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CHAPTER 3

Diffuse steep-spectrum sources from the 74 MHz VLSS survey

Abstract. Galaxy clusters grow by a sequence of mergers with other clusters and galaxy groups.
During these mergers, shocks and/or turbulence are created within the intracluster medium
(ICM). In this process, particles could be accelerated to highly relativistic energies. The syn-
chrotron radiation from these particles is observed in the form of radio relics and halos that
are generally characterized by a steep radio spectral index. Shocks can also revive fossil radio
plasma from a previous episode of AGN activity, creating a so-called radio “phoenix”. Here
we present multi-frequency radio observations of diffuse steep-spectrum radio sources selected
from the 74 MHz VLSS survey. Previous Giant Metrewave Radio Telescope (GMRT) obser-
vations showed that some of these sources had filamentary andelongated morphologies, which
are expected for radio relics. We attempt to understand the nature of diffuse steep-spectrum
radio sources and characterize their spectral index and polarization properties. We carried out
radio continuum observations at 325 MHz with the GMRT. Observations with the Very Large
Array (VLA) and Westerbork Synthesis Radio Telescope (WSRT) were taken at 1.4 GHz in
full polarization mode. Optical images around the radio sources were taken with the William
Herschel and Isaac Newton Telescope (WHT, INT). Most of the sources in our sample consist
of old radio plasma from AGNs located in small galaxy clusters. The sources can be classified
as AGN relics or radio phoenices. The spectral indices across most of the radio sources display
large variations. We conclude that diffuse steep-spectrum radio sources are not only found
in massive X-ray luminous galaxy clusters but also in smaller systems. Future low-frequency
surveys will uncover large numbers of steep-spectrum radiorelics related to previous episodes
of AGN activity.

R. J. van Weeren, H. J. A. Röttgering, and M. Brüggen
Astronomy& Astrophysics, 527, 114, 2011
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42 Chapter 3. Diffuse steep-spectrum sources from the 74 MHz VLSS survey

3.1 Introduction

Studies of large-scale structure formation show that galaxy clusters grow through mergers with
other clusters and galaxy groups, as well as through the continuous accretion of gas from the in-
tergalactic medium (IGM). The baryonic content of clustersis mostly in the form of hot thermal
gas visible at X-ray wavelengths. Several clusters also have a non-thermal component within the
ICM, which is observable at radio wavelengths (e.g.,Ferrari et al. 2008; Giovannini et al. 2009;
Giovannini & Feretti 2000; van Weeren et al. 2010). The idea is that shocks and/or turbulence
generated during cluster merger events can accelerate particles to relativistic energies, and in the
presence of a magnetic field, synchrotron radiation is emitted (e.g.,Ensslin et al. 1998; Miniati
et al. 2001; Hoeft & Brüggen 2007; Hoeft et al. 2008; Pfrommer 2008; Battaglia et al. 2009;
Skillman et al. 2011). These radio sources, which trace the non-thermal component of the ICM,
can be divided into several classes.

Radio halosare found at the center of merging galaxy clusters and have typical sizes of
about a Mpc. They follow the X-ray emission from the thermal ICM and are mostly unpolarized,
although there are some exceptions (seeGovoni et al. 2005; Bonafede et al. 2009a). Radio halos
have been explained by turbulence injected by recent mergerevents. This injected turbulence
might be capable of re-accelerating relativistic particles (e.g., Brunetti et al. 2001; Petrosian
2001). Alternatively, the energetic electrons are secondary products of proton-proton collisions
(e.g.,Dennison 1980; Blasi & Colafrancesco 1999; Dolag & Enßlin 2000). The turbulent re-
acceleration model currently seems to provide a better explanation of the occurrence of radio
halos (e.g.,Brunetti et al. 2008).

Mini-halos (also called core-halo systems) are diffuse radio sources with sizes. 500 kpc
located in relaxed galaxy clusters, in which diffuse emission surrounds the central cluster galaxy
(Murgia et al. 2009; Govoni et al. 2009; Gitti et al. 2007, 2004; Bacchi et al. 2003; Gitti et al.
2002; Burns et al. 1992).

Radiorelics are irregularly shaped radio sources with sizes ranging from 50 kpc to 2 Mpc,
which can be divided into three groups (Kempner et al. 2004). Radio gischtare large elongated,
often Mpc-sized, radio sources located at the periphery of merging clusters. They probably trace
shock fronts in which particles are accelerated via the diffusive shock acceleration mechanism
(DSA; Krymskii 1977; Axford et al. 1977; Bell 1978a,b; Blandford & Ostriker 1978; Drury
1983; Blandford & Eichler 1987; Jones & Ellison 1991; Malkov & O’C Drury 2001). Among
these are rare double-relics that have two relics located onboth sides of the cluster center (e.g.,
Bonafede et al. 2009b; van Weeren et al. 2009b; Venturi et al. 2007; Bagchi et al. 2006; Röttger-
ing et al. 1997; van Weeren et al. 2010; Brown et al. 2011). According to DSA theory, the
integrated radio spectrum should be a single power-law.Radio phoenicesandAGN relicsare
both related to radio galaxies. AGN relics are associated with extinct or dying radio galaxies.
The radio plasma has a steep curved spectrum due to synchrotron and inverse Compton (IC)
losses. Fossil radio plasma from a previous episode of AGN activity can also be compressed
by a merger shock wave producing a radio phoenix (Enßlin & Gopal-Krishna 2001; Enßlin &
Brüggen 2002), these sources again having steeply curved radio spectra.Proposed examples of
these are those found bySlee et al.(2001).

In van Weeren et al.(2009c), we presented observations of a sample of 26 diffuse steep-
spectrum sources, withα ≤ −1.15, selected from the 1.4 GHz NVSS (Condon et al. 1998)
and 74 MHz VLSS (Cohen et al. 2007) surveys. These sources were either resolved out in the
VLA B-array 1.4 GHz snapshot observations or 1.4 GHz FIRST survey (Becker et al. 1995).
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GMRT 610 MHz observations of these 26 sources detected one distant powerful radio halo with
a radio relic (van Weeren et al. 2009d), five radio relics including two radio phoenices, and one
possible mini-halo. The remaining sources were classified as radio sources directly related to
AGN activity. The spectral indices of the radio relics in thesample are generally steeper than
most previously known relics. By complementing our observations with results for other relics
from the literature, we found that the larger relics generally have flatter spectra and are located
farther away from the cluster center. This is in line with predictions from shock statistics derived
from cosmological simulations (Hoeft et al. 2008; Skillman et al. 2008; Battaglia et al. 2009).
In these simulations, it is found that larger shock waves occur mainly in lower-density regions
and have larger Mach numbers, and consequently shallower spectra. On the other hand, smaller
shock waves are more likely to be found in cluster centers andhave lower Mach numbers, thus
steeper spectra.

In this paper, we present follow-up radio observations of six sources (i.e., those most likely
related to radio relics and halos) found invan Weeren et al.(2009c). GMRT 325 MHz as well as
VLA and WSRT 1.4 GHz observations were obtained to create spectral index and polarization
maps. Optical images were acquired with the 4.2m WHT and 2.5mINT telescopes at the posi-
tion of the radio sources to search for optical counterpartsand identify galaxy clusters associated
with the radio sources.

The layout of this paper is as follows. In Sect.3.2, we present an overview of the observa-
tions and data reduction. In Sect.3.3, we present the radio and spectral maps as well as optical
images around the radio sources. In Sect.3.4, we show additional optical images around five
slightly more compact radio sources (also from the sample of26 sources) to search for optical
counterparts. These sources are not located in nearby galaxy clusters and their nature remains
unclear. We end with a discussion and conclusions in Sects.3.5and3.6.

Throughout this paper, we assume aΛCDM cosmology withH0 = 71 km s−1 Mpc−1, Ωm =

0.3, andΩΛ = 0.7. All images are in the J2000 coordinate system.

3.2 Observations & data reduction

3.2.1 GMRT 325 MHz observations

Radio continuum observations with the GMRT at 325 MHz were carried out on 14, 15, and
17 May, 2009. Both upper (USB) and lower (LSB) sidebands (IFs, which included RR and
LL polarizations) were recorded with a total bandwidth of 32MHz. The observations were
carried out in spectral line mode with 128 channels per IF to facilitate the removal of radio
frequency interference (RFI) and reduce the effect of bandwidth smearing. The integration time
per visibility was 8 sec. Each source was observed for about 4hrs in total. The data were
reduced with the NRAO Astronomical Image Processing System(AIPS) package.

The data was visually inspected for the presence of RFI, which was subsequently removed
(i.e., “flagged”). We carried out an amplitude and phase calibration on the flux and bandpass
calibrators 3C147 and 3C286 on a timescale of 8 sec. For this,we chose three neighboring
frequency channels free of RFI. These gain solutions were applied before determining the band-
pass response of the antennas. This assures that any amplitude and/or phase variations during
the scans on the calibrators are corrected before determining the bandpass solutions. At higher
frequencies (e.g., 1.4 GHz), both amplitude and phases are assumed to be constant during band-
pass calibration. However, for the GMRT observing at low frequencies, this assumption is not
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Table 3.1: GMRT 325 MHz observations

rms noise beam size
µJy beam−1 arcsec

VLSS J1431.8+1331 178 11.8′′ × 7.8′′

VLSS J1133.7+2324 132 10.4′′ × 7.7′′

Abell 2048 248 9.7′′ × 9.6′′

24P73 162 13.6′′ × 9.0′′

VLSS J0004.9−3457 309 13.5′′ × 11.0′′

VLSS J0915.7+2511 412 14.7′′ × 8.1′′

always valid and can affect the quality of the bandpass solutions as well as the determination of
the flux scale.

After correcting for the bandpass response, both the amplitude and phase solutions for both
primary and secondary calibrators were determined but in this case using the full channel range.
The fluxes of the primary calibrators were set according to thePerley & Taylor(1999) extension
to theBaars et al.(1977) scale. The flux densities for the secondary calibrators were boot-
strapped from the primary calibrators. The amplitude and phase solutions were interpolated and
applied to the target sources. Some targets were observed over multiple days (observing runs),
the resulting different data sets were combined with the AIPS task ‘DBCON’.

For each of the target sources, we created a model of the surrounding field using the NVSS
survey with a spectral index scaling of−0.7. We carried out a phase-only self-calibration against
this model to improve the astrometric accuracy. This was followed by several rounds of phase
self-calibration and two final rounds of amplitude and phaseself-calibration. To produce the
images, we used the polyhedron method (Perley 1989; Cornwell & Perley 1992) to minimize
the effects of non-coplanar baselines. The model was then subtracted from the data, a step that
facilitated the removal of additional RFI or baselines withproblems. Final images were made
using robust weighting (robust= 0.5,Briggs 1995). Images were cleaned using the automatic
clean-box windowing algorithm in AIPS and cleaned down to 2 times the rms noise level (2σrms)
within the clean boxes. The final images were corrected for the primary beam response1. The
uncertainty in the calibration of the absolute flux-scale isin the range 5− 10%, seeChandra
et al.(2004). The resulting noise levels and beam sizes are shown in Table3.1.

Radio observations at 610 MHz were taken with the GMRT in February and November 2008
of the sources in Table3.1. The reduction of these observations is similar to the GMRT 325 MHz
data and is described in more detail invan Weeren et al.(2009c). We used these images to create
the spectral index maps.

3.2.2 VLA 1.4 GHz observations

We carried out L-band observations of four sources with the VLA (see Table3.2). The observa-
tions were taken in standard continuum mode with two IFs, each having a bandwidth of 50 MHz
recording all polarization products (RR, LL, RL, and LR). Gain solutions were determined for
the calibrator sources and transferred to the target sources. The fluxes for the primary calibrators

1http://gmrt.ncra.tifr.res.in/gmrt hpage/Users/doc/manual/UsersManual/node27.html
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Table 3.2: VLA 1.4 GHz observations

VLSS J1133.7+2324 MaxBCG J217.95869+13.53470 VLSS J0004.9−3457 Abell 2048
Frequency bands (IFs) 1385, 1465 MHz 1385, 1465 MHz 1385, 1465 MHz 1385, 1465 MHz
Bandwidth 2× 50 MHz 2× 50 MHz 2× 50 MHz 2× 50 MHz
Polarization RR, LL, RL, LR RR, LL, RL, LR RR, LL, RL, LR RR, LL,RL, LR
Observation dates 4 Nov 2008, 17 Apr 2009, 2 Nov 2008, 18 Apr 2009, 11 Jun 2009 15 Jul 2009

10 Aug 2009 31 Jul 2009
Project code AV305, AV312 AV305, AV312 AV312 AV312
Integration time 3.3 s 3.3 s 3.3 s 3.3 s
Total on-source time 5.0 hr, 6.8 hr, 3.9 hr 4.9 hr, 6.8 hr, 3.9 hr 4.0 hr 4.0 hr
VLA configuration A+B+C A+B+C CnB C
Beam size 1.3′′ × 1.4′′a, 6.7′′ × 6.7′′b 1.6′′ × 1.5′′a, 6.4′′ × 5.3′′b 19.8′′ × 10.3′′ 13.0′′ × 12.4′′

Rms noise (σrms) 14a, 19b µJy beam−1 15a, 17b µJy beam−1 49µJy beam−1 88µJy beam−1

a Briggs weighting (robust= −1.0)
b natural weighting
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Table 3.3: WSRT observations

Frequency bands 21 cm (IFs) 1311, 1330, 1350, 1370, 1392, 1410, 1432, 1450 MHz
Frequency bands 18 cm (IFs) 1650, 1668, 1686, 1704, 1722, 1740, 1758, 1776 MHz
Bandwidth per IF 20 MHz
Number of channels per IF 64
Channel width 312.5 kHz
Polarization XX, YY, XY, XY
Observation dates 11, 17, and 18 March, 2009
Integration time 30 s
Total on-source time 6.5 hr 21cm+ 6.5 hr 18cm
Beam size 19.0′′ × 16.5′′

Rms noise (σrms) 37µJy beam−1

were set according to thePerley & Taylor(1999) extension to theBaars et al.(1977) scale. The
effective feed polarization parameters (the leakage terms or D-terms) were found by observing
the phase calibrator over a wide range of parallactic anglesand simultaneously solving for the
unknown polarization properties of the source. The polarization angles were set using the po-
larized sources 3C286 and 3C138. For the R-L phase difference, we assumed values of−66.0
and 15.0 deg for 3C286 and 3C138, respectively. Stokes Q and U imageswere compiled for
each source. From the Stokes Q and U images, the polarizationangles (Ψ) were determined
(Ψ = 1

2 arctan (U/Q)). Total polarized intensity (P) images were also made (P =
√

Q2 + U2).
The polarization fraction were found by dividing the total polarized intensity by the total inten-
sity (Stokes I) image (

√

Q2 + U2/I).

3.2.3 WSRT1.3− 1.7 GHz observations of 24P73

WSRT observations were taken of a single source (24P73) not included in the VLA observations.
Every 5 min, the frequency setup was changed within the L-band, alternating between the 21cm
and 18cm setups. Both of these frequency setups have 160 MHz bandwidth divided over 8 IFs,
each having 20 MHz bandwidth. The data were recorded in spectral line mode with 64 spectral
channels per IF in 4 polarizations. The observations were carried out in three runs on 11, 17,
and 18 March, 2009 resulting in a more or less complete 12-hour synthesis run, see Table3.3.

The data were partly calibrated using the CASA (formerly AIPS++)2 package. The L-band
receivers of the WSRT telescopes have linearly polarized feeds3. The leakage terms (D-terms)
for the WSRT are frequency dependent (e.g.,Brentjens 2008). As a first step, we flagged the
autocorrelations, and removed any obvious RFI and corrupted data. Time ranges of antennas
affected by shadowing were also taken out. Bandpass and gain solutions were determined using
observations of two standard calibrators, both at the startand end of an observing run. The
fluxes for the calibrators were set according to thePerley & Taylor(1999) extension to the
Baars et al.(1977) scale. We used both polarized (3C138 or 3C286) and unpolarized (CTD93,

2http://casa.nrao.edu/
3The WSRT records XX= I − Q, YY = I − Q, XY = −U + iV, and XY = −U − iV, where I, Q, U, and V are the

Stokes parameters.
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3C48) calibrator sources. The bandpass and gain solutions were applied and the data were
calibrated for the leakage terms using the unpolarized calibrator source. The polarization angles
were set using the polarized calibrators sources, the angles being the same as in Sect.3.2.2. The
data was then exported into AIPS for two rounds of phase only and two rounds of amplitude
and phase self-calibration (separately for each IF). The solutions for the amplitude and phase
self-calibrations were determined by combing both XX and YYpolarizations as Stokes Q is not
necessarily zero.

The images for each IF were cleaned to about 2σrms using clean boxes. The images for
each IF were combined into a deep image by convolving the images of the individuals IFs to a
common resolution and using a spectral index scaling of−1.

3.2.4 Optical WHT & INT imaging

Optical images around the radio sources were made using the PFIP camera on the 4.2m WHT
telescope and the WFC camera on the INT. The observations were carried out between 15 and
19 April, 2009 (WHT) and 1− 8 October, 2009 (INT). The field of view was 16′ × 16′ for the
PFIP and 34′ × 34′ for the WFC camera. The seeing varied between 0.6′′ and 2.0′′, but was
mostly between 1.0′′ and 1.5′′. Most nights were photometric. The total integration time per
target was about 1500 s for both V, R, and I bands for the WHT observations and 4000 s for the
INT observations. The data were reduced with IRAF (Tody 1986, 1993) and themscredpackage
(Valdes 1998). All images were flat-fielded and bias-corrected. The I and Rband images were
fringe corrected. The individual exposures were averaged,with pixels being rejected above
3.0σrms to remove cosmic rays and other artifacts.

Zero-points were determined using various observations ofstandard stars taken during the
nights. Images taken on non-photometric nights were scaledsuch that the flux of a few targets
within the field of view agreed with that of the images taken onphotometric nights.

3.3 Results

A list of the observed sources with their integrated fluxes and redshifts is given in Table3.4.
For sources without a spectroscopic redshift, we used the Hubble-K or Hubble-R relations to
estimate the redshift (Willott et al. 2003; Snellen et al. 1996; de Vries et al. 2007). Spectral index
maps were also made for the radio sources. Only common UV-ranges were used to minimize
errors due to differences in the UV-coverage and the individual maps were convolved to the
same resolution. For sources with high-resolution (. 10′′) 1.4 GHz observations, we created
a high-resolution spectral index map between 610 and 1425 MHz. A low-frequency spectral
index map between 325 and 610 MHz was also made for most sources. Pixels below 4σrms

at either one of the two frequency maps were blanked. Low-resolution spectral index maps
between 325, 610, and 1425 MHz were created to map the spectral index in low signal-to-noise
ratio (SNR) regions. We fitted a single (power-law) spectralindex through the three frequencies,
pixels below 2.5σrms being neglected.

For two sources, the SNR was high enough to create spectral curvature maps. The spectral
curvature we defined asα325−610− α610−1425. Pixels with a spectral index error larger than 0.06
were blanked in the spectral curvature maps. The errors in the spectral index map are based
on the noise levels (rms) of the individual images. In the following subsections, the radio and
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spectral index maps are presented together with optical overlays.

3.3.1 VLSS J1133.7+2324, 7C 1131+2341

VLSS J1133.7+2324 is a filamentary radio source, possibly associated witha galaxy cluster
at z = 0.61 (van Weeren et al. 2009c). To the west of the filamentary source, our 610 MHz
image detected diffuse emission associated with the foreground galaxy UGC 6544located at
z= 0.02385 (Haynes et al. 1997).

The 325 MHz image (see Fig.3.1 left panel), is similar to our previous 610 MHz image.
In the 325 MHz image, the southern part of the filamentary source is significantly brighter than
the northern part, while little emission from UGC 6544 is detected at 325 MHz. The VLA
1.4 GHz image made with natural weighting is shown in Fig.3.1(right panel) and reveals much
more emission from UGC 6544. The southern part of the filamentary source is quite faint
at 1.4 GHz, confirming that it has a steep spectrum. A high-resolution VLA image, also at
1.4 GHz, reveals only three faint compact radio sources, seeFig. 3.3 (left panel). This shows
that the emission from the steep-spectrum source is truly diffuse, and cannot be attributed to the
combined emission from compact sources. We do not detect anypolarized emission from the
source at 1425 MHz. We place a 5σ upper limit of 5% on the polarization fraction.

The spectral index map, between 325 and 610 MHz, is shown in Fig. 3.2 (left panel). The
spectral index of the southern part of the filamentary sourceis −2.0, while for the rest of the
diffuse emission it isα ∼ −1.7. Towards UGC 6544, the spectral index flattens. The spectral
index map between 610 and 1425 MHz is shown in Fig.3.2 (right panel). Here the spectral
index steepens toα ≤ −2.5 for the southern part of the filamentary source. The spectral index
of the foreground galaxy UGC 6544 is relatively flat withα ∼ −0.5.

VLSS J1133.7+2324 was also observed byDwarakanath & Kale(2009) at 1287 MHz with
the GMRT and at 330 MHz with the VLA. The reported integrated spectral indices were−1.6±
0.03 between 74 and 328 MHz and−1.9 ± 0.08 between 328 and 1278 MHz. The integrated
flux density was 151± 12 mJy at 328 MHz. We measure a flux of 273± 28 mJy at 325 MHz,
which is significantly higher than the reported value fromDwarakanath & Kale. This may be
partly caused by the higher SNR of our image as we may pick up additional emission beyond
what is visible in theDwarakanath & Kaleimage. Although, this cannot completely explain the
difference in fluxes.

The source could be old radio plasma from a previous episode of AGN activity, although
UGC 6544 is a spiral galaxy which normally do not host AGN. If the radio emission were
explained by relic lobes, they would be expected to be located symmetrically with respect to the
nucleus of the galaxy, which is not the case. The flat spectrumradio emission we detect from the
galaxy is fully consistent with that predicted by the far-infrared radio correlation (van Weeren
et al. 2009c).

At the location of the filamentary radio source, we detected an overdensity of faint galaxies
(see Fig.3.3). These galaxies are partly hidden behind UGC 6544. The median SDSS photomet-
ric redshift is 0.61 for these galaxies. To confirm the presence of a cluster, X-ray observations
and/or spectroscopic redshifts of several galaxies are needed.

If this is indeed a distant galaxy cluster, the radio emission is very likely to be associated with
the cluster. The source may then trace a shock wave in the cluster where particles are accelerated
by the DSA mechanism. In that case the integrated radio spectrum should be a single power-
law. Our flux measurements however indicate a slightly curved spectrum. A redshift of 0.61
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Table 3.4: Source list & properties

source/cluster z S325 S1425 α74−1400 curvature LLS classificationh

Jy mJy α74−610− α610−1425 kpc
VLSS J1431.8+1331 0.1599 0.373± 0.040 14.6± 1.1 −2.03± 0.05 1.03f 125 AGN+ AGNR or PHNX
VLSS J1133.7+2324 0.61± 0.16g 0.273± 0.028 12.3± 1.1 −1.69± 0.06 0.96 570g AGNR or DSAR
Abell 2048 0.0972 0.559± 0.061 18.9± 4.3 −1.50± 0.05 1.6 310 PHNX
24P73 0.15± 0.1b,g 0.307± 0.033 12.0± 3.0 −2.20± 0.06 2.0 270 PHNX
VLSS J0004.9−3457 0.3± 0.1e 0.417± 0.046 32.2± 1.9 −1.40± 0.04 0.30f 200 AGN (or MH+ DSAR?)
VLSS J0915.7+2511 0.324 0.417± 0.046 24.7± 1.5a −1.52± 0.04 1.02 190 AGNR or PHNX
VLSS J1117.1+7003 0.8± 0.4d 0.030± 0.006c 2.9± 0.5a −1.87± 0.07 0.0 130 AGN?
VLSS J2043.9−1118 0.5± 0.3d . . . 7.7± 0.6a −1.74± 0.05 0.84 250 AGN (MH?+ DSAR?)
VLSS J0516.2+0103 1.2± 0.7d . . . 4.3± 0.4a −1.73± 0.06 0.0 290 AGN (or MH?)
VLSS J2209.5+1546 1.1± 0.7d . . . 7.0± 0.9a −1.56± 0.07 0.59 500 AGN?
VLSS J2241.3−1626 0.5± 0.3d . . . 14.6± 1.1a −1.44± 0.06 0.0 290 AGN?

a flux from NVSS (Condon et al. 1998)
b identification of the cD galaxy uncertain
c flux from WENSS (Rengelink et al. 1997)
d redshift estimated using the fitted Hubble-R relation fromde Vries et al.(2007), since it is unclear whether there is a common underlying
population of massive elliptical galaxies for extended steep-spectrum radio sources we have taken the 3C Hubble-R relation from Snellen
et al.(1996) as an upper limit for the redshift (i.e., the 3C galaxies areabout 1 mag brighter at the same redshift)
e redshift estimated using the fitted Hubble-K relation fromWillott et al. (2003)
f varies across the source
g association with cluster uncertain
h PHNX = radio phoenix, AGNR= AGN relic, MH = radio mini-halo, DSAR= relic tracing shock wave with DSA
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Figure 3.1: Left: GMRT 325 MHz map. Contour levels are drawn at
√

[1,2,4, 8, . . .]×4σrms. The position
of is UGC 6544 is indicated by the dashed ellipse. Right: VLA 1425 MHz map. Contour levels are drawn
as in the left panel.

would correspond to a physical size of about 500 kpc. The verysteep and somewhat curved
radio spectrum then suggest the source to be an AGN relic, rather than a radio phoenix because
the source is quite large and the time to compress such a largeradio “ghost” would remove
most of the electrons responsible for the radio emission by radiative energy losses (Clarke &
Ensslin 2006). Additional flux measurements at lower and/or higher frequencies will be needed
to confirm whether the radio spectrum is indeed curved.

3.3.2 VLSS J1431.8+1331, MaxBCG J217.95869+13.53470

VLSS J1431.8+1331 is located in the galaxy cluster MaxBCG J217.95869+13.53470 (z =
0.1599,Koester et al. 2007) and associated with the central cD galaxy of the cluster. The clus-
ter has a moderate X-ray luminosity ofLX, 0.1−2.4 keV ∼ 1 × 1044 erg s−1 based on the ROSAT
count rate (Voges et al. 1999). The GMRT 325 MHz image (see top left panel Fig.3.4) shows
a bright elongated source. To the west a somewhat fainter diffuse component can be seen. This
component is not associated with any optical galaxy (see Fig. 3.3, right panel). A third fainter
source is located further to the southwest. The first two components are connected by a faint
radio “bridge”. This bridge was not seen in our previous 610 MHz image. The bright source
is a currently active radio galaxy with the radio core clearly being visible in our VLA 1.4 GHz
images (see Fig.3.4 top middle and right panels). Probably, radio plasma from the core flows
westwards and then forms the north-south elongated structure.

The spectral index maps (see Fig.3.4bottom panels), are indicative of a relatively flat spec-
tral index of−0.5 for the radio core between 325 and 610 MHz. Spectral steepening is observed
to the north and south of the elongated structure. The spectral index for the southern part of
the elongated structure steepens to−3.5 between 610 and 1425 MHz. The spectral index of the
southwestern component is about−1.5 between 325 and 610 MHz, there being smaller spectral
index variations across it than in the brighter western component. Between 610 and 1425 MHz,
the spectral index steepens to about−2.5. The spectral curvature map (α325−610−α610−1425) (see
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Figure 3.2: Left: Spectral index map between 325 and 610 MHz at a resolution of 11.75′′ ×7.65′′. Contour
levels are from the 325 MHz GMRT image and drawn at levels of [1,2,4, 8, . . .] × 6σrms. Right: Spectral
index between 610 and 1425 MHz. Contour levels are from the 1425 MHz VLA image and drawn at levels
of [1, 2,4, 8, . . .] × 5σrms. The beam size is 6.7′′ × 6.7′′.

Figure 3.3: Left: Optical WHT color image for VLSS J1133.7+2324. GMRT 610 MHz contours are over-
laid. The beam size is 6.6′′ × 3.9′′. Three compact sources detected in the VLA 1425 MHz high-resolution
image are marked with crosses. Right: Optical WHT color image for MaxBCG J217.95869+13.53470.
GMRT 610 MHz contours are overlaid. The beam size is 5.3′′ × 4.8′′. Contour levels are drawn as in the
left panel.
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Figure 3.4: Top left: GMRT 325 MHz map. Contour levels are drawn as in Fig.3.1. Top middle: VLA
1425 MHz map. Contour levels are drawn as in Fig.3.1. Top right: VLA 1425 MHz high-resolution
image. The image was made using Briggs weighting with robustset to−1. Contour levels are drawn at√

[1, 2,4, 8, . . .] × 4σrms. Bottom left: Spectral index map between 325 and 610 MHz at a resolution of
10.4′′ × 7.7′′. Contour levels are from the 325 MHz GMRT image and drawn at levels of [1, 2,4, 8, . . .] ×
6σrms. Bottom middle: Spectral index between 610 and 1425 MHz. Contour levels are from the 610 MHz
GMRT image and drawn at levels of [1, 2,4, 8, . . .] × 5σrms. The beam size is 6.41′′ × 5.26′′. Bottom right:
Spectral curvature map. Contour levels are drawn as in the left panel and the resolution is 10.4′′ × 7.7′′.

Fig. 3.4 bottom right panel), shows that the southwestern source hasa very curved radio spec-
trum. The southern end of the radio structure from the activeAGN is also quite curved. The high
spectral curvature is likely to be the result of spectral ageing, the gradient in the spectral index
away from the core providing evidence of this. The two diffuse sources the southwest of the
active AGN are probably old “bubbles” of radio plasma linkedto this AGN, which is consistent
with the curved radio spectrum. The presence of a faint radiobridge also suggests a relation
between this southwestern component and the radio galaxy. The southwestern component can
therefore be classified as a radio phoenix (if the radio plasma has been compressed) or an AGN
relic. XMM-Newton observations of the cluster will be presented by Ogrean et al. (submitted).

3.3.3 VLSS J2217.5+5943, 24P73

This source was discovered during the Synthesis Telescope of the Dominion Radio Observatory
(DRAO) Galactic plane survey at 408 MHz and 1.42 GHz (Higgs 1989; Joncas & Higgs 1990).
Green & Joncas(1994) found the source to be diffuse and have an ultra-steep spectrum (α =

−2.58± 0.14). Our GMRT 610 MHz observations (see Fig.3.5 bottom right panel) detected a
very complex filamentary source, resembling the relics found in Abell 13 and Abell 85 (Slee
et al. 2001). Our GMRT 325 MHz image, Fig.3.5 top left panel, is similar to the 610 MHz
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image. In our combined WSRT 1.3− 1.8 GHz image (top right panel), the fainter western part
of the relic is only marginally detected, which is indicative of a steep spectral index in this
region. We set an upper limit to the polarization fraction of5% for the source at 1.4 GHz.

The spectral index map between 325 and 610 MHz is shown in the bottom left panel of
Fig. 3.5. The spectral index varies between−1.4 and−2.9 over the source. The western part of
the source has the steepest spectrum. Towards the southwest, the spectral index flattens to about
−1.0. This part may be associated with a separate compact radio AGN.

Our optical WHT image (bottom right panel Fig.3.5) is dominated by foreground stars as the
source is located in the Galactic plane, at Galactic latitude of 2.44 degrees. However, there are
also several faint red galaxies seen in the image that may belong to a galaxy cluster, and these
are marked by circles. The brightest galaxy (located southwest) has an R-band magnitude of
20.69. Using the Hubble-R relation (de Vries et al. 2007), we estimate a redshift of 0.15± 0.1,
including an extinction in the R-band of 4.173 mag (Schlegel et al. 1998). We note that this
redshift estimate is based on the corrected identification of the cD galaxy in the cluster. If the
source is indeed located atz = 0.15, then its largest physical extent is 270 kpc. We classify the
source as a radio phoenix given the filamentary morphology and extreme spectral index. In fact,
the relic is very similar to the proposed phoenix in Abell 13 (Slee et al. 2001). To confirm the
presence of a cluster, deep near-infrared (NIR) imaging will be necessary.

3.3.4 VLSS J0004.9−3457

The radio source is located in a small galaxy cluster or group, B02291 (Zanichelli et al. 2001).
The cluster/group is located at a redshift of 0.3 ± 0.1 (van Weeren et al. 2009c). No X-ray
emission from the system is detected in the ROSAT All-Sky Survey (Voges et al. 1999, 2000),
which implies that the system is not very massive. An opticalPOSS-II color composite is shown
in Fig. 3.6 (bottom right panel). The various radio components are labeled alphabetically (see
Fig. 3.6top right panel).

Our GMRT 325 MHz image of VLSS J0004.9−3457 (top left panel) displays a diffuse source
(A) centered on a K-mag=14.86 galaxy. The source extends somewhat further northwards than
in the 610 MHz image (bottom right panel).

Source B is associated with another galaxy, C does not have anoptical counterpart and seems
to be related to source A. Source D is a fainter source (resolved in the 610 MHz image) located
just east of VLSS J0004.9−3457 at RA 00h 04m 50s, Dec−34◦ 56′ 38′′. In the CnB-array
VLA 1.4 GHz image, shown in Fig.3.6 (top right), component C is less prominent than in the
325 MHz image, while source B is clearly visible.

The spectral index map between 325 and 610 MHz is shown in Fig.3.7(right panel). Source
B has a flat spectral index of∼ −0.5. Source D has a steeper spectral index of−1.1. The spectral
index of A steepens away from the center (defined as the peak flux and located at the position
of the K-mag=14.86 galaxy). The central region has a spectral index of−1.2. Outwards, the
spectral index steepens to< −2. Component C has a spectral index of about−1.5. A spectral
index map, for the frequencies 325, 610, and 1425 MHz, is shown in Fig. 3.7 (middle panel).
The spectral curvature map, in the right panel of Fig.3.7, shows the least curvature (i.e., less
than 0.5 units) for the western part of A and source B. Emission to the east of A shows more
spectral steepening, with a curvature of about 1.0 units.

Polarized emission from source A, B, and component C is observed in the VLA images,
Fig. 3.6(bottom left panel). Source B is polarized at the 8% level. The polarization fraction at
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Figure 3.5: Top left: GMRT 325 MHz map. Contour levels are drawn as in Fig.3.1. Top right: WSRT
1.3− 1.8 GHz map. Contour levels are drawn as in Fig.3.1. Bottom left: Spectral index map between 325
and 610 MHz at a resolution of 13.44′′ × 8.96′′. Contour levels are from the 325 MHz image and drawn as
in Fig. 3.2. Bottom right: Optical WHT color image for 24P73. GMRT 610 MHz contours are overlaid.
The beam size is 6.4′′ × 4.3′′. Contour levels are drawn as in Fig.3.3. Several faint galaxies in the image
are marked by circles.
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the center of A is roughly 6%. The arc-like southeast extension (C) is highly polarized, with a
polarization fraction between 25 and 35%.

We tentatively classify the source as a 200 kpc “mini-halo” (or core-halo), because the radio
emission of diffuse source A surrounds a central galaxy in a cluster or galaxygroup. The spectral
steepening away from the core is then the result of synchrotron and IC losses. The eastern
arc-like extension could be a radio relic based on its elongated nature and high polarization
fraction. The high polarization fraction is indicative of the presence of ordered magnetic fields.
Therefore it is likely that this component traces a region inthe ICM that has been compressed by
a shock wave. Radio mini-halos usually occur in massive relaxed galaxy clusters. The possible
presence of a radio relic indicates merger activity so it is possible that the “mini-halo” can also
be linked to the merger activity of the system. Radio plasma from the central AGN might have
been re-accelerated or compressed by this merger event. Thesource is somewhat similar to
MRC 0116+111 studied byGopal-Krishna et al.(2002) andBagchi et al.(2009). We find that
MRC 0116+111 exhibits two bubble-like radio lobes, whereas VLSS J0004.9−3457 seems to
consist of a single component. The morphology of the source is more similar to the core-halo
system in ZwCl 1454.8+2223 and candidate core-halo system in Abell 3444 (Venturi et al. 2008,
2007). The cluster/group would make an interesting target for future X-ray observations to study
the relation between the radio sources and the surrounding ICM.

3.3.5 VLSS J0915.7+2511, MaxBCG J138.91895+25.19876

The radio source is located in the cluster MaxBCG J138.91895+25.19876. The source consists
of a northern component (Fig.3.8left panel) and a slightly more extended fainter component to
the south. A compact source to the west is associated with thegalaxy J091539.68+251136.9.
This source has a spectroscopic redshift (SDSS DR7,Abazajian et al. 2009) of 0.324. This
cluster has a photometric redshift of 0.289 (Koester et al. 2007), but the galaxy seems to be part
of the cluster, hence we adopt a redshift of 0.324 for the cluster. The compact source is resolved
in our 610 MHz GMRT image and displays a double lobe structure(see Fig.3.8right panel).

The spectral index map between 325 and 610 MHz is shown in Fig.3.8(middle panel). The
spectral index map is noisy because of dynamic range limitations from the source 4C+25.24
(1.35 Jy at 325 MHz) located about 3′ to the southeast. The eastern part of the northern compo-
nent has the steepest spectrum with an index ofα ∼ −2, although the SNR is low in this region.
The compact source to the west has a flat spectral index of about −0.2.

The classification of the source is unclear. The source mightcontain old radio plasma that
originated in the AGN to the west. In this case, the source could be classified as a radio phoenix
or AGN relic.

3.3.6 VLSS J1515.1+0424, Abell 2048

VLSS J1515.1+0424 is located in the cluster Abell 2048 (z = 0.0972; Struble & Rood 1999)
to the east of the cluster center. The source has a largest extent of 310 kpc (see Fig.3.9 top left
panel), and has a complex morphology. Only the brighter parts of the source are seen in the VLA
1.4 GHz C-array image (Fig.3.9top right panel). No polarized flux is detected from the source.
We set an an upper limit on the polarization fraction of 8% forthe source, again requiring a SNR
of 5 for a detection. An optical V, R, and I color image of the cluster with 610 MHz contours
overlaid does not reveal an obvious optical counterpart forthe source.
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Figure 3.6: Top left: GMRT 325 MHz map. Contour levels are drawn as in Fig.3.1. Top right: VLA
1425 MHz map. Contour levels are drawn as in Fig.3.1. Bottom left: VLA 1425 MHz polarization map.
Total polarized intensity is shown as grayscale image. Vectors refer to the polarization E-vectors, with
their length representing the polarization fraction. A reference vector for a polarization fraction of 100%
is shown in the bottom left corner. The polarization fractions were corrected for Ricean bias (Wardle &
Kronberg 1974). No polarization E-vectors were drawn for pixels with a SNRless than 3 in the total
polarized intensity map. Contours show the total intensityimage (Stokes I) at 1425 MHz. Contour levels
are drawn at [1, 16, 256, 4096, . . .] × 0.147 mJy beam−1. Bottom right: Optical POSS-II color image for
VLSS J0004.9−3457. GMRT 610 MHz contours are overlaid. The beam size is 6.4′′ × 4.3′′. Contour
levels are drawn as in Fig.3.3.
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Figure 3.7: Left: Spectral index map between 325 and 610 MHz at a resolution of 13.5′′ × 11.0′′. Contour levels are from the 325 MHz image and drawn
as in Fig.3.2. Middle: Power-law spectral index fit between 325, 610, and 1425 MHz. Contours are from the 325 MHz image and drawn at levels of
[1,2, 4,8, . . .] × 4σrms. The beam size is 19.83′′ × 12.0′′. Right: Spectral curvature map. Contour are drawn as in the middle panel.
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Figure 3.8: Left: GMRT 325 MHz map. Contour levels are drawn as in Fig.3.1. Middle: Spectral index map between 325 and 610 MHz at a resolution of
14.7′′ × 8.1′′. Contour levels are from the 325 MHz image and drawn as in Fig.3.2. Right: Optical WHT color image for VLSS J0915.7+2511. GMRT
610 MHz contours are overlaid. The beam size is 8.6′′ × 5.9′′. Contour levels are drawn as in Fig.3.3.
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The spectral index map between 325, 610, and 1425 MHz, is shown in Fig.3.9(bottom left
panel). No systematic spectral index gradients are seen across the source. A region with a flat
spectral index (α > −0.5) is located under the southern “arm” of the source at RA 15h 15m 08.6s,
Dec+04◦ 23′ 08′′. This part is associated with the galaxy 2MASX J15150860+0423085 in front
of the cluster (z = 0.047856 from SDSS DR7) (see Fig.3.9 bottom right panel). The spectral
index of the relic is steep with an average value of about−1.7 between 1425 and 325 MHz.

The complex morphology of the radio source suggests that thesource can be classified as
a radio phoenix. The steep curved radio spectrum is consistent with this interpretation. If the
source is indeed a radio phoenix, the radio plasma should have originated in a galaxy that has
gone through phases of AGN activity. A candidate is the elliptical galaxy MCG+01−39−011
(z = 0.095032; Slinglend et al. 1998). This galaxy is currently active and located close to the
eastern end of the southern “arm”. However, there are several other elliptical galaxies around,
although at the moment they are not radio-loud. A ROSAT image(seevan Weeren et al. 2009c)
of the cluster shows a substructure to the east of the main cluster, which implies that the cluster
is presently undergoing a merger. The velocity dispersion,σ, of the galaxies in the cluster is
857 km s−1 (Shen et al. 2008). The bolometric X-ray luminosity is 1.914× 1044 erg s−1. On the
basis of theLX − σ relation (X-ray luminosity versus velocity dispersion) fromShen et al.

log

(

LX

1044 erg s−1

)

= 4.39 log

(

σ

500 km s−1

)

− 0.530 , (3.1)

we predict a velocity dispersion of 765± 40 km s−1 given the X-ray luminosity. This is lower
than the observed value, which is not inconsistent with the cluster having undergone a recent
merger event. A shock wave generated by the proposed merger event might have compressed
fossil radio plasma and produced the radio phoenix. Future X-ray observations will be needed to
study the dynamical state of the cluster and the relation between the ICM and the radio phoenix.

3.4 Optical imaging around five compact steep-spectrum
sources

We present optical images around five slightly more compact steep-spectrum radio sources,
which nature was found to be unclear invan Weeren et al.(2009c).

3.4.1 VLSS J2043.9−1118

The radio source has a largest angular size of 41′′. An optical counterpart (R band magnitude of
20.1) is visible in our WHT image (see Fig.3.10). The radio emission surrounds the galaxy and
there is a hint of a faint extension to the east. We estimate a redshift of 0.5± 0.3 for the optical
counterpart, which implies a physical extent of 250 kpc for the radio source. The source could
be a mini-halo or core-halo system given its steep spectral index of−1.74± 0.05 (between 74
and 1400 MHz). Alternatively, we are detecting radio plasmafrom an AGN that has undergone
a significant amount of spectral ageing.
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Figure 3.9: Tot left: GMRT 325 MHz map. Contour levels are drawn as in Fig.3.1. Top right: VLA
1425 MHz map. Contour levels are drawn as in Fig.3.1. Bottom left: Power-law spectral index fit between
325, 610, and 1425 MHz. Contours are from the 1.4 GHz VLA imageand drawn as in Fig.3.2(left panel).
The resolution is 13.0′′×12.4′′. Bottom right: Optical WHT color image for Abell 2048. GMRT 610 MHz
contours are overlaid. The beam size is 7.6′′ × 5.4′′. Contour levels are drawn as in Fig.3.3.
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Figure 3.10: Left: Optical WHT color image for VLSS J2043.9−1118. GMRT 610 MHz contours are
overlaid. The beam size is 5.8′′ × 4.2′′. Contour levels are drawn as in Fig.3.3. A circle indicates the
proposed optical counterpart. Right: Optical WHT color image for VLSS J1117.1+7003. GMRT 610 MHz
contours are overlaid. The beam size is 7.8′′ × 4.3′′. Contour levels are drawn as in Fig.3.3. A circle
indicates the proposed optical counterpart.

3.4.2 VLSS J1117.1+7003

This source has a remarkably steep radio spectrum (α74−1400 = −1.87± 0.07) without any indi-
cation of a spectral turnover at low frequencies. The sourceis resolved into a smooth featureless
roughly spherical blob (26′′ by 23′′). We identify a red galaxy, with an R magnitude of 21.2, as
a possible counterpart, which would put the source at a redshift of 0.8± 0.4. A blue galaxy is
located only 5′′ north of the red galaxy. This might also be the counterpart ofthe radio source.
The integrated R-band magnitude is about the same as the redder galaxy putting it at about the
same redshift if it were the optical counterpart. Atz = 0.8, the radio emission would have a
physical extent of 130 kpc.

3.4.3 VLSS J2209.5+1546

The radio map shows an elongated source. We find a faint (R bandmagnitude of 22.4) coun-
terpart halfway along the elongated source. We estimate a redshift of z = 1.1 ± 0.7 (using the
Hubble-R relation), giving a physical extent of 500 kpc.

3.4.4 VLSS J0516.2+0103

VLSS J0516.2+0103 is a slightly elongated source that does not have an optical counterpart
in POSS-II images. In our INT image, we identify a possible faint red counterpart with an R
magnitude of 22.9. This implies a redshift of 1.2± 0.7 (including an extinction of 0.367 in the
R band), which gives a size of 290 kpc and makes it a candidate mini-halo or core-halo system.
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Figure 3.11: Left: Optical WHT color image for VLSS J2209.5+1546. GMRT 610 MHz contours are
overlaid. The beam size is 6.9′′ × 6.2′′. Contour levels are drawn as in Fig.3.3. A circle indicates the
proposed optical counterpart. Right: Optical INT color image for VLSS J0516.2+0103. GMRT 610 MHz
contours are overlaid. The beam size is 8.1′′ × 6.5′′. Contour levels are drawn as in Fig.3.3. A circle
indicates the proposed optical counterpart.

3.4.5 VLSS J2241.3−1626

The morphology of this source is complex. A potential optical counterpart has an R-band mag-
nitude of 20.2 giving a redshift of 0.5± 0.3 and a physical extent of 290 kpc for the source. The
optical counterpart is located roughly halfway along the extended source. The enhancements
in the radio emission to the east and west of the proposed counterpart suggest that these are
the lobes of an AGN. The fainter more-extended radio emission might be older radio plasma
causing the steep radio spectrum.

3.5 Discussion

Most radio relics and halos known till date are located within massive X-ray luminous clusters.
The majority of these sources were discovered in the NVSS andWENSS surveys by visual
inspection of the radio maps in and around known galaxy clusters (mostly Abell clusters,Gio-
vannini et al. 1999; Kempner & Sarazin 2001). Venturi et al.(2007, 2008) carried out a search
in a complete sample of 50 massive X-ray selected (LX, 0.1−2.4 keV > 5× 1044 erg s−1) clusters to
determine the fraction of radio halos in these systems. The fraction of clusters hosting a giant
radio halo was found to be 0.29± 0.09. The number of small galaxy clusters with low X-ray
luminosity known to host a diffuse radio source is very small. An example is the radio halo in
Abell 1213 identified byGiovannini et al.(2009) with LX, 0.1−2.4 keV = 0.1× 1044 erg s−1.

We note that the sources presented in this paper were selected on the basis of their steep
spectral index and diffuse nature. There was no requirement for the radio sources tobe located
in a galaxy cluster. The question arises of whether most radio relics and halos are indeed located
in massive galaxy clusters or whether they also occur in poorclusters and galaxy groups.
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Figure 3.12: Optical INT color image for VLSS J2241.3−1626. GMRT 610 MHz contours are overlaid.
The beam size is 6.1′′×5.8′′. Contour levels are drawn as in Fig.3.3. A circle indicates the proposed optical
counterpart.

None of the sources in our sample, withα < −1.35 (between 74 and 1400 MHz), are
located in massive known galaxy clusters. Only VLSS J1515.1+0424 (in Abell 2048) and
VLSS J1431.8+1331 (in MaxBCG J217.95869+13.53470) are found in clusters detected in the
ROSAT All-Sky Survey. The X-ray luminosities of these clusters are moderate, with values
between 1–2×1044 erg s−1. Therefore, our observations indicate that diffuse steep-spectrum
sources do also occur in less massive clusters and galaxy groups. Most of the sources seem to be
radio relics related to previous episodes of AGN activity: either AGN relics or radio phoenices.
Some other sources in our sample can be classified as core-halo or mini-halo candidates, where
the radio emission surrounds a central galaxy of a poor cluster or galaxy group. In our case, they
are not found in massive cool-core clusters.

Amongst the sources in our sample, there are also a number of more distant (z ∼ 1) fila-
mentary radio sources related to AGN activity. These could be relatively “nearby” ultra-steep
spectrum (USS) sources (e.g., seeMiley & De Breuck 2008, for a review). As they are rel-
atively nearby, they are clearly extended in for example the1.4 GHz FIRST survey images
(5′′ resolution) and therefore included in our sample.

We did not detect any ultra-steep spectrum radio halos (Brunetti et al. 2008) in our sample.
This could be because the surface brightness of these objects is too low for them to be detected
in the 74 MHz VLSS survey (Brunetti et al. 2008; Macario et al. 2010). The 74 MHz VLSS
survey is relatively shallow with an average rms noise of 0.1Jy beam−1.

Since poor galaxy clusters and groups are more numerous, it is expected that the sources
in our sample are only the tip of the iceberg and many more of them should turn up in low-
frequency surveys, as will be carried out for example by LOFAR in the near future. In terms also
of the timescales related to AGN activity and the ubiquity ofshocks, these surveys will uncover
large populations of AGN relics and radio phoenices. One of the difficulties will be to classify
these sources on the basis of the radio morphology, polarization, and spectral index alone. The
differences between radio phoenices, AGN relics, and relics tracing shock fronts with DSA are
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often subtle. The AGN relics and phoenices should have very curved radio spectra, while relics
caused by electrons accelerated at shocks should have straight radio spectra. Nevertheless, deep
optical/NIR and X-ray surveys will play an important role in identifying the nature of these
diffuse radio sources.

3.6 Conclusions

We have presented 325 MHz and 1.4 GHz radio observations of six diffuse steep-spectrum
sources. The sources were selected from an initial sample of26 diffuse steep-spectrum (α <
−1.15) sources (van Weeren et al. 2009c). Optical WHT and INT images were taken at the po-
sitions of 10 radio sources from the sample. We briefly summarize the results.
-The radio source VLSS J1431.8+1331 is located in the cluster MaxBCG J217.95869+13.53470
(z = 0.16) and associated with the central cD galaxy. A second radiosource is located 175 kpc
to the east. This source is connected by a faint radio bridge to the central radio source. This
source probably traces an old bubble of radio plasma from a previous episode of AGN activity
of the central source. The spectral curvature of this sourceis large, indicating the radio plasma
is old, which is consistent with the above scenario.
-VLSS J1133.7+2324 is an elongated filamentary steep spectrum source, the nature of the source
is unclear. It might be a radio relic located in a galaxy cluster atz∼ 0.6.
-The relic in Abell 2048 and the source 24P73 are both classified as radio phoenices, which con-
sist of compressed fossil radio plasma from AGNs. We detect several galaxies close to 24P73,
probably belonging to the cluster hosting the radio phoenix.
-VLSS J0004.9−3457 is a diffuse radio source with emission surrounding the central elliptical
galaxy of a small cluster or galaxy group. The source could bea radio mini-halo (or core-halo
system). An arc-like structure is located to the east of the source which has a high polarization
fraction of about 30% at 1.4 GHz indicative of ordered magnetic fields. This is probably a relic,
where either particles are accelerated by the DSA mechanismor radio plasma from the central
AGN is compressed.
-The origin of VLSS J0915.7+2511, a diffuse radio source in MaxBCG J138.91895+25.19876,
is somewhat unclear. The source is most likely an AGN relic orradio phoenix.
We also presented optical images around five other diffuse radio source from the sample. For
these sources, we could not find optical counterparts in POSS-II and 2MASS images. We de-
tected candidate counterparts for all of these sources withredshifts in the range 0.5 < z < 1.2.
Some of these sources are radio galaxies, some others may be classified as mini-halos as the
radio emission surrounds the host galaxy.

From our observations, we conclude that radio relics are located not only in the most massive
merging galaxy clusters. They can also be found in smaller galaxy clusters and groups. Most of
these sources probably trace old radio plasma from previousepisodes of AGN activity. Several
other sources resemble mini-halos or core-halos that are also found in less massive systems.
Future low-frequency surveys will probably uncover large numbers of these sources, which can
then be used to constrain timescales related to AGN activityand study the interaction between
radio plasma and the ICM in clusters and galaxy groups.
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