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Chapter 1

Hydromagnetic waves in a

superfluid neutron star with

strong vortex pinning

Based on:

Hydromagnetic waves in a superfluid neutron star with strong vortex pinning

Maarten van Hoven & Yuri Levin, 2008, published in MNRAS

19



1. Hydromagnetic waves in a superfluid neutron star with strong

vortex pinning

Abstract

Neutron-star cores may be hosts of a unique mixture of a neutron superfluid

and a proton superconductor. Compelling theoretical arguments have been

presented over the years that if the proton superconductor is of type II, than

the superconductor fluxtubes and superfluid vortices should be strongly cou-

pled and hence the vortices should be pinned to the proton-electron plasma

in the core. We explore the effect of this pinning on the hydromagnetic waves

in the core and discuss two astrophysical applications of our results: (1) We

show that even in the case of strong pinning, the core Alfvén waves thought

to be responsible for the low-frequency magnetar quasi-periodic oscillations

(QPO) are not significantly mass-loaded by the neutrons. The decoupling

of ∼ 0.95 of the core mass from the Alfvén waves is in fact required in or-

der to explain the QPO frequencies, for simple magnetic geometries and for

magnetic fields not greater than 1015 Gauss. (2) We show that in the case

of strong vortex pinning, hydromagnetic stresses exert stabilizing influence

on the Glaberson instability, which has recently been proposed as a potential

source of superfluid turbulence in neutron stars.
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1.1 Introduction

1.1 Introduction

Since the late 1950’s, it has been realized that neutron-star interior may con-

sist of a number of quantum fluids (see Shapiro & Teukolsky 1983 for a review).

Currently, it is thought that both neutron superfluid and proton supercon-

ductor are likely to coexist in the neutron-star cores (see, e.g., Link 2007 for

a discussion). Several researchers have argued that if the proton supercon-

ductivity were of the type II, then the superconductor fluxtubes would couple

strongly to the neutron superfluid vortices. This line of reasoning is based on

the fact that nuclear forces contain velocity-dependent terms, which results

in the entrainment of protons in the neutron super current (Alpar, Langer

& Sauls, 1984). Therefore, the vortices are sheathed by charged currents en-

trained in the superfluid flow and are strongly magnetized. Magnetic fluxtubes

interact strongly with the magnetized vortices, similar to the way in which the

fluxtubes interact between each other (Ruderman, Zhu, & Chen 1998 and ref-

erences therein). As a result of this coupling, the vortices get strongly pinned

to the proton-electron plasma in the core. Such pinning would have important

implications for the neutron-star phenomenology. Ruderman, Zhu, & Chen

(1998) have argued that the vortex-pinning in the core may be responsible for

the observed glitches in the pulsar rotation rates. Link (2003) has considered

the effect of the vortex-fluxtube interaction on the dynamics of the precessing

pulsar PSR 1828-11 (observed by Stairs, Lyne, & Shemar 2000). Building on

the theoretical work by Shaham (1977) and Sedrakian, Wasserman, & Cordes

(1999), he has concluded that the interaction, if present, would ultimately

lead to the fast precession. Since PSR 1828-11 is precessing slowly and per-

sistently, Link (2003) has argued that the core vortex pinning is excluded by

the observations and hence that either the proton superconductor might be

of type I, or that both proton and neutron condensates do not coexist inside

that pulsar. While Link’s argument is suggestive, we believe it is premature

to rule out strong vortex pinning in the cores of all neutron stars.

In this chapter we consider hydromagnetic waves in the case when the neutron

vortices are strongly pinned to the proton-electron plasma in the core. We

have two main astrophysical motivations for studying this problem. The first
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1. Hydromagnetic waves in a superfluid neutron star with strong
vortex pinning

one is due to the fairly recent observations of the quasi-periodic oscillations

(QPOs) of the x-ray luminosity in the tails of giant magnetar flares (Israel et

al. 2005, Strohmayer & Watts 2005, 2006, see also earlier but lower signal-to-

noise measurements of Barat et al. 1983). Israel et al. 2005 has argued that

the lowest-frequency and the longest-lived QPO of ∼ 18 Hz is likely to rep-

resent an Alfvén-type oscillation in the magnetar core (this frequency is too

low to be associated with the torsional modes of the crust). Levin (2006) has

shown that for a magnetar-strength field the crustal motion [which is thought

to be either powering the flare (Thompson & Duncan 1995) or responding to a

global reconnection event in the magnetosphere (Lyutikov 2003)] would excite

the core Alfvén waves on the timescale of several oscillation periods. Since

then, a significant body of theoretical work has been devoted to a study of

global magnetar vibrations, which would involve both hydromagnetic waves in

the core and elasto-magnetic shear waves in the crust [Glampedakis, Samuels-

son, & Andersson 2006, Levin 2007 (from here on L07), Sotani, Kokkotas, &

Stergioulas 2007, Lee 2007]. In particular, L07 has argued that the long-

lived low-frequency QPOs are associated with the special spectral points of

the Afven continuum in the magnetar core. For simple B-field configurations

these special points can be found analytically, and do not depend on the de-

tails of the crust. For example, for a uniform internal B-field, the lowest QPO

is expected at the frequency

νAlfven ∼ Beff

2R
√
4πρc

(1.1)

where R is the radius of the fluid part of the star, ρc is the density of the the

part of the fluid which is coupled to the Alfvén waves and Beff is the effective

magnetic field which is given by1

Beff =
�

BBcr. (1.2)

1The occurence of Beff in Eq. (1.1) and (1.2) can be understood as follows: the magnetic

tension force acting on surface Σ perpendicular to the fluxtubes containing N fluxtubes is given by

N∆Σ·B2
cr/4π = Σ·Teff , where ∆Σ is the cross section of a single fluxtube and Teff is the effective

tensile stress. The magnetic flux through Σ is Φ = Σ·B = N∆Σ·Bcr and we find Teff = BBcr/4π =

B2

eff/4π (as opposed to T = B2/4π, where T is the corresponding part of the Maxwell stress tensor).

(A detailed derivation is given in Easson & Pethick, (1977)).
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1.1 Introduction

Here B is the average magnetic field, Bcr � 1015 G is the value of the critical

magnetic field confined to the fluxtubes. From Eq. (1.2) we see that the

magnetar QPO frequencies could provide an interesting constraint on the

magnetic-field strength and geometry. However, interaction between neutron

and proton superfluids could affect core Alfvén waves, by effectively mass-

loading them with neutrons. We shall consider the extreme case of such

interaction—the strong vortex pinning on the fluxtubes, and show that it

does not significantly alter the Alfvén-wave propagation in slowly-spinning

magnetars (but is important for the Alfvén waves in the fast-spinning radio-

pulsars). This simplifies the interpretation of the QPO frequencies and shows

that it is valid to assume that ρc is just the density of protons, about 5% of

the total fluid density.

Our second motivation is the recent theoretical discussion of the superfluid

turbulence in the neutron-star cores. Superfluid turbulence has been discussed

in the context of the laboratory Helium fluid for the last 30 years (see, e.g.,

Donnelly 1991 for a review). In a ground-breaking series Peralta, Melatos, Gi-

acobello, & Ooi at the University of Melbourne (2005, 2006; hereafter PMGO5

and PMGO6) have applied the superfluid-helium ideas to neutron-star inte-

riors. PMGO have developed from scratch a code which studies numerically

the 2-component superfluid dynamics. The two components in PMGO are

the neutron superfluid and the normal neutron fluid which are coupled via

the mutual friction force at the superfluid vortices; this mixture is expected if

the core temperature is a significant fraction of the critical temperature of the

superfluid. The equations of motions used by PMGO were derived by Hall

and Vinen (1956) and Bekharevich and Khalatnikov (1961). PMGO5 have

studied, for the first time, the superfluid spherical Taylor-Couette flow and

find that it becomes turbulent in 2 steps: (1) The normal component develops

meridional circulation due to the Eckman pumping (see, e.g., Pedlosky 1987),

and (2) the component of the meridional flow of the normal fluid which is di-

rected along the superfluid vortices drives the vortex Kelvin waves unstable;

this is known as the Glaberson (or sometimes Donnelly-Glaberson) instability

(Glaberson, Johnson, Ostermeier 1974, Donnelly 1991). In PMGO5 simula-

tions, the Glaberson instability leads to turbulence. Interestingly, PMGO6
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1. Hydromagnetic waves in a superfluid neutron star with strong
vortex pinning

and Melatos and Peralta (2007) demonstrate that the superfluid turbulence

could affect the pulsar spin and could be behind the well-known pulsar timing

noise and spin glitches.

More recently, Sidery, Andersson and Gomer (2007, hereafter SAG) and

Glampedakis, Andersson and Jones (2007, hereafter GAJ1 and 2008, here-

after GAJ2) developed an analytical theory of the Glaberson instability in

neutron stars. Their 2-component fluid consists of the neutron superfluid and

the proton superconductor, which are, like in PMGO, coupled via the mutual-

friction force. SAG have considered the limit of the weak mutual friction (see

below) and infinitely heavy proton superfluid and found that it was the in-

ertial waves in the neutron superfluid which were subject to the Glaberson

instability. GAJ1 and GAJ2 have extended this analysis to include the regime

of realistic proton-to-neutron mass ratio and of arbitrarily strong mutual fric-

tion. Notably, they found that the Glaberson instability operated even in the

regime of strong pinning. But where would the initial relative flow between

the protons and neutrons come from? GAJ have argued that if the pinned

neutron vortices were misaligned with the angular velocity of the protons, then

this would naturally lead to the relative proton-neutron flow which would po-

tentially be strong enough to drive the turbulence in some parts of the star.

Without turbulence, the star with misaligned pinned vortices would undergo

fast precession (Shaham 1977) which, although probably hard to detect, has

yet not been observed in any of the currently-timed radio pulsars or mag-

netars. In GAJ2 the authors argue that this Glaberson-instability-induced

turbulence may generically prevent the star getting into a configuration with

the fast precession. However, this conclusion is premature. One important

piece of physics which is not considered in GAJ is the strong hydromagnetic

stress inside the proton superfluid, which, as we show below, has a suppress-

ing effect on the Glaberson instability and hence on the development of the

superfluid turbulence. We will derive, however, a robust upper limit on the

angle of fast precession, which is determined by the maximum possible mutual

torque between the neutron superfluid and the proton superconductor. The

maximal precession angle turns out to be much smaller than 1 degree and

thus it is not surprising that the fast precession has never been observed in
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1.2 Dispersion relations

real neutron stars.

The plan of the chapter is as follows. In the next section we derive the

dispersion relation for the hydromagnetic waves when the superfluid vortices

are rigidly attached to the core plasma. In sections 1.3 and 1.4, we consider

applications to oscillating magnetars and precessing pulsars, respectively. We

end with the general discussion in section 1.5.

1.2 Dispersion relations

As a starting point, we utilize the plane-wave analysis outlined in GAJ. We

follow closely the notation of and reasoning behind GAJ1’s basic equations

(1)–(7) and our derived dispersion relation is identical to their Eq. (10) in

the limit of zero hydromagnetic stress, but has important extra terms when

the hydromagnetic stress is included. We begin with the two-fluid dynamical

equations, cf. Eqs. (1) and (2) in GAJ1:

Dn
t vn +∇ψn = 2vn ×Ω+ fmf (1.3)

Dp
t vp +∇ψp = 2vp ×Ω− fmf/xp + νee∇2vp + fhm (1.4)

Here vn and vp are the velocity vectors of the neutron and proton condensates

respectively (throughout this thesis vectors are denoted by bold symbols), the

full time derivatives Dt are defined in the usual way as Dn,p
t = ∂/∂t+vn,p ·∇,

ψn,p is the sum of specific chemical and gravitational potentials, fmf is the

acceleration of the neutron superfluid due to the mutual friction between its

vortices and the charged plasma, xp = ρp/ρn is the density ratio between

the proton charged and neutral components of the interior (∼ 5%), Ω is the

angular velocity of the rotating frame in which all of the velocities are defined,

νee is the kinetic viscosity of the plasma due to electron-electron scattering,

and

fhm = Beff ·∇Beff/4πρp (1.5)

is the acceleration of the plasma due to the hydromagnetic stress. We note

that because in a type-II superconductor the distance between the fluxtubes
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1. Hydromagnetic waves in a superfluid neutron star with strong
vortex pinning

is much larger than the fluxtube diameter, we ignore magnetic pressure. In

writing down Eq. (1.3), we have followed GAJ and neglected explicitly the

effect of superfluid entrainment (which we expect will not qualitatively change

our results) and the individual tension force for the vortices (which can be

neglected if the wavelength of the waves is much greater than the inter-vortex

distance). We shall use the following conventional form (Hall & Vinen 1956,

Bekharevich & Khalatnikov 1961, PMGO, SAG and GAJ) for the mutual-

friction force:

fmf =
R

1 +R2
ω̂n × (ωn ×wnp) +

R2

1 +R2
ωn ×wnp, (1.6)

where ωn = ∇×V n is the vorticity of the neutron fluid in a non-rotating frame

(here V n is the neutron velocity in the non-rotating frame)1, ω̂n = ωn/|ωn|
is the associated unit vector, wnp = vn − vp and R is the dimensionless

number measuring the strength of the drag between the neutron vortices and

the plasma. When R � 1 (the weak-drag limit), the first term on the right-

hand side dominates. This entails that the neutron vortices mostly follow

the motion of the neutron superfluid in the direction perpendicular to ωn.

When R � 1 (the strong-drag limit), the second term on the right-hand side

dominates. This entails that the neutron vortices mostly follow the plasma

motion. When R = ∞, which is the case on which this chapter focuses, the

vortices get pinned to the plasma. In this limit, the plasma and the neutron

superfluid interact exclusively via the Magnus force arising from the relative

motion between the neutron vortices and neutron superfluid.

We choose the background state as follows: 1. the z-axis is directed along

Ω; 2. the neutron vortices are aligned with Ω = Ωez, and are at rest in the

rotating frame; 3. in the same frame, the plasma has a background velocity

w0 = w0ez, which is directed along the vortices; 4. the mean magnetic field

is directed along the vortices, B = Bez. We consider waves which are propa-

gating along the z-axis. We are interested in the waves for which the restoring

force is the combination of hydromagnetic stress, the Coriolis force and the

Magnus force. This means that the wave must be nearly incompressible, which

1In GAJ1, ωn is erroneously defined as ∇×vn. However, in their subsequent calculations they,

most likely, use the correct expression.
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1.2 Dispersion relations

implies

k · δvn,p = 0. (1.7)

Here k is the wavevector, δvn,p is the neutron/proton velocity perturbation

due to the wave. Incompressibility and assumed homogeneity of the back-

ground state imply δψn,p = 0.

Let us introduce the Lagrangian displacement vectors ξn,p of the neutron

and proton fluids from their background positions, with δvn,p = Dn,p
t ξn,p. We

are looking for the solutions of the form

ξn,p(z, t) =
�
ξn,px0 ex + ξn,py0 ey

�
ei(σt+kz), (1.8)

where σ is the angular frequency of the wave. We now perturb Equations

(1.3), (1.4) and (1.6); we set R = ∞ in the latter. To the linear order in the

velocity perturbation, we have:

Dn
t δvn = ∂2ξn/∂t

2 = −σ2ξn,

Dp
t δvp = −(σ + kw0)

2ξp, (1.9)

δfmf = 2Ω× (δvn − δvp)− (∇× δvn)×w0,

νee∇2δvp = −iνeek
2(σ + kw0)ξp,

δfhm = c2A∂
2ξp/∂z

2 = −c2Ak
2ξp.

Here cA =
�

BBcr/(4πρp) is the Alfvén velocity in the plasma. The expression

for δfhm is obtained using the magnetic induction equation. Substituting

these into Eqs. (1.3) and (1.4) and using ∇ × ξ = ik × ξ together with

δvn = iσξn and δvp = i(σ+kw0)ξp, we get two linear vector equations for ξn
and ξp. It is now convenient to proceed as follows: Let us represent a vector

ξ = ξxex + ξyey by a complex number ξ̃ = ξx + iξy. Then a vector ez × ξ

is represented by iξ̃. By using this, we can immediately rewrite the two real

vector equations as two complex scalar equations:

σξ̃n + 2Ωξ̃p = 0,
�
σ̄ + 2Ω

�
1− 1

xp

�
−
�
iνee + c2A/σ̄

�
k2
�
σ̄ξ̃p +

2Ω− kw0

xp
σξ̃n = 0, (1.10)
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1. Hydromagnetic waves in a superfluid neutron star with strong
vortex pinning

where σ̄ = σ + kw0. This pair of equation yields immediately the complex

dispersion relation:

σ̄2 +

�
2Ω

�
1− 1

xp

�
− iνeek

2

�
σ̄ − 2Ω(2Ω− kw0)

xp
− c2Ak

2 = 0. (1.11)

The dispersion relation for arbitrary R is derived, for completeness, in Ap-

pendix 1.A. In the next two sections we consider two applications of the

relation Eq. (1.11).

1.3 Hydromagnetic waves in magnetars

In this section we assume that there is no Ω-directed relative proton-neutron

flow, i.e. we assume w0 = 0. We also set νee to zero, since the ratio of the

viscous to hydromagnetic stress is given by

νeeσ/c
2
A � 1. (1.12)

With these simplifications, the dispersion relation (1.11) gives

σ = −Ω

�
1− 1

xp

�
±

�

Ω2

�
1 +

1

xp

�2

+ c2Ak
2. (1.13)

It is important to note that in this expression cA is a function of only the

proton density ρp (c2A ≡ BBcr/4πρp). All observed magnetars are slowly

rotating, with Ω ∼ 1 rad s−1. The observed lowest angular frequency for a

magnetar QPO is 18 Hz, thus σ ∼ 113 rad s−1. The sum of Magnus and

Coriolis forces, represented by the terms with Ω, contribute only a fraction

δσ/σ to the wave frequency, given by

δσ/σ � Ω

xpσ
= 0.18

�
Ω

1 rad s−1

��
113 rad s−1

σ

��
0.05

xp

�
. (1.14)

We note that this does not depend on the assumption that σ represents some

fundamental Alfvén mode. From the above equation, it is clear that for hydro-

magnetic waves associated with the magnetar QPO frequencies of 18Hz and
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1.4 Precession of neutron stars

higher, the magnus forces from neutron superfluid introduce only a small cor-

rection to their propagation. Thus we conclude that the magnetar oscillations

(as seen in the giant-flare QPOs) even in the case of strong pinning, do not

couple significantly to the neutron superfluid.1 Therefore, given the knowl-

edge of the internal magnetic field, one should use ρc � xpρn in Eq. (1.1) to

determine the frequency of the lowest QPO which, according to Levin (2007),

corresponds to the turning point of the Alfvén continuum in the core. For

Levin’s the simplest computable magnetar model (uniform internal magnetic

field and density), with the typical magnetar parameters, B = 1015 G, R = 10

km, ρ = 1015 g cm−3 and xp = 0.05, Eq. (1.1) gives νa � 22 Hz, which is in

qualitative agreement with the observed 18 Hz. If the whole neutron super-

fluid would mass-load the wave, this frequency would be reduced by a factor

of ∼ 4. While suggestive, the numbers above certainly should not be taken

as evidence of neutron superfluidity, since the strength and geometry of mag-

netic fields inside the magnetar are highly uncertain.

1.4 Precession of neutron stars

Consider now a precessing neutron star where the neutron angular velocity

and the crust+proton angular velocity2 are equal in magnitude Ω but are mis-

aligned by an angle θ. Suppose that this angle is fixed due to the strong vortex

pinning. The relative velocity of the proton superfluid along the vortices is

given by

w0 = Ω sin θx2, (1.15)

1We note that we have used the plane-wave analysis for what is likely a non-plane-wave oscil-

lation. This is clearly a limitation of our formalism. However, the plane-wave analysis illustrates

the physics which is also valid for oscillatory mode of any geometry, namely that for high-frequency

waves Alfvén restoring forces are much greater than the Magnus forces. This occurs essentially be-

cause the Magnus force is proportional to the velocity and thus scales as σ, while the total restoring

force scales as σ2. Thus, we believe that our analysis is qualitatively correct in the high-frequency

regime, for non-plane-wave Alfvén-type oscillations.
2The crust and the core protons are co-precessing; this is enforced by the hydro-magnetic

stresses (Levin & D’Angelo, 2004).
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1. Hydromagnetic waves in a superfluid neutron star with strong
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where x2 is the coordinate measured along Ωn×Ωp. Note that this expression

agrees with Eq. (18) in GAJ1 when one notes that for small θ their wobble

angle θw equals Ipθ/In, where Ip and In are the moments of inertia of the

proton and neutron components, respectively.

1.4.1 Glaberson instability criterion

It is convenient to express the general solution of Eq. (1.11) as follows:

σ = −kw0 − Ω

�
1− 1

xp

�
+

iνeek2

2
±
√
D,

where

D = Ω2

�
1 +

1

xp

�2

+ c2Ak
2 − 2kw0Ω

xp
− ν2eek

4

4
− iνeek

2Ω

�
1− 1

xp

�
(1.16)

This is essentially the same as Eq. (10) of GAJ1 when cA = 0.

First, let us consider the non-viscous case with νee = 0. Then the minimum

of D is attained for k = Ωw0/(xpc2A) and equals

Dmin = Ω2

�
1 +

1

xp

�2

− Ω2w2
0

x2pc
2
A

. (1.17)

Thus the Glaberson instability appears only for

w0 > cA(1 + xp) � cA. (1.18)

We now allow for the viscous term in Eqs. (1.16) and (1.16). We find that a

weak, viscosity-driven instability appears at a smaller velocity

w0 > 2
√
xpcA =

�
BBcr

πρn
, (1.19)

for the wave-vector range

k− < k < k+ (1.20)
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1.4 Precession of neutron stars

where

k± =
Ω

xpc2A

�
w0 ±

�
w2
0 − 4c2Axp

�
; (1.21)

see Appendix 1.B for the mathematical details.

Equation (1.19) expresses the lowest relative proton-neutron velocity which

is required for the initiation of the Glaberson instability. Whether this veloc-

ity is achieved depends on the misalignment angle θ between the proton and

neutron anglular velocity vectors. In the next subsection, we derive a simple

but rigorous upper bound on θ.

1.4.2 The maximum misalignment angle for fast pre-

cession

The misalignment angle θ can be constrained, by requiring that the preces-

sional torque τp of the proton component not exceed the maximum torque τm

that the vortices can exert on the fluxtubes through magnetic stresses. The

precessional torque is given by1

τp = LnΩp sin θ (1.22)

Here Ln = IΩ is the proton angular momentum, I is the total stellar moment

of inertia and Ωp = Ω. We find that for a typical neutron star with the mass

of M = 1.4 M⊙ and radius of R = 106 cm, the precessional torque is given by

τp � 4 · 1046 sin θ(P/1 s)−2 g cm2 s−2. (1.23)

Here P is the neutron-star rotational period. The maximal physically-admis-

sible torque τm can be computed by assuming that the vortices have maximal

contact with the fluxtubes, i.e. that the vortex is pushed/pulled with the stress

1Since the neutrons are pinned to the protons, the torque acting on the neutrons is given by

the cross product of the instantaneous angular velocity of the protons and the neutrons angular

momentum, and is therefore independent of xp. In our derivation we assume that the angular

velocities of the protons and the neutrons have the same magnitude Ω.
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1. Hydromagnetic waves in a superfluid neutron star with strong
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of B2
cr/(8π) accross its whole side surface. The maximal torque exerted on a

single vortex is given by

τv =
B2

cr

8π
l2d, (1.24)

where d ∼ 2· 10−12 cm is the vortex diameter and l is the vortex half-length.

The total number of vortices is given by

N = πR2nv ∼ 3· 1016(R/106 cm)2(P/1 s)−1, (1.25)

where nv is the per-area vortex density (Shapiro and Teukolsky 1983, Link

2003). For a spherical star with a dense grid of the linear vortices, the average

value of l2 is R2/2. Thus, by combining Eqs. (1.24) and (1.25), we arrive to

the following expression:

τm =
B2

cr

16
R4dnv � 1.3 · 1045(P/1 s)−1 g cm2 s−2. (1.26)

From Eqs. (1.26) and (1.23), we see that our requirement τm > τp implies

that

θ < 2o(P/1 s), (1.27)

and therefore

w0 ∼ ΩθR < 2· 105 cm s−1. (1.28)

This upper limit on w0 is spin-independent.

So, is this velocity sufficient to drive the Glaberson instability? Equation

(1.19) tells us that for xp = 0.05, B = 1012 G and ρn = 1015 g cm−3, the

critical relative velocity is w0 ∼ 6 · 105 cm s−1. Thus we conclude that in

the presence of strong vortex pinning and magnetic fields B > 1011 G the

misalignment between the proton- and neutron angular velocities is unlikely

to become large enough to provide wind velocities w0 that are sufficient to

drive the Glaberson instability.
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1.5 Discussion

1.5 Discussion

The calculations of this chapter have two main astrophysical implications.

First, we have shown that the Alfvén waves which are associated with mag-

netar QPOs are not significantly mass-loaded by a neutron superfluid, even if

the superfluid vortices are strongly pinned to the proton-electron plasma. For

B = 1015 G and the simplest B-field geometry, the expected frequency of low-

est magnetar QPO is in remarkable agreement with observations, if only the

protons, i.e. about 0.05 of the core mass, are mass-loading the Alfvén waves.

Strong vortex pinning will, however, have a strong effect on the Alfvén waves

in rapidly spinning and relatively non-magnetic neutron stars, i.e. those ones

in the Low-Mass X-ray Binaries. In these stars the Alfvén waves may play an

important role in damping of the r-mode instability, as discussed by Mendell

(2001) and Kinney and Mendell (2003) for the cases of non-superfluid and

superfluid core, respectively. Kinney and Mendell (2003) had not considered

the vortex pinning (see also Mendell 1991); however from Eq. (1.14) and from

the fact that σ ∼ Ω for an r-mode, it is clear that the strong vortex pinning

would have a huge (of order 1/xp) effect on the Alfvén waves with the r-mode

frequency.

Second, we have shown that the hydromagnetic stresses generally sup-

press the Glaberson instability in the proton-neutron superfluid mixture, in

the case of strongly pinned vortices1. We have also provided a robust upper

bound Eq. (1.27) on the angle between proton and neutron angular velocities

in the fast-precessing neutron stars. Even for slowly-spinning magnetars, the

misalignment angle cannot exceed 20 degrees, which implies a wobble angle

no greater than 1 degree. Thus a detection of neutron-star fast precession is

difficult, if not impossible, observationally. An inspection of the XMM timing

data on known anomalous x-ray pulsars produces no statistically-significant

periodic signal which could be interpreted as fast precession [van Kerkwijk

2008, private communications].

1We have not considered here the PMGO case when some normal neutron component is present

and is driving the instability.
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Appendix 1.A

Appendix 1.A: Dispersion relation for arbi-

trary drag

In this Appendix we perform a plane-wave analysis of the two-fluid dynamical

equations defined in Eq’s (1.3) and (1.4) and derive a dispersion relation for

arbitrary drag strength R. Using the plane wave solutions from Eq. (1.8), we

can perturb Eq’s (1.3) and (1.4). Retaining linear terms we get:

Dn
t δvn = −σ2ξn (1.29)

Dp
t δvp = −σ̄2ξp (1.30)

2δvn ×Ω = 2iΩσξn × ez (1.31)

2δvp ×Ω = 2iΩσ̄ξp × ez (1.32)

δfmf =
R

1 +R2

�
2iΩez ×

�
ez ×

�
σξn − σ̄ξp

��

+kw0σez × ((ez × ξn)× ez)] (1.33)

+
R2

1 +R2

�
2iΩez ×

�
σξn − σ̄ξp

�
− w0kσez × (ez × ξn)

�

νee∇2δvp = −νeek
2σ̄ξp (1.34)

δfhm = −c2Ak
2ξp (1.35)

Here σ̄ ≡ σ+w0k and cA =
�

BBcr/4πρc is the Alfvén velocity in the plasma.

We can simplify these expressions by using the same trick as in Section 1.2:

Let us represent the vector ξ = ξxex+ξyey by a complex number ξ̃ = ξx+ iξy.

The cross product ez × ξ corresponding to a simple rotation in the xy-plane,

can then be represented by iξ̃. Using this, we convert the two real vector

equations (1.3) and (1.4) into two complex scalar equations:

− 2ΩCσ̄ξ̃p = [σ̄ + (C − 1) (w0k − 2Ω)]σξ̃n (1.36)
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�
σ̄ +

�
2Ω

�
1− C

xp

�
− iνeek

2

�
− c2A

σ̄
k2
�
σ̄ξ̃p =

C

xp
(w0k − 2Ω)σξ̃n (1.37)

where C ≡ R(i+R)
1+R2 . This pair of equations yields the following complex dis-

persion relation:

σ̄3 + σ̄2

�
(C − 1) (w0k − 2Ω) + 2Ω

�
1− C

xp

�
− iνeek

2

�

+σ̄

�
(w0k − 2Ω)

�
(C − 1)

�
2Ω− iνeek

2
�
+

2ΩC

xp

�
− c2Ak

2

�
(1.38)

−c2Ak
2 (C − 1) (w0k − 2Ω) = 0

In the strong drag limit R → ∞ (C = 1) this cubic equation simplifies signif-

icantly:

σ̄2 + σ̄

�
2Ω

�
1− 1

xp

�
− iνeek

2

�
−
�
2Ω (2Ω− w0k)

xp
+ c2Ak

2

�
= 0, (1.39)

which is Eq. (1.11) in the text.

Appendix 1.B: Instability criterion for non-

zero viscosity

In this Appendix we derive a criterion for instability in the case of non-

negligible viscosity, i.e. Eq. (1.19). We rewrite Eq. (1.16) as follows:

σ = A+ iB ±
√
C + iD (1.40)

where

A = −w0k − Ω

�
1− 1

xp

�

B =
νeek2

2

C = Ω2

�
1 +

1

xp

�2

+ c2Ak
2 − 2w0kΩ

xp
−B2 (1.41)

36



Appendix 1.B

D = −2Ω

�
1− 1

xp

�
B

The state of marginal stability is given by

Im (σ) = B ± Im
�√

C + iD
�
= 0. (1.42)

In order to find a convenient expression for Im
�√

C + iD
�
we write

√
C + iD

in polar form. The imaginary part is then given by

Im
�√

C + iD
�
=

�
C2 +D2

� 1

4 sin

�
1

2
arccos

�
C√

C2 +D2

��
(1.43)

Combining this with Eq. 1.42), we find

B2 =
1

2

�
C2 +D2 − 1

2
C (1.44)

Taking the square of this expression and using Eqs (4.46) we arrive at

2Ω (2Ω− w0k)

xp
+ c2Ak

2 = 0 (1.45)

And therefore,

k± =
Ω

xpc2A

�
w0 ±

�
w2
0 − 4c2Axp

�
(1.46)

The unstable waves have wave-vectors in the interval k− < k < k+, provided

that k− and k+ are real. Thus the criterion for the instability is

w0 > 2cA
√
xp, (1.47)

this is Eq. (1.19) of the main text. We now make an estimate of the growth

rate in this instability window. For a realistic neutron star, we take νee ≈
109 cm2 s−1 at T ≈ 107 K (Flowers & Itoh 1979, Cutler & Lindblom 1987,

Andersson, Comer & Glampedakis, 2005), Ω ≈ 2π rad/s, cA ≈ 106 cm s−1 and

therefore for w0 ∼ cA, the wave-vector of an unstable wave is k ∼ 10−4 cm−1.

We now note that νeek2/2 << Ω/xp. Therefore the terms B from Eq. (3.69)

and B2 from Eq. (4.46) have a negligible contribution to Im (σ) and can be

ignored.
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Consider first the case where C < 0. We note that Im (σ) is completely

dominated by C so that we arrive at the criterion of Eq. (1.18) again. With

a growth rate of

− Im (σ) =
√
C (1.48)

Next consider C > 0, i.e. w0 < (1 + xp) cA. By means of a simple analysis in

the complex plane one can show that

√
D

2
< −Im (σ) <

�
D

2
(1.49)

For w0 > 2
√
xpcA, there is a range of k where the instability occurs; see

Eq. (1.20). Substituting k = k+ into Eq. (1.49) for the maximum k in this

range, we find the growth rate of the instability

− Im (σ) ≈

�
νeeΩ3

2x3pc
4
A

�
w0 +

�
w2
0 − 4c2Axp

�
(1.50)

We note that because the viscosity is small, this growth rate is much smaller

than the one in Eq. (1.48).
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