
Seismology of magnetars
Hoven, M.B. van

Citation
Hoven, M. B. van. (2012, February 15). Seismology of magnetars. Retrieved
from https://hdl.handle.net/1887/18484
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18484
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18484


Chapter 2

Excitation of f-modes and

torsional modes by giant

flares

Partially based on:

On the excitation of f-modes and torsional modes by giant flares

Yuri Levin & Maarten van Hoven, 2011, published in MNRAS
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2. Excitation of f-modes and torsional modes by giant flares

Abstract

Magnetar giant flares may excite vibrational modes of neutron stars. Here

we compute an estimate of initial post-flare amplitudes of both the torsional

modes in the magnetar’s crust and of the global f-modes. We show that while

the torsional crustal modes can be strongly excited, only a small fraction of

the flare’s energy is converted directly into the lowest-order f-modes. For a

conventional model of a magnetar, with the external magnetic field of ∼ 1015

G, the gravitational-wave detection of these f-modes with advanced LIGO is

unlikely.
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2.1 Introduction

2.1 Introduction

The gamma- and x-ray flares from Soft Gamma Repeaters (SGRs; Mazetz et

al. 1979, Hurley et al. 1998, 2004) are believed to be powered by a sudden re-

lease of magnetic energy stored in their host magnetars (Thompson & Duncan

1995). An SGR flare may excite vibrational modes of a magnetar (Duncan

1998). Indeed, torsional oscillations of a magnetar provide an attractive ex-

planation for some of the quasi-periodic oscillations (QPOs) observed in the

tails of giant flares (Barat et al. 1983, Israel et al. 2005, Strohmayer & Watts

2005, van Hoven & Levin 2011 (see chapter 3), Gabler et al. 2011, Colaiuda

& Kokkotas 2011).

Excitation of low-order f-modes is also of considerable interest, because

of the f-modes’ strong coupling to potentially detectable gravitational radia-

tion. The sensitivity of the ground-based gravitational-wave interferometers

has dramatically improved over the last 5 years (Abott et al. 2009a, Acernese

et al. 2008) and interesting upper limits on the f-mode gravitational- wave

emission from the 2004 SGR 1806-20 giant flare, a possible 2009 SGR 1550–

5418 giant flare and several less energetic bursts have recently been obtained

(Abott et al. 2008, Abott et al. 2009b, Abadie et al. 2010, see also Kalmus et

al. 2009). Advanced LIGO and VIRGO are expected to become operational

in the next 5-7 years and it is of interest to predict the strength of expected

gravitational-wave signal from future giant flares.

In this chapter, we compute a theoretical estimate for the amplitude of the

torsional and f-modes expected to be excited in a giant flare. We show that

only a small fraction of the flare energy is expected to be pumped into the

low-order f-modes and estimate the signal-to-noise ratio for the future giant

flare detection with advanced LIGO. By contrast, the torsional modes can be

strongly excited and may well be responsible for some of the observed QPO’s

in magnetar flares.
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2. Excitation of f-modes and torsional modes by giant flares

2.2 The general formalism

The giant flares release a significant fraction of the free magnetic energy stored

in their host magnetars. Two distinct mechanisms for this have been pro-

posed: (1) Large-scale rearrangement of the internal field, facilitated by a

major rupture of the crust (Thompson & Duncan 1995, 2001; we shall refer

to it as the internal mechanism, IM) and (2) a large-scale rearrangement of

the magnetospheric field, facilitated by fast reconnection (Lyutikov 2006, Gill

& Heyl 2010; we shall refer to it as the external mechanism, EM ). Both pro-

cesses may well be at play: the IM would likely serve as a trigger for the EM

(however, as was argued in Lyutikov 2003, EM may also be triggered by slow

motion of the footpoints of a magnetospheric flux tube, leading to a sudden

loss of magnetostatic equilibrium). Observationally, the extremely short, a

few microseconds rise time of the 2004 giant flare in SGR 1806-20 (Hurley et

al. 2004) gives reason to believe that EM was at play in that source: the IM

operates on a much longer Alfvén crossing timescale of 0.05 − 0.1 seconds.

The long timescale for the IM implies that it would not be efficient in exciting

the f-modes which have frequencies of over a kHz; this was recently indepen-

dently emphasized by Kashiyama & Ioka (2011).

2.2.1 Excitation by the EM

During the large-scale EM event, the magnetic stresses at the stellar surface

change rapidly by, at most1, order 1. The magnetosphere comes to a new

equilibrium, on the very short timescale of several Alfvén (light)-crossing times

and the stresses change to new constant values. We shall characterize the

change of the magnetic stress by the 3 components

∆Trr =
B2

4π
fr(θ,φ),

1There is some observational evidence for the substantial magnetic-field reconfiguration in the

magnetosphere, as seen from the difference between the persistent pre-flare and post-flare pulse

profiles (Palmer et al. 2005). The global change of the magnetospheric twist would result in the

comparable change in the tangential magnetic field at the surface, as is evident from e.g. the twisted-

magnetosphere solution by Thompson, Lyutikov, & Kulkarni 2002.
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2.2 The general formalism

∆Trθ =
B2

4π
fθ(θ,φ), (2.1)

∆Trφ =
B2

4π
fφ(θ,φ),

where B is some characteristic value of the surface magnetic field and fr, fθ
and fφ are functions are of order 1 in the strongest possible flares and are

smaller for the weaker flares. Consider now a normal mode of the star with

an eigenfrequency ωn and a displacement wavefunction ξn(r, θ,φ). We treat

the changing surface magnetic stress as an external perturbation acting on

the mode. We derive the mode excitation using the Lagrangian formalism; in

Appendix 2.A we sketch the derivation directly from the equations of motion.

The Lagrangian of the free (pre-perturbation) mode is given by

Lfree(an, ȧn) =
1

2
mnȧ

2
n − 1

2
mnω

2
na

2
n, (2.2)

where an is the generalized coordinate corresponding to the normal mode, mn

is the effective mass given by

mn =

�
d3rρ(r)ξ2n(r), (2.3)

and ρ(r) is the density. The Lagrangian term characterising the mode’s in-

teraction with external stress is given by (cf. section 2 of Levin 1998)

Lint = an

�
R2ξn · F sin θdθdφ, (2.4)

where

F = ∆Trrer +∆Trθeθ +∆Trφeφ, (2.5)

and the displacement ξ is evaluated at the radius of the star R. The full

Lagrangian for the nth mode is given by1

L(an, ȧn) = Lfree + Emagαn
an
R

, (2.6)

1We work in the linear regime and don’t take into account the non-linear coupling between the

modes. The mode amplitudes � 1 found at the end of our calculation indicate that this is a good

approximation.

43



2. Excitation of f-modes and torsional modes by giant flares

where

Emag =
B2R3

4π
(2.7)

is the characteristic energy stored in the star’s magnetic field and and αn is

the coupling coefficient given by

αn =

�
ξn(R, θ,φ) · f(θ,φ) sin θdθdφ, (2.8)

where

f = fr(θ,φ)er + fθ(θ,φ)eθ + fφ(θ,φ)eφ (2.9)

It is now trivial to find the motion resulting from the sudden introduction of

the external stress at moment t = 0. The coordinate an oscillates as follows:

an(t) = ān [1− cos (ωnt)] , (2.10)

where the amplitude is given by

ān =
αnEmag

mnω2
nR

. (2.11)

The energy in the excited mode is given by

En =
α2
nE

2
mag

2mnω2
nR

2
(2.12)

We now briefly revisit the mode excitation by the IM. In this case, the in-

teraction Lagrangian of a mode with the magnetic field is described by the

following volume integral:

Lint = an

�
d3rfL(r) · ξn(r), (2.13)

where fL = [∇×B] × B is the lorentz force per unit volume. Since fL ∼
B2/R, one can see that the coupling of the internal field variation to the mode

is of the same order of magnitude as that of the external field variation, pro-

vided that the external and internal fields are of the same order of magnitude.
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2.2 The general formalism

However, the IM mechanism acts on a much longer timescale1 τAlfven ∼ 0.1s

than the typical f-mode period of τf ∼ 0.0005 s, so the f-mode oscillator would

be adiabatically displaced without excitation of the periodic oscillations. One

can show that the typical suppression factor of the IM relative to the EM ex-

citation is at least of order 2πτAlfven/τf in the mode amplitude2. This factor

is so large that even if internal field was stronger than the external field by

an order of magnitude, the IM excitation would still be suppresed relative to

the EM one.

Is there a way around this suppression factor? Potentially, IM could fea-

ture a collection of many localized MHD excitations, with the timescale for

each one being determined by the Alfvén-crossing time of each of the excita-

tion domain. If the domains were small enough, their timescales could be more

closely matched with the f-mode period (Melatos, private communications).

However, in this case the magnitude of the overlap integral in Eq. (2.13) would

be reduced by a factor ∼ (R/∆R)3, where ∆R is the characteristic size of the

excited domain. The domains would contribute incoherently to the amplitude

of the excited mode, thus the contribution of an individual domain would have

to be multiplied by (R/∆R)3/2 in the (somewhat unlikely) limit where the

active domains occupy the whole star. Thus, while the timescale of the mini-

flares could be well-matched with the f-mode period, their overall contribution

to the overlap integral in Eq. (2.13) would be suppressed by ∼ (R/∆R)3/2. In

the optimal case that the mini-flares have the same timescale as the f-mode

period, R/∆R ∼ τAlfven/τf . Therefore, the collection of mini-flares would not

give us any gain in the mode excitation amplitude, as compared to the IM

estimate given in the previous paragraph. Two applications of the formalism

1This timescale could be shorter by a factor of
√
xp ∼ 0.2 (where xp is the proton fraction) if

the superfluid neutrons are decoupled from the MHD (Easson & Pethick 1979, van Hoven & Levin

2008 (see also chapter 1), Andersson, Glampedakis, & Samuelsson 2009). However, even in this case

the timescale τAlfven on which the IM acts is still a factor of ∼40 larger than the f-mode period τf .
2This can be formalized by the following argument: consider a harmonic oscillator of proper

frequency ω0, initially at rest, which is externally driven by force f(t). The amplitude of the

induced oscillation at the proper frequency is proportional to f̃(ω0), the Fourier transform of f(t)

evaluated at ω0. For a step function, representing the rapid transition (several light crossing times)

to the new magnetospheric equillibrium in the EM, f̃(ω) ∝ 1/ω. On the other hand, for a smooth

pulse of duration τ , as expected in IM, the Fourier transform is suppressed and scales at most as

f̃(ω) ∝ (ωτ)−11/ω when ωτ � 1.
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2. Excitation of f-modes and torsional modes by giant flares

for the mode excitation by the EM mechanism developed above are presented

in the next two sections.

2.3 f-modes and gravitational waves

In order to estimate an effective f-mode mass, we have computed the l = 2 f-

mode displacement functions for a neutron star1 in the Cowling approximation

(see Appendix 2.B). Convenient scalings are

mn = qMM,

ω2
n = qω

GM

R3
,

ξr(R, θ,φ) = anY2m(θ,φ).

(2.14)

In our fiducial model qM = 0.046, where we have normalised the mode wave-

function so that er ·ξ2m(R, θ,φ) = Y2m(θ,φ). Our reference number qω = 1.35

was obtained using a fitting formula for fully relativistic f-mode frequencies2

from Andersson & Kokkotas (1996). The amplitude of the f-mode is given by

ā2m
R

=
α2m

qmqω

Emag

Egrav
, (2.15)

where

Egrav =
GM2

R
(2.16)

1We constructed our neutron star model using the equation of state from Douchin & Haensel

(2001) and Haensel & Pichon (1994). In calculating the f-mode we treated the whole star as a fluid,

neglecting the effects of bulk- and shear moduli.
2We are not being consistent in, on the one hand, using the Cowling approximation for a

Newtonian star to determine the effective mode mass, but on the other hand using the published

relativistic calculations for the mode frequencies. Normally, Newtonian calculations would be suf-

ficient, given the many unknown details of the flare and the many poorly constrained parameters

we’d already introduced into the model and the formalism we developed in the previous section is

manifestly Newtonian (but can be generalized to relativistic regime if the need arises). However, as

we show below, the signal-to-noise ratio for the gravitational-wave detection is very sensitive to the

mode frequency and therefore we try to be accurate in characterizing these frequencies.
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2.3 f-modes and gravitational waves

is of the same order as the gravitational binding energy of the neutron star.

We get

ā2m
R

∼ 3× 10−6α2m

�
B

1015G

�2� R

10km

�4�1.4M⊙
M

�2

. (2.17)

The energy in the f-mode is

Ef =
α2
2m

2qmqω

E2
mag

Egrav
∼ 1.5× 10−6α2

2mEmag (2.18)

for our fiducial parameters. This energy is drained from the star primarily

through emission of gravitational waves. The total amount of energy carried

by gravitational waves is therefore

EGW = Ef =
2π2d2f2c3

G

� ∞

−∞
�h2�dt (2.19)

where f = ωn/2π is the f-mode frequency in Hz, �h2� is the direction and

polarisation averaged value of the square of the gravitational-wave strain h as

measured by observers at distance d from the source. This expression allows us

to estimate the expected signal-to-noise ratio for ground based gravitational

wave interferometers (cf. Abadie et al 2010). One can use the fact that nearly

all the gravitational-wave signal is expected to arrive in a narrow-band around

the f-mode frequency and that the signal form (the exponentially-decaying

sinusoid) is known. The Wiener-filter expression for the signal-to-noise can

be written as

S

N
≈

�
1

Sh(f)

� ∞

−∞
|h̃2(f �)|df �

�1/2
(2.20)

∼
�

G

2π2c3
Ef

Sh(f)f2d2

�1/2
(2.21)

where h̃(f) is the Fourier transform of the time-dependent gravitational wave

strain h(t). As is standard for narrow-band signal, we have used Parseval’s

theorem to convert the integral over f to the integral over t from Eq. (2.19),

and, following Abadie et al. 2010, we have approiximated h2 with the average

�h2�. At frequencies of a few kHz the spectral density, Sh(f), of the ground

based detectors like Advanced LIGO and Virgo is dominated by shot-noise
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2. Excitation of f-modes and torsional modes by giant flares

and is proportional to f2. This makes the signal-to-noise ratio for observations

of magnetar f-modes excited in giant flares particularly sensitive to frequency

(∝ f−3). For Advanced LIGO we find

S

N
≈ 0.07 α2m

�
2 kHz

f

�3� B

1015 G

�2

×
�
1 kpc

d

��
R

10 km

�2�0.07 M⊙
mn

�1/2

(2.22)

Here we used tabulated1 Sh(f) from the LIGO document LIGO-T0900288,

which gives Sh(f) = 8.4· 10−47Hz−1 (f/2000 Hz)2 for the shot-noise domi-

nated part of the curve.

2.4 Torsional modes

Intuitively, one expects torsional modes to be strongly excited during the mag-

netar flares (Duncan 1998), since it is the free energy of the twisted magnetic

field that is being released. These have much lower proper frequencies than

the f-modes (with the fundamental believed to be in the range 10 − 40 Hz,

see Steiner & Watts 2009 and references therein), which can be well-matched

to the Alfvén frequencies inside the star. Thus both EM and IM are likely

to play a role in the torsional mode excitation. Here, we consider the EM

explicitly but keep in mind that IM would give a similar answer.

For the torsional modes in the crust, the displacement is given by

ξnlm(r, θ,φ) = gn(r)r ×∇Ylm(θ,φ), (2.23)

and it is convenient to normalize the wavefunctions so that gn(R) = 1. Here

n = 0, 1, ... is the number of radial nodes. With this normalization, the

effective mode mass mnlm ∼ mcrust ∼ 0.01M and from Eq. (2.11) one gets for

the mode amplitude normalized by the star radius:

anlm
R

∼ 0.01αnlm

�
B

1015G

�2 R

10km

0.014M⊙
mnlm

�
100Hz

f

�2

. (2.24)

1These sensitivity curves represent the incoherent sum of principal sources of noise as they are

currently understood.
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2.5 Discussion

Thus we see that for a reasonable range of parameters it is feasible that the

crustal torsional modes would be strongly excited by a giant flare.

2.4.1 Magnetic modes

Recently, Kashiyama & Ioka (KI, 2011) suggested that certain types of MHD

modes that may be strongly excited during a giant flare, are coupled to grav-

itational radiation and may therefore become an interesting source for ad-

vanced LIGO. KI focus on the polar modes of Sotani & Kokkotas (2009); the

MHD modes found by Lander & Jones (2011a,b) also satisfy some of the KI’s

criteria. While interesting, this idea has potential caveats that need further

investigation. KI assume that the oscillations are long-lived, ∼ 107 oscillation

periods. However, MHD modes are notoriously capricious. While the ideal-

ized modes of Sotani & Kokkotas (2009) and Lander & Jones (2011a,b) are

protected by symmetry, the global magnetic modes in more realistic configu-

rations may couple to a variety of localized Alfvén-type modes and may thus

be quickly damped via phase mixing and resonant absorption (Goedbloed &

Poedts 2004, van Hoven & Levin 2011 (see chapter 3)). Thus, in our view,

there is currently no compelling reason to believe that the magnetic modes

can be substantially longer lived than the observed magnetar QPOs.

2.5 Discussion

In this chapter, we have computed the excitation of the f-modes and crustal

tosional neutron-star modes by a giant flare. Corsi & Owen (2011) recently

computed the magnetic energy that can be released during the flare1 and

found values comparable to Emag. However, in this work we showed that

only a small fraction of the released flare energy is converted into the f-modes

and that the associated gravitational-wave emission is correspondingly weaker

1These analytical calculations necessarily make simplifying assumptions about the structure

of an equilibrium magnetic field inside the magnetar, but they are likely to give correct order-of-

magnitude values.
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2. Excitation of f-modes and torsional modes by giant flares

than has been previously hoped (cf. Abadie et al. 2010 and Corsi & Owen

2011). From Eq. (2.22), our fiducial model does not look promising for future

advanced LIGO detection of a giant flare, even if α2m ∼ 1, i.e. if the flare

comprises a global reconfiguration of the magnetospheric field so that the re-

leased electro-magnetic energy is of order of the total magnetic energy of the

star, ∼ 1047 erg (the most energetic of the 3 observed giant flares released

few×1046 erg). However, if the surface field is significantly larger than 1015

G and/or the star is greater than 10 km in radius (which would reduce the

f-mode frequency and increase the contact surface area), then one can become

more hopeful about the potential detection. On the other hand, we have seen

that there is no difficulty in exciting the crustal torsional modes to a large

amplitude. Whether or not this leads to the observed quasi-periodic oscilla-

tions in the flare’s tail (Israel et al. 2005, Strohmayer & Watts 2005, Watts &

Strohmayer 2006) depends crucially on the dynamics of hydromagnetic cou-

pling between the crustal modes and the Alfvén modes of the magnetar core

(Levin 2006, 2007, van Hoven & Levin 2011 (see chapter 3), Gabler et al. 2011,

Colaiuda & Kokkotas 2011).
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Appendix 2.A

Appendix 2.A: Alternative derivation of the

mode excitation

In this Appendix we derive, for completeness, the formalism for mode ex-

citation directly from the equations of motion; cf. Unno et al (1989). Let

ξ(r, t) be the small displacement of the star from its equilibrium position.

The equations of motion are given by

ρξ̈ = F (ξ) + f ext(r, t), (2.25)

where ρ is the density, F (ξ) is the restoring force linear in ξ and f ext is the

external force per unit volume. For a normal-mode eigenfunction ξn with the

angular frequency ωn, one has F n = −ρω2
nξn. We now decompose the star

displacement into its eigenmodes

ξ(r, t) = Σnan(t)ξn(r) (2.26)

and suibstitute this series into Eq. (2.25) to obtain

Σn[än + ω2
nan]ξn(r) = f ext(r, t). (2.27)

Taking a dot product of the above equation with ξk(r), integrating over the

volume of the star and using the orthogonality relation
�

d3rρξn · ξk ∝ δmk, (2.28)

we obtain the equation of motion for ak:

äk + ω2
kak =

αk(t)

mk
, (2.29)

where

αk =

�
d3rf ext · ξk(r) (2.30)

and

mk =

�
d3rρ(r)ξ2k(r). (2.31)

These equations of motion are identical to those derived from the Lagrangian

in Eqs (2.2) and (2.13). For the case when the external force is applied at

the surface, one recovers equations of motion derived from Eqs (2.2) and (2.4).
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2. Excitation of f-modes and torsional modes by giant flares

Appendix 2.B: Stellar oscillations

In this appendix we give the non-relativistic equations that govern adiabatic

fluid motion in non-rotating, spherical stars. We derive linearized equations

of motion for small fluid displacements ξ in the Cowling approximation. That

is, we ignore perturbations of the gravitational potential resulting from the

small fluid displacement ξ. In non-rotating stars, the fluid flow obeys the

continuity- and Euler equations,

∂ρ

∂t
= −∇· (ρv) (2.32)

ρ
dv

dt
= −∇P − ρ∇Φ, (2.33)

where ρ is the mass-density, v is the velocity vector and P is the pressure.

The gravitational potential Φ satisfies Poisson’s equation

∇2Φ = 4πGρ. (2.34)

Together with an equation for adiabatic motion,

dP

dt
=

Γ1P

ρ

dρ

dt
, (2.35)

where Γ1 is the adiabatic constant, the above equations provide a complete

dynamical description of the star. In order to find eigenmodes of the star, we

proceed as follows:

(1) We construct an equillibrium stellar model. We assume that our star

is non-rotating and neglect deformations due to magnetic pressure, which are

expected to be small. Therefore, we adopt a spherically symmetric back-

ground stellar model that is a solution of the Tolman-Oppenheimer-Volkoff

equation (TOV equation). We calculate the hydrostatic equillibrium using

a SLy equation of state (Douchin & Haensel, 2001; Haensel & Potekhin,

2004; Haensel, Potekhin & Yakovlev, 2007). The model that we use here

has a mass of M∗ = 1.4 M⊙, a radius R∗ = 1.16· 106 cm, a central density

ρc = 9.83· 1014 g cm−3 and cental pressure Pc = 1.36· 1035 dyn cm−2. As a

further simplification, we treat the whole star as a fluid, neglecting effects due

to non-zero bulk- and shear moduli in the crust.
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Appendix 2.B

(2) We introduce a small fluid displacement ξ(x, t) and assume for this

displacement a harmonic time dependence, i.e. ξ(x, t) ∝ ξ(x)eiωt. Using

the perturbation ξ, we linearize the fluid equations (2.33) - (2.35) around the

static equillibrium model. This yields the following pair of ordinary differential

equations (see e.g. Cox, 1980; Unno et al., 1989; Christensen-Dalsgaard,

2003):

dξr
dr

= −
�
2

r
+

1

Γ1P

dP

dr

�
ξr +

rω2

c2

�
l(l + 1)c2

r2ω2
− 1

�
ξh (2.36)

dξh
dr

=
1

rω2

�
ω2 −N2

�
ξr +

�
N2

g
− 1

r

�
ξh (2.37)

where ξr and ξh are radial- and horizontal components of the fluid displace-

ment. The integer l enters the equation due to an expansion of the perturbed

quantities into spherical harmonics Y m
l (θ,φ). In terms of ξr and ξh, the dis-

placement field ξlm(x) corresponding to a spherical harmonic degree l and

order m, can be expressed as

ξlm(x) = Re[ξr (r)Y
m
l r̂ + ξh(r)r∇Y m

l ], (2.38)

where r̂ is the unit vector in the radial direction. Further, in Eq. (2.37), g is

the gravitational acceleration and N2 is the square of the buoyancy frequency

(Brunt-Väisälä frequency) is given by:

N2 = g

�
1

Γ1P

dP

dr
− 1

ρ

dρ

dr

�
(2.39)

(3) We supplement the equations (2.36) and (2.37) with boundary condi-

tions at r = 0 and r = R∗. The boundary condition in the center of the star

is obtained by requiring the solutions to be regular functions at r = 0. One

may show (see e.g. Unno, 1989) that this leads to the condition

ξr = lξh at r = 0. (2.40)

At the stellar surface, we enforce a zero-stress boundary condition, i.e. the

Lagrangian perturbation of the pressure δP = 0. This gives

ξh = − 1

rρω2

dP

dr
ξr at r = R∗. (2.41)
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2. Excitation of f-modes and torsional modes by giant flares

Equations (2.36) and (2.37) augmented with the boundary conditions of equa-

tions (2.40) and (2.41), constitutes a boundary value problem, which yields,

for each index l, a unique series of solutions (eigenmodes) ξr,ln(r) and ξh,ln(r)

corresponding to eigenfrequencies ω = ωln. Here the index n denotes the

number nodes along the radial axis. Since there are two separate classes of

solutions for a given number of radial nodes, i.e. the low frequency g-modes

and the high frequency p-modes, we label the g-modes with negative integer

n and the p-modes with positive integer n. These two branches of modes are

separated by the nodeless (n = 0) f-mode.

(4) We obtain solutions of the above boundary value problem by means

of a shooting method. For a fixed value of ω, we integrate Eq’s (2.36) and

(2.37) from r = 0, where Eq. (2.40) is satisfied, to the surface at r = R∗,

using the 4-th order Runge-Kutta scheme. Eigenvalues ωln and eigenfunctions

ξr,ln, ξh,ln are obtained by repeating this procedure for different values of ω,

until the boundary condition Eq. (2.41) is satisfied at R∗.
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