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Chapter 3

The strongly coupled

dynamics of crust and core

Based on:

Magnetar oscillations I: the strongly coupled dynamics of the crust and the core

Maarten van Hoven & Yuri Levin, 2011, published in MNRAS
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3. The strongly coupled dynamics of crust and core

Abstract

Quasi-Periodic Oscillations (QPOs) observed at the tail end of Soft Gamma

Repeaters giant flares are commonly interpreted as the torsional oscillations

of magnetars. From a theoretical perspective, the oscillatory motion is in-

fluenced by the strong interaction between the shear modes of the crust and

magnetohydrodynamic Alfvén-like modes in the core. We study the dynam-

ics which arises through this interaction and present several new results: (1)

We show that discrete edge modes frequently reside near the edges of the core

Alfvén continuum, and explain using simple models why these are generic and

long-lived. (2) We compute the magnetar’s oscillatory motion for realistic ax-

isymmetric magnetic field configurations and core density profiles, but with

a simplified model of the elastic crust. We show that one may generically

get multiple gaps in the Alfvén continuum. One obtains strong discrete gap

modes if the crustal frequencies belong to the gaps; the resulting frequencies

do not coincide with, but are in some cases close to the crustal frequencies.

(3) We deal with the issue of tangled magnetic fields in the core by develop-

ing a phenomenological model to quantify the tangling. We show that field

tangling enhances the role of the core discrete Alfvén modes and reduces the

role of the core Alfvén continuum in the overall oscillatory dynamics of the

magnetar. (4) We demonstrate that the system displays transient QPOs when

parts of the spectrum of the core Alfvén modes contain discrete modes which

are densely and regularly spaced in frequency. The transient QPOs are the

strongest when they are located near the frequencies of the crustal modes.

(5) We show that if the neutrons are coupled into the core Alfvén motion,

then the post-flare crustal motion is strongly damped and has a very weak

amplitude. We thus argue that magnetar QPOs give evidence that the pro-

ton and neutron components in the core are dynamically decoupled and that

at least one of them is a quantum fluid. (6) We show that it is difficult to

identify the high-frequency 625 Hz QPO as being due to the physical oscilla-

tory mode of the magnetar, if the latter’s fluid core consists of the standard

proton-neutron-electron mixture and is magnetised to the same extent as the

crust.
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3.1 Introduction

3.1 Introduction

Since the discovery of quasi periodic oscillations (QPOs) in the lightcurves of

giant flares from soft gamma repeaters (SGR) (Israel et al., 2005; Strohmayer

& Watts, 2005; Watts & Strohmayer, 2006; Barat et al., 1983) there has been

considerable interest in their physical origin. One of the appealing explana-

tions is that the QPOs are driven by torsional oscillations1 of the neutron

stars whose magnetic energy powers the flares (Duncan 1998). This opens a

unique possibility to perform an asteroseismological analysis of neutron stars

and possibly obtain a new observational window to study the neutron-star in-

teriors. Many authors have considered torsional modes to be confined to the

magnetar crust and have shown that seismological information about such

modes would strongly constrain the physics of the crust (Piro 2005, Watts

& Strohmayer 2006, Watts & Reddy 2007, Samuelsson & Andersson 2007,

Steiner & Watts 2009). However, it was quickly understood that the theo-

retical analysis of magnetar oscillations is complicated by the presence of an

ultra-strong magnetic field (B ∼ 1014 − 1015 G) that is frozen into the neu-

tron star and penetrates both the crust and the core. The field provides a

channel for an intense hydro-magnetic interaction between the motion of the

crust and the core, which becomes effective on the timescale of � 1 second

(Levin 2006). Since the QPOs are observed for hundreds of seconds after the

flare, it is clear that the coupled motion of the crust and the core must be

considered. In recent years, significant theoretical effort has gone into the

study of this problem (e.g., Glampedakis et al. 2006, Levin 2007, Gruzinov

2008b, Lee 2008). This chapter’s analysis is based, in part, on an approach of

Levin (2007, L07).

To make progress in computing the coupled crust-core motion, L07 has

studied the time evolution of an axisymmetric toroidal displacement of a star

with axisymmetric poloidal magnetic field. In that case the Alfvén-type mo-

tions on different flux surfaces decouple from each other, a well-known fact

from previous MHD studies (for a review see Goedbloed & Poedts 2004, here-

1By torsional oscillations we mean those which are nearly incompressible. Modes with com-

pression have strong restoring forces and feature much higher frequencies than most of the observed

QPOs.
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3. The strongly coupled dynamics of crust and core

after GP). One can then formulate the full dynamics of the system in terms of

discrete modes of the crust which are coupled to a continuum of Alfvén modes

in the core. L07 demonstrated that (1) the global modes with frequencies in-

side the continuum are strongly damped via a phenomenon known in MHD

as resonant absorption (see GP) and (2) in many cases, asymptotically the

system tends to oscillate with the frequencies close to the continuum edges.

This result was later confirmed by Gruzinov 2008b, who has used a powerful

analytical technique to solve the L07’s normal-mode problem (Gruzinov noted

that the resonant absorption is mathematically equivalent to Landau damp-

ing). Oscillations near the continuum edge frequencies were also observed in a

number of numerical general-relativistic MHD simulations of purely fluid stars

(Sotani et al. 2008, Colaiuda et al. 2009, Cerdá-Durán et al. 2009). Apart from

finding QPOs near the continuum edges, L07’s dynamical simulations identi-

fied transient QPOs with drifting frequencies; these were transiently amplified

near the crustal frequencies. No explanation for the origin of the drifts was

given.

In this chapter, we extend the previous analyses of the hydro-magnetic crust-

core coupling in an essential way. In section 3.2, we re-analyse L07’s toy model

of a single oscillator coupled to a continuum and we show that this system

generically contains the edge normal modes with frequencies near the contin-

uum edges. We show that these modes dominate the late-time dynamics of

the system, and develop a formalism which allows one to predict analytically

the edge mode’s amplitude from the initial data. We then explore the effect

of viscosity on the system (introduced as a friction between the neighboring

continuum oscillators) and show that the edge mode is longer lived than all

other motions of the system. We also provide a non-trivial analytical formula

for the time dependence of the overall energy dissipation.

In section 3.3, we describe how transient QPOs, not associated with the

normal modes of the system, are obtained when parts of the core spectrum

consist of densely and regularly spaced discrete modes (and in section 3.5 we

show that such an array of discrete modes is expected when the magnetic field

in the core is not perfectly axisymmetric but has some degree of tangling).
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3.1 Introduction

As a by-product of our analysis, we explain the origin of the QPO frequency

drifts seen in L07 simulations. We provide simple analytical fits to the drifts,

and show that when the regularity of the continuum sampling is removed

(e.g, when the frequencies are sampled as random numbers picked from the

continuum range), the drifts disappear.

In section 3.4, we set up models with a more realistic hydro-magnetic

structure of the neutron-star core. We show how to find the continuum modes

and their coupling to the crust for an arbitrary axisymmetric poloidal field,

with an arbitrary density profile on the core (L07s calculations, for simplicity

and concreteness, were restricted to constant-density core and homogeneous

magnetic field). We treat a more complicated case of a mixed axisymmetric

toroidal-poloidal field, with radial stratification, in Appendix 3.B. We demon-

strate that for realistic field configurations, the Alfvén continuum of modes

coupled to the crust may show a number of gaps. If a crustal mode frequency

belongs to one of these gaps, a strong global discrete mode arises which dom-

inates the late-time dynamics and whose frequency also belongs to the gap.

The frequency of the gap global mode does not generally coincide with, but is

often close to that of the crust. We suggest that it was these gap modes that

appeared in Lee’s (2008) calculations as well-defined discrete global modes.

So far, only axisymmetric magnetic fields have been considered in the

magnetar-QPO literature, with the Alfvén continuum modes occupying the

flux surfaces of the field. In section 3.5 we argue that if the field is not ax-

isymmetric but instead is highly tangled, then the Alfvén continuum modes

become localized within small regions of individual field lines and therefore

become dynamically unimportant. Instead, a set of discrete Alfvén modes ap-

pears, with the spacing between the modes strongly dependent on the degree

of field tangling. We devise a phenomenological prescription which allows

us to parametrize the field tangling for computing the dynamically impor-

tant modes and introduce an easily solvable “square box” model suitable for

exploring the parameter range.

Finally, in section 3.6, we use the suite of models built in the previous

sections to explore their connection to the QPO phenomenology. We find

that (a) within the standard magnetar model, it is possible to produce strong
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3. The strongly coupled dynamics of crust and core

long-lived or transient QPOs with frequencies in the range of around 20-150

Hz, but only if the neutrons are decoupled from the Alfvén-like motion of the

core; this implies that at least one of the baryonic components of the core is

a quantum fluid. (b) Our models could not produce the high-frequency 625

Hz QPO within the standard paradigm of a magnetar core composition.

3.2 An oscillator coupled to a continuum:

edge modes

In this section, we study the motion of a harmonic oscillator (which we here-

after call the large oscillator) which is coupled to a continuum of modes.1.

This model was introduced in L07 and it provides a qualitative insight into

the behaviour of crustal modes (represented by the large oscillator) coupled

to a continuum of Alfvén modes in the core of a magnetar. L07 found that if

the large oscillator’s proper frequency was within the range of the continuum

frequencies, then the late-time behaviour of the system was dominated by

oscillatory motion near the edges of the continuum interval. Here, we give

an explanation of this phenomenon in terms of the edge modes. Our analysis

allows us to use initial data and predict the displacement amplitudes and fre-

quencies of the system at late times.

The model consists of the large mechanical oscillator with mass M and proper

frequency ω0, representing a crustal elastic shear mode. Attached to the large

oscillator is a set of N smaller oscillators of mass mn and proper frequency ωn

constituting a quasi-continuum of frequencies ωn (where n = 1, 2, ..., N). The

continuum is achieved whenN → ∞ while the total small-oscillator mass Σmn

remains finite. The convenient pictorial representation is through suspended

pendulae, as shown in Fig. 4.2 (see also Fig. 2 of L07). The equations of

motion are obtained as follows. Each small oscillator is driven by the motion

1In many areas of physics similar models have been studied, notably in quantum optics and

plasma physics. By contrast with the case studied here, in these models the range of the continuum

frequencies is not limited.
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3.2 An oscillator coupled to a continuum: edge modes

Figure 3.1: Schematic picture of

the toy-model. A large number N

of small pendulae, representing the

(quasi-) continuum, are coupled to

one large pendulum, representing the

crust.

of the large oscillator:

ẍn + ω2
nxn = −ẍ0 (3.1)

where xn is the displacement of the n�th small oscillator in the frame of refer-

ence of the large oscillator, x0 is the displacement of the large oscillator in the

inertial frame of reference and the right-hand side represents the non-inertial

force acting on the small oscillator due to the acceleration of the large one.

The large oscillator experiences the combined pull of the small ones:

Mẍ0 +M ω̃2
0x0 =

�

i

miω
2
i xi (3.2)

Here ω̃0 is the frequency of the big pendulum corrected for the mass loading

by the small pendulae, i.e. ω̃2
0 = ω2

0 (M +
�

imi) /M .

3.2.1 Time-dependent behavior.

In this subsection we explore the behavior of this system by direct numerical

simulations. We found this to be helpful in the building of our intuition. We

defer a semi-analytical normal-mode analysis to the next subsection.
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3. The strongly coupled dynamics of crust and core

We follow L07 and for concreteness concentrate on a specific example;

it will be clear that the conclusions we reach are general. We choose ω0 =

1 rad s−1 and mass M = 1. We choose a total number of 1000 small pendulae

with frequencies ωn = (0.5+ n/1000) rad s−1 and masses mn = m = 10−4, to

mimic the continuum frequency range between 0.5 rad s−1 and 1.5 rad s−1.

The simulation is initiated by displacing the large oscillator while keeping

the small pendulae relaxed (this mimics the stresses in the crust) and then

releasing. The subsequent motion of the system is then followed numerically

by using a second order leapfrog integration scheme which conserves the en-

ergy with high precision. The resulting motion of the large pendulum can be

decomposed into three stages (see Fig. 3.2 and Fig. 3.3): (1) During the

Figure 3.2: Displacement of the big oscillator as a function of time.

first 50-60 seconds, there is a rapid exponential decay of the large oscillator’s

motion, during which most of the energy is transferred to the multitude (i.e.,

the ‘continuum’) of small oscillators. This is the so-called phenomenon of

“resonant absorption”, which has been studied for decades in the MHD and

plasma physics community (e.g., Ionson 1978, Hollweg 1987, Goedbloed &

Poedts 2004, L07, Gruzinov 2008b). In this first stage, the amplitude of the

big pendulum motions drops by a factor of ∼ 100. (2) After ∼ 60 seconds,

the exponential decay stops abruptly as the large oscillator now reacts to the

collective pull of the small ones. This second stage is characterized by a slow

algebraic decay of the amplitude of the big pendulum displacement. Gruzi-
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3.2 An oscillator coupled to a continuum: edge modes

Figure 3.3: A zoomed-in version of Fig. 3.2. The blue horizontal lines denote the

theoretically predicted amplitude of the dominating upper edge-mode (see section

3.2.3).

nov (2008b) explains this as being due to the branch cut in the oscillator’s

response function. (3) The motion of the large oscillator stabilizes at a con-

stant level (L07 missed this stage in his simulations, which he stopped too

early). Fourier transform reveals two QPOs at the frequencies close to the

continuum edges, ω = 0.5 and ω = 1.5; the same QPO frequencies can be

observed in the previous stage (2) as well.

What is the origin of the QPOs and how is this eventual stability established?

In Fig. 3.4 and 3.5, we show how the amplitude of the small oscillators evolves

with time. After the initial resonant absorption phase, the amplitude is dis-

tributed as a Lorentzian centered on the frequency around ω = 1; this is

because the small oscillators in resonance with the large one are the ones

which gain the most energy. However, in subsequent times we see that the

energy exchange occurs between the small oscillators1 and that the net result

of this exchange is the energy flow towards the oscillators whose frequencies

are near the edges. By the time the third stage begins, the amplitudes of the

oscillators near the edge stabilize and their phases become locked. They are

1This is much akin to the well-known phenomenon of resonant energy exchange between two

equal-frequency pendulae hanging on the same supporting wall.
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3. The strongly coupled dynamics of crust and core

Figure 3.4: The colored curves show the amplitudes of the small oscillators during

the numerical simulation, at different times t.

Figure 3.5: A zoomed-in version of Fig. 3.4. At later times energy is transferred

to the oscillators near the edge of the continuum.
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3.2 An oscillator coupled to a continuum: edge modes

pulling and pushing the large oscillator in unison. In the next subsection, we

show that this behavior is due to the presence of the edge normal modes, and

we shall derive their frequencies and amplitudes.

3.2.2 Finding eigenmodes

In this section we deal with the system of coupled harmonic oscillators and one

should be able to find its normal modes using the standard techniques (Landau

and Lifshitz mechanics, §23). However, the fact that all small oscillators are

attached to the large one and there is no direct coupling between the small

oscillators, allows us a significant shortcut (in Appendix 3.A, we treat a more

general problem of several large oscillators coupled to a multitude of the core

modes). We proceed as follows: Suppose that we impose on the large oscillator

a periodic motion with angular frequency Ω, by driving it externally with the

force Fext = F0(Ω) exp(iΩt). This motion in turn drives the small oscillators

according to Eq. (3.1):

ẍn + ω2
nxn = Ω2x0, (3.3)

which has the steady state solution:

xn =
Ω2

ω2
n − Ω2

x0 (3.4)

where we have omitted the time dependent factor exp(iΩt) on both sides. The

combined force fcont of the small oscillators acting back on the large one (see

Eq. (3.2)) is given by

fcont (Ω) =
�

n

mnω
2
n

Ω2

ω2
n − Ω2

x0. (3.5)

According to Newton’s second law,

F0 (Ω) + fcont (Ω) = −M(Ω2 − ω2
0)x0. (3.6)

If Ω corresponds to the normal-mode frequency, then F0(Ω) = 0. Hence by

substituting Eq. (3.5) into Eq. (3.6) we get the following eigenvalue equation
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3. The strongly coupled dynamics of crust and core

for Ω:

G(Ω) = M
�
ω2
0 − Ω2

�
−

�

n

mnω
2
n

Ω2

ω2
n − Ω2

= 0. (3.7)

In the continuum limit N → ∞, the above equation becomes

G(Ω) = M
�
ω2
0 − Ω2

�
−
� ωmax

ωmin

dωρ(ω)ω2 Ω2

ω2 − Ω2
= 0, (3.8)

where ρ(ω) = dm/dω is the mass per unit frequency of the continuum modes.

In the discrete case, the solutions of Eq. (3.7) are N−1 frequencies Ωi that are

within the quasi-continuum (ωi < Ωi+1 < ωi+1, for i = 1, 2, ...N − 1; ‘quasi-

continuum modes’) and 2 modes with frequencies Ωlow and Ωhigh that are

near the edges, but outside, of the continuum (we will refer to these modes as

‘edge-modes’ from now on). In other words; Ωlow is in general slightly smaller

than the lowest frequency in the continuum, i.e. Ωlow � ω1 and Ωhigh is

slightly larger than the highest frequency in the continuum, i.e. Ωhigh � ωN .

It can be shown from Eq. (3.7) that in the limit N � 1 and mn � M ,

the contribution of the small oscillator to the i-th quasi-continuum mode is

completely dominated by the pendulae that are in close resonance with the

mode. More precisely, one can show that as the number of oscillators N

increases and mn decreases, the number of small oscillators contributing to

the mode energy remains constant. However, for the two edge modes there is

no such singular behavior in the limit of large N and consequently they play

a special role in the dynamics of the system. This last point is clearly seen

in the continuum case represented by Eq. (3.8). The eigenvalue equation has

no real solutions in the range of small-oscillator continuum ωmin < Ω < ωmax,

since the response function G(Ω) is ill-defined in this interval1. However,

the edge modes on both sides of the continuum interval remain and their

frequencies can be found by numerically evaluating the zero points of G(Ω) in

Eq. (3.8). For the numerical calculation of the previous subsection, one finds

Ωlow = 0.5− 8.2· 10−6 and Ωhigh = 1.5 + 8.6· 10−4. Analytically, one can find

1There is a complex solution if the integration in the expression for G(Ω) is performed along

the contour chosen according to the Landau rule. One then obtains a “resonantly absorbed” or

“Landau-damped” mode (Gruzinov 2008b, L07), which exactly represents the exponential decay of

stage (1) in our numerical experiment of the previous subsection.
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3.2 An oscillator coupled to a continuum: edge modes

the following scaling for the distance δωedge between the mode frequency and

the nearest edge ωedge of the continuum range:

δωedge

ωedge
= C exp

�
−
M |Ω2

0 − ω2
edge|

ρ(ωedge)ω3
edge

�
, (3.9)

where C is a constant of order unity. The larger is the density of continuum

modes at the edge ρ(ωedge), the further is the edge mode pushed away from

the continuum range. It is particularly interesting to consider the case when

the continuum interval is limited by a turning point (L07) with the divergent

density of states near the edge, ρ(ω) = A/
�
|ω − ωedge|, where A is a con-

stant. In this case the distance from the edge-mode frequency to the nearest

continuum edge is given by

δωedge

ωedge
= C





Aω7/2

edge

M |Ω2
0 − ω2

edge|






2

. (3.10)

The quadratic dependence in Eq. (3.10) vs. the exponential dependence in

Eq. (3.9) implies that the continua with turning points typically feature much

more pronounced edge modes and stronger QPOs than the ones with linear

edges. In the next section, we show how to calculate the edge-mode ampli-

tudes and QPO strengths from the initial data.

3.2.3 Late time behavior of the system

In the continuum limit, the only modes with real oscillatory frequency are

the edge modes. Thus, as we demonstrate explicitly below, they dominate

the late-time dynamics of the system when the number N of small oscillators

becomes large. Our analysis proceeds as follows: Let us define a new set

of variables, expressed as a vector X with components X0 =
√
Mx0 and

Xn =
√
mn (x0 + xn) for n = 1, ..., N . With these new variables, the kinetic

energy of the system is a trivial quadratic expression

K =
1

2
Ẋ · Ẋ, (3.11)
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3. The strongly coupled dynamics of crust and core

where the inner product of two vectors A and B is defined as A · B =

ΣN
j=0AjBj . The potential energy is a positive-definite quadratic form, whose

exact form is unimportant here. The mutually orthogonal eigenmodes Xi

can be found via a procedure outlined in the previous section1. Their eigen-

freguencies Ωi are identified by finding zeros of G(Ω) in Eq. (3.7) and the

corresponding eigenvector components are given by

Xi
0 = 1 (3.12)

Xi
n =

ω2
n

Ω2
i − ω2

n
.

Let’s assume that we initiate our simulation by displacing the large oscillator

by an amount x0 (0) while keeping the small oscillators relaxed xn (0) = 0 and

all initial velocities at zero. In the new variables, the initial state of the system

is given by the vector X(0), where X0 =
√
Mx0(0) and Xn =

√
mnx0(0).

The time evolution of the system is given by:

X(t) = ΣΩi cos(Ωit)
�
Xi ·Xi

�−1 �
X(0) ·Xi

�
Xi. (3.13)

Substituting the initial conditions and the expression in Eq. (3.12) for the

eigenvector components, we get

X(t) =
�

Ωi

cos(Ωit)
M +

�
n

mnω2
n

ω2
n−Ω2

i

M +
�

n
mnω4

n
(ω2

n−Ω2

i )
2

Xi. (3.14)

The coordinate of the large oscillator is simply given by x0(t) = X0(t)/
√
M .

For the continuum of small modes, the above expansion breaks down, since

the eigenvalue equation has no real solutions inside the continuum range.

However, the edge modes are well defined and they determine the dynamics

at late times. Therefore, for the continuum case we can still write down the

analogous expression which is valid only at late times:

X(t) = ΣΩedge
cos(Ωedget)

X(0) ·Xedge

Xedge ·Xedge
Xedge (3.15)

The sums of Eq. (3.14) are replaced with the corresponding integrals, and we

have the following expression for the displacement of the large oscillator at

1Alternatively, they can be found by diagonalizing the potential-energy quadratic form.
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Figure 3.6: The red squares

show the viscous dissipa-

tion of the total energy dur-

ing the numerical simulation.

The dotted blue curve shows

the analytical solution from

Eq. (3.23).

late times:

x0(t) = x0(0)
�

Ωedge

cos(Ωedget)
M +

�
dωρ(ω) ω2

n
ω2
n−Ω2

edge

M +
�
dωρ(ω) ω4

n
(ω2

n−Ω2

edge
)2

(3.16)

This expression is in excellent agreement with the numerical simulations. In

the numerical example of subsection 3.2.1, the upper edge mode dominates

the late-time behavior of the system and its calculated contribution is plotted

in Fig. 3.3, together with the numerically simulated motion.

3.2.4 The effect of viscosity

We now add an extra degree of realism by introducing viscous friction into

the system. In MHD, continuum modes are spatially localized and the effect

of viscosity is to frictionally couple the neighboring modes (see, e.g., Hollweg

1987). In our simple model we introduce viscosity by adding frictional forces

between the neighboring oscillators,

fn,n+1 = −fn+1,n = γ(ẋn − ẋn+1), (3.17)

where fn,n+1 is the force from the n’th oscillator acting on the (n+1)’th. We

now calculate how the system dissipates energy as a function of time. We

will show that it occurs in two stages (see Fig. 3.6): (1) Initially, the small
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3. The strongly coupled dynamics of crust and core

oscillators are strongly and simultaneously excited by the “Landau-damped”

large oscillator, then they become dephased, with the average relative motion

between the neighboring oscillators growing linearly in time. This leads to a

very rapid dissipation of the bulk of the initial energy. (2) The edge modes

persist, since the participating small oscillators move in phase and the energy

dissipation is small. The energy of the modes is damped exponentially on a

timescale much longer than that of the first stage. The dissipated energy is

given by

Wdiss = ΣN−1
n=1 γ(ẋn+1 − ẋn)

2. (3.18)

In the continuum limit, the small oscillators are labeled not by a discrete

index n, but by a continuous variable λ. The expression for the dissipated

energy is then

Wdiss =

�
dλγ̃

�
∂2xλ(t)

∂λ∂t

�2

, (3.19)

where γ̃ is the viscous coefficient. After the initial exponential damping of the

large oscillator and the excitation of the small oscillators, the latter initially

move independently, with

xλ(t) � x̃(λ) cos[ωλt], (3.20)

where x̃(λ) is the amplitude of the λ’th oscillator. From the above equation,

we then obtain��
∂2xλ(t)

∂λ∂t

�2
�

=
1

2

�
[d(x̃λωλ)/dλ]

2 + ω2
λx̃

2
λ(dωλ/dλ)

2t2
�
, (3.21)

where the �...� stands for time-averaging over many oscillation periods. For

times t � d log xλ/dωλ the second term on the right-hand side of Eq. (3.21)

dominates. For a simple model with dωλ/dλ = const and ρ(ω) = const,

dE/dt ∝ −At2E, (3.22)

where E is the total energy of the system and A = (γ̃/ρ)(dωλ/dλ). The

analytical solution for the energy and dissipated power,

E = E0 exp

�
−1

3
At3

�
, (3.23)

Wdiss = −dE

dt
= At2E0 exp

�
−1

3
At3

�
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3.3 Transient and drifting QPOs

agrees very well with numerical simulations, see Fig. 3.6. While the equations

above were derived for restrictive assumptions (dωλ/dλ = const and ρ(ω) =

const), we found that the analytical formulae in Eq. (3.23) provide a good fit

for a large variety of simulations. This is because it is the small oscillators

with the frequencies near that of the large oscillator which carry most of the

energy and in that narrow band our approximations hold.

After the energy dissipation due to dephasing is over, only the edge modes

remain. This is illustrated in Fig. 3.7, where we show how the energies of the

small oscillators evolve with time. At late times, only the oscillators taking

part in the edge modes move substantially; this is because they remain in

phase and do not dissipate much. At this stage the energy is drained by slow

exponential decay of the edge modes.

Figure 3.7: As in Fig. (3.4), this figure shows the amplitudes of the small oscil-

lators at different times t. The energy of most oscillators is drained due to viscous

dissipation. At late times, only the oscillators near the edges of the continuum

have substantial energy.

3.3 Transient and drifting QPOs

Finite-size MHD systems feature a mix of continuum and discrete modes (see

Poedts et al., 1985 and GP). For axisymmetric field configurations the con-
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3. The strongly coupled dynamics of crust and core

tinuum modes occupy the whole flux surfaces and play an important role in

the oscillatory dynamics; this was the motivation for L07 and our study of

the previous section. We argue in section 3.5 that if the core field is highly

tangled, the continuum modes become localized in space and discrete core

modes will play a more important role. Thus it is important to study the

case when the crustal modes are coupled to a set of discrete core modes. In

this section we show that if the frequencies of the discrete modes are regularly

spaced in some frequency intervals, then the system displays transient QPOs

that are entirely missed by its normal-mode analysis. This is interesting from

the observational point of view, since many of the observed magnetar QPO

features are transient.

Suppose that a set of discrete modes are located in the interval ∆ω around

frequency ω0 and are separated by a regular frequency interval δω and assume

the following hierarchy:

δω � ∆ω � ω0. (3.24)

After the modes are excited, they are initially in phase but will de-phase

rapidly on the timescale 1/∆ω. However, at times tn = 2πn/δω the modes

come into phase again and pull coherently on the large oscillator. Therefore,

a transient QPO feature should appear around these times at a frequency

close to ω0. In Fig. 3.8 and Fig. 3.9 we show the dynamical spectrum

from a simulation where the model was designed to produce QPOs at two

specific frequencies. The transient QPOs agree well with the expectations.

As is seen from the figures, the strongest transient QPOs are those whose

frequencies are the closest to that of the large oscillator; this is because the

response of the large oscillator is the strongest around its proper frequency.

One can now easily understand the frequency drifts in Fig. 10 of L07 (Fig.

3.10 in this chapter) as an artefact of the discrete sampling of the continuum.

In the simulations of that paper, the core continuum was sampled with a set

of densely and regularly-placed Alfvén modes by slicing the field into finite-

width flux shells. The spacing δω between the modes was not constant but

a function of the Alfvén frequency ω. In that case, the QPO drifts with the
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3.3 Transient and drifting QPOs

Figure 3.8: Dynamical spec-

trum from a simulation where

we have designed the con-

tinuum so as to produce

transient QPO’s at frequen-

cies ω = 1 and ω =

2 (the colored scale denotes

log(power)). The green hor-

izontal line denotes the fre-

quency of the large oscillator

(Ω = 1.2).

Figure 3.9: We have shifted

the frequency of the large

oscillator (green horizontal

line) to Ω = 1.8. By com-

parison with Fig. 3.8, the

drifting QPO’s at ω = 2 are

now much stronger as they

are closer to the large oscil-

lator frequency. Note that

the edge mode at ω = 2.5 is

clearly visible.

QPO frequency ω(t) given by the inverse relation

t(ω) =
2πn

δω(ω)
. (3.25)

With this relation we are able to fit all of L07 drifting QPOs, as shown in Fig.

3.10 and 3.11. Note that multiple QPOs correspond to different branches of

the Alfvén continuum. As expected, the drifting QPOs are amplified near the

crustal frequencies, since there the response of the crust to the core modes’

pull is the strongest.
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3. The strongly coupled dynamics of crust and core

Dynamical power spectrum
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Figure 3.10: Dynami-

cal power spectrum of the

spherical magnetar model

from L07. The gray scale

denotes log(power).
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Figure 3.11: We have

used Eq. (3.25) to fit the

drifting QPO’s from figure

3.10. The red curves are

n = 1 drifts, green curves

are n = 2 and blue curves

are n = 3. The higher

frequency drifts originate

from Alfvén overtones.

3.4 More realistic magnetar models

In this section we extend the constant magnetic field and constant-density

magnetar model from L07 to include more realistic pressure and density pro-

files and more general (but still axisymmetric) magnetic field configurations.

Our aim is to use this model to: (1) calculate numerically Alfvén eigenmodes

and their eigenfrequencies on different flux surfaces inside the star, in order to

determine the continuous spectrum of the fluid core and (2) use these modes

to simulate the dynamics of a realistic magnetar. In order to calculate the

Alfvén eigenmodes and eigenfrequencies for a realistic magnetar model, we

employ the linearized equations of motion for an axisymmetric magnetized,
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3.4 More realistic magnetar models

self-gravitating plasma. The general equations, which are derived in detail in

Poedts et al. (1985, hereafter P85) and given in their equations (53) and (54),

constitute a fourth order system of coupled ordinary differential equations in

the case of a mixed poloidal and toroidal magnetic field. The formalism of

P85 is briefly summarized in Appendix 3.B. In the case of a purely poloidal

magnetic field, the system simplifies to two uncoupled second order differen-

tial equations (P85, equations (70) and (71)).

3.4.1 The model

We assume our star is non-rotating and neglect its deformation due to the

magnetic pressure, which is expected to be small. Therefore, we consider a

spherically symmetric background model that is a solution of the Tolman-

Oppenheimer-Volkoff equation (TOV equation)1. The hydrostatic equilib-

rium is calculated using a SLy equation of state (Douchin & Haensel 2001;

Haensel & Potekhin, 2004; Haensel, Potekhin & Yakovlev 2007), see the web-

site http://www.ioffe.ru/astro/NSG/NSEOS/ for a tubulated version. The

integration of the TOV equation is performed using a 4th order Runge-Kutta

scheme, integrating from the center of the star outward until we reach a mass

density ρ = 1.3· 1014 g cm3, which is consistent with the crust-core interface

in the equation of state from Douchin & Haensel (2001). The resulting model

has a central mass density ρc = 1015 g cm3, a total mass of 1.40 M⊙ and

a radius of Rcore = 1.07· 106 cm. To this spherical model we add a poloidal

magnetic field, which we generate by placing a circular current loop of ra-

dius a and current I around the center of the star. The field is singular near

the current loop, however all the field lines which connect to the crust (and

thus are physically related to observable oscillations) carry finite field values.

This particular field configuration is chosen as an example; there is an infinite

number of ways to generate poloidal field configurations. In appendix 3.B we

will add to this field a toroidal component and calculate the corresponding

Alfvén continuum of the core.

1Note that although our background equillibrium model is based on the relativistic TOV equa-

tion, our equations of motion will be derived using classical MHD.
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3. The strongly coupled dynamics of crust and core

3.4.2 The continuum

In order to find the equations of motion for the magnetized material in the neu-

tron star core, we would need to add self-gravity to the ideal magnetohydro-

dynamic equations. This problem has been solved by P85 in a tour the force

mathematical approach. In that paper the authors assume a self-gravitating

axisymmetric equilibrium with a field geometry consisting of mixed poloidal

and toroidal field components and they derive linearized equations of motion.

For this field geometry it is convenient to work with so-called flux-coordinates

(ψ,χ,φ).1 The basic concept behind this curvilinear coordinate system is the

magnetic flux-surface, which is defined as the surface perpendicular to the

Lorentz force F L ∝ j × B. From this definition it is clear that the mag-

netic field lines lie in flux surfaces. If one considers a closed loop on a flux

surface which makes one revolution around the axis of symmetry, then the

magnetic flux ψ through the loop depends on the flux surface only and is the

same for all of the loops. Therefore ψ is chosen as the coordinate labeling the

flux surfaces. In each flux-surface we can denote a position by its azimuthal

angle φ and its ’poloidal’ coordinate χ, which is defined as the length along

φ = const line. In P85, it is shown that the equations of motion allow for a

class of oscillatory solutions that are located on singular flux surfaces, con-

stituting a continuum of eigenmodes and eigenfrequencies. In the case of a

purely poloidal field (B = Bχ), the continuum solutions are degenerate and

polarized either parallel (ξχ) or perpendicular (ξφ) to the magnetic field lines.

In the latter case the displacement is φ-independent. It is clear that in con-

trast to the χ-polarized modes, the φ-polarized modes are purely horizontal

and are therefore unaffected by gravity. This latter case is considered here.

The equation of motion is then simply the Alfvén wave equation:

∂2ξφ(ψ,χ)

∂t2
= F [ξφ(ψ,χ)] , (3.26)

1There exists a variaty of magnetic coordinate systems that can be used to study axisymmetric

magnetohydrodynamic equilibria. A useful overview of systems used by plasma and MHD physicists

is given in Alladio & Micozzi (1996). In Colaiuda et al. (2009), the authors employ an alternative

relativistic system of coordinates for their study of torsional Alfvén oscillations of magnetars, which

allows them to reduce the 1+2 dimensional evolution equation for magnetar oscillations to a 1+1

dimensional form.
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3.4 More realistic magnetar models

where the operator F is given by

F [ξφ(ψ,χ)] =
B

4πxρ

∂

∂χ

�
x2B

∂

∂χ

�
ξφ(ψ,χ)

x

��
. (3.27)

Here x is the distance to the magnetic axis of symmetry. Although in the

presence of a mixed poloidal and toroidal field the equations still give rise to

a continuous set of solutions, the calculations are significantly complicated

as the continuum modes are affected by the toroidal component of the field,

by gravity and by compressibility. For the sake of simplicity we will ignore

toroidal fields in our dynamic simulations. We will however, calculate the

continuum frequencies for a mixed poloidal and toroidal field in Appendix

3.B.

For determining the spectrum of the core continuum, the appropriate

boundary conditions are ξφ(χ = χc) = 0, where χc(φ) marks the location

of the crust-core interface. The full significance of this boundary condition

will become apparent in later in this section when we develop the analysis

for the crust-core interaction. With this boundary condition, Equation (3.26)

constitutes a Sturm-Liouville problem on each separate flux surface ψ. Using

the stellar structure model and magnetic field configuration from section 3.4.1,

we can calculate the eigenfunctions and eigenfrequencies for each flux surface

ψ. The reflection symmetry of the stellar model and the magnetic field with

respect to the equatorial plane assures that the eigenfunctions of Eq. (3.26)

are either symmetric or anti-symmetric with respect to the equatorial plane.

We can therefore determine the eigenfunctions by integrating Eq. (3.26) along

the magnetic field lines from the equatorial plane χ = 0 to the crust-core in-

terface χ = χc (ψ). Let us consider the odd modes here for which ξφ (0) = 0

and solve Eq. (3.26) with the boundary condition ξφ (χc) = 0 at the crust-core

interface; for even modes, the boundary condition is dξφ (0) /dχ = 0. We find

the eigenfunctions by means of a shooting method; using fourth order Runge-

Kutta integration we integrate from χ = 0 to χ = χc. The correct eigenvalues

σn and eigenfunctions ξn (χ) are found by changing the value of σ until the

boundary condition at ξn is satisfied. In this way we gradually increase the

value of σ until the desired number of harmonics is obtained. In figure 3.12

we show a typical resulting core-continuum. According to Sturm-Liouville

77



3. The strongly coupled dynamics of crust and core

theory the normalized eigenfunctions ξn of Eq. (3.26) form an orthonormal

basis with respect to the following inner product:

�ξm, ξn� =
� χc

0
r (χ) ξm (χ) ξn (χ) dχ = δm,n (3.28)

Where δm,n is the Kronecker delta and r = 4πρ/Bχ is the weight function.

We have checked that the solutions we find satisfy the orthogonality relations.

Figure 3.12: The red curves show the Alfvén frequencies σn as a function of the

angle θ(ψ), the polar angle at which the flux-surface ψ intersects the crust. Since

we are only considering odd crustal modes, the only Alfvén modes that couple

to the motion of the star are the ones with an odd harmonic number n. This

particular continuum was calculated using a poloidal field with an average surface

value Bsurface ∼ 6· 1014 G, generated by a circular ring current of radius a = R∗/2.

We are now ready to compute the coupled crust-core motion. Here we

follow L07 and assume that the crust is an infinitely thin elastic shell1. We

label the lattitudinal location by the flux surface ψ intersecting the crust and

consider the crustal axisymmetric displacements ξ̄φ(ψ). In the MHD approx-

imation, the magnetic stresses enforce a no-slip boundary condition at the

1It is straightforward to relax this assumption and carry out the analysis of this section for

the finite crustal thickness. However, from Section 3.2 it is clear that the interesting dynamics is

dominated by the spectral structure of the core Alfvén waves; therefore in order to flesh out the

physics we choose the simplified model of the crust.
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3.4 More realistic magnetar models

Figure 3.13: After filling the curves from Fig. 3.12, ‘gaps’ in the continuum

become visible around σ ∼ 70 Hz and σ ∼ 120 Hz.

crust-core interface, such that ξφ (ψ,χc) = ξ̄φ (ψ,χc) instead of ξφ (ψ,χc) = 0.

It is useful to make the following substitution

ζ (ψ,χ) ≡ ξφ (ψ,χ)− ξ̄φ (ψ)w (ψ,χ) (3.29)

where we choose the function w (ψ,χ) so that (a) it corresponds to the static

displacement in the core and hence satisfies F (w (ψ,χ)) = 0 and (2) w (ψ,χc) =

1. Therefore the new quantity satisfies the boundary condition ζ (ψ,χc) = 0

and can be expanded into the Alfvén normal modes ξn which satisfy the same

boundary conditions.

We proceed by substituting Eq. (3.29) into Eq. (3.26) thus obtaining a

simple equation of motion for ζ

∂2ζ (ψ,χ)

∂t2
− F (ζ (ψ,χ)) = −w (ψ,χ)

∂2ξ̄φ (ψ)

∂t2
(3.30)

From the definition of the operator F it follows that for the odd modes

w (ψ,χ) = x (ψ,χ)

� χ

0

K (ψ)

x2 (ψ,χ�)Bχ (ψ,χ�)
dχ�. (3.31)

Here the constant K (ψ) is chosen such that w (ψ,χc) = 1, in order that ζ = 0

on both boundaries. We expand ζ and w into a series of ξn’s:

ζ (ψ,χ, t) =
�

n

an (ψ, t) ξn (ψ,χ) (3.32)
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w (ψ,χ) =
�

n

bn (ψ) ξn (ψ,χ) (3.33)

Eq. (3.30) reduces to the following equations of motion for the eigenmode

amplitudes an

∂2an (ψ)

∂t2
+ σ2

n (ψ) an (ψ) = −bn (ψ)
∂2ξ̄φ
∂t2

(3.34)

These equations show how the core Alfvén modes are driven by the motion

of the crust. To close the system, we must address the motion of the crust

driven by the hydromagnetic pull from the core. The equation of motion for

the crust is given by

∂2ξ̄φ
∂t2

= Lel

�
ξ̄φ
�
+ LB (3.35)

Where the acceleration due to elastic stresses Lel is

Lel

�
ξ̄φ
�
= ω2

el

�
∂2ξ̄φ
∂θ2

+ cot (θ)
∂ξ̄φ
∂θ

−
�
cot (θ)2 − 1

�
ξ̄φ

�
(3.36)

where θ is the polar angle (cf. L07). The acceleration LB due to the magnetic

stresses between the crust and the core can be expressed as

LB = −xB2

4πΣ
cosα

∂

∂χ

�
ξφ
x

�

χ=χcrust

(3.37)

where x is the distance to the axis of the star, Σ is column mass-density of

the crust and α is the angle between the magnetic field line and the normal

vector of the crust. It is convenient to express the crustal displacement ξ̄φ as

a Fourier series, being a sum normal modes of the free-crust problem. Using

Eq. (3.36) is straightforward to show analytically that the eigenfunctions fl
of the free-crust problem (Eq. (3.35) with LB = 0) are

fl (θ) ∝
dYl0 (θ)

dθ
(3.38)

with eigenfrequencies

ωl = ωel

�
(l − 1) (l + 2) (3.39)
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Here Yl0 is them = 0 spherical harmonic of degree l. The normalized functions

fl form an orthonormal basis, so that
� ∞

0
fl (θ) fm (θ) sin (θ)dθ = δl,m (3.40)

where δl,m is again the Kronecker delta. The crustal displacement can then

be expressed in terms of fl

ξ̄φ (θ, t) =
�

l

cl (t) fl (θ) (3.41)

Substituting Eq. (3.41) into Eq. (3.35) we obtain the equations of motion for

the crustal mode amplitudes cl

∂2cl
∂t2

+ ω2
l cl =

� π

0
LB (θ, t) fl (θ) sin θdθ (3.42)

We can express LB as

LB (ψ, t) = −
B2

χ (ψ)

4πΣ
cos (α (ψ))

�
�

n

an (t)
∂ξn (ψ)

∂χ
(3.43)

+
K (ψ)

x (ψ)B (ψ)

�

k

ck (t) fk (θ (ψ))

�

χ=χc

Up to this point the derived equations of motion for the crust and the fluid

core are exact. We are now ready to discretize the continuum by converting

the integral of Eq. (3.42) into a sum over N points θi. In order to avoid the

effect of phase coherence (see section 3.3) which caused drifts in the results

from L07, we sample the continuum randomly over the θ-interval [0,π/2]. In

the following, functional dependence of the coordinate ψ or θ (ψ) is substituted

by the discrete index i which denotes the i-th flux surface.

∂2cl
∂t2

+ ω2
l cl = 2

�

i

LB (θi, t) fil sin θi∆θi

= −
�

i

sin (θi)∆θifil

�
B2

χ,i

2πΣ
cos (αi)

�
�

n

ain
∂ξin
∂χ

(3.44)

+
Ki

xiBχ,i

�

k

ckfik

��

χ=χc
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∂2ain
∂t2

+ σ2
inain = −bin

�

l

∂2cl
∂t2

fil (3.45)

These are the equations that fully describe dynamics of our magnetar model.

As with the toy model from section 3.2 we integrate them using a second

order leap-frog scheme which conserves the total energy to high precision. As

a test we keep track of the total energy of the system during the simulations.

Further we have checked our results by integrating equations (44) and (45)

with the fourth-order Runge-Kutta scheme and found good agreement with

leap-frog integration.

3.4.3 Results

Based on our section 3.2 results, we have a good idea of what type of dynam-

ical behavior should occur in our more realistic magnetar model. First, we

expect that crustal modes with frequencies inside the Alfvén continuum will

be damped quickly by resonant absorption (“Landau-damping” in the termi-

nology of Gruzinov 2008b). Second, as with our previous model we expect

the late time behavior of the system to show QPO’s near the edges of the

continuum, or edge modes. The third important feature of our model is that

the continuum may possibly contain gaps, as is shown in Fig. 3.13. In this

case there is the possibility that crustal frequencies fall inside the gaps and

remain undamped. In all of our simulations these expectations have come

true. We will now show the results from a simulation which illustrate the

above mentioned effects.

The basic freedom of choice that we have for our model is the strength and

geometry of the equilibrium magnetic field. We choose here a purely poloidal

magnetic field with an average strength at the surface of Bsurf = 1015 G,

induced by a circular current loop of radius a = 0.5R∗. This field gives us a

gap in the continuum at frequencies 53 < ω < 78 Hz. We consider the lowest

degree odd crustal modes with frequencies ω2 = 40 Hz and ω4 = 84.5 Hz,

which we couple to 5000 continuum oscillators (the Alfvén continuum). We

sample the continuum at 1000 randomly chosen flux surfaces, and at each flux
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surface we consider 5 Alfvén overtones. As with our toy model from section

3.2, we initiate the simulation by displacing the crust (c2 = c4 = 1) while

keeping the continuum oscillators (the Alfvén modes) relaxed (ain = 0).

In Figures 3.14 and 3.15 we show the resulting power spectrum for two

different models. In the first one, the crustal frequencies are located inside

the core continuum range and the peaks due to the edge modes appear. By

contrast, in the second case one of the crustal frequencies belongs to the

gap and a peak representing the global gap mode stands strongly above the

background. We note that the gap-mode’s frequency lies close to but does not

coincide with the crustal-mode frequency; we found this to be a generic feature

of our models, with the difference of 10% for the typical model parameters.

The gap modes are particularly interesting because they have relatively large

amplitudes, and are not as strongly damped by viscosity as the edge modes.

Figure 3.14: Power spec-

trum of the crustal dynamics

for a magnetar with a sin-

gle ‘gap’ in the Alfvén con-

tinuum. In this case the

crustal frequencies are within

the continuum, causing the

crust modes to be Landau-

damped.

It must be emphasized that for all persistent modes in the system, the

position in the frequency space of the core Alfvén continuum plays the key

role in setting the global-mode frequency and in determining its longevity. We

note that Lee (2008) has used a different method to identify discrete modes

in a magnetar with similar magnetic configuration to ours. These modes were

not associated with crustal frequencies and we strongly suspect that they were

located in the gaps of the continuum spectrum and could be identified with

the edge or gap modes presented in this work.
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Figure 3.15: Power spec-

trum of the crustal dynam-

ics for a magnetar with a sin-

gle ‘gap’ in the Alfvén contin-

uum. The global mode within

the gap is not damped and

its frequency is similar, but

not identical, to that of the

crustal mode in the same gap.

3.5 Tangled magnetic fields

Our preceding discussion of the continuum was predicated on the foliation

of the axisymmetric magnetic field into the flux surfaces, with each of the

singular continuum mode localized on the flux surfaces. These modes are

“large”-they are coherent over the spacial extent comparable to the size of the

system, and thus they play an important role in the overall dynamics-they are

responsible for the resonant absorption of the crust oscillations and contribute

to generating the edge and gap modes. But what happens if the field cannot

be foliated into the flux surfaces, but is instead tangled in a complicated

way? One can argue that the continuum part of the spectrum still persists, as

follows: Consider an arbitrary field line anchored at the crust-core interface

at both ends, and choose a tube of field lines of infinitesimal radius which is

centered on the original field line (see Fig. 3.16). It is clear that a twisting

Alfvén mode exists in the tube: it is obtained by the circular rotation of

the fluid around the central field line, propagating along the central field line

with the local Alfvén velocity. Since there is a continuum of the field-line

lengths, there is also a continuum of Alfvén modes. However, the modes we

constructed are highly localized in space and and have a small leverage in the

overall dynamics. We conjecture that the more tangled the fields are, the less

role do the singular continuum modes play in the overall dynamics. Whilst

we cannot rigorously prove this conjecture, we can motivate it as follows:

consider an area element δS of random orientation with the normal n̂ inside
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Figure 3.16: Schematic il-

lustration of tangled a mag-

netic field inside a magne-

tar. Locally, the field consists

of flux tubes which contain a

continuum of twisting Alfvén

modes.

the star and consider a shearing motion along the element. This shearing

motion will be resisted by the Bn̂ component of the magnetic field, with the

effective shear modulus of order

µeff ∼
�B2

n̂�
4π

, (3.46)

where �...� stands for averaging over the area element. For ordered field, it

is possible to choose the orientation of the area element so that µeff � 0;

the presence of such an orientation makes a fundamental difference between

MHD and elasticity theory and is responsible for the presence of continuous

spectrum in MHD. However, if the linear size of the δS is greater than the

characteristic length on which the field is tangled, then µeff is non-zero for all

orientations of n̂. Therefore, for highly-tangled fields there can be no large-

scale singular continuum modes and their existence is restricted to the small

scales. Hence our assertion that for strongly tangled fields continuum modes

play a secondary dynamical role. One is then faced with the problem when

crustal modes are coupled to a set of discrete core Alfvén modes. In Appendix

3.A we show how to find the eigen-solution of such a problem, provided that

all of the coupling coefficients are known.

How does one quantify the degree to which the fields are tangled? Some

insight comes from the numerical simulations of Braithwaite and colleagues,

who have studied what type of fossil fields remain in a stratified star after an

initial period of fast relaxation. Consider a stable fossil field field configura-

tion, such as the one obtained in the simulations of Braithwaite and Spruit
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(2004) and Braithwaite and Nordlund (2006) (see also Gruzinov (2008a) for

analytical considerations). There, the final field is nearly, but not perfectly

axisymmetric and has a small-scale random component. For a less-centrally

concentrated initial field, Braithwaite (2008) shows that the final fossil field

is in general non-axisymmetric and can have a complicated topology.1

As a starting point, we shall consider the nearly axisymmetric field with

a small random component. The latter acts like a small extra shear modulus

µeff and dynamically couples the flux surfaces of the axisymmetric compo-

nent. We then quantify the degree of tangling by the relative value of µeff and

B2/(4π).

3.5.1 simple model: “square” neutron star

To study this idea further, we specify a very simple model of a neutron star,

motivated by the one considered in Levin (2006, hereafter L06) see Fig. 3.17

that never-the-less captures the essential physics. Consider a perfectly con-

ducting homogeneous fluid of density ρ contained in a box with width Lx,

length Ly and depth Lz. The magnetic field in this box is everywhere aligned

with the y-axis and its strength is a function of x only. We assume that grav-

ity is zero and consider a Lagrangian displacement ξ (x, y, t) of the fluid along

the z-direction; we specify periodic boundary conditions in this direction (one

should think of the z direction as azimuthal). We now add to this model a

small effective shear modulus µeff due to the field tangling. The fluid equation

of motion is:

∂2ξ

∂t2
= c2A (x)

∂2ξ

∂y2
+ c2s∇2ξ (3.47)

Here cA (x) is the Alfvén velocity and cs =
�
µeff/ρ is the µeff -generated shear

velocity. If we assume a small shear speed, i.e. cs << cA, Eq. (3.47) reduces

1Gruzinov (2009) demonstrates that even this situation is not the most general. He finds that

the relaxed field generally has multiple current sheets and argues that the global field relaxation is

dominated by the dissipation within these singular layers. The details do not concern us for the

purposes of this chapter.
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3.5 Tangled magnetic fields

Figure 3.17: Schematic il-

lustration of the box model.

Perfectly conducting incom-

pressible fluid is sandwiched

between perfectly conducting

top and bottom plates. The

box is periodic in z-direction

and the displacements of the

plates (crust) are in the z-

direction. The magnetic field

is directed along y-axis and

its strength varies as a func-

tion of x.

to the following:

∂2ξ

∂t2
= c2A (x)

∂2ξ

∂y2
+ c2s

∂2ξ

∂x2
. (3.48)

We now find the core Alfvén eigenmodes. After adapting the no-slip boundary

conditions

ξ

�
−Lx

2
, y, t

�
= ξ

�
Lx

2
, y, t

�
= 0,

ξ

�
x,−Ly

2
, t

�
= ξ

�
x,

Ly

2
, t

�
= 0, (3.49)

the problem can be easily solved by separation of variables ξ (x, y, t) ∝ eiωt×
sin {πm[(y/Ly) + 1/2]}X (x), where m = 1, 2, .... Plugging this in Eq. (3.48)

we find for the the x−dependent part of the solution:

c2s
∂2X

∂x2
=

�
ω2 − ω2

A,m (x)
�
X. (3.50)

Here ωA,m (x) = πmcA (x) /Ly can be interpreted as the frequency of the m-th

Alfvén overtone at x. From the above expression it is clear that in the limit

of very small cs, the solution for X must be close to zero everywhere except

in a very small neighborhood of ωA,m(x) = ω. It is in this limit that the
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3. The strongly coupled dynamics of crust and core

solutions are located on singular flux surfaces. However, in the presence of

the non-vanishing shear velocity cs, the eigenmodes spread out on neighbor-

ing field lines, effectively coupling the motion on different flux surfaces. The

continuum of Alfvén frequencies ωA,m (x) will in this case be no longer solu-

tions of the system. Instead, the coupling term gives rise to a discrete set of

solutions rather than a continuum. Eq. (3.50) is the mathematical equivalent

of Schrödingers equation, which can in general cases be solved numerically.

However, for many special cases exact solutions exist. Let us consider, for the

sake of simplicity, a field configuration in our box such that:

c2A (x) = acAx
2 + c2A,0 (3.51)

We can rewrite Eq. (3.50) as follows:

c2s
∂2X

∂x2
= −π2m2acA

Ly
x2X +

�
ω2
m −

π2m2c2A,0

Ly

�
X (3.52)

This differential equation is the mathematical equivalent of the quantum har-

monic oscillator problem for which the exact solution is well known. The

eigenfrequencies are given by

ω2
mn = π (1 + 2n)mcs

√
acA/Ly + c2A,0π

2m2/Ly. (3.53)

Here n (= 0, 1, ...) is the ‘quantum’ number labeling the harmonic-oscillator

wavefunctions. We see that instead of a continuum, we obtain a densely

packed discrete set of frequencies with the frequency spacing ωm,n−ωm,n−1 ∼
πmcs

√
acA/Lyωm,n.

With the no-slip boundary conditions on the left and right sides x = ±Lx/2,

the eigenvalue equation must be solved numerically. An example of such

calculation is shown in Fig. 3.18. There, the spacing between the discrete

Alfvén modes is shown to increase as one increases the effect of the field

tangling characterized by the µeff . We now introduce the crustal modes into

the problem by making the top and bottom of the box elastic and mobile. We

allow their displacement ξ̄t,b(x, t) in the z-direction and impose the boundary

conditions on the sides:

ξ̄t,b(−Lx/2, t) = ξ̄t,b(Lx/2, t) = 0. (3.54)
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3.5 Tangled magnetic fields

Figure 3.18: Alfvén fre-

quencies as a function of the

effective magnetic shear mod-

ulus. As one decreases the

shear, the spectrum tends to

a continuum.

Here the subscripts “t” and “b” stand for the top and bottom of the box,

respectively. The top and bottom are assumed to be thin and have mass Mcr

and surface density σ = Mcr/(LxLz) . The crustal equation of motion is given

by

∂2ξ̄t
∂t2

= v2s
∂2ξ̄t
∂x2

− {BzBx}t
4πσ

∂2ξ̄b
∂t2

= v2s
∂2ξ̄b
∂x2

+
{BzBx}b

4πσ
, (3.55)

where vs is the shear velocity in the crust. The crustal angular frequencies are

given by ωcr
j = jπvs/Ly with the corresponding crustal mode eigenfunctions

ξ̄j = sin{jπ[(x/Lx)+1/2]} , where j = 1, 2, ... is roughly equivalent to l in the

spherical case. The symmetry of the problem allows one to consider either

symmetric ξ̄t = ξ̄b or antisymmetric ξ̄t = −ξ̄b crustal modes. This will couple

to the symmetric (m = 1, 3, 5, ...) or antisymmetric (m = 2, 4, 6, ...) Alfvén

modes of the core.

Just as in section 3.4, it is now convenient to define a new variable ζ(x, y, t)

for the core displacement:

ζ(x, y, t) = ξ(x, y, t)− ξ0(x, y, t), (3.56)

where

ξ0(x, y, t) =
1

2

�
ξ̄t(x, t) + ξ̄b(x, t)

�
+
�
ξ̄t(x, t)− ξ̄b(x, t)

� y

Ly
. (3.57)
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3. The strongly coupled dynamics of crust and core

The new variable observes the regular boundary condition ζ = 0 on all the box

edge and satisfies the following inhomogeneous partial differential equation:
�

∂2

∂t2
− c2A(x)

∂2

∂y2
− c2s

∂2

∂x2

�
ζ(x, y, t) = g(x, y, t), (3.58)

where

g(x, y, t) = −
�

∂2

∂t2
− c2s

∂2

∂x2

�
ξ0(x, y, t). (3.59)

The advantage of the new variable is that it satisfies the regular boundary

condition ζ = 0 on all the boundaries of the box. It can therefore be expanded

as a series consisting of eigenfunctions ξmn of the right-hand side of Equation

(3.48):

ζ(x, y, t) = Σmnamn(t)ξmn(x, y). (3.60)

The rest of the procedure is very similar to that in section 3.4. We expand the

crustal displacement into a series consisting of the eigenmode wavefunctions

ξ̄j :

ξ̄t(x, t) = Σjpj(t)ξ̄j(x)

ξ̄b(x, t) = Σjqj(t)ξ̄j(x), (3.61)

where pj(t) and qj(t) are real numbers. The magnetar deformation is now

fully represented by a set of generalized coordinates [pj(t), qj(t), amn(t)]. The

coupled equations of motion are derived by following the procedure specified

in section 3.4. We obtain the following system of equations:

ämn + ω2
mnamn = −Σj

�
p̈j + c2s

�
jπ

Lx

�2

pj

�
α(p)
(mn)j

−Σj

�
q̈j + c2s

�
jπ

Lx

�2

qj

�
α(q)
(mn)j , (3.62)

and

p̈j + ωcr
j
2pj = −ρc2A

σ
Σmnβj(mn)amn (3.63)

q̈j + ωcr
j
2qj = −ρc2A

σ
Σmn(−1)m+1βj(mn)amn
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3.5 Tangled magnetic fields

where

α(p)
(mn)j =

� �
1
2 + y

Ly

�
ξmn(x, y)ξ̄j(x)dxdy

�
[ξmn(x, y)]2dxdy

α(q)
(mn)j =

� �
1
2 − y

Ly

�
ξmn(x, y)ξ̄j(x)dxdy

�
[ξmn(x, y)]2dxdy

(3.64)

and

βj(mn) =

� �
∂ξmn(x,y)

∂y

�

y=Ly/2
ξ̄j(x)dx

�
[ξ̄j(x)]2dx

. (3.65)

Thus we have obtained a system of linear second-order differential equations,

which describes the time evolution of the square-box magnetar. These equa-

tions are solved by truncating all the series [i.e., restricting the range of indices

(m,n, j)] and then by either solving the eigenvalue problem in order to find

the normal modes, or by integrating the equations numerically1. One then

checks that the series truncation does not introduce errors in the magnetar’s

motion within the frequency range of our interest.

So far we have worked in the approximation of the thin crust, i.e. we

have effectively included the crustal modes which have no radial nodes in

their wavefunction. However, several observed high-frequency QPOs, and in

particular the strong QPO at 625 Hz (Watts & Strohmayer 2006) necessitate

introduction of higher radial-order modes into our model. In the square-

box model we do this phenomenologically, as follows. We assume that higher

radial-order crustal modes have amplitudes psj(t) and qsj(t) and natural eigen-

frequencies ωcr
sj , with s being the number of radial nodes and assume that they

cause displacement at the crust-core interface given by ξ̄j(x). This mirrors re-

alistic spherically-symmetric case where the functional form of the crust-core

displacement due to the torsional ∇× Ylm mode of the n’th radial order is a

very weak function n. The amplitudes psj(t) and qsj(t) are then introduced

on into the equations of motions (3.62) and (3.63) in the same way as the

other pj and qj amplitudes, with the same j-dependent coupling coefficients

1Our favored method here is again the energy-conserving second-order leapfrog. It is both fast

and stable over long integration times.
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3. The strongly coupled dynamics of crust and core

but with ωcr
sj instead of ωcr

j on the left-hand side of Eq. (3.63).

We now have the basic ingredients of building a phenomenological modes with

tangled fields. To sum up, (1) we quantify tangling using the effective shear

modulus, (2) find discrete core eigenmodes and evaluate their coupling to the

crustal model and (3) either find eigenfrequencies of the total star by diago-

nalizing the potential energy of the system, or simulate the time-dependent

behavior directly. An example of a resulting power spectrum for the model

described in this section is shown in Fig 3.19.

Figure 3.19: Power spec-

trum for the dynamics of a

magnetized box as described

in the text. In this particular

model we have used the max-

imum possible shear modulus,

corresponding to a maximally

tangled field. The Alfvén mo-

tion in the box is coupled

to 9 of the lowest frequency

‘crustal’ modes, plus a high

frequency crust mode at 630

Hz.

3.6 Discussion

In this chapter we have developed a formalism which allows one to build a mag-

netar model with a variety of the spectral features of the core Alfvén waves,

including continua with gaps and edges and the large-scale discrete modes

generated by the field tangling. We have constructed a number of magnetar

models and explored the resulting QPOs, both for the case of axisymmetric

magnetar with core Alfvén continuum and for the “square” magnetar models

92
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with the tangled fields (see the previous section). The full range of model

parameters and detailed comparison with the data will be the subject of a

separate study. For now, we have restricted ourselves to the standard mag-

netar model, in which the core is a perfect conductor, the field of ∼ 1015 G

penetrates both the core and the crust and the proton fraction in the star is

the one tabulated in Haensel, Potekin and Yakovlev (2007). Our models give

us the following robust conclusions, as compared against QPO observations:

(1) A number of strong QPOs have been observed in the 1998 and 2004

giant flares, with frequencies ranging between 18 Hz and 150 Hz ( Israel et

al. 2005, Strohmayer and Watts 2006, Watts and Strohmayer 2006). These

QPOs can be qualitatively explained as gap and/or edge modes of sections

3.4 and 3.2, or even transient QPOs of section 3.31. However, this was only

possible if the neutrons were decoupled from the Alfvén waves in the core. If

the neutrons took part in the Alfvén motion, then the effective mass of the

Alfvén modes shifted up by a factor of 20 − 40 and their frequencies shifted

down by a factor 4− 8 (Easson & Pethick 1979, Alpar et al. 1984, van Hoven

& Levin 2008 (see chapter 1), Andersson et al. 2009). As a result, all modes at

frequencies above ∼ 50 Hz were strongly damped (see Fig. 3.20). Increasing

the magnetic-field tension by a factor of 3 did not affect this conclusion (Fig

3.21). For the spherical magnetar models of section 3.4 we obtain similar

results if couple the neutrons to the Alfvén motion in the core. The key point

that we would like the reader to appreciate is that Alfvén modes in the core

are key to determining the frequency and strength of the observable QPOs

and thus QPOs are very sensitive probe of the core interior.

(2) A number of the high-frequency QPOs have been measured in the

2004 giant flare by Watts and Strohmayer (2006), the strongest among them

being the QPO at 625 Hz. This QPO is particularly strong and long-lived

in the hard x-rays, reaching the amplitude of ∼ 25% over the time interval

of ∼ 100 seconds (i.e., it persists for almost 105 oscillation periods!). Watts

1L07 and Gruzinov 2008b associated the long-lived 18-20 Hz QPO with the lower edge of the

Alfvén continuum. However, recent calculations of Steiner and Watts (2009) have argued that the

crustal frequencies can be as low as 10 Hz due to the uncertainty in our theoretical knowledge of the

crustal shear modulus. It is therefore plausible that the fundamental crustal mode has the proper

frequency below that lower edge of the core Alfvén continuum. In this case, the 18-20 Hz QPO

could be the gap mode which is dominated by the fundamental crustal mode.
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Figure 3.20: This spec-

trum was generated using a

box model similar to the one

from figure 3.19 but with neu-

tron mass-loading. Due to the

mass-loading the frequencies

have shifted down by a fac-

tor of ∼ 4. Note that there is

no significant power above the

lower edge-mode frequency of

5.3 Hz.

and Strohmayer (2006) argued that this frequency corresponds to the crustal

shear mode with a single radial node (see also Piro 2005); this interpretation,

if correct, would strongly constrain the thickness of the crust and rule out

the fluid strange stars as magnetar candidates (Watts & Reddy, 2007). To

investigate this suggestion, we have introduced several high-frequency low-j

crustal modes into our square-box simulations. However, as is demonstrated

in Figs. 3.14 and 3.15, the high-frequency modes are strongly damped and at

no time during the simulations do we observe any significant power at those

frequencies. This is to be expected. No natural axisymmetric model has gaps

in the Alfvén continuum at such high frequencies, so global modes are strongly
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Figure 3.21: This spectrum

was generated with the same

box model as in figures 3.20,

but in addition to the neu-

tron mass-loading, we have

increased the magnetic field

strength by a factor of 3. All

frequencies above ∼ 16 Hz are

significantly damped.
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absorbed. We have argued that in realistic magnetic equillibria like the ones

obtained by Braithwaite & Spruit (2004), field tangling will make continuum

modes localized in small scale flux tubes. Moreover, the field tangling creates

a dense array of large-scale discrete modes, with the frequency seperation

between neighbouring modes being proportional to the degree of tangling.

One could expect that if the Alfvén modes are discrete in the core due to field

tangling, the absorption of high frequency crustal modes would not arise.

However, even in the discrete case the frequency spacing between the modes

is around 20 Hz, which is much smaller than 600 Hz. Thus the grid of Alfvén

waves is so dense that it is effectively seen as the absorbing continuum by the

modes around 600 Hz. Our detailed simulations, of the type shown in Figs.

3.14 and 3.15, fully confirm this qualitative picture.

The concern about the viability of high-frequency QPOs as being due to

the physical oscillations of standard-model magnetars has been raised in the

original L06 paper on the basis of rather simplistic calculations. As our work

here shows, more detailed calculations partially alleviate the L06 concern for

the frequencies below ∼ 150 Hz, but only if the neutrons are decoupled from

the Alfvén motion in the core, i.e. if at least one baryonic superfluid (protons

or neutrons) are present in the neutron-star core. Our analysis sustains L06

concern for the high-frequency QPOs, in particular for the strong long-lived

QPO at 625 Hz. Its explanation seems to require either QPO production in

the magnetosphere, or a somewhat radical revision of the magnetar model.

Just how radical this revision has to be will be explored in a separate study.

Our work presented here has several shortcomings. We have limited ourselves

to the linear approximation, and a non-linear regime may bring surprises.

Direct non-linear simulations of axisymmetric oscillations of a magnetised

fluid star has been carried out recently by Cerdá-Durán, Stergioulas, & Font

(2009). At this stage it is difficult to say whether non-linearities introduce

significantly new QPO features to their model; their results have largely been

in agreement with the linear simulations of Colaiuda, Beyer, & Kokkotas

(2009). However, the computational techniques seem promising and we do

not exclude that large-amplitude simulations of stars with the crust will show
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3. The strongly coupled dynamics of crust and core

qualitatively new features. Another limitation of our work is that we have

assumed that once the flare sets the magnetar into motion, the magnetar’s

oscillations are not driven externally. This may not be the case in real flares:

some energy stored in the pre-flare magnetar may be released gradually and

this release could be extended in time into the flare’s tail1. The latter consid-

eration is straightforward to incorporate phenomenologically into our model

and we plan to address it in our future work.
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Appendix 3.A

Appendix 3.A: Multimodal crust-core sys-

tem

In this Appendix we generalize the normal-mode treatment of Section 3.2.2,

and write down the general prescription of how to find the eigenmodes when

several “large” crustal shear modes are coupled to a multitude of small core

Alfvén modes, provided the coupling coefficients are known. In this chapter,

the coupling coefficients are worked out in simple models of sections 3.4 and

3.5; we postpone the discussion of how the coefficients are computed in a more

general case in future work.

Let us denote the displacement of the crustal and core modes by Xn and

xi respectively. Since both the crustal and the core modes are not directly

coupled to themselves (i.e., X’s are only coupled to x’s), most general equa-

tions of motion take the form

Ẍn + Ω2Xn = Σiαnixi (3.66)

ẍj + ω2
jxi = ΣmβjmXm,

where Ωn and ωj are the proper frequencies of the crustal and core modes and

α’s and β’s are the coupling coefficients. We look for an oscillatory solutions

of the above equations with angular frequency Ω. One can trivially re-write

these equation as a matrix eigen-equation with Ω2 as an eigenvalue and solve

it using standard methods. However, if the number of crustal modes is not

too large, it is convenient to make a shortcut. Using the second of Eq. (3.66)

to express xi’s through Xn’s and substituting into the first one, we get the

following equation:

ΣnGmn(Ω)Xn = 0, (3.67)

where the elements of the matrix G are given by

Gmn(Ω) = (Ω2 − Ω2
n)δnm + Σi

αniβim
ω2
i − Ω2

. (3.68)

One obtains the eigenfrequencies by finding numerically the zeros of detGmn.
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Appendix 3.B: Core continua with a mixed

toroidal-poloidal field

In this appendix we will calculate the continuum of Alfvén frequencies in

a magnetar core in the case of a axisymmetric magnetic field with mixed

toroidal and poloidal components. The general MHD equations of motion

for spherically symmetric, self-gravitating equilibrium with an axisymmetric

field, are derived in detail in P85. In contrast to the special case of a purely

poloidal field (see section 3.4.2) which leads to two uncoupled differential

equations, the continuum for a mixed toroidal-poloidal field is described by a

system of fourth order coupled ODEs. Due to this coupling, the solutions are

complicated as they are no longer polarized in the directions parallel (so-called

“cusp solutions”) and perpendicular (Alfvén solutions) to the magnetic field

lines, but rather have a mixed character. Strictly speaking, one can only speak

of an “Alfvén continuum” in the limit that the variations in ρ, P and B2 are

small in the magnetic flux-surfaces. The general equations of motion are given

in Eqs. (53) and (54) of P85. We note however, that in magnetars the speed

of sound c >> cA and therefore we consider Poedts et al.’s equations (53) and

(54) in the incompressible limit (P85, Eqs. (73) and (74)). For completeness

we give the equations here,

ρσ2B
2
χB

2

B2
φ

Y = B2F
B2

χ

B2
φB

2
F
�
ρc2AY

�
+

1

ρc2A

�
∂

∂χ

�
ρc2A

��2
Y +

ρB2
χN

2
χ (Y + Z)− ∂

∂χ

�
ρc2A

�
FZ (3.69)

ρσ2B2Z = iF

�
∂

∂χ

�
ρc2A

�
Y

�
+ ρB2

χN
2
χ (Y + Z) + F

�
ρc2AFZ

�
(3.70)

The variables Y ≡ i
�
B2

φξχ −BφBχξφ
�
/BχB2 and Z ≡ i (Bχξχ +Bφξφ) /B2

are components of the fluid displacement perpendicular and parallel to the

magnetic field lines, the operator F ≡ i∂/∂χ is a differential operator along

the field lines, Nχ ≡ − (1/Bχρ)
�

(∂ρ/∂χ) (∂P/∂χ) can be thought of as a

Brunt-Väisälä frequency for displacements along the field lines. According to

Gauss’ law for magnetism, the toroidal component of the magnetic field is of
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the form Bφ = f(ψ)/�, where � is the distance to the polar axis and f(ψ)

is an arbitrary function of ψ. In the following calculation we adopt a toroidal

field component of the form

Bφ =
Bt,0R∗
� (χ)

sin (θ(ψ)), (3.71)

Here θ(ψ) is the polar angle at which the flux surface ψ intersects the stellar

crust. Clearly this choice for Bφ is completely arbitrary and one could in

principle try many different toroidal geometries.

As with our calculation of the Alfvén continuum in the case of a purely

poloidal field (section 3.4.2), we adopt the zero-displacement boundary con-

ditions at the crust and use the fact that our equilibrium model is (point-)

symmetric with respect to the equatorial plane. This enforces the existence

of classes of symmetric and anti-symmetric eigenfunctions, Yn(χ) and Zn(χ).

We consider only the odd modes and calculate the eigenfunctions by means

of the shooting method; we use a fourth order Runge-Kutta scheme to inte-

grate Eqs. (3.69) and (4.46). Starting with Y (0) = 0 and Z(0) = 0 at the

equator, we integrate outward until we reach the crust at χ = χc. We find

the eigenfrequencies by changing the value of σ until we match the boundary

conditions at the crust. A resulting continuum is plotted in Figure 3.22.
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3. The strongly coupled dynamics of crust and core

Figure 3.22: The curves show the continuum frequencies σn as a function of the

angle θ(ψ), the polar angle at which the flux-surface ψ intersects the crust. In

the presence of a toroidal field, the degeneracy between the cusp-solutions and the

Alfvén solutions is broken and we find two separate solutions for each wave number

n; waves with primarily Alfvén character (red curves) and waves with primarily

cusp character (blue curves). This particular continuum was calculated using a

poloidal field with an average surface value Bp,surface ∼ 6· 1014 G (again generated

by a circular ring current of radius a = R∗/2) and a toroidal field strength at the

equator and the crust-core interface of Bt,0 = 3· 1014 G (see Eq. (3.71)).
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