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4. A spectral method for magnetar oscillations

Abstract

The seismological dynamics of magnetars is largely determined by a strong

hydro-magnetic coupling between the solid crust and the fluid core. In this

chapter we set up a “spectral” computational framework in which the magne-

tar’s motion is decomposed into a series of basis functions which are associated

with the crust and core vibrational eigenmodes. A general-relativistic formal-

ism is presented for evaluation of the core Alfvén modes in the magnetic-flux

coordinates, as well for eigenmode computation of a strongly magnetized crust

of finite thickness. By considering coupling of the crustal modes to the contin-

uum of Alfvén modes in the core, we construct a fully relativistic dynamical

model of the magnetar which allows: (1) Fast and long simulations without

numerical dissipation. (2) Very fine sampling of the stellar structure. We find

that the presence of strong magnetic field in the crust results in localizing of

some high-frequency crustal elasto-magnetic modes with the radial number

n ≥ 1 to the regions of the crust where the field is nearly horizontal. While

the hydro-magnetic coupling of these localized modes to the Alfvén contin-

uum in the core is reduced, their energy is drained on a time-scale of � 1 s.

Therefore the puzzle of QPOs with frequencies larger than 600 Hz still stands.
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4.1 Introduction

4.1 Introduction

Magnetar oscillations have been subject of extensive theoretical research since

the discovery of quasi-periodic oscillations (QPOs) in the light curves of giant

flares from soft gamma repeaters (SGR) (Israel et al. 2005; Strohmayer &

Watts 2005; Watts & Strohmayer 2006; see also Barat et al. 1983). The ob-

served oscillations are measured with high signal-to-noise ratios during time

intervals of typically few minutes in the frequency range between 18 and 1800

Hz. It has been proposed by many authors that the physical origin of the

QPOs are seismic vibrations of the star; an idea which opens the possibil-

ity to perform asteroseismological analysis of neutron stars, giving a unique

observational window into the stellar interior. Initially it was hypothesized

that the observed oscillations originate from torsional shear modes which

are confined in the magnetar crust (e.g. Duncan 1998, Piro 2005; Watts

& Strohmayer 2006; Samuelsson & Andersson 2007; Watts & Reddy 2007;

Steiner & Watts 2009). If this hypothesis were true, then the observed QPOs

would strongly constrain physical parameters in the neutron star crust. How-

ever, it was soon realized that, due to the presence of ultra-strong magnetic

fields (B ∼ 1014 − 1015 G; Kouveliotou et al., 1999) which are frozen both in

the crust and the core of the star, the crustal motion is strongly coupled to

the fluid core on timescales � 1 s Levin (2006, hereafter L06). Over the years

several authors have studied the coupled crust-core problem (Glampedakis,

Samuelsson & Andersson 2006; Levin 2007, hereafter L07; Gruzinov 2008; Lee

2008; van Hoven & Levin 2011a, hereafter vHL11 (see also chapter 3); Gabler

et al. 2011a; Colaiuda & Kokkotas 2011; Gabler et al. 2011b). In particular

L06 and L07 argued that for sufficiently simple magnetic field configurations

(i.e. axisymmetric poloidal fields), the Alfvén-type motions on different flux

surfaces are decoupled so that the Alfvén frequencies in the core feature a

continuum. This result is well known from previous magnetohydrodynamic

(MHD) studies and it applies to general axisymmetric poloidal-toroidal mag-

netic fields (Poedts et al. 1985). It allows one to describe the problem of

magnetar dynamics in terms of discrete crustal modes that couple to a con-

tinuum of Alfvén modes in the core. With this approach, L07 and vHL11

demonstrated that the presence of an Alfvén continuum has some important

103



4. A spectral method for magnetar oscillations

implications for magnetar oscillations: (1) Global modes of the star with fre-

quencies that are located inside the continuum undergo strong exponential

damping (this phenomenon is often called resonant absorption in the context

of MHD (Goedbloed & Poedts 2004)). (2) After the initial period (< 1 s)

of exponential decay, the system tends to settle in a steady state in which it

oscillates at frequencies close to the edges of the continuum; these oscillations

correspond to the so-called edge-modes, that were first seen numerically in

L07 and Gruzinov 2008 and were explained analytically in vH11 (chapter 3

in this thesis). The edge-modes were further observed in the simulations of

Gabler et al. (2011a) Colaiuda & Kokkotas (2011) and Gabler et al. (2011b).

In the past half-decade, two distinct computational strategies have been ap-

plied to the problem of calculating magnetar oscillations. (1) Several groups

employed general relativistic MHD grid codes to simulate the dynamics of

magnetized neutron stars. Sotani et al. 2007; Colaiuda et al. 2009 and

Cerdá-Durán et al. 2009 were able to reproduce continuum Alfvén modes

in the purely fluid stars with axisymmetric poloidal magnetic field, which

provided important benchmark tests for the ability of the codes to handle

complex MHD oscillations. Building on this, Gabler et al. (2011a), Colaiuda

& Kokkotas (2011) and Gabler et al. (2011b) included a crust in their neutron

star models and were thus able to study the coupled dynamics of the crust

and the core. (2) Our group (L07 and vHL11) and Lee (2008) decomposed the

motion of a magnetar into a set of basis functions and studied the dynamics

of the coefficients of these series expansion; we shall refer to this strategy as

the “spectral method”. This framework is able to handle both the dynamical

simulations and the stationary eigenmode problem; the latter reduces to solv-

ing the eigenvalue problem for a large matrix. L07 and vH11 chose the basis

functions so that the crustal motion is decomposed into the normal modes of

the free crust and the core motion is decomposed into the sum of core Alfvén

modes and a separate contribution of the core’s “dc” displacements in reac-

tion to the motion of the crust. We refer the reader to Sections 3.2 of L07

and 3.4.2 and 4.4.2 of this thesis for technical details. This choice of basis

functions casts the dynamics of magnetars as a problem of coupled harmonic
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4.1 Introduction

oscillators, in which the discrete modes of the crust are coupled to the Alfvén

modes in the core. The computations of vH11 have been performed using

Newtonian equations of motion and in the limit of a thin crust.

In this chapter we improve on the previous chapter in two ways: (1) We

adopt a realistic crust of finite thickness, threaded with a strong magnetic

field. (2) We employ fully relativistic equations governing the motion of axial

perturbations in the crust and the core. Our spectral method has several

practical and conceptual advantages: (1) it is numerically inexpensive, mak-

ing long simulations of the magnetar dynamics implemented on an ordinary

workstation possible. (2) It allows one to sample the stellar structure at high

spatial resolution. (3) It does not suffer from the problem of numerical viscos-

ity that occurs in some finite difference schemes (scaling with the grid size)

and it is able to handle arbitrary axisymmetric poloidal fields and not just

those that are the solutions of the Grad-Shafranov Equations1

The plan of this chapter is as follows. In section 4.2 we derive relativistic

equations describing the magnetic forces acting on axial perturbations inside

a neutron star with an axi-symmetric poloidal magnetic field. We construct

a coordinate system which has one of its axes parallel to the fieldlines. The

equations thus obtained will be discussed in later sections when we calcu-

late elasto-magnetic modes of the crust and when we calculate the Alfvén

continuum in the core.

In section 4.3.1 we introduce a formalism which allows us to calculate

general relativistic elasto-magnetic eigenmodes of the crust by expanding the

elasto-magnetic equations of motion in a set of basisfunctions. This reduces

the eigenmode problem of the crust to a matrix eigenvalue problem. In sec-

tions 4.3.2 and 4.3.3 we work out the relativistic equations describing the

magnetic and elastic restoring-force densities in the curved space-time of the

neutron star crust. In section 4.3.4 we apply these equations to the formalism

1The approach developed by Sotani et al (2007) and used in Colaiuda et al. (2009, 2011) casts

the MHD equations in the core into a particularly simple form. This transformation is possible if the

poloidal field is the solution of the Grad-Shafranov (GS) equation. There is, however, no compelling

reason why the GS equation should hold, since neutron stars feature very strong stable stratification

due to the radial gradients in proton-to-neutron ratios (Goldreich & Reisenegger 1992, Mastrano et

al., 2011)
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4. A spectral method for magnetar oscillations

of section 4.3.1 in order to find free crustal eigenmodes and -frequencies.

In section 4.4, we find the core continuum Alfvén modes in full general

relativity and we calculate their coupling to the crustal modes of section 4.3.

The magnetar model constructed in this way, qualitatively shows the same

features of the model in chapter 3, i.e. above the fundamental Alfvén fre-

quency of ∼ 20 Hz, the frequency domain is covered by the core continuum

which effectively acts to damp crustal motion. For particular choices of the

field configuration, the continuum may contain a number of gaps, generally

well below 200 Hz. These gaps give rise to the characteristic ‘edge-modes’

of chapter 3. Moreover, the crustal modes that reside inside gaps remain un-

damped. In appendix 4.A we revisit the problem of crustal mode damping due

to the presence of an Alfvén continuum, by analytically calculating damping

rates according to Fermi’s golden rule.

4.2 Relativistic MHD equations

Magnetic coordinates

We consider strongly sub-equipartition B � 1018 G magnetic fields, so that

the physical deformation of the star is very small and the space-time is

spherically-symmetric with respect to the star’s center. The metric can be

written in the standard Schwarzschild-type coordinates r, θ and φ. It is

natural, in analogy with the Newtonian treatments, to introduce the flux co-

ordinate system in which one of the axes is parallel to the magnetic field lines

(the precise meaning of this construction in relativity is described below). In

the axisymmetric poloidal field geometry the magnetic field lines are located

in planes of constant azimuthal angle φ, which allows us to define the two

‘magnetic’ coordinates χ(r, θ) and ψ(r, θ), such that the (covariant) vectors

eφ = ∂/∂φ and eχ = ∂/∂χ are orthogonal to eψ = ∂/∂ψ. In the flux coordi-

nate system the metric is given by

ds2 = −gttdt
2 + gχχdχ

2 + gψψdψ
2 (4.1)

+2gψχdχdψ + gφφdφ
2,
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4.2 Relativistic MHD equations

while the magnetic-field vector is given by

B = Bχeχ. (4.2)

Here B is the 4-vector whose components are given by

Bµ =
1

2
�µναβFαβvν , (4.3)

and vν is the 4-velocity vector which for the stationary star is given by vt =

gttvt =
√
−gtt, vi = 0. Clearly, gtt and gφφ are identical to the corresponding

Schwarzschild metric terms,

gtt = 1− 2m(r)

r
gφφ = r2 sin2 θ (4.4)

Maxwell’s equations

The evolution of the magnetic field is described by Maxwell’s equations. In

curved space-time these read

Fµν;λ + Fλµ;ν + Fνλ;µ = 0 (4.5)

In the ideal MHD limit, the electric field Eµ = vνFµν vanishes so that the only

contribution to the electromagnetic tensor comes from the magnetic field:

Fµν = −�µνλσv
λBσ (4.6)

After some manipulation, the relations (4.5) and (4.6) yield the MHD equa-

tions for the magnetic field:

(vµBν − vνBµ);µ = 0. (4.7)

This equation entails both magnetic induction, which describes the flux freez-

ing that characterizes magnetic fields in the ideal MHD approximation and

Gauss’ law for magnetic fields, i.e.
�
vµBt − vtBµ

�
;µ

= 0. For a static equil-

librium, i.e. vt =
√
−gtt and vi = 0 (where the index i runs over the spatial

indices), Gauss’ law can be expressed in the more familiar form

Bi
;i =

1
√
g

�√
gBi

�
,i
= 0 (4.8)
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4. A spectral method for magnetar oscillations

where g ≡ det (gij)/gtt. This expression provides the basis for a convenient

map between magnetic fields of Newtonian and relativistic stars. In the New-

tonian case, the flux coordinates χ and ψ are functions of r and θ; we keep

this functional form for the relativistic versions of χ and ψ. The expression

in Eq (4.8) is valid both in the curved space-time and in the flat Euclidean

space (with gij replaced by the Euclidean metric terms) of the Newtonian

star. We can therefore use Eq (4.8) to convert the values of the Euclidean

field, BE , to the correct values of the magnetic field in curved space-time, BS

(the subscript E stands again for Euclidean, S for Schwarzschild): Eq. (4.8)

gives
�√

gSBi
S

�
,i
=

�√
gEBi

E

�
,i
= 0. We thus obtain

Bχ
S =

√
gE√
gS

Bχ
E =

1
√
grr

Bχ
E (4.9)

which results in the relativistic poloidal magnetic field which is tangent to

the flux surfaces ψ = const and which satisfies the Gauss’ law. (In the fol-

lowing we will drop the subscript S.) In this work, for concreteness, we use

the Newtonian configuration of the magnetic field generated by a current loop

inside the neutron star (see discussion in section 3.4). Other Newtonian con-

figurations are readily mapped onto the relativistic configurations using the

procedure that is specified above.

Euler equations

The equations of motion are obtained by enforcing conservation of momen-

tum, i.e. by projecting the conservation of energy-momentum 4-vector on the

space normal to the 4-velocity vλ

hλµT
µν
;ν = 0 (4.10)

where the projection tensor hλµ is given by

hλµ = δλµ + vλvµ (4.11)

Tµν is the stress-energy tensor for a magnetized fluid in the ideal MHD ap-

proximation and can be expressed as

Tµν =

�
ρ+ P +

B2

4π

�
vµvν +

�
P +

B2

8π

�
gµν − BµBν

4π
(4.12)
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4.2 Relativistic MHD equations

Here, ρ and P are the mass-density and pressure and B2 = BµBµ is the square

of the magnetic field, where Bµ = 1
2�µνλσu

νF λσ is the covariant component

of the Lorentz invariant magnetic field 4-vector (�µνλσ is the four dimensional

Levi-Civita symbol and F λσ is the electromagnetic tensor). The equations of

motion become
�
ρ+ P +

B2

4π

�
vµ;νv

ν = hµλ
�
P +

B2

8π

�

;λ

+ hµσ

�
BσBλ

4π

�

;λ

(4.13)

Here we have used the relation vνvν = gµνvµvν = −1. Eq. (4.13) together

with equation (4.7) provides a full description of (incompressible) motion of

the magnetized fluid in a neutron star.

Perturbation equations

We are now ready to derive equations that describe the linearized motion of a

small Lagrangian fluid displacement ζµ about the static background equillib-

rium of the star. The perturbed components of the velocity and the magnetic

field 4-vectors, vµpert and Bµ
pert are

vµpert = vµ + δvµ = vµ +
∂ζµ

∂τ
Bµ

pert = Bµ + δBµ (4.14)

where the first terms on the right hand side denote the unperturbed equil-

librium quantities and the second terms on the right hand side denote the

Eulerian perturbations associated with the displacement ζµ. In our ‘mag-

netic’ coordinates the only non-zero component of the unperturbed magnetic

field is Bχ = B/
√
gχχ and because the equillibrium star is static and non-

rotating the only non-zero component of the 4-velocity is vt = 1/
√
−gtt.

Restricting ourselves to axi-symmetric torsional oscillations of the star, we

introduce a small incompressible axisymmetric displacements ζφ. This im-

plies that vµpert ;µ = δvµ;µ = δvt;t and that the perturbations in pressure δP

and mass-density δρ vanish. Technically, a full description of the linearized

motion of a neutron star would involve perturbations of the metric gµν , requir-

ing one to augment the above equations of motion with the perturbed Einstein

equations. However, since we’re considering incompressional axial oscillations

only, the metric perturbations are dominated by the current dipole moment.
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4. A spectral method for magnetar oscillations

One can show that this causes perturbations in the off-diagonal elements of

the metric tensor of order (δv)2, so that the metric perturbations can be safely

ignored (the so-called Cowling approximation). Taking these considerations

into account, we linearize Eq’s (4.13) and (4.7) and after some work we obtain

�
ρ+ P +

B2

4π

�
∂2ζφ

∂t2
=

�
gtt
gχχ

B

4πgφφ

∂

∂χ

�
gφφ

√
−gttδB

φ
�

(4.15)

and

δBφ =
B

√
gχχ

∂ζφ

∂χ
(4.16)

These equations can be combined into a single one. After restoring a factor

of c2, we find
�
ρ+

P

c2
+

B2

4πc2

�
∂2ξ

∂t2
=

�
gtt
gχχ

B

4πc2
√
gφφ

∂

∂χ

��
gtt
gχχ

gφφB
∂

∂χ

�
ξ

√
gφφ

��
(4.17)

where ξ =
√
gφφζφ is the physical displacement (in the φ-direction) in unit

length. This equation describes Alfvén waves, traveling along magnetic field

lines in the curved space-time of a magnetar. We checked that in the non-

relativistic limit Eq. (4.17) reduces to the correct expression for Alfvén waves

in self-gravitating magnetostatic equillibria (Poedts et al., 1985).

4.3 Modes of a magnetized crust in Gen-

eral Relativity

In this section we will describe a formalism that allows us to calculate rela-

tivistic eigenmodes and -frequencies of a neutron star crust of finite thickness

and realistic equation of state, threaded with an arbitrary magnetic field. By

considering a crust of finite thickness, we will obtain high frequency radial

harmonics that are not present in the crust model of chapter 3 but which

should be taken into account in view of the observed high frequency QPO’s.
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4.3 Modes of a magnetized crust in General Relativity

In the past several authors carried out theoretical analyses of torsional oscil-

lations of neutron stars with a magnetized crust. Piro (2005), Glampedakis

et al. (2006) and Steiner & Watts (2009) considered horizontal shear waves

in a plane-parallel crust threaded by a vertical magnetic field, whereas Sotani

et al. (2007 and 2008), Gabler et al. (2011a and 2011b) and Colaiuda &

Kokkotas (2011), performed grid-based simulations of spherical, relativistic

stars with dipole magnetic fields. Lee (2008) on the other hand, studied the

Newtonian dynamics of spherical magnetic neutron stars, by decomposing the

perturbed quantities into a set of basis functions and following the dynamics

of the expansion coefficients. In this section we follow a strategy which is

closely related to that of Lee (2008). We consider normal modes of the ‘free’

magnetized neutron star crust, i.e. in the absence of external forces. The idea

is to decompose the perturbed quantities into a set of orthogonal basis func-

tions. By substituting this expansion in the equation of motion, we obtain

equations for the evolution of the expansion coefficients. The solutions of the

crustal eigenmode problem, are in this way reduced to a matrix eigenvalue

problem. The hydromagnetic coupling of the crust normal modes to the core

Alfvén modes, will be discussed in section 4.4.

Formalism for finding crustal eigenmodes

In a magnetized and elastic crust, the motion of a small torsional Lagrangian

displacement away from equillibrium ξ̄(x, t) (we use the same notation as in

chapter 3; ξ̄ denote crustal displacements, ξ denote displacements in the core),

is restored both by elastic and magnetic forces,

∂2ξ̄

∂t2
= Lel(ξ̄) +Lmag(ξ̄) (4.18)

where Lel and Lmag are the accelerations due to the elastic and magnetic

forces acting on the displacement field. Expressions for Lel and Lmag are

given and discussed in the next sub-section. Augmented with no-tangential-

stress conditions δTrφ = δTrθ = 0 on the inner- and outer boundaries, this

equation describes the free oscillations of a magnetized neutron star crust.

Our procedure for solving Eq. (4.18) is as follows:
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4. A spectral method for magnetar oscillations

First, we decompose the crustal displacement field ξ̄(t,x) into an arbitrary

set of basis functions Ψi(x),

ξ̄(t,x) =
∞�

i=1

ai(t)Ψi(x). (4.19)

The functions Ψi form an orthonormal basis for a Hilbert space with inner

product

�η | ζ� =
�

V

w(x) η · ζ d3x (4.20)

where η and ζ are arbitrary functions defined in the volume V of the crust and

w(x) is a weight function. Orthonormality of Ψi(x) implies that �Ψi | Ψj� =
δij , where δij is the Kronecker delta. The coefficients ai of the expansion of

Eq. (4.19) are then simply ai(t) = �ξ̄(t,x) | Ψi(x)�.

The next step is to decompose the acceleration field of Eq. (4.18) into ba-

sis functions Ψi according to Eq. (4.19) and calculate the matrix elements

�∂2ξ̄/∂t2 | Ψj�. This yields equations of motion for ai(t):

äj = Mij ai, (4.21)

where the double dot denotes double differentiation with respect to time and

where

Mij = [�Lel(Ψi) | Ψj�+ �Lmag(Ψi) | Ψj�] ,

Clearly, a crustal eigenmode with frequency ωm (i.e. am,i ∝ eiωmt for all i), is

now simply an eigenvector of the matrix M with eigenvalue −ω2
m

− ω2
mam,j = Mij am,i. (4.22)

The index m is used to label the different solutions to the above equation. In

practical calculations, one truncates the series of Eq. (4.19) at a finite index

i = N , so that one obtains a total number of N eigensolutions. The eigenvalue

problem of Eq. (4.21) with finite (N ×N) matrix M can be solved by means

of standard linear algebra methods. Given a set of suitable basis functions,
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4.3 Modes of a magnetized crust in General Relativity

the eigenvectors and eigenvalues (or crustal eigenfrequencies) converge to the

correct solutions of Eq. (4.18) for sufficiently large N (see the discussion of

section 4.3.5).

Orthogonality relation for elasto-magnetic modes

In the limit of N → ∞, the elasto-magnetic eigenfunctions are

ξ̄m(x) =
�

i

am,iΨi(x), (4.23)

where we omitted the time-dependent part eiωmt, on both sides. The eigen-

functions ξ̄m will form a new basis for a Hilbert space of crustal displacements.

We can introduce an inner product �...|...�em in which this basis is orthogonal

as follows: Consider a deformation ξ̄(x, t) of the crust, decomposed into a

sum of eigenfunctions

ξ̄(x, t) =
�

m

bm(t)ξ̄m(x), (4.24)

where we incorporated the harmonic time dependence in the coefficients bm(t).

Since ξ̄m are the eigenmodes of the crust, the kinetic energy of the displace-

ment field K(ξ̄) must be equal to the sum of kinetic energies of the individual

modes K(bmξ̄m)

K
�
ξ̄(x, t)

�
=

�

m

K
�
bm(t)ξ̄m(x)

�
. (4.25)

How do we find the correct quadratic form for the kinetic energy? In the

static Schwarzschild space-time of the neutron star, the conjugate time-like

momentum pt = −E is a constant of geodesic motion (see e.g. Misner, Thorne

& Wheeler (1973), §25.2). In terms of the locally measured energy EL =
√
−gttpt, the conserved “redshifted” energy is E = −pt =

√
−gttEL. Similarly,

the kinetic energy K in terms of the locally measured kinetic energy KL is

K
�
ξ̄
�
=

√
−gttKL

�
ξ̄
�

=
1

2

�

V

√
−gttρ̃

����
∂ξ̄

∂τ

����
2

dṼ =
1

2

�

V

ρ̃√
−gtt

����
∂ξ̄

∂t

����
2

dṼ (4.26)

≡ 1

2
�∂ξ̄/∂t | ∂ξ̄/∂t�em
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4. A spectral method for magnetar oscillations

where ρ̃ =
�
ρ+ P/c2 +B2/4πc2

�
is the mass-density in a local Lorentz frame

and dṼ =
√
grrgφφgθθ dr dφ dθ is the locally measured space-like volume

element. By substituting this expression for the kinetic energy into Eq. (4.25),

one finds that the cross-terms, �∂ξ̄m/∂t | ∂ξ̄k/∂t�em = ωmωk�ξ̄m | ξ̄k�em with

m �= k, vanish. After normalizing the eigenfunctions ξ̄m, so that K(bmξ̄m) =

1/2ω2
mb2m, we obtain the orthogonality relation:

�ξ̄m | ξ̄k�em =

�

V

ρ̃√
−gtt

ξ̄m· ξ̄kdṼ = δmk. (4.27)

The coefficients bm(t) are now simply obtained by taking the inner product

between the displacement field ξ̄(x, t) and the eigenfunctions ξ̄m(x):

bm(t) = �ξ̄(x, t) | ξ̄m(x)�em. (4.28)

In the next two sections we give expressions for Lmag and Lel and we dis-

cuss our choice of basis functions Ψi and the resulting boundary forces (due

to the no-stress boundary conditions) at the end of section 4.3.2. In section

4.3.3 we set up a realistic model of the magnetar crust and we calculate the

corresponding elasto-magnetic modes in section 4.3.4, where we apply the for-

malism described above. In the remainder of this chapter, we focus solely on

axi-symmetric azimuthal displacement fields, i.e. ξ̄ = ξ̄ êφ (where êφ is the

unit vector in the azimuthal direction and ξ̄ is the displacement amplitude)

and ∂ξ̄/∂φ = 0.

4.3.1 Magnetic force density in the free crust

While the equations of section 4.2 hold at arbitrary locations in the star, we

will now consider magnetic forces acting on axi-symmetric, azimuthal pertur-

bations ξ̄(r, θ) = ξ̄(r, θ)êφ in the ‘free’ crust, i.e. a crust with no external

stresses acting on it. This implies that to Eq. (4.17) we have to add bound-

ary force terms arising from this no-external-stress condition. The tangential

forces per unit area on both boundaries are given by

Tmag(rin + �)− Tmag(rin − �) = Tmag(rin + �) (4.29)

Tmag(rout + �)− Tmag(rout − �) = −Tmag(rout − �)
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4.3 Modes of a magnetized crust in General Relativity

where Tmag(r) is the magnetic stress at r and � is an infinitesimal number.

Adding the boundary terms, we obtain

Lmag(ξ̄) =
�

gtt
gχχ

B

4πc2ρ̃
√
gφφ

∂

∂χ

��
gtt
gχχ

gφφB
∂

∂χ

�
ξ̄

√
gφφ

��
(4.30)

+
1

ρ̃
Tmag [δ(r − r0)− δ(r − r1)]

where the δ’s are Dirac delta functions. The magnetic stress Tmag is derived

by linearizing Eq. (4.12) and retaining first order terms. One obtains

Tmag =

√
gttgφφ
gχχ

cosα
B2

4π

∂

∂χ

�
ξ̄

√
gφφ

�
(4.31)

4.3.2 Relativistic equations for elastic forces

In the following we use relativistic equations describing the elastic force den-

sity acting on axial perturbations in the crust as derived by Schumaker &

Thorne (1983) (see also Karlovini & Samuelsson 2007), and presented in a

convenient form by Samuelsson & Andersson (2007, SA) (for more details on

the derivation of the following equations we refer the reader to these papers).

As shown in SA, the equation of motion for axial perturbations in a purely

elastic crust, i.e. ∂2ξ̄/∂t2 = Lel(ξ̄), can be solved by expanding the displace-

ment field ξ̄(r, θ,φ) into vector spherical harmonics ξ̄H,lm(θ,φ) ∝ r × ∇Y m
l

(where Y m
l is a spherical harmonic of degree l and order m) and corresponding

radial- and time-dependent parts ξ̄R(r) and fT (t) of the displacement field.

Rewriting Eq. (2) of SA gives

Lel

�
ξ̄
�
=

1

ρ̃

�
1

r3

�
gtt
grr

d

dr

��
gtt
grr

r4µ
d

dr

�
ξ̄R
r

��
(4.32)

−µgtt
(l − 1)(l + 2)

r2
ξ̄R

�
ξ̄H,lm fT

where the metric terms gtt and grr are the standard Schwarz-schild metric

terms and µ(r) is the (isotropic) shear modulus. The expansion of ξ̄ into
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4. A spectral method for magnetar oscillations

vector spherical harmonics, leads to a particularly simple stress-free boundary

condition for the radial function ξ̄R:

d

dr

�
ξ̄R
r

�
= 0 (4.33)

which is valid on the inner- and outer boundaries of the neutron star crust,

r = r0 and r = r1.

We are now ready to select our basis functions Ψi in order to solve Eq.

(4.18). It is convenient to seperate Ψi into angular and radial parts, i.e.

Ψi = ΨH,i ΨR,i. Although our particular choice of basis is technically arbi-

trary, in view of the above discussion a natural choice for the angular part

ΨH,i are vector spherical harmonics of order m = 0 and l = 2, 4, 6... etc. (we

consider axi-symmetric perturbations which are anti-symmetric with respect

to the equator),

ΨH,l(θ) =

�
4π

l(l + 1)

�
r ×∇Y 0

l

�
=

�
4π

l(l + 1)

dY 0
l

dθ
êφ (4.34)

which are orthonormal with respect to the following inner product:

�ΨH,l | ΨH,l’� =
� π

0
ΨH,l·ΨH,l’ sin θdθ = δll� (4.35)

One tempting choice for the radial function is to use the radial eigenmodes of

Eq. (4.33), ξ̄R,n, (where n is the number of radial nodes) as basis functions,

i.e. ΨR,n = ξ̄R,n. It turns out however, that the expansion of the elasto-

magnetic displacement field [see Eq. (4.19)] into elastic eigenfunctions is very

inefficient. We found that better convergence is realized with

ΨR,n(r) = r

�
2

r1 − r0
cos

�
πn(r − r0)

r1 − r0

�
for n=1, 2, ...

ΨR,n(r) = r

�
1

r1 − r0
for n=0 (4.36)

which obey Eq. (4.33), so that no extra boundary terms in Lel are needed

to preserve the stress-free condition. The basis functions of Eq. (4.36) are

orthonormal with respect to the following inner-product:

�ΨR,n | ΨR,n’� =
� r1

r0

ΨR,n ΨR,n’
1

r2
dr = δnn� (4.37)
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Combining Eq’s (4.34) and (4.37) gives us a series of basis functions that we

use in the next section to calculate elasto-magnetic modes of the crust

Ψln(r, θ) = ΨR,n(r) ΨH,l(θ) (4.38)

which are orthonormal

�Ψln | Ψl�n�� =
� r1

r0

� π

0

sin θ

r2
Ψln·Ψl�n� dθdr = δll�δnn� (4.39)

Note that the weight function w of Eq. (4.20) takes the form w(r, θ) =

sin θ/r2.

4.3.3 The neutron star model

We assume that our star is non-rotating and neglect deformations due to

magnetic pressure, which are expected to be small. Therefore, we adopt

a spherically symmetric background stellar model that is a solution of the

Tolman-Oppenheimer-Volkoff equation (TOV equation). We calculate the

hydrostatic equillibrium using a SLy equation of state (Douchin & Haensel,

2001; Haensel & Potekhin, 2004; Haensel, Potekhin & Yakovlev, 2007) (see

http://www.ioffe.ru/astro/NSG/NSEOS for a tabulated version). The model

that we use throughout this chapter has a mass of M∗ = 1.4 M⊙, a radius

R∗ = 1.16· 106 cm, a crust thickness ∆R = 7.9· 104 cm, a central density

ρc = 9.83· 1014 g cm−3 and cental pressure Pc = 1.36· 1035 dyn cm−2. The

crustal shear modulus µ is given by (Strohmayer et al., 1991)

µ =
0.1194

1 + 0.595(173/Γ)2
n(Ze)2

a
(4.40)

where n is the ion density, a = (3/4πn)1/3 is the average spacing between ions

and Γ = (Ze)2/akBT is the Coulomb coupling parameter. We evaluate µ in

the limit Γ → ∞.

To the spherical star we add a poloidal magnetic field, which we gener-

ate as follows: We start with an Euclidean (flat) space into which we place

a circular current loop of radius rcl = 0.55 R∗ and current I and calculate
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Figure 4.1: Shear velocity cs =
�
µ/ρ (solid line) versus Alfvén velocity cA =�

B2/4πρ for a poloidal field strength of 1015 G (dotted line). The dashed lines

are the radial components of the Alfvén velocity, cA,rad = cA cosα, evaluated at

(from left to right) θ = 69o, 79o and 89o. Closer to the poles (smaller θ), the

field becomes nearly radial and cA,rad ∼ cA. The cA-curve shown in this plot is

evaluated at the pole (θ = 0o), but varies negligibly as a function of θ.

the magnetic field generated by the loop (see e.g. Jackson, 1998). Then we

map this field onto the curved space-time of the neutron star, as discussed in

section 4.2. The field is singular near the current loop, however all the field

lines which connect to the crust (and thus are physically related to observ-

able oscillations) carry finite field values. This particular field configuration is

chosen as an example; there is an infinite number of ways to generate poloidal

field configurations. In figure 4.1 we plot resulting shear- and Alfvén velocities

in the crust as a function of radial coordinate r.

4.3.4 Results

We now use the formalism and equations of the previous sections to calculate

elasto-magnetic modes of the magnetar crust. We construct a basis from Nn

radial functions ΨR,n(r) (see Eq. (4.36)) with index n = 0, 1, ..., Nn − 1 and

Nl angular functions ΨH,l(θ) (see Eq. (4.34)) with even index l = 2, 4, ..., 2Nl.
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4.3 Modes of a magnetized crust in General Relativity

These functions provide a set of Nn ×Nl linearly independent basisfunctions

Ψln. Using this basis, we solve the matrix equation (4.22) and reconstruct

the normal modes according to Eq. (4.19).

Radial and horizontal cross-sections of a selection of eigenmodes are plot-

ted in figures 4.2 and 4.3 and table 4.1 contains a list of frequencies. These
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Figure 4.2: Radial profiles
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sual convenience.
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Figure 4.3: Elasto-magnetic

eigenmodes for Bp = 1015 G

(where Bp is field strength at

the magnetic pole), as a func-

tion of the polar angle θ, eval-

uated at the crust-core inter-

face. The n1 = 0 modes are

nearly unaffected by the mag-

netic field, whereas the n1 >

0 modes are affected strongly

by the magnetic field and are

confined to regions near the

equator.

results are based on a stellar model with a poloidal field strength of 1015

G at the magnetic pole. For the calculation we used Nn = 35 radial basis

functions and Nl = 35 angular basis functions. We labeled the modes with
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4. A spectral method for magnetar oscillations

integer indices n1 = 0, 1, 2... and l1 = 2, 4, 6, ..., where n1 is defined as the

number of nodes along the r-axis and l1 + 1 is the number of nodes along

the θ-axis (including the poles). Note that the index l1, in contrast to l, does

not signify a spherical harmonic degree since the angular dependence of the

elasto-magnetic modes differs from pure spherical harmonics. However, there

is a connection between the two indices: the elasto-magnetic mode of degree l1

and order n1, can be interpreted as the magnetically perturbed elastic mode

of the same order and (spherical harmonic-) degree. More precisely, if one

gradually increases the magnetic field strength, the n, l elastic mode trans-

forms into the elasto-magnetic mode of the same indices, n1 = n and l1 = l

(see fig. 4.6). It is interesting to note (see fig’s 4.6 and 4.3) that as the field

strength increases, modes with n1 > 0 become more and more confined to a

narrow region near the equator (a similar effect was recently observed in the

grid-based simulations of Gabler et al. 2011b). In the equatorial regions, the

horizontal field creates a magnetic tension-free cavity for modes with radial

nodes, which are reflected back towards the equator at higher lattitudes where

the field becomes more radial1. The n1 = 0 modes however, having no radial

nodes, are virtually insensitive to the magnetic field and are therefore not con-

fined to low lattitudes. The field strength-dependence of the eigenfrequencies,

illustrated in figure 4.5, is qualitatively similar to results obtained by other

authors (see Carroll et al., 1986; Piro, 2005; Sotani et al., 2007). As we in-

crease the field strength, we find that the increase in frequency δω for n1 = 0

modes scales weakly with B, i.e. δω ∝ B2. For modes with n1 > 0, δω ∝ B2

if B < 5· 1013 G and δω ∝ B if B > 5· 1013 G. As a test, we compared the

eigenfrequencies and eigenmodes for zero field, B = 0 G, to those obtained by

a direct integration of the elastic equation of motion (Eq. 4.33).2 We find that

both frequencies and wavefunctions obtained by the series expansion-method

1A similar effect is well-known from the study of waveguides: as the waveguide gets narrower

(i.e. as its transverse frequency increases), the propagating wave may become evanescent in the

longitudinal direction and be reflected
2The latter works as follows: One starts by assuming harmonic time depence for the displace-

ment ξ̄, so that Lel(ξ̄) = −ω2ξ̄. Dropping the angular- and time-dependent parts of ξ̄ on both sides

of the equation, one is left with an equation for ξ̄R, which is integrated from the bottom of the crust,

with corresponding boundary condition, to the surface. This is repeated for different ω until the

surface boundary condition is satisfied; one has found an eigenmode. By repeating this procedure

with gradually increasing ω, one obtains a series of eigenmodes and -frequencies.
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4.3 Modes of a magnetized crust in General Relativity

mode indices elastic modes elasto-magnetic modes

(B = 0 G) (B = 1015 G)

n1 = 0, l1 = 2 27.42 Hz 27.61 Hz

n1 = 0, l1 = 4 58.16 Hz 59.14 Hz

n1 = 0, l1 = 6 86.69 Hz 88.13 Hz

n1 = 0, l1 = 8 114.7 Hz 116.5 Hz

n1 = 1, l1 = 2 895.9 Hz 954.1 Hz

n1 = 1, l1 = 4 897.4 Hz 985.7 Hz

n1 = 1, l1 = 6 899.7 Hz 1001.4 Hz

n1 = 1, l1 = 8 902.8 Hz 1003.4 Hz

n1 = 2, l1 = 2 1474.6 Hz 1607.1 Hz

n1 = 2, l1 = 4 1475.7 Hz 1664.4 Hz

n1 = 2, l1 = 6 1477.5 Hz 1708.1 Hz

n1 = 2, l1 = 8 1479.9 Hz 1740.4 Hz

Table 4.1: The eigenfrequencies of the non-magnetic crust (second column) versus

the eigenfrequencies of the magnetized crust (third column), with a magnetic field

of 1015 G at the polar surface. The elasto-magnetic frequencies were calculated

using a basis of 35× 35 basisfunctions Ψln.

converge rapidly1 to the real values, obtained by integration of Eq. (4.33).

E.g. for Nn = 10, n1 = 0 elastic frequencies have a typical error of 0.02%,

while frequencies for modes n1 < 4 are well within 1% accuracy. In figure 4.4

we plot elastic eigenfunctions, obtained by both methods. The solutions from

the series-expansion method with Nn = 10 radial basis functions are nearly

indistinguishable from the solutions obtained by direct integration.

For the full elasto-magnetic equation of motion, Eq. (4.18) with a mag-

netic field strength of 1015 G at the pole, we tested the convergence of resulting

eigenfrequencies by increasing the number of basis functions Nn and Nl (see

figure 4.7). We find that, compared to the non-magnetic case, a significant

number Nn of radial functions and Nl angular functions is required to get

acceptable convergence to stable results. The large number of required radial

1Note that in the purely elastic case, l is a good quantum number and the angular basis functions

Ψ
H,l(θ) are already solutions to the elastic eigenmode equation. Therefore, for a given l1 = l only

the series with the radial basis-functions needs to be considered.
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basis functions can be understood from the fact that the magnetic acceler-

ation LB (Eq. (4.31)) contains delta-functions, arising from the boundary

terms. Obviously, one needs many radial basis functions to obtain an accept-

able sampling of these singular boundary terms. The number of computa-

tional operations however, is a steep function of the number of basis functions

(approximately ∝ (Nl × Nn)3), so that computations with large Nl and Nn

(> 30 − 40) can become unpractical on ordinary workstations. Although

this limits the number of basisfunctions in our calculations, we find that for

Nl, Nn ∼ 35, the scatter in frequencies is typically � 1% for most modes

(figure 4.7) and the eigenfunctions ξ̄m reproduce the orthogonality relation of

Eq. (4.27) with good precision.

4.4 Core continuum and the coupling be-

tween crust and core

4.4.1 The continuum

The equation of motion is in this case simply the Alfvén wave equation:

∂2ξ(ψ,χ)

∂t2
= Lmag [ξ(ψ,χ)] , (4.41)
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where t denotes the Schwarzschild time-coordinate. The operator Lmag is

given in Eq. (4.17), which we repeat here for convenience

Lmag [ξ(ψ,χ)] =
1

ρ̃c2

�
gtt
gχχ

B

4π
√
gφφ

∂

∂χ

��
gtt
gχχ

gφφB
∂

∂χ

�
ξ

√
gφφ

��
(4.42)

Here gtt, gχχ and gφφ are the metric terms corresponding to the system of

coordinates defined in section 4.2.

For determining the spectrum of the core continuum, the appropriate

boundary conditions are ξ(χ = χc) = 0, where χc(φ) marks the location

of the crust-core interface. The full significance of this boundary condition

will become apparent later in this section when we develop the analysis for the
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Figure 4.7: Demonstration of convergence for elasto-magnetic frequencies for

low-order, low-degree modes as a function of Nn and Nl, where we took Nn = Nl.

The actual number of basisfunctions, N = Nn×Nl, is the square of the value along

the x-axis.

crust-core interaction; see also section 3.4.2. With this boundary condition,

Equation (4.41) constitutes a Sturm-Liouville problem on each separate flux

surface ψ. Using the stellar structure model and magnetic field configuration

described in section 4.3.3, we can calculate the eigenfunctions and eigenfre-

quencies for each flux surface ψ. The reflection symmetry of the stellar model

and the magnetic field with respect to the equatorial plane assures that the

eigenfunctions of equation (4.41) are either symmetric or anti-symmetric with

respect to the equatorial plane. We can therefore determine the eigenfunc-

tions by integrating equation (4.41) along the magnetic field lines from the

equatorial plane χ = 0 to the crust-core interface χ = χc (ψ). Let us consider

the odd modes here for which ξ (0) = 0 and solve equation (4.41) with the

boundary condition ξ (χc) = 0 at the crust-core interface; for even modes, the

boundary condition is dξ (0) /dχ = 0. We find the eigenfunctions by means

of a shooting method; using fourth order Runge-Kutta integration we inte-

grate from χ = 0 to χ = χc. The correct eigenvalues σn and eigenfunctions

ξn (χ) are found by changing the value of σ until the boundary condition at
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4.4 Core continuum and the coupling between crust and core

ξn is satisfied. In this way we gradually increase the value of σ until the

desired number of harmonics is obtained. In figure 4.8 we show a typical re-

sulting core-continuum. The continuum is piece-wise and covers the domains

σ = [41.8, 67.5] Hz and σ = [91.4,∞) Hz. Gaps, such as the one between 67.5

Hz and 91.4 Hz in fig. 4.8, are a characteristic feature for the type of poloidal

field that we employ in this chapter and typically occur at low frequencies

(i.e. σ < 150 Hz). As we discuss in section 4.4.3, they may give rise to strong

low frequency QPOs; see also vHL11 (section 3.4) and Colaiuda & Kokkotas

2011. According to Sturm-Liouville theory the normalized eigenfunctions ξn

of equation (4.41) form an orthonormal basis with respect to the following

inner product:

�ξm, ξn� =
� χc

0
r (χ) ξm (χ) ξn (χ) dχ = δm,n (4.43)

Where δm,n is the Kronecker delta. Noting that the operator Lmag(ξ) is in

Sturm-Liouville form, one reads off the weight-function r(χ):

r =

�
gχχ
gtt

4πρ̃

Bχ
. (4.44)

We have checked that the solutions ξn(χ) satisfy the orthogonality relations.

4.4.2 Equations of motion for the coupled crust and

core

We are now ready to compute the coupled crust-core motion. In contrast to

L07 and vHL11 (chapter 3), where the crust was assumed to be an infinitely

thin spherical elastic shell, we shall here adopt a crust of finite thickness with

realistic structure. We label the lattitudinal location by the flux surface ψ

intersecting the crust-core interface and consider the crustal axisymmetric

displacements ξ̄φ(ψ, r), where r is the radial Schwarzschild-coordinate. In

the MHD approximation, the magnetic stresses enforce a no-slip boundary

condition at the crust-core interface (at r = r0 in the Schwarzschild coor-

dinates of the crust, or χc in the flux-coordinates of the core), such that
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Figure 4.8: The curves show the Alfvén frequencies σn as a function of the angle

θ(ψ), the polar angle at which the flux surface ψ intersects the crust. Since we

are only considering odd crustal modes, the only Alfvén modes that couple to the

motion of the star are the ones with an odd harmonic number n. This particular

continuum was calculated using a poloidal field with a surface value of B = 1015 G

at the poles.

ξ (ψ,χc) = ξ̄ (θ(ψ), r0) instead of ξ (ψ,χc) = 0. It is useful to make the fol-

lowing substitution

ζ (ψ,χ) ≡ ξ (ψ,χ)− ξ̄ (θ(ψ), r0)w (ψ,χ) (4.45)

where we choose the function w (ψ,χ) so that (1) it corresponds to the static

displacement in the core and hence satisfies Lmag (w (ψ,χ)) = 0 and (2)

w (ψ,χc) = 1. From the definition of the operator F it follows that for the

odd modes

w (ψ,χ) =
√
gφφ

� χ

0

�
gχχ
gtt

K (ψ)

gφφB (ψ,χ�)
dχ� (4.46)

Here the constant K (ψ) is chosen such that w (ψ,χc) = 1. The new quantity

ζ from Eq. (4.45) now satisfies the boundary condition ζ (ψ,χc) = 0 and can

be expanded into the Alfvén normal modes ξn which satisfy the same bound-

ary conditions.

We now proceed by substituting equation (4.45) into equation (4.41) thus
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obtaining a simple equation of motion for ζ

∂2ζ (ψ,χ)

∂t2
− Lmag (ζ (ψ,χ)) = −w (ψ,χ)

∂2ξ̄ (θ(ψ), r0)

∂t2
(4.47)

We expand ζ and w into a series of ξn’s:

ζ (ψ,χ, t) =
�

n

an (ψ, t) ξn (ψ,χ) (4.48)

w (ψ,χ) =
�

n

cn (ψ) ξn (ψ,χ) . (4.49)

Using these expansions, equation (4.47) reduces to the following equations of

motion for the eigenmode amplitudes an

∂2an (ψ)

∂t2
+ σ2

n (ψ) an (ψ) = −cn (ψ)
∂2ξ̄(ψ, r0)

∂t2
(4.50)

These equations show how the core Alfvén modes are driven by the motion

of the crust. To close the system, we must address the motion of the crust

driven by the hydromagnetic pull from the core:

∂2ξ̄

∂t2
= Lcrust

�
ξ̄
�
− 1

ρ̃

�
gtt
gχχ

√
gφφB2

4πc2
cosα

∂

∂χ

�
ξ

√
gφφ

��
δ(r − r0) (4.51)

The expression between the square brackets is the hydro-magnetic stress from

stellar core acting on the crust, α is the angle between the magnetic field line

and the radial coordinate of the star and Lcrust
�
ξ̄
�
= Lmag

�
ξ̄
�
+Lel

�
ξ̄
�
is the

acceleration of the crustal displacement due to magnetic- and elastic stress

(see section 4.3). We can rewrite this in terms of the coefficients, using Eq.

(4.45), the definition of w and the expansions and orthogonality relations of

Eq’s (4.27) and (4.29), as:

∂2bj
∂t2

+ Ω2
jbj = −

� π

0

√
grrgtt
gχχ

B2

2c2
cosα

�
�

n

an
∂ξn
∂χ

+ (4.52)

�
gχχ
gtt

K

B
√
gφφ

�

i

biξ̄i

�
ξ̄j

�����
r=r0

r20 sin θdθ

where the coefficients bj(t) are crustal mode amplitudes defined in Eq’s (4.24)

and (4.29). Up to this point the derived equations of motion for the crust
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and the fluid core are exact. Note that, as a consequence of the crust-core

coupling, equation (4.53) describing the evolution of bj(t) contains a term

proportional to bj on the right hand side. This term enters due to the static

fluid displacement wξ̄ corresponding to the j-th crustal mode and effectively

loads this mode with tension. The ‘tension-loaded’ frequency Ω̃j of the j-

th crustal mode is obtained by moving the term proportional to bj to the

left-hand side of Eq. (4.53)

Ω̃2
j = Ω2

j +

� π

0

�
grr
gχχ

BK

2c2
cosα ξ̄2j r

����
r=r0

dθ (4.53)

In the appendix we use these ‘tension-loaded’ frequencies to calculate theo-

retical damping rates of crustal modes.

We are now ready to discretize the continuum by converting the integral of

equation (4.51) into a sum over N points θi. In order to avoid the effect of

phase coherence (see section 4.3) which caused drifts in the results of L07,

we sample the continuum randomly over the θ-interval [0,π/2]. In the follow-

ing, functional dependence of the coordinate ψ or θ (ψ) is substituted by the

discrete index i which denotes the i-th flux surface.

∂2bj
∂t2

+ Ω2
jbj = −

�

i

√
grr,igtt,i
gχχ,i

B2
i

2c2
cosαi




�

n,i

an,i
∂ξn,i
∂χ

+ (4.54)

�
gχχ,i
gtt,i

Ki

Bi
√
gφφ,i

�

m

bmξ̄m,i

�
ξ̄j,i

�����
r=r0

r20 sin θi∆θi

∂2ank
∂t2

+ σ2
nkank = −cnk

�

j

∂2bj
∂t2

ξ̄j,k (4.55)

These are the equations that fully describe dynamics of our magnetar model.

As with the toy model from section 3.2 we integrate them using a second

order leap-frog scheme which conserves the total energy to high precision. As

a test we keep track of the total energy of the system during the simulations.

Further we have checked our results by integrating equations (4.55) and (4.55)
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4.4 Core continuum and the coupling between crust and core

with the fourth-order Runge-Kutta scheme for several runs and found good

agreement with the leap-frog integration.

4.4.3 Results

Based on the results of chapter 3, we expect the following dynamical char-

acteristics to occur; (1) Crustal modes with frequencies that are inside the

continuum should undergo resonant absorption, i.e. if such a mode couples

efficiently to continuum Alfvén modes of the core with similar frequencies,

its motion will be damped on rather short time-scales. In appendix 4.A we

analytically investigate the efficiency of this coupling and the resulting damp-

ing time scales. (2) Late-time behavior of the system will show oscillations

near the edges of the continuum; the edge modes. (3) Gaps, as present in

the continuum of fig. 4.8 will give rise two types of QPOs. First, crustal

modes which are inside these gaps will remain undamped, although slightly

shifted in frequency due to the interaction with the continuum.1 Second, edge

modes near the edges of the gaps may occur. All of these characteristics were

observed in simulations of chapter 3 and we expect them to occur in this work.

We consider 16 crustal modes, i.e. (n, l) = (0, 2), (0, 4), (0, 6), (0, 8),

(0, 10), (0, 12), (0, 14), (0, 16), (0, 18), (0, 20), (1, 2), (1, 4), (1, 6), (1, 8), (1, 10)

and (1, 12). We couple these crustal modes to 9000 continuum oscillators, i.e.

300 different flux surfaces, each with 30 Alfvén overtones. We start the simu-

lation by initializing the crustal mode amplitudes bj = 1 for all crustal modes,

while keeping the continuum oscillators relaxed (ani = 0). We evolve the sys-

tem for 52s in time.

In table 4.2 we list the ‘free’ crustal frequencies Ω and ‘tension-loaded’ fre-

quencies Ω̃ for the 16 modes considered in our simulation. The last column

of table 4.2 contains the corresponding theoretically calculated damping rates

(see appendix). In figure 4.9 we show the power spectrum which was calcu-

lated using the data of the last 26 s of the simulation.

1The presence of ‘gap modes’ like the ones found in section 3.4, was recently confirmed by

Colaiuda & Kokkotats, 2011.
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Figure 4.9: Power spectrum of the crustal motion. The zoomed in version in the

right panel shows the location of the core-continuum.

-2e-07

-1.5e-07

-1e-07

-5e-08

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

am
pl

itu
de

time (s)

Figure 4.10: Displacement

of the l1 = 2, n1 = 1

mode. The theoretically cal-

culated damping time is τd =

5.8· 10−3 s. Note the tran-

sient increase in the mode

amplitude. This is due to

the initial Alfvén wave train,

which is reflected at the equa-

tor.

130
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mode indices crustal tension-loaded damping

frequencies frequencies time

Ω Ω̃ τd
n1 = 0, l1 = 2 27.61 Hz 71.10 Hz ∞ ms

n1 = 0, l1 = 4 59.14 Hz 86.49 Hz ∞ ms

n1 = 0, l1 = 6 88.13 Hz 107.6 Hz 6.2 ms

n1 = 0, l1 = 8 116.5 Hz 131.6 Hz 0.47 ms

n1 = 0, l1 = 10 144.7 Hz 157.0 Hz 0.53 ms

n1 = 0, l1 = 12 172.7 Hz 183.0 Hz 287 ms

n1 = 0, l1 = 14 200.6 Hz 209.5 Hz 0.67 ms

n1 = 0, l1 = 16 228.5 Hz 236.3 Hz 1.3 ms

n1 = 0, l1 = 18 256.3 Hz 263.3 Hz 0.97 ms

n1 = 0, l1 = 20 284.1 Hz 290.4 Hz 0.83 ms

n1 = 1, l1 = 2 954.1 Hz 955.0 Hz 5.8 ms

n1 = 1, l1 = 4 985.7 Hz 986.7 Hz 11.4 ms

n1 = 1, l1 = 6 1001.4 Hz 1002.4 Hz 1.4 ms

n1 = 1, l1 = 8 1003.4 Hz 1004.5 Hz 3.3 ms

n1 = 1, l1 = 10 1006.5 Hz 1007.5 Hz 2.7 ms

n1 = 1, l1 = 12 1010.5 Hz 1011.6 Hz 2.5 ms

Table 4.2: Frequencies of the ‘free’ crustal modes Ω (2nd column) and ‘tension-

loaded’ frequencies Ω̃ due to the crust-core coupling (3rd column; see Eq. (4.53)).

The resonant damping time-scales τd (see appendix), are given in the 4th col-

umn. The n1 = 0, l1 = 2, 4 modes are shifted into the ‘gap’ (in the interval

σ = [67.5, 91.4] Hz) and are therefore undamped. The long damping time of the

n1 = 0, l1 = 12 crustal mode is due to the fact that the only resonant Alfvén layer

coincides nearly with a crustal node.
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4.5 Discussion

In this chapter we have laid out the spectral formalism for computation of

general-relativistic torsional magnetar oscillations. This method is efficient;

a typical simulation of 50 seconds of the magnetar dynamics (i.e., up to tens

of thousands of the oscillatory periods) takes only a few hours or an ordinary

workstation. The second-order symplectic leap-frog scheme ensures that the

energy of the system is conserved with very high accuracy. Our simulations

allow us to investigate which of the oscillatory behavior is long-lived enough

(∼ 100 s) to be relevant to the observations of QPOs in the tails of giant SGR

flares (Israel et al. 2005, Strohmayer & Watts 2006).

The results from the simulations in this chapter are qualitatively in agree-

ment with earlier results in chapter 3. In particular the presence of undamped

crustal motion in gaps of the Alfvén continuum was obtained both analyti-

cally and in our numerical simulations, in contrast to recent results by Gabler

et al. (2011b), where the authors report in some detail the strong damping of

an elastic crustal mode inside a gap. We argue that this discrepancy might be

due to the fact that Gabler et al., while considering stronger magnetic fields,

couple the entire core mass, including the neutrons to the Alfvén modes. As

a result the effective mass of the Alfvén modes is a factor of ∼ 20−40 greater

than ours, imposing a frequency shift on the crustal mode which may well

push it out of the gap.

One of the puzzling features of the observations are several high-frequency

QPOs above 600 Hz (Watts & Strohmayer 2006). The thin-crust models of

vH11 had strongly suggested that crustal modes of such high frequency should

be subject to the strong resonant absorption in the core, even if the core’s

Alfvén modes do not form a mathematical continuum1. In accordance with

results of Gabler et al. (2011b), we found that some crustal modes are confined

to the regions in the crust where the magnetic field is nearly horizontal. Be-

cause of this, the coupling to the Alfvén modes in the core is reduced relative

to the coupling strength estimated in chapter 3, however, the coupling is still

1This is because the frequencies of even discrete Alfvén modes form a grid, whose characteristic

spacing is much less than 600 Hz. At such high frequencies, the grid acts dynamically as a continuum.

See vH11 for a more detailed discussion
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large enough for the mode energy to be drained on a time-scale small com-

pared to the observed QPOs (τd � 100 s). Thus it is still hard to understand

the high frequency QPOs (> 600 Hz) in terms of axial oscillations of the star.

An interesting alternative might be to consider polar Alfvén oscillations. The

polar oscillations studied by Sotani & Kokkotas (2009) form a discrete set

of modes with frequencies of several hundreds of Hz and may be interesting

candidates for high frequency QPOs if their coupling to other Alfvén modes

turns out to be weak.
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Appendix 4.A: Damped modes

Now we explore the phenomenon of resonant absorption which occurs in a sys-

tem where a harmonic oscillator is coupled to a continuum of oscillators. Our

aim is to find an analytic estimate for the rate at which the energy of such

an oscillator is transferred to the continuum. The objective of this section

and the method that we follow, are analogous to a derivation of the quantum

mechanical Fermi’s Golden Rule, which gives the transition rate from one

quantum mechanical eigenstate into a continuum of states.

Consider the coupled crust-core dynamics of section 4.4. The forced motion

of the core Alfvén modes due to the acceleration of the crust, is

än(ψ) + σ2
n(ψ)an(ψ) = −cn(ψ)

¨̄ξ(ψ, r0) (4.56)

where an(ψ) is the displacement of the n-th core Alfvén harmonic on the

flux-surface ψ with frequency σn,
¨̄ξ(ψ, r0) is the acceleration of the crust

at the location where the flux surface ψ intersects the crust and cn(ψ) =

�w(ψ,χ), ξn� is a coupling constant (see Eq. (4.49)). Suppose that we keep the

system initially fixed in a position where the crust is displaced with amplitude

bm,0 according to the m-th eigenmode, i.e. ξ̄ = bm,0ξ̄m and the continuum

oscillators are relaxed; an(ψ) = 0. At time t = 0 we release the crust which

starts oscillating at frequency Ω̃m. Suppose that the damping timescale τd,m
of the crustal mode is much larger than its period τm = 2π/Ω̃m, then the

crust oscillates at roughly constant amplitude, i.e. bm(t) ≈ bm,0 cos Ω̃mt. This

motion forces the Alfvén oscillators according to

än(ψ) + σ2
n(ψ)an(ψ) = cn(ψ) Ω̃

2
mbm,0 ξ̄m(ψ, r0) cos Ω̃mt (4.57)

One can solve the time-evolution of the oscillator an(t) using standard tech-

niques (see e.g. Landau & Lifshitz, Mechanics §22). After a time t the energy

per flux surface En(ψ) = 1/2(ȧ2n + σ2
na

2
n) absorbed by the oscillator is

En(ψ, t) =
1

2
c2n(ψ) Ω̃

4
mb2m,0 ξ̄2m(ψ, r0)

����
� t

0
cos Ω̃mt�e−iσnt�dt�

����
2

(4.58)

It is easy to verify that at late times the term between the vertical brackets

in Eq. (4.58) becomes narrowly peaked around σn = Ω̃m, so that the bulk
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of energy is transported to oscillators which are in (near) resonance with the

crust. The average rate of energy (per flux surface) transfer �Ėn(ψ, t)� from

the crust to the to the flux surface ψ at time t is En(ψ, t)/t. For sufficiently

large t one finds

�Ėn(ψ, t)� ≈
π

4
c2n(ψ) Ω̃

4
mb2m,0 ξ̄2m(ψ, r0)δ(Ω̃m − σn) (4.59)

where δ(Ω̃m − σn) is a Dirac delta function. This expression is exact in the

limit of t → ∞. The total rate of energy transfer Ė from the crust to the

Alfvén continuum is then obtained simply by integrating Eq. (4.59) over ψ

and summing over all n

Ė =
�

n

� ψmax

ψmin

�Ėn(ψ)�dψ =
�

n,k

π

4
c2n(ψk) Ω̃

4
mb2m,0 ξ̄2m(ψk, r0)

dψ

dσn

����
ψ=ψk

(4.60)

here ψk denotes flux surfaces that are in resonance with the crustal motion,

σn(ψk) = Ω̃m. Since for a given n, the crustal mode may be in resonance

with Alfvén modes in several flux surfaces ψk, the total energy transfer is

obtained by summing over the index k. Eq. (4.60), which is the analog of the

quantum physics’ Fermi’s Golden Rule, leads to a simple expression for the

energy damping timescale τE,m (= 1/2 τd,m) of the crustal mode

τE,m ∼ E(t = 0)

Ė
=




�

n,k

π

2
Ω̃2
mc2n(ψk)ξ̄

2
m

dψ

dσn

����
ψ=ψk




−1

(4.61)

where E(t = 0) = 1/2Ω̃2
mb2m,0 is the initial energy of the m-th crustal mode.

Using numerical simulations, we verified the correctness of Eq. (4.61). Even

for very short damping times, i.e. τd = 2τE ∼ 2π/Ω̃m, Eq. (4.61) proves

remarkably accurate.
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