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1. The immune system; basic mechanisms and function

The immune system constitutes a network of specialized bone marrow derived cells 

which detect, isolate and eradicate potential harmful microorganisms or malignant cells. It 

consists of two arms; the innate and the adaptive immune system which collectively protect 

the human body from pathogens 1,2. Communication between cells of the immune system 

and other non-immune cells proceeds via cell-surface and secreted signaling molecules 3-5  

produced in response to the detection of danger signals 5,6.

The innate immune system is activated after the detection of danger signals, for example 

an invading pathogen. The innate immune system comprises immune cells that can rapidly 

engage and elicit their effector functions forming the first line of defense. Innate immune 

cells are characterized by their antigen (Ag) non-specific effector functions, and lack of 

immunological memory. Innate immune cells recognize genetically conserved patterns 

expressed on non-self- and altered self-tissues 7-9. 

Failure of the innate immune system to eliminate an invading pathogen leads to the 

activation of a more “tailor-made” immune defense mechanism; the adaptive immune 

system. Initial encounter of the adaptive immune system with a potentially harmful 

pathogen is characterized by a reaction time of 3 – 7 days. During this period, pathogen-

specific lymphoid cells; B cells, CD4+ and CD8+ T cells are primed (activated). Upon priming, 

B and T cells vigorously multiply (proliferate) and exert their Ag-specific effector functions. 

The adaptive immune system can form immunological memory resulting in a rapid, within 

hours, secondary response which efficiently clears the pathogen upon reinfection with 

the same pathogen. For instance, the long lived protection against measles is based on 

the formation of immunological memory against the virus after original infection and 

clearance. 

Some aspects of the immune system and vaccination will be briefly introduced in the 

following paragraphs which will facilitate the reader to interpret the research data 

described in this thesis. 

2. First line of defense; the innate immune system and the de-
tection of “danger”

Micro-organisms encode and express various molecular motifs, pathogen-associated 

molecular pattern (PAMP), crucial for their pathogenicity 2,10,11, such as DNA/RNA and/
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or glycosylated proteins and lipids. The innate immune system has evolved to recognize 

these molecular motifs as danger signals and thus alarming for the presence of an invading 

pathogen. 

Recognition of PAMP proceeds via several intra- and extracellular genetically conserved 

pathogen recognition receptors (PRRs). An important group of PRRs are the Toll-like 

receptors (TLRs). Ligation of TLRs results in intracellular signaling cascades and ultimately, 

cell activation and expression of cell-surface co-stimulatory molecules, chemokines and 

cytokines that signal to other cells in their environment, initiating inflammation 4,12,13.

Phagocytic myeloid cells form a major subset of the innate immune system, they are 

distributed throughout the body and participate in the surveillance of (non-)lymphoid 

tissues for the presence of invading microbiological threats. Phagocytic cells continuously 

engulf, process and “analyze” the content for possible PAMPs. The majority of phagocytic 

cells are formed by monocytes and macrophages (MΦ). The latter are also referred to as 

“scavenger cells and have an important role in the clearance of cellular debris, apoptotic 

bodies and pathogens from the body 14. MΦ are specially equipped for this purpose as 

they efficiently translocate engulfed Ag into intracellular degradation compartments. 

Monocytes are subdivided into two subsets based on their functional properties, the first 

subset, the “patrolling monocytes” have a special role in tissue repair and wound healing. 

The second subset are the so called “inflammatory monocytes” which produce tumor-

necrosis factor and inducible nitric oxide synthase during infections 15. Moncytes are also 

thought to contribute to an immune response by differentiating into macrophage- or 

dendritic cell (DC) like effector cells 15,16. The final differentiation of monocytes is largely 

dependent on the type of danger signal detected. 

Dendritic cells form a small percentage of the phagocytic cell population, 5–15%, but 

DCs are arguably the most important cell type of the innate immune arm as they link the 

innate and adaptive immune response. DCs and their functions will be described in more 

detail in paragraph 2.1.

2.1 Dendritic cells; linking innate and adaptive immunity 

DCs function as the gate-keepers of the immune system 17-19. DCs are strategically located 

throughout the body at sites where contact with “non-self” material is the most frequent, 

such as the skin and mucosal lining of the lungs and the gut. DCs use their extensive 
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arsenal of PRRs to detect invading pathogens and have a pivotal role during the onset 

and control of immune responses (Figure 1.1).

TLRs contain transmembrane signaling motifs and their ligands triggers intracellular 

signaling cascades which regulates among others NF-ΚB gene-transcription, important 

for cell activation. Ultimately, these signaling cascades result in the transformation of DCs 

into fully competent Ag presentation cells (APC), a process termed “DC maturation” (Figure 

1.1). DC maturation is characterized by efficient processing of internalized exogenous Ag 

Figure 1.1 Immature DC encounters a pathogen and becomes activated.

Invading pathogens express molecular patterns which are recognized by DC via their TLRs 

expressed on the cell surface or inside intracellular compartments. TLR triggering activates 

intracellular signaling pathways which culminate in the NF-ΚB transcription and the initiation 

of DC maturation. The engulfed pathogens are translocated inside intracellular compartments, 

phagosomes, where they are killed and degraded.
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and presentation in the context of major histocompatibility class (MHC) class I and class 

II molecules, increased expression of T co-stimulatory molecules and secretion of pro-

inflammatory cytokines. These changes endow DC with the superior capacity to prime 

naïve and T cells (Figure 1.2). 

At the site of inflammation, DCs internalize pathogen-derived material present in the 

extracellular environment. In parallel, PAMPs are recognized as danger signals and initiate 

DC maturation. Mature DCs express the lymph node homing chemokine receptor, CCR7, 

permitting migration from the infection site towards the lymph nodes (LNs). In the LN the 

mature DC encounter T cells 20. 

Stimulation of T cells by DCs is the first step in the activation of the adaptive immune 

system. In summary, DCs dictate the breadth and potency of an immune response via 

their capacity to activate the adaptive immune arm when the innate immune arm is 

incapable of clearing the disease causing entity. DCs play a critical role in balancing an 

ensuing response; a weak immune-response leaves the body vulnerable to the pathogen 

but an excessive immunological response can result in epitope spreading 21-25 which might 

cause damage to healthy tissues of the host 26,27. Systemic Lupus Erythematosus (SLE) is 

a well-known disease resulting from excessive stimulation of auto-reactive T cells by DC 

presenting self-Ag derived from apoptotic cells 28.

3. The adaptive immunity; “acquired, antigen specific” effector 
functions

Adaptive immune responses can be sub-divided into a humoral response, carried out 

by B cells and type 2 CD4+ T cells, and cellular response, carried out by type 1 CD4+ and 

CD8+ T cells. In contrast to immune cells of the innate immune system, B and T cells are 

characterized by their Ag-specific effector functions. 

The nearly unlimited different Ag-specificities and different degree of affinity of the T-cell 

receptors (TCRs) T cells are a product of the enormous diversity in possible V(D)J gene-

rearrangements at the chromosomal loci encoding the TCR 29. T cells undergo positive 

and negative selection in the thymus. In the first round, T cells are screened which can 

successfully recognize self MHC class I molecules; positive selection. T cells failing to 

recognize MHC class I molecules are deleted. In a second screening, T cells are selected 

based on the affinity of their TCR for its specific epitope presented in MHC class I molecules. 
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Figure 1.2 Mature DC prime and activate naïve T cells.

DC maturation leads to the up regulation of co-stimulatory molecules and production of cytokines 

important for an efficient activation of T cells. Mature DC acquires potent antigen processing 

and presentation capacity. Pathogen or vaccine specific epitopes are processed and presented 

in the context of MHC class I (CD8+ T cells) or II molecules (CD4+ T cells). The expression of the co-

stimulatory molecules CD40, CD80 and CD86 on DC facilitates T cell activation and proliferation 

via the ligation of T cell expressed molecules, CD154 and CD28. In addition, IL-12 production by 

DC programs T cells to acquire a type 1 pro-inflammatory phenotype, characterized by high IL-2, 

IFN-γ and TNF-α production.
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In this process, T cells showing a supra-threshold affinity TCR are deleted; negative selection. 

Negative selection is important for “central tolerance” and functions to prevent the release 

of high-affinity self-reactive T cells from the thymus into the periphery where they can 

cause autoimmunity 30-32.

B cell receptors (BCRs) are membrane-bound immunoglobulins which recognize 

conformational epitopes which can be derived from various Ags, such as protein, 

polysaccharides, lipids and nucleic acids. BCRs are produced in process similar to TCRs, 

based on the V(D)J rearrangements 21,33. Every B cell will express on its cell-surface BCRs 

with a single Ag-specificity. Ligation of BCRs initiates B cell maturation into plasma cells 

which secrete high amounts of soluble BCRs; antibodies 34. Somatic hypermutation (SHM); 

a process whereby the total antibody avidity to a specific Ag is increased by “affinity 

maturation” of the genes encoding the Ag-specific BCR and by selection of higher-affinity B 

cell clones, regulates the efficiency of B cell responses. The B cells with the high(er) affinity 

BCR will out-compete the low(er) affinity B cells for the specific Ag resulting in apoptosis 

of the “weak” B cells. The net result is the induction of an Ag-specific high avidity antibody 

response through the activation of the selected high affinity B cells 21. Secreted antibodies 

have two distinct functions 1) bind specifically to pathogens or their toxins, neutralizing 

the pathogen and inhibit their capacity to infect cells and 2) recruitment off- and signaling 

to other immune cells to target, engulf and kill the invading pathogen after binding by 

the antibody; antibody dependent cell cytotoxicity (ADCC).

TCRs, in contrast to BCRs, are expressed only as membrane-bound molecules. TCR-

triggering via its specific epitope stimulates intracellular signaling cascades leading to T 

cell activation. TCR differ from BCR in an important way: TCR recognizes linear epitopes of 

proteins, lipids or glycolipids; short (peptide) fragments derived from pathogen-associated- 

or tumor associated Ag in the context of classical MHC 35. 

3.1 Immune activation to self or non-self Ag by signals of danger

The danger-model proposed by Matzinger et al. 36-38 is an alternative theory to the original 

self-non self-theory set forward by Burnet et al who stated that an immune response can 

be explicitly be mounted to only “foreign” in other words, non-self-entities. In contrast, 

Matzinger’s theory proposes that the immune system is also possible to against self-entities 

as long as there is a sense of “danger” present. Both theories offer plausible explanations 

for the activation of the immune system, however, both theories obviously have some 
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limitations 39. Most cancers express self-Ag; in cancer patients the cancerous cells perhaps 

fail to trigger an adequate immune response because the (pre-)malignant lesions fail to 

present an imminent and acute sense of danger to the body. Considering Matzinger’s 

danger theory from the viewpoint of vaccinology, it does offer an important basis for the 

use of adjuvants to enhance potency and efficacy cancer vaccines. Namely, adjuvants 

based on synthetic, well-defined small-molecular compounds mimicking PAMPs 22,24,25. 

The addition of an adjuvant, will cause an acute sense of “danger” as the immune system 

will be tricked that a harmful pathogen is present in the body and thus prime (or boost) 

a cancer vaccine-specific immune response.

Cancer immunotherapy based on vaccination will be discussed in more detail in the 

following paragraphs.

4. Ag uptake, processing and presentation to T cells by DC

DC and other myeloid cells, for example MΦ, are very efficient phagocytic cells and possess 

multiple endocytic mechanisms allowing internalization of vast amounts of exogenous 

materials for intracellular processing. DC and MΦ have several shared characteristics 40,41 

However DC differ from MΦ as they mainly contain intracellular compartments dedicated 

for Ag-processing 42 and Ag-storage 43 but less well equipped for Ag-degradation 43,44. MΦ 

on the contrary contain mainly intracellular compartments specialized for Ag-degradation. 

Internalized Ag is cleaved, trimmed and processed in a controlled manner by various 

proteases present inside endo-lysosomes and the cytosol 45-48. DCs are specialized Ag 

presentation in MHC class II molecules, which are recognized by CD4+ T cells (Figure 1.3), and 

MHC class I molecules, which are recognized by CD8+ T cells 49. MHC class I Ag presentation 

of exogenous material is known as Ag cross-presentation 46 (Figure 1.4). 

Classically, exogenous materials were postulated to be processed only into MHC class 

II molecules whereas MHC class I molecules existed to present solely endogenous, self, 

produced proteins. These two processing pathways were described to function fully 

independent of each other. However it is now known that MHC class I and II Ag presentation 

consist of overlapping processing pathways 44,46,49. MHC class I Ag cross-presentation is a 

crucial pathway by which the immune system can detect and respond to bacterial, viral and 

parasitic infections that exclusively invade non-hematopoietic cells or reside in extracellular 

environments. Notably, MHC class I Ag cross-presentation is the primary mechanism how 
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CD8+ T cells are primed against tumor-associated Ags which are otherwise only presented 

on malignant cells 50-52. 

DCs are the principal APC endowed with the capacity to cross-present Ag into MHC class 

I molecules. Depending on the type of Ag, DCs use phagocytosis, pinocytosis, fluid-

Figure 1.3 MHC class II processing and presentation of Ag by DC.

Exogenous antigens are internalized by DC inside phagosomes, or alternatively endosomes. 

Lysosomes inside DC, which are acidic intracellular compartments containing pH-sensitive 

proteases, so called cathepsins, fuse with phagosomes or endosomes. This fusion is also referred 

to as endo- or phagosomal maturation. This process is characterized by pH drop inside these 

compartments, thereby activating the cathepsins. The Ag content is degraded of into smaller 

peptide strands 12–20 aminoacid, epitopes. MHC class II molecules are assembled inside the 

endoplasmatic reticulum (ER) and translocated via the Colgi apparatus into MHC class II loading 

compartments. In these compartments, the epitopes are loaded on MHC class II molecules and 

transported to the cell-surface where they are recognized by CD4+ T cells.
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phase endocytosis and receptor-mediated endocytosis for Ag-internalization. It has been 

suggested that the mechanism of Ag-internalization dictates how the Ag is processed and 

presented by DC on MHC class I and II molecules 53.

4.1 Ag-processing by DC; mechanisms of MHC class I Ag cross-presentation

Several MHC class I Ag cross-presentation processing pathways have been reported 52,54,55. 

For simplicity these pathways can be grouped in two principal pathways, commonly 

referred to as the classical/cytosolic (Figure 1.4) and an endosomal/vacuolar pathway.

Ag routed via the classical pathway is processed through similar mechanisms as endogenous 

self-protein Ag, mediated mainly by the proteasome, located in the cytosol. This suggests 

that internalized exogenous material must access the cytosol from the endosomes, become 

ubiquitinated and transferred to the proteasome system. The mechanisms involving the 

translocation of an Ag into the cytosol remains a matter of debate and extensive studies 

and is most likely influenced by the type of Ag. Proteasome-cleaved peptides are then 

transported into the Endoplasmic Reticulum (ER) by the transporter associated with antigen 

processing (TAP) for loading on newly formed MHC class I molecules (Figure 1.4). The majority 

of MHC class I epitopes are loaded on MHC class I molecules inside the ER. However, there 

is no firm evidence that peptide loading on MHC class I molecules occurs exclusively in the 

ER. Therefore, the cytosolic pathway of MHC class I Ag cross-presentation refers primarily to 

the intracellular location where exogenous Ag is processed, the cytosol, without taking into 

account the compartment where the loading of MHC class I molecules occurs. 

The “endosomal/vacuolar” pathway is generally independent of proteasome activity and 

TAP-mediated transfer of cleaved peptides into the ER. However, Ag-processing through the 

endosomal/vacuolar pathway, is sensitive to endo-lysosomal proteases, such as cathepsins 48, 

and dependent on the pH-environment inside endo-lysosomes. The key factor distinguishing 

the two cross-presentation pathways is thus whether the internalized exogenous material 

is translocated from the endolysomes to the cytosol for processing or not 46.

5. Cancer

Cancer is the collective name given to more than 100 neoplastic diseases, which are 

characterized by uncontrolled growth of malignant cells, their subsequent metastasis and 

invasion of healthy tissues impairing their normal functioning. The development of cancer 
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is a multistep process originating from DNA mutations in oncogenes or tumor-suppressor 

genes and, importantly, failure to repair mutated damaged DNA sequences. Malignant 

transformation and DNA mutations can be caused by both exogenous and endogenous 

triggers; carcinogens 56-58. Succeeding DNA mutations malignant cells acquire various 

Figure 1.4 MHC class I Ag (cross-)presentation by DC.

Exogenous Ag engulfed by DC are present inside phagosomes or endosomes (Figure 1.3). The Ag 

content is translocated from these compartments into the cytosol by yet unknown mechanisms. 

Inside the cytosol, Ag-derived proteins are degraded by the cytosolic protease, the proteasome, 

into short 8–9 aminoacids peptide strands. The transporter associated with antigen processing 

(TAP) next transfers the peptide strands from the cytosol into the ER where MHC class molecules 

are assembled and loaded with their specific epitopes. The loaded MHC class I molecules are then 

transported via the Colgi apparatus to the cell surface where CD8+ T cells are able to triggered 

via the TCR.
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hallmarks of cancer; continuous proliferative signaling, insensitivity to growth suppressors, 

resistance of apoptosis, activation of replicative immortality, induction of angiogenesis, and 

activation of metastasis invasion of other organs 59,60. Cancer can partially be designated 

an immunological disease, already at the initial stages of carcinogenesis, (pre-)malignant 

lesions and the immune system are involved in a two way battle. The immune system is 

able to recognize tumors as implied by 1) rejection of experimental tumors 2) increased 

carcinogenesis in immunodeficient animals and/or 3) increased incidence of some cancers 

in immunodeficient patients and in the elderly. A strong evidence for potent tumor-specific 

immunity is provided by studies on cancer patients with paraneoplastic syndrome. For 

example, oncoproteins of neural origin can in some cases of breast and ovarian cancer be 

expressed by the tumor. In healthy individuals these (onco)proteins are expressed only 

in immune-privileged sites, such as neurons. However, in these cancer patients, a strong 

CD8+ T-cell response is generated which effectively controls tumor growth but also induces 

severe auto-immune neurological diseases. Thus, in cancer patients despite the induction 

of a tumor specific immune response, the tumor is not controlled and grows out; tumor 

escape. Mechanisms resulting in tumor escape are many. DNA mutations does not only 

modulate oncogenes and tumor suppressor genes but also facilitate carcinogenesis 

by driving tumor promoting inflammation 61,62, angiogenesis 63,64 and induction of local 

immune suppression via the attraction/induction of T regulatory cells 65,66 and myeloid 

derived suppressor cells (MDSCs) 67. Several other factors have been attributed to the 

overall lack of a potent anti-tumor response in cancer patients 68-70 and combined these 

factors lead to a weak immunogenic tumor microenvironment allowing escape of the 

tumor from surveillance by the immune system. 

5.1 Cancer; disease prevalence in the Netherlands

In the Netherlands, 100,600 new cases of cancer were diagnosed in 2011. This number is 

4% higher than the previous year, 96,500. Skin cancer is the most common with 14,400 

cases followed by breast cancer (14,100), colorectal cancer (13,300), lung & tracheal cancer 

(11,700) and 11,400 cases of prostate cancer. The stepest rise was seen with skin cancer 

with 1,500 new cases in 2011 compared to 2010. The expectation is that an annual increase 

of 3% in total cancer cases will be evident for the next ten years 

Life expectancy of cancer patients has increased approximately with 3 years in the past 

decade. In general, the longer people live the higher their chances of being diagnosed 
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with cancer. Another factor contributing to the rise of cancer prevalence is the change 

in daily activities. For example, more women reported being a regular smoker, a habit 

which most likely is the cause the increase of lung cancer among women. Nowadays, 

the chance of getting cancer for women is 1 in 3, was 1 in 4, and for men 1 in 2, was 

1 in 3. This clear increase is most evident in patients of 85 years and older. Unhealthy 

diets, alcohol consumption and lack of physical exercise have also been related to the 

increase in cancer.

In 2011, 43,139 persons in the Netherlands died from cancer or related complications. 

That is 42% of the the total cancer cases in the same year. Thus, it is very clear that better 

treatment modalities are required (Dutch Association of Comprehensive Cancer Centers).

6. Vaccines

The use of classical prophylactic vaccines dates back to the late 18th century when it was 

shown by Jenner and others that humans could be protected against small-pox by cross-

immunity against cow-pox after inoculation with pus from cow-pox blisters. This important 

observation initiated the field of vaccine development. Although Jenner successfully 

induced immunity and protection in his patients, he was not aware of the entity causing 

this protection. Koch et al. then showed that infectious diseases are caused by pathogenic 

microorganisms, each one responsible for a particular disease. These findings led to the 

culture of artificially weakened strains of virulent pathogens by Pasteur, which were then 

used as vaccines against rabies and anthrax. 

Immunostimulatory agents, adjuvants, were introduced in the 20th century by Gaston 

Ramon. “Adjuvant” is derived from the latin word adjuvare (translation “to help”). An 

adjuvant potentiates the working of a vaccine by hyperactivation of the immune system. 

The use of aluminum salts based adjuvants (alum) were one of the first to be applied in the 

modern era to boost immune responses elicited by prophylactic vaccines. Alum remained 

for decades the only clinically approved adjuvant for human use. Alum effectively enhances 

Type 2 (TH2) humoral responses, prolongs antibody production and promotes the formation 

of memory B cells. Nowadays there are other clinically approved adjuvants based on water-

in-oil (w/o) emulsions such as MF59TM (Novartis) and the adjuvant systems (AS) marketed 

by Glaxo-Smith-Kline. These adjuvants are used primarily as agents to enhance the efficacy 

of prophylactic vaccines which is based on the induction of neutralizing antibodies. 
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Although tumors do stimulate humoral responses and the production of tumor-specific 

antibodies with cytotoxic effects 61,62,71, tumor cell killing is primarily achieved through 

the mechanisms of the cellular immune system, in other words T cells. For the purpose of 

tumor specific vaccination, therapies are required to boost not only the antibody response 

but more importantly the tumor specific T cell response. 

7. Cancer immunotherapy

The natural capacity of the body`s own immune system to recognize and eradicate cancers 

allows the possibility for treatments which enhances anti-tumor effector mechanisms, 

cancer immunotherapy. The need for new treatments against cancer is direct consequence 

of the critical challenges imposed by conventional treatments against cancers, such 

as surgery, chemotherapy and radiotherapy. Their clinical efficacy is poor and causes 

significant adverse effects in treated individuals. There is a high requirement for a more 

personal, tumor-specific and efficacious cancer therapy with considerably lower treatment-

related adverse effects. 

Significant improvements in immunology have provided greater understanding of the 

interactions between malignant and immune cells. It is now well accepted that avoiding 

destruction by the immune system is a hallmark of cancer 60. This knowledge also allows the 

development of novel strategies and medical interventions aiming to boost the immune 

system against a growing tumor. Several cancer immunotherapies have been successfully 

devised which are currently undergoing (pre-)clinical testing or have already been approved 

for standard 1st line therapy. These include the enhancement of B cell responses 72-75,  

antibody-based cancer immunotherapy 71,76-78, adoptive cell transfer of cytotoxic CD8+ T 

cells 79-82, DC based vaccines 83-85, inhibitors of immune checkpoint blockade, such as the 

FDA approved anti-CTLA4 mAb, YERVOY® (Ipilumimab) 86-89 or cancer vaccines based on 

proteins 90,91, short peptides encoding minimal CTL epitopes 92-96 or the main focus of the 

tumor immunology group at LUMC, long peptide vaccines 97-102.

Vaccination against cancer represents a promising treatment modality and is based on the 

principle of activating or boosting specific T cell responses against a tumor-associated Ag 

(TAA). From the pharmaceutical point of view; vaccinations with (long) peptides offers the 

possibility of having an “off the shelf” product which can be manufactured in large numbers 

and under GMP-conditions. More and more TAA are being discovered and described 103-106 

allowing the production of long peptide vaccines for these targets.
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7.1 Cancer immunotherapy; therapeutic vaccines

Successful cancer immunotherapy requires a strong pro-inflammatory Type 1 (TH1) CD4+ 

and CD8+ T cell responses. Advances in molecular immunology have led to the development 

of a broad range of novel synthetic adjuvants that are currently being explored in clinical 

trials in combination with vaccines 60,107-109. Adjuvants, such as synthetic TLR agonists 

mimic PAMPs expressed by pathogen resulting in immune activation of the immune 

system. The Ag-composition of vaccines themselves have also undergone considerable 

developments; from completely undefined material such as pus from cow-pox blisters, 

modern immunologists aim to vaccinate with precisely defined Ag, from DNA-sequences, 

protein or peptides, encoding or representing a specific pathogen-associated or tumor-

associated Ag (TAA). Therapeutic cancer vaccines aim to successfully activate or boost 

an effective anti-tumor T cell immune response. DC hold the key to this process, thus the 

main objective of vaccination regimens against cancer should be the specific and efficient 

delivery of the vaccine, encoding a TAA, to DC.

7.2 Cancer Immunotherapy; soluble Ag vaccines – pros and cons

Historically, protein and/or peptides in their soluble, native, form were the first vaccine Ag 

candidates tested in pre-clinical experimental tumor models or in the clinic. These vaccines 

have led to promising observations of enhanced tumor-specific T cells responses 110-112. 

Nevertheless, in most, if not all, clinical trials, soluble protein and peptide vaccines have 

failed to induce complete and durable responses in cancer patients despite increasing 

tumor immunity. 

Regarding soluble protein vaccines, it’s suggested that their capacity to boost the CD8+ T-cell 

repertoire against a tumor to be rather poor 113-115. Efficient anti-tumor immune responses 

require potent cytotoxic CD8+ T cell responses to achieve the desired clinical benefit. 

Synthetic short-peptide (SSP) vaccines, encoding minimal MHC class I molecule binding 

epitopes on the other hand considerably boost the CD8+ T cell tumor immunity which 

translated into improved clinical responses. But vaccinations with SSP are associated 

with significant limitations on the long term 116-119. SSP-vaccines do not directly stimulate 

CD4+ T cell responses. It is well known that the co-activation or CD4+ T cells is crucial in all 

aspects of CD8+ T cell responses and plays an important role during the priming, effector 

and memory phase CD8+ T cells 120-125. Thus when SSP are used as vaccines, the ensuing 

CD8+ T cell responses are short-lived 116 and of sub-optimal potency. Other restrictions 



Chapter 1

22

related to the use of SSP vaccines are the necessity for HLA-typing for each patient to 

be treated and tolerance induction due to SSP presentation by non-professional APC 116. 

Another disadvantage of SSP is the short-lived in vitro Ag presentation in comparison to 

SLP 126 which, next to SSP loading on non-professional APC might underlie the vanishing 

CD8+ T-cell responses observed in vivo post-vaccination 116. 

The concept of synthetic long peptide (SLP) vaccines was introduced by Melief et al. 114,115,127, 

as way to improve the efficacy of peptide vaccines. The SLPs are overlapping synthetic 

peptides of 15–35 amino acids that 1) cover the entire sequence of the native protein TAA 

to which an immune response is targeted to, 2) SLP require DC-specific internalization and 

processing for optimal presentation in MHC class I and class II molecules and 3) do not 

require HLA-typing as ingestion by DC of overlapping strands of peptides allows epitope 

selection in vivo based on the patient’s own HLA-profile 4) facilitates simultaneous priming 

of T-cells against multiple dominant and subdominant epitopes stimulating a broad T-cell 

response 114. Therapeutic vaccinations with SLP encoding the E6 and E7 oncoproteins of 

high risk HPV16 successfully boosts CD4+ and CD8+ T-cell responses in pre-clinical murine 

models of cervical cancer and in patients with (pre-)malignant disease of the cervix and 

the vulva 128,129. SLP vaccines have also been used against other types of cancers 119,130-132 

and against other immunological diseases 133,134. In a direct comparison, SLP vaccines 

were more efficient in inducing CD8+ T-cell responses than protein vaccines 119 and lead 

to stronger and more effective Ag-specific immune responses. 

The positive effect on the anti-tumor responses and resulting clinical benefits are well 

described for SLP vaccines. But still, soluble SLP vaccines carry some disadvantages 

especially related to the method of administration. Montanide-based water-in-oil (w/o) 

emulsions are mostly used to formulate SLP vaccines, but also protein vaccines, for 

administration to patients enrolled in clinical trials 133-138. Montanide w/o emulsions function 

as an Ag-depot and triggers inflammation at the site of injection. However, the properties 

of Montanide which cause inflammation are poorly described. In addition, the use of w/o 

formulations cause significant local side effects in treated patients because of their non-

biocompatible/non-biodegradable properties. Moreover, unpredictable Ag release rates 

and lack of long-term stability of the w/o emulsions limit pharmaceutical scalability 128,129,139. 

Besides the disadvantages related to the delivery system, once released from the w/o 

emulsion based Ag-depot, SLPs are rapidly cleared via the kidney from the body 140,141 

because of their typically small size of ≤ 5 kD. As a result, injected SLPs are inefficiently 
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target to- and internalized by DCs when administered s.c. or i.d. in vivo. Thus alternative 

methods to deliver SLP vaccines are highly required. Particulate vaccine carriers prepared 

from bio-degradable, biocompatible polymers offer a suitable substitute for Montanide 

or other w/o emulsions due to their relative ease of pharmaceutical formulation and 

immunological properties.

7.3 Cancer immunotherapy; particulate vaccine carriers based on PLGA-
nanoparticles

To date, many particulate vaccine carriers have been successfully formulated from 

various types of biocompatible polymers 142-150. These resulting “particulate vaccines” 

boosts Ag-specific humoral and cellular responses with higher efficiency compared to 

soluble vaccines. Their method of action is for a large part based on facilitated uptake of 

particulate Ag by APCs compared to soluble protein- and/or peptide Ag. From a cancer 

therapy perspective, one would desire to develop particulate carriers, carrying TAA that 

can efficiently target DC, either actively or passively, promote Ag processing and MHC 

class I and II presentation and finally generate of potent immune responses capable of 

tumor control 151-154. 

Biodegradable particulate vaccine carriers prepared with the polymer Poly-(Lactic-co-

Glycolic-acid) (PLGA) have yielded positive results as a carrier for various types of Ag, from 

DNA, proteins to peptides 152-158. The use of PLGA-nanoparticles (PLGA-NP) offer some 

unique advantages over the administration of the soluble vaccine-Ag encoding TAA or 

the use of W/O based delivery vehicles; these include 1) PLGA is an FDA approved polymer 

2) protection of the Ag cargo from premature degradation, 3) encapsulation of Ag in NP 

increases the total size of the vaccine and slows renal clearance, 4) enhanced uptake of 

the Ag by DC. 5) PLGA-NP makes it possible to accommodate both Ag and adjuvant in 

“one” particle to create a single immune activating “pathogen-like entity” and finally 6) 

PLGA-NP immunogenicity can be further modified by coupling of various ligands to- or 

surface coating of the NP to modulate the in vivo bio distribution and immune cell specific 

uptake of particles.

Owing to these favorable characteristics of PLGA-NP as vaccine delivery carriers and the 

crucial requirement to improve the immunogenicity of SLP-vaccines currently administered 

in Montanide a study was designed to assess several aspects of PLGA-NP as potential 

clinically applicable delivery vehicle/vaccine carrier for SLP-vaccines.



Chapter 1

24

8. Scope of this thesis

Chapter 2 describes our studies exploring the mechanisms of long peptide-Ag-processing 

by DC. Understanding these mechanisms will allow further fine-tuning of SLP vaccines, 

with the goal to enhance their in vivo potency which may ultimately lead to improved 

treatment of cancer patients. We set out to enhance SLP-vaccine potency through the 

encapsulation in PLGA-NP. 

In chapter 3 we studied the feasibility to encapsulate SLP in PLGA-NP as a method to 

improve the immunogenicity of SLP. This study focused on the physical and formulation 

criteria necessary to successfully encapsulate SLP in PLGA-NP (PLGA-SLP). Subsequently, 

we studied the efficacy of cross-presentation by DC of PLGA-SLP in comparison to soluble 

SLP. We next studied the intracellular mechanisms used by DC to process PLGA-SLP in 

chapter 4 and in addition describe the in vivo vaccine potency of PLGA-SLP in comparison 

to soluble SLP. 

In chapter 5 we report the application of PLGA-NP encapsulating protein Ag as a delivery 

vehicle to enhance DC-mediated stimulation of Ag-specific T cells ex vivo which could be 

used for adoptive T cell immunotherapy. 

Because plain PLGA-particles have sub-optimal adjuvant properties in vivo, the optimization 

of PLGA-NP vaccines to achieve efficient anti-tumor responses is the topic of chapter 6 in 

which nanoparticles and microparticles where studied in a head-to-head comparison in 

their capacity to activate B and T cell responses. 

Chapter 7 continuous with the optimization of PLGA-NP vaccines where PLGA-NP vaccines 

were formulated co-encapsulating protein Ag and TLRL combined with active targeting 

of DC via CD40 molecules expressed on the cell-surface. In chapter 8 a follow up study 

was performed to analyze different targeting strategies to enhance delivery of PLGA-

NP encapsulated Ag to DC. For this purpose, PLGA-NP encapsulating TLRL and Ag were 

targeted to CD40 (a TNF-receptor family molecule), DEC-205 (a C-type lectin receptor) and 

CD11c (an integrin receptor). 

Finally, in chapter 9 we will discuss the most important findings described in this thesis and 

present a general overview. The contribution of the results to the further understanding of 

the immune system and the field of cancer vaccine development will put into context of 

known literature. Finally we will highlight the clinical relevancy of our findings and debate 

the future perspectives for particulate carriers as vehicles for SLP-vaccines.
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