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Inflammatory Bowel Disease - a major health problem  

Inflammatory bowel disease (IBD), i.e., Crohn’s disease (CD) and ulcerative colitis 

(UC), are characterized by an idiopathic, chronic and recurrent inflammation of the 

gastrointestinal tract. In CD, inflammation is segmental and transmural, often 

localized in (but not confined to) the ileocaecal area, while UC is limited to the 

mucosal lining of the colon, often starting in the rectum and extending in proximal 

direction through the years. In both CD and UC, inflammation may result in severe 

tissue damage, i.e., discontinuation of the epithelial border, ulcera, fissures, loss of 

circular folding, cobblestone appearance, fibrosis, stenosis and in CD also the 

formation of entero-entero, entero-viscero or entero-cutaneous fistulae. Abdominal 

pain, increased defecation frequency, bloody diarrhea, nausea, significant body 

weight loss and anemia related fatigue all contribute to the general malaise IBD 

patients often experience. Disease course may be complicated by osteoporosis, 

arthritis, ankylosing spondylitis, iritis, uveitis, erythema nodosom and primary 

sclerosing cholangitis (UC). Patients are at increased risk for developing colorectal 

carcinoma1,2 and recently, IBD was associated with a higher incidence of adverse 

pregnancy outcomes.3 First line of treatment consists of 5-ASA containing 

mesalasine/sulphasalazine or corticosteroid budesonide/prednisolone tablets, 

enema or suppository. In corticosteroid refractory patients disease modifying drugs 

azathioprine, cyclosporin, methotrexate or mycophenolate mofetil are administered. 

The therapeutic arsenal for CD patients has been expanded recently with biological 

agents specifically targeting TNF-� in the immune cascade. Chimeric (75% 

human/25% murine) infliximab and humanised adalumimab anti TNF-� antibodies 

have proven to be effective in the clinical setting for steroid dependent/refractory 

CD patients.4-6 Disadvantages include the large placebo effect requiring further 

optimalization, host antibody response to infliximab and high medical costs.7,8 

Biological agents against IL-12, adhesion molecules and IL-6 receptors are 

promising new candidates but are not expected to enter the market soon.9,10 

Despite advances in treatment protocols, the natural history of the disease appears 

unmodified.11,12 Cumulative 10 year surgical resection probability rates vary from 

25-60 % in CD and 25% in UC patients and these percentages have remained 

similar for 4 decades although surgical resection rates within the first year of 
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diagnosis might be decreasing.13-16 The socioeconomic burden remains high: in the 

United States total costs of IBD related healthcare are approximately 1 billion US 

dollar per year.17 When work-productivity losses due to chronic disability are taken 

into account, total costs of IBD in the USA were estimated $ 5 billion in 2000.18 

Therefore, much effort is spent in research aimed at identifying the epidemiology, 

etiology and pathogenic mechanisms underlying IBD. 

 

Inflammatory Bowel Disease - epidemiology & etiology 

Annual incidence rates of CD in white residents of Western countries vary between 

4-9 per 100,000, whereas the incidence of UC appears somewhat higher (9-14 per 

100,000), with concordant prevalence rates of 130-175 (CD) and 240-275 (UC) per 

100,000 persons.16,19-22 Studies from Canada and New Zealand, however, reported 

higher incidence figures for CD compared to UC (14.6 versus 14.3 and 16.5 versus 

7.6 per 100,000, respectively).23,24 In both CD and UC, distribution of age at onset 

of disease is skewed, with an incidence peak between 20-30 years. Incidence and 

prevalence rates have risen after the Second World War, reaching the current 

plateau in the 1970s, affecting more people in urban versus rural areas.25,26 People 

in white collar occupations appear more at risk compared to other groups in the 

population.27 A north-south gradient has been postulated,28 but in industrializing 

countries, incidence and prevalence of IBD are also increasing,29 as are disease 

rates among Asian immigrants in Western countries.30 Although disease 

concordance rates in monozygotic twins are high (CD: 60, UC: 20 %), pointing to a 

genetic influence, these sub maximum figures also suggest the involvement of one 

or several environmental factor(s) in the etiology of IBD.31 Smoking was 

established as such a factor, worsening the prognosis in CD32 and instead 

protective in UC.33 Other studies have suggested an association of CD and/or UC 

with infectious agents such as Mycobacterium avium sp. Paratuberculosis,34 

invasive Escherichia coli strains35,36 and measles virus infection or vaccination.37-39 

In case of Helicobacter pylori, a protective effect was suggested.40 Married couples 

are at greater risk of sequentially contracting the disease after cohabitation.41 

Persons born in the winter months were more at risk for IBD42 and onset of 

symptoms was also especially observed during this period, thus arguing for the 
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rationale of an infectious agent involved in the etiology of IBD,43 although this 

remains to be confirmed.44 Other studies have focused on an association with 

dietary food intake, such as breastfeeding, fast food, coca cola beverages and 

chocolate consumption.45-47 Use of oral contraceptives,48,49 menstrual cycle50 and 

psychological distress51 have also been implicated, again with inconclusive or even 

contradictory results.52 Probably, the rise in incidence of IBD after the Second 

World War in Western and industrializing countries might be attributed to the 

introduction of better sanitary conditions, thus improving survival of susceptible 

individuals and/or shifting the development of the immune system towards 

hypersensitivity.53-55 It should be noted that incidence and prevalence of asthma 

and diabetes type I have also increased, pointing to a more general promoting 

effect of western lifestyle on auto-immune disease.56  

Several studies indicate genetic susceptibility in the etiology of IBD as well. For 

instance, IBD concordance rates are higher in monozygotic versus dizygotic 

twins,31 IBD affecting multiple family members is frequently seen,57 and incidence 

rate of IBD appears to be associated with ethnicity and religion group, as 

demonstrated by the increased prevalence in white Caucasian subjects and 

Ashkenazi Jews compared to blacks, Asians and Hispanics.58-60 Early genome-

wide association studies have identified (potential) IBD loci on chromosomes 1, 3, 

4, 5, 6, 7, 10, 12, 14, 16, 19, 22 and X.61-66 Subsequent fine-mapping has revealed 

the involvement of the nucleotide-binding oligomerisation protein 2 (NOD2)/ 

caspase activation and recruitment domain 15 (CARD15) gene on chromosome 

16q12 in CD susceptibility,67,68 which was confirmed in other studies.69,70 

Interestingly, single nucleotide polymorphisms (SNPs) within this gene were also 

found to be associated with asthma,71 Blau syndrome,72 increased mortality 

following sepsis73 and allogeneic stem cell transplantation.74,75 This landmark 

success and the increasing availability of high density SNP arrays led to a surge in 

genome wide research and to the identification of other loci strongly implicated in 

the pathogenesis of CD and/or UC, including the gene encoding a subunit for the 

IL-23 receptor (IL-23R) on chromosome 1p31,76,77 genes involved in 

autophagy/breakdown of intracellular pathogens (autophagy related 16-like 1 gene 

(ATG16L1) on 2q37 and immunity related p47 guanosine triphosphatase murine 
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orholog (IRGM) on 5q33,78-82 a gene desert on 5p13 regulating expression of the 

prostaglandin receptor EP4 (PTGER4) (83), the nel-like 1 precursor (NELL1) gene 

on 11p1584 and just recently 3p21.31, NKX2-3, CCNY (CD and UC) and PTPN2, 

HERC2 and STAT3 (UC).85 Importantly, these studies were conducted in 

Caucasian  populations and not replicated in Asian IBD patients, reinforcing the 

pivotal role of ethnicity in this matter.86,87 Other genes potentially involved in the 

susceptibility and/or phenotype of CD and/or UC are derived from candidate gene 

approach and include those encoding interleukin-1 receptor antagonist (IL-1RA), 

IL-2, IL-4, IL-10, IL-11, tumor necrosis factor-alpha (TNF-�), nuclear factor kappa B 

(NF�B), Toll like receptors (TLR), discs large homolog 5 (DLG-5), mucins, organic 

cation transporter-1 and -2 (OCTN-1, -2), mannan binding lectin (MBL), multidrug 

resistance 1 protein (MDR) and pregnane X receptor (PXR).88-102 Occasionally, 

conflicting data were generated, probably due to the relatively small sample size 

often used, especially in the early studies.103-106 Also, because of the nature of this 

approach, significant results might indicate the association of an adjacent 

predisposing gene in linkage disequilibrium with the examined gene, complicating 

this matter. However, it appears that, in cooperation with selected environmental 

stimuli, different sets of predisposing genes might give rise to essentially the same 

clinical disease manifestation, collectively called IBD. This is corroborated by the 

large number of mouse models, where targeting (i.e., IL-10) or overexpressing (i.e.,  

TNF-�) of different genes leads to similar IBD like disease.107-112    

 

Inflammatory Bowel Disease - pathogenic mechanisms 

A widely accepted hypothesis states that IBD is an exaggerated immune response 

towards commensal bacteria in genetically susceptible individuals.113 The recent 

rise in incidence of both forms of IBD might be attributed to increased exposure to 

so-called psychrotrophic bacteria by introduction of refrigerated food (cold chain 

hypothesis).114 The concept of commensal bacteria playing a pathogenic role is 

corroborated by the increased frequency of anti-Escherichia coli outer membrane 

porin C, anti-flagellin and autoreactive mycobacterial HSP65 antibodies in CD 

and/or UC.115-117 Flagellin specific T cells were able to cause fulminant colitis in an 

adoptive mouse transfer model.118 Moreover, murine models for IBD do not 
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develop enteritis given a pathogen-free environment, although this was just 

recently challenged by the development of chronic ileitis in germ/free SAMP1/YitFc 

mice, suggesting that bacteria exacerbate disease but are not required for 

induction.119 In CD patients, expression of anti-bacterial �-defensins HD5 and HD6 

by ileal Paneth cells is reduced, especially in NOD-2 mutation carriers.120 The 

levels of mucus forming proteins mucin3, 4, 5B and of sealing tight junction 

proteins claudin 5 and -8 are downregulated, whereas expression of pore-forming 

claudin 2 and rate of epithelial cell apoptosis are increased, resulting in impaired 

mucosal barrier function.121,122 After epithelial injury, in CD patients an abnormally 

low neutrophil accumulation was observed compared to healthy controls, 

suggesting an impaired innate immune response.123 The impaired mucosal barrier 

and/or the impaired innate immunity might result in overexposure to commensal 

bacteria, initiating and/or propagating the uncontrolled adaptive immune response 

seen in IBD. Importantly, IBD T-lymphocytes and neutrophils demonstrate 

increased resistance to apoptosis, thus sustaining the immune response.124-127 

Also, T cell regulatory (Treg) function might be insufficient to dampen the 

inflammatory reaction.128 Both diseases are characterized by upregulation of pro-

inflammatory cytokines (i.e., IL-1�, IL-1�, IL-2, IL-6, IL-8, IL-15, -16, -17, -32,  

TNF-�, IFN-�), chemokines (MIP1�, MIP1�, MIP3�, MCP1, MCP2, RANTES), 

neuropeptide substance P, growth factors (bFGF, VEGF, KGF), eicosanoid PGE2, 

corresponding receptors (TNF-R2, neurokinin-1/substance P receptor) and 

endothelial/leucocyte adhesion molecules (ICAM-1, selectins, LFA-1, �4�7 

integrin/MAdCAM) in the (inflamed) intestinal mucosa, not compensated for by anti-

inflammatory cytokines, soluble receptors and/or receptor antagonists (i.e., IL-10, 

TGF-�1, sTNFR, sIL1-RII, sgp130, IL-1RA).129-156 However, some important 

differences are observed in the cytokine profile between CD and UC (upregulation 

of IL-12, IL-23 versus IL-13, respectively), reflecting the Th1 versus Th2 nature of 

the corresponding disease.157-160 The cytokine expression in IBD is different in 

chronic versus early lesions, thus complicating this issue.161,162 The upregulation of 

cytokines, chemokines, neuropeptides, growth factors, receptors and adhesion 

molecules chronically activates resident mesenchymal, epithelial and immune cells 

and continuously attracts new leucocytes from the peripheral circulation. In the 
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battle against their unknown targets, these cells may damage the intestinal tissue 

in various ways. T cell activated neutrophils and macrophages release massive 

amounts of harmful reactive oxygen metabolites by NADPH-dependent oxidative 

burst, targeting membrane lipids, protein and DNA, thus disrupting cellular 

structure at the molecular level and promoting malignancy.163-166 An imbalanced 

anti-oxidant response in IBD patients may exacerbate disease.167-169 Cytotoxic 

CD8+ T cells release pore forming perforin, proteolytic granzymes and/or express 

Fas ligand, triggering apoptosis in epithelial cells and disrupting mucosal barrier 

function.170-172 Cytotoxic perforin releasing CD4+ T cells were demonstrated in 

CD173,174 and activated complement in conjunction with IgG1 auto antibodies 

against tropomyosin isoform 5 may target epithelial cells in UC.175,176 Increased 

expression of tissue remodeling neutrophil elastase by neutrophils and of chymase 

and tryptase by mast cells is associated with IBD.177-179 Synthetic elastase and 

tryptase inhibitors were found beneficial in experimental colitis.180,181 Concurrent 

attenuated induction of serine anti-proteases might exacerbate disease.182 All 

activated cells also release specific members of the tissue remodeling Matrix 

Metalloproteinases (MMP), which are described below.    

 

Matrix metalloproteinases - classification 

Based on the catalytic group at the active center, five classes of proteases are 

recognized, i.e., serine-, threonine-, cysteine-, aspartic- and metallo-proteases, 

divided into clans and families based on protein folding and sequence similarity, 

see also http://merops.sanger.ac.uk/.183 Clan MA of the metalloproteases is divided 

into subclans MA (M) and MA(E). Proteases designated to subclan M all contain a 

conserved methionine residue to the carboxy side of the active center, thus forming 

a characteristic loop or “Met turn” in the protein secondary structure, providing the 

base of the active cleft and are therefore called metzincins.184 The metzincins are 

currently categorized into 12 families, each split into a variable number of 

subfamilies. Subfamily M12B contains the ADAMs (A Disintegrin And 

Metalloproteinase) and ADAMTSs (A Disintegrin-like And Metalloproteinase with 

Thrombospondin type 1 motifS).185,186 It includes TACE (TNF-� Converting 

Enzyme, ADAM-17), which is important in releasing membrane-bound TNF-� and 
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TNF-R from the cell membrane187 and ADAMTS-4 and -5, which cleave aggrecan 

in cartilage and might contribute to the structural damage seen in human 

arthritis.188-190 Subfamily M10A, also called the matrixins, contains the matrix 

metalloproteinases (MMP). The human genome currently comprises 23 different 

MMPs, according to substrate specificity and protein structure subdivided into the 

collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT) MMPs, 

and a rest group (Table 1, page 24-26).  

 

Matrix metalloproteinases - structure  

All MMPs consist of a pre-, pro- and catalytic domain and, apart from MMP-7, -23 

and -26, also contain a hinge region of varying length connecting a hemopexin 

domain (Table 1).191,192 All MMPs except MMP-23 have a conserved sequence 

around cysteine in the propeptide (PRCGXPD), which is also found in the ADAMs 

and ADAMTSs. The cystein in this motif maintains the latency of the MMP. Limited 

proteolysis of the pro-peptide, treatment with chaotropic agents or 

organomercurials (APMA: p-amino-phenyl-mercuric acetate is widely used in in 

vitro experiments) disrupts the cystein-zinc bond and actives the enzyme.193 A furin 

recognition motif (RX(R/K)R) is present on the carboxy terminus of the cysteine 

switch motif in several MMPs, allowing intracellular activation by furin-like pro-

protein convertases in the Golgi apparatus. Recently, furin mediated inactivation of 

MMP-2 was observed and it appears other MMPs previously not recognized as 

furin substrates may also be targets.194 The catalytic domain contains a conserved 

active site sequence: HEXXHXXGXXH with three histidine residues depicted in 

bold binding the zinc atom. The conserved sequence is shared with all other 

members of the metzincin group. MMP molecules contain additional non-catalytic 

zinc and calcium ions, which are involved in stabilizing the tertiary structure of the 

enzyme.195,196 In the catalytic domain of MMP-2 and -9 three fibronectin type II 

repeats are inserted which bind gelatin and collagen thus facilitating the breakdown 

of these substrates. The flexible O-glycosylated proline-rich linker of MMP-9 is 

exceptionally large and facilitates binding of the enzyme to TIMP and cargo 

transporters.197 The hemopexin domain co-determines substrate specificity and 

affinity. It binds Tissue Inhibitor of Metalloproteinases (TIMP, natural inhibitors of 
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MMPs) and docking molecules on cell surface membranes, for instance integrins 

and CD44. The hemopexin domain is also involved in MMP di-/oligomerization and 

CD97 mediated MMP uptake and internal degradation.198 The MT-MMPs are 

connected to the cell by a short hydrophobic transmembrane segment or 

alternatively are glycosylphoshatidylinositol (GPI) anchored, focusing the cell’s 

proteolytic capacity. However, cleavage at the stem region by other MMPs or 

ADAMs may release an active ectodomain.199,200 The cysteine array and 

immunoglobulin-like domain in MMP-23 are of unknown function. The structural 

organization of the MMPs is also observed in the ADAMs and ADAMTSs, but these 

enzymes lack the hemopexin domain and possess other C-terminal extensions 

instead.186      

 

Matrix metalloproteinases - expression 

The expression of MMPs is tightly controlled at the transcriptional, translational 

and/or secretory level. Pro-inflammatory cytokines, chemokines, growth factors and 

oxidants including IL-1�, IL-1�, IL-6, IL-12, TNF-�, bFGF, MCP-1 and manganese 

superoxide dismutase (Mn-SOD) generated H2O2 upregulate the expression of 

several members of the MMP family including but not limited to MMP-1, -2, -3, -9,  

-12 and/or -13 in a variety of cells encompassing fibroblasts, enterocytes, T cells, 

chondrocytes, osteoblasts, endothelium and/or macrophages, sometimes in a 

synergistic manner.201-211 Anti-inflammatory (TGF-�), pleiotropic (IFN-�) cytokines 

and steroid sex hormones (estradiol) may downregulate MMP, whereas other 

members of the MMP family (i.e., MMP-2) display a rather constitutive expression 

rate in distinct cell types.212-215 Importantly, results for a given combination of 

cytokine and MMP are not only dependent on cell type but also at what time point 

in their development and under what (experimental) conditions these cells are 

studied. Expression is also regulated by cell contact with the surrounding matrix, 

neighboring cells and pathogens. For instance: collagen I is able to induce MMP-1 

in migrating keratinocytes thus promoting its own degradation and ligation of the 

fibronectin receptor �4/5�1, CD40 and TLR-2 may induce MMP-9.216-220 The 

extrinsic signals are relayed to the MMP promoter by one or more intracellular 

signaling pathways, including NF��, SMAD, STAT, MAPK kinase pathways and 
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are integrated at cis-acting elements in the promoter, resulting in altered mRNA 

transcription rate.221 Promoter activity is also dependent on DNA and histone 

methylation, acetylation and/or phosphorylation status.222,223 Also, single nucleotide 

polymorphisms may result in the loss or gain of suppressor/enhancer DNA 

elements, affecting mRNA transcription. For instance, the replacement of cytosine 

with thymidine at -1306 in the MMP-2 promoter disrupts an Sp1 binding site, 

resulting in significantly decreased promoter activity.224 A single guanine insertion 

at -1607 of the MMP-1 promoter creates an Ets binding site, elevating the 

transcriptional level of MMP-1.225 The 3’UTR may contain ARE elements binding 

Hu and KH type splicing regulatory protein (KSFP) proteins increasing or 

decreasing mRNA stability, respectively, a mechanism shared with TNF-� and 

other pro-inflammatory cytokines.226 The 3’UTR of MMP-9 mRNA is involved in 

binding cytoplasmic nucleolin, promoting transport to polyribosomes and enhancing 

protein translation efficiency.227 Neutrophils and eosinophils store MMP-8, -9 

and/or MT6-MMP in secretory granules which are released upon stimulation with 

pro-inflammatory cytokines such as IL-8 and TNF-�.228-230 MT-1 MMP is stored in 

trans-golgi network/endosomes and may be expressed on the cell surface within 

minutes following Concanavalin A treatment of HT1080 cells.231 Vesicular 

trafficking from the Golgi apparatus to the plasma membrane is dependent on actin 

and tubulin polymerization and can be suppressed by exposure to hypoxia, with 

concomitant drastic reduction of MMP secretion in monocytes.232 

 

Matrix metalloproteinases - activation, inhibition and 

degradation 

Except for furin-like pro-protein convertase-activated MT-MMPs and MMP-11, all 

other MMPs are secreted as inactive zymogens. Limited proteolysis by plasmin, 

thrombin, trypsin and other proteinases removes part of the propeptide region, 

inducing a conformational change in the MMP molecule disrupting the bond 

between the protective cysteine and catalytic zinc residue. Autocatalysis 

subsequently removes the entire propeptide region after which the enzyme 

becomes fully active.233 The cysteine switch dogma is challenged by observations 
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of mutant MMP-3 with the cysteine replaced by serine or histidine. These 

molecules retained latency and could be activated with APMA, results not 

consistent with cysteine as primary regulator of MMP latency.234 The final MMP 

activity is dependent on the activating proteinase, i.e., MMP-3-activated MMP-1 

displays a higher conversion rate of collagen substrate compared to plasmin- 

activated MMP-1.235 Contact with substrate or even non-functional protease may 

induce conformational change and activation of MMP without loss of the pro-

peptide.236,237 Oxidative activation and inactivation may play an important role 

during inflammation.238 MMP-2 can be activated as described above, but the 

activation pathway in a complex with MT-MMPs and TIMP-2 is believed to be the 

most important physiologically.238 MMP stability can be enhanced by MMP- binding 

proteins. For instance, neutrophil-derived lipocalin protects MMP-9 and may 

worsen prognosis in breast and gastric cancer.239,240 MMP activity is inhibited by 

the endogenous inhibitors TIMPs, but glycosylation status co-determines affinity for 

TIMP and activity of the MMP.241 General antiproteinases such as  

�2-macroglobulin also inhibit MMPs and the resulting inhibitor-MMP complex is 

subsequently removed from the circulation by scavenger receptors on 

macrophages. MMPs undergo further autocatalysis, inactivating themselves. 

Uptake of soluble MMPs by cells is mediated by the LRP receptor followed by 

degradation in lysosomal vesicles.198 MT-MMPs are internalized by dynamin- 

dependent endocytosis in clathrin-coated pits.242,243  

 

Matrix metalloproteinases - substrate specificity 

A whole array of structural matrix proteins including, but not limited to, collagen  

I-XI, proteoglycans, elastin, laminin, vitronectin, tenascin, entactin and fibronectin 

can be cleaved by one or more members of the MMP family. In addition, non-

structural proteins such as cytokines, growth hormones and binding proteins (for 

instance: IL-8, TGF-� and IGFBP-3) are cleaved as well (Table 1).244 MMPs may 

also act intracellularly, targeting myosin light chain and troponin in cardiac 

myocytes.245,246 Although overlapping, every MMP is characterized by its own 

substrate specificity, determined by the size and shape of the substrate-binding 

pocket. For instance, the gelatinases preferentially cleave collagen IV and gelatin, 
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whereas MMP-1 and -8 preferentially convert collagen I and III. Importantly, most 

substrate specificities have been determined in vitro and remain to be confirmed  

in vivo. In addition, MMPs may act using a non-proteolytic mechanism. For 

example, binding of TIMP-2 to MMP-14 upregulates cell migration and proliferation 

by activation of ERK1/-2, a process mediated by the cytoplasmic tail of MMP-14 

and not dependent on extracellular proteolytic activity.247  

 

Tissue inhibitors of metalloproteinases 

The four different TIMPs currently known in humans inhibit activated MMPs by 

forming non-covalent 1:1 stoichiometric complexes that are resistant to heat-

denaturation and proteolytic degradation. TIMP-1 and TIMP-3 also inhibit members 

of the ADAM and/or ADAMTS family.248 TIMPs also bind to the proform of MMP-2 

and MMP-9, thus regulating the activation process of these MMP members. 

Different TIMPs have different MMP binding specificities, for instance, TIMP-1 

binds preferentially (pro-) MMP-9 but not MMP-2 while TIMP-2 binds (pro-) MMP-2 

and not MMP-9. TIMPs are expressed by a variety of cell types including 

fibroblasts, enterocytes and leucocytes. Expression may be regulated by several 

cytokines, growth factors, hormones, etc., or is constitutive instead, dependent on 

TIMP and cell type studied, similar to the regulation of MMP expression. Of note, 

cytokines (i.e., TGF-�) that repress MMP expression, may enhance levels of TIMP 

and collagen, promoting a fibrotic phenotype.249 Expression is also dependent on 

DNA-methylation and histone-acetylation status.250 Hypomethylation of the TIMP-1 

promoter may result in TIMP-1 expression from the otherwise inactive X 

chromosome in females, resulting in an overall increase of TIMP-1 levels.251,252 

Conversely, hypermethylation of a TIMP-2 CpG island upstream of the transcription 

start site is associated with diminished TIMP-2 expression in cervical carcinoma.253 

TIMP-1 and -2 were originally identified as erythroid potentiating factors and it now 

appears TIMPs are more generally involved in cell growth and/or apoptosis. The 

TIMP effect may be anti-apoptotic through ligation of the CD63/integrin-�1 complex 

but also pro-apoptotic via inhibition of MMP-mediated degradation of cell death 

receptor.254 Several mutations in the TIMP-3 gene introducing an extra cysteine-

residue and promoting dimerization, are associated with Sorsby’s fundus dystrophy 
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and probably other degenerative retinopathies.255 

 

Matrix metalloproteinases and tissue inhibitors of 

metalloproteinases - expression in IBD 

MMPs are involved in normal physiological processes where matrix turnover is 

important, such as wound healing, embryogenesis, angiogenesis, etc. They are 

also implicated in several disease pathologies such as arthritis, dental disease and 

cancer metastasis. In IBD, high levels of proinflammatory cytokines in inflamed 

ulcerated tissue are associated with aberrant expression of MMPs and also TIMPs, 

but the balance between MMPs and TIMPs appears shifted to a more proteolytic 

phenotype.256-262 The increased MMP/TIMP ratio in IBD may result in excessive 

tissue breakdown and facilitate leucocyte extravasation and migration, although 

MMP-specific substrate cleavages in IBD mucosa have not been detected so far.263 

Excessive expression of MMPs may also enhance fibroblast trans migration, 

promoting fibrosis and stenosis, especially in CD.264-266 Alternatively, the MMP over 

TIMP ratio may not be sufficiently enhanced to compensate for the increased 

collagen production by IBD fibroblasts, again resulting in fibrosis.267 Targeting 

TIMP-1 with non-functional MMP-9 mutants inhibited liver fibrogenesis, in favor of 

the second hypothesis.268 MMPs may also generate new epitopes by cleaving 

substrates, thus perpetuating the immune response.269 In several IBD models, 

administration of synthetic MMP inhibitors improved disease course and DSS-

induced colitis was attenuated significantly in MMP-9 deficient mice.270-272 

However, ablation of MMP-2 was observed to aggravate experimental colitis, 

demonstrating protective capacities of MMPs in IBD as well.273 
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Outline of the studies described in this thesis 

Inflammatory bowel disease is of major concern in industrialized countries. Health 

and economical costs have prompted the initiation of studies aimed at revealing the 

epidemiology, etiology and pathogenesis of IBD. Both CD and UC are 

characterized by excessive tissue breakdown during inflammation. The matrix 

metalloproteinases are important in normal physiological and pathological tissue 

remodeling and repair processes, including IBD. A short overview of IBD and 

MMPs is given in chapter 1. 

Several studies have documented on the altered expression of MMPs in IBD 

tissue. Chapter 2 reports on the expression of MMP-2 and MMP-9 in IBD inflamed 

versus non-inflamed IBD and control intestinal mucosa. MMP levels were 

measured by enzyme linked immunosorbent assay (ELISA), zymography, activity 

assay and reverse transcription polymerase (RT-PCR) assay. The cellular 

localization of MMP expression was determined by immunohistochemistry. 

Infliximab is administered to steroid refractory CD patients and targets TNF-�, 

disrupting proinflammatory communication and promoting apoptosis in leucocytes 

via reverse signaling. The effect of infliximab on MMP-1, -2, -3, -9 and TIMP-1, -2 

protein expression is described in chapter 3. Intestinal explants were cultured ex 

vivo with/without (w/wo) infliximab and relative expression of MMP, TIMP, TNF-� 

was measured by ELISA, activity assay and/or RT-PCR. In addition, explants were 

cultured w/wo pokeweed mitogen (PWM), to study the expression profiles under 

inflammatory conditions.  

Chapter 4 describes the MMP-2 and MMP-9 serological and mucosal expression 

profile after the administration of infliximab to CD patients with fistulizing or active 

disease. Whole blood cultures w/wo infliximab and/or lipopolysaccharide (LPS) 

were performed to study in vitro the contribution of TNF-� in the regulation of  

MMP-2 and MMP-9 mRNA and protein expression. 

In chapter 5 expression of MMP-1, -2, -3, -9 and TIMP-1, -2 as measured by 

ELISA and/or activity assays in a large collection of IBD and control intestinal 

mucosa and related to CD phenotype is reported. The net MMP activity was 

compared to MMP over TIMP ratio and correlated with myeloperoxidase (MPO) 

content.         
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Single nucleotide polymorphisms (SNP) in genes may affect mRNA transcription, 

stability and/or protein function, thus enhancing disease susceptibility and/or 

phenotype. Chapter 6 documents the distribution of (functional) SNPs in the genes 

encoding MMP-1, -2, -3 and -9, TIMP-1, -2 and TNF-� in a large cohort of IBD 

patients versus control subjects. Results were correlated with protein expression 

and clinical course, i.e., development of fistulae, stenotic complications and organ 

involvement.          

After surgical resection, CD patients often experience recurrence of disease. 

Numerous studies have attempted to identify causal factors and smoking has been 

established as a bad prognostic factor. In chapter 7 the clinical course of a large 

cohort of fully documented CD patients was related to MMP and TIMP genotypes 

and protein levels in surgically resected intestinal mucosa. In addition, several 

clinical and demographic variables such as smoking habits, sex and age at 

resection were retrospectively collected and related to the clinical outcome as well. 

The different studies are finally compiled as a summarizing discussion in  

chapter 8.          

 

 

 

 

 

Table 1 (next pages). MMPs and TIMPs, adapted from references.191,192,244,274  

Pre = prepeptide signal sequence, pro = propeptide, catalytic = catalytic domain, 

Zn = catalytic zinc, F = fibronectin type II repeat, Fu = furin pro-protein convertase 

cleavage site, TM = transmembrane region, cyt = cytoplasmic tail, GPI= 

glycosylphosphatidylinositol anchor, CA = cysteine array, Ig = immunoglobulin, V= 

vitronectin insert. Note: substrate specificities were determined in vitro and remain 

to be confirmed in vivo. MMPs may digest other substrates not mentioned in this 

overview. *Cellular expression is dependent on stimulation by cytokines, 

extracellular matrix, DNA-methylation and acetylation, oncogenic transformation, 

etc., and expression should not be viewed as limited to those cells or tissues 

mentioned. References indicated between brackets.  
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