het derde hoofdstuk stelt
methoden en technieken voor het achterhalen van deze beste specificaties op een systema-
tische manier. Voor de voorbeelden die in de dissertatie zijn gegeven werd als criterium
gekozen het minimaliseren van het aantal processoren zonder de prestatie van het resulterend
chip-systeem te compromitteren.

Het laatste hoofdstuk geeft gevalsstudies aan de hand waarvan de methoden en technieken
worden gevalideerd. Omdat het ontwerptraject in korte tijd kan worden doorlopen is het
mogelijk een relatief groot aantal alternatieve fysieke implementaties te evalueren en de re-
sultaten daarvan te vergelijken met deze die gedurende de abstracte exploratie van de ontwer-
pruimte zijn verkregen. Op die manier kan het exploratieproces verder gekalibreerd worden.

Curriculum Vitae

Hristo Nikolov was born on 8th of January, 1974 in Gabrovo, Bulgaria.
In 1993, he received his high-school diploma at The High Technical
School of Microprocessor Technology in Pravetz, Bulgaria. After the
military service he did in the Bulgarian army between 1993 and 1996,
Hristo Nikolov started his study in computer engineering at the Techni-
cal University of Sofia (TU Sofia), Bulgaria. In 2001, he successfully
defended his M.Sc. thesis entitled ”IP core for real-time edge detec-

tion applications” and received his Dipl.Ing. and M.Sc. degrees in Computer Engineering
from the Technical University of Sofia. During his M.Sc. study, Hristo Nikolov worked at
Innovative MicroSystems, Ltd., Sofia, Bulgaria on designing application specific micropro-
cessor IP cores targeting the FPGA technology. After obtaining his M.Sc. degree, up until
2004, Hristo Nikolov worked as a Research and Development Engineer at Fabless, Ltd., Sofia,
where he had been involved in the development of a reconfigurable MicroSystems-on-Silicon
In-Circuit Emulator based on FPGAs.

In 2004, Hristo Nikolov joined the Leiden Embedded Research Center (LERC) which is part
of the Leiden Institute of Advanced Computer Science (LIACS) at Leiden University where
he was appointed as a research assistant (Ph.D. student). He was involved in the ARTEMISIA
project which deals with Architecture, Programming, and Exploration of Network-on-Chip
based Embedded System Platforms. As a member of the ARTEMISIA project, he conducted
research in the context of modeling of stream-oriented media applications and mapping them
onto parallel architectures. In particular, he worked on defining a multiprocessor platform
for efficient execution of applications specified as Kahn process networks and on devising
methods and techniques for systematic and automated multiprocessor system design, pro-
gramming, and implementation. The research work culminated in the writing of this Ph.D.
dissertation in 2009.

Since January 2006, Hristo Nikolov is an IEEE member. His primary research interests
include video and image processing, embedded multiprocessor systems-on-chip (MPSoCs),
system-level design of MPSoCs, design automation for MPSoCs, Hardware/Software co-
design, computer architectures.

