

Radio emission from merging galaxy clusters : characterizing shocks, magnetic fields and particle acceleration

Weeren, R.J. van

Citation

Weeren, R. J. van. (2011, December 20). *Radio emission from merging galaxy clusters : characterizing shocks, magnetic fields and particle acceleration.* Retrieved from https://hdl.handle.net/1887/18259

Version:	Corrected Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/18259

Note: To cite this publication please use the final published version (if applicable).

Radio emission from merging galaxy clusters

characterizing shocks, magnetic fields and particle acceleration

Radio emission from merging galaxy clusters

characterizing shocks, magnetic fields and particle acceleration

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties te verdedigen op dinsdag 20 december 2011 klokke 15:00 uur

door

Reinout Johannes van Weeren

geboren te De Bilt in 1980 Promotiecommissie

- Promotores: Prof. dr. H. J. A. Röttgering Prof. dr. G. K. Miley
- Overige leden: Prof. dr. M. Brüggen Prof. dr. A. G. de Bruyn

Prof. dr. H. Falcke Prof. dr. M. A. Garrett

Prof. dr. W. Jaffe Prof. dr. K. H. Kuijken (Jacobs University Bremen, Germany) (Stichting ASTRON, Dwingeloo; Rijksuniversiteit Groningen) (Radboud Universiteit Nijmegen) (Stichting ASTRON, Dwingeloo; Universiteit Leiden)

The cover shows a GMRT 150 MHz radio image of the field around the galaxy cluster CIZA J2242.8+5301. LOFAR antennas are visible at the bottom.

GMRT image by Huib Intema.

Cover design by Brigitta van Weeren.

ISBN: 978-94-6191-099-8

Contents

1	Intr	oduction 1
	1.1	Cosmology & large-scale structure formation
	1.2	Galaxy clusters
	1.3	Radio emission from galaxy clusters
		1.3.1 Radio halos
		1.3.1.1 Origin of radio halos
		1.3.2 Radio relics
	1.4	This thesis
	1.5	Future prospects 8
2	A se	arch for steep spectrum radio relics and halos with the GMRT 11
	2.1	Introduction
	2.2	Sample selection
	2.3	Observations & data reduction
	2.4	Results
		2.4.1 Individual sources
		2.4.1.1 VLSS J1133.7+2324
		2.4.1.2 VLSS J1431.8+1331
		2.4.1.3 VLSS J2217.5+5943, 24P73 19
		2.4.1.4 VLSS J0004.9–3457 21
		2.4.1.5 VLSS J0717.5+3745, MACS J0717.5+3745
		2.4.1.6 VLSS J0915.7+2511
		2.4.1.7 VLSS J1515.1+0424, Abell 2048
	2.5	Spectral index modeling 24
	2.6	Discussion
	2.7	Conclusions
	2.8	Appendix: Other sources in the sample

3	Diffu	use steep	o-spectrum sources from the 74 MHz VLSS survey						41
	3.1	Introdu	iction						42
	3.2	Observ	ations & data reduction						43
		3.2.1	GMRT 325 MHz observations						43
		3.2.2	VLA 1.4 GHz observations						44
		3.2.3	WSRT 1.3 – 1.7 GHz observations of 24P73						46
		3.2.4	Optical WHT & INT imaging						47
	3.3	Results							47
		3.3.1	VLSS J1133.7+2324.7C 1131+2341						48
		3.3.2	VLSS J1431.8+1331. MaxBCG J217.95869+13.53470						50
		3.3.3	VLSS J2217.5+5943.24P73						52
		3.3.4	VLSS J0004.9-3457						53
		335	VLSS 10915 7+2511 MaxBCG 1138 91895+25 19876	·	•		•		55
		3.3.6	VLSS J1515.1+0424, Abell 2048						55
	34	Ontical	imaging around five compact steen-spectrum	·	• •	•••	·	•	00
	011	sources							59
		3 4 1	VLSS I2043 9–1118	·	•		•		59
		3.4.2	VLSS J1117.1+7003						61
		3.4.3	VLSS J2209.5+1546						61
		3.4.4	VLSS J0516.2+0103						61
		3.4.5	VLSS J2241.3–1626						62
	3.5	Discus	sion						62
	3.6	Conclu	sions						64
4	Rad	io conti	nuum observations of new radio halos and relics from the	e N	IV	SS	b a	nd	
	WE	NSS sur	veys: Relic orientations, cluster X-ray luminosity and rec	lsh	ift	d	ist	ri-	
	buti	ons							67
	4.1	Introdu		·	• •	• •	·	·	68
	4.2	Observ		·	• •	• •	·	·	69
		4.2.1		·	• •	• •	·	·	09
	4.2	4.2.2	Optical whit & INT images	·	• •	• •	·	·	/1
	4.3	Results		·	• •	• •	·	·	/1
		4.3.1	Abell 1612	·	• •	• •	·	·	/1
		4.3.2	Abell /46	·	• •	• •	·	·	/6
		4.3.3	Abell 523	·	• •	• •	·	·	/6
		4.3.4	Abell 697	·	•	• •	·	·	79
		4.3.5	Abell 2061	·	• •	• •	·	•	80
		4.3.6	Abell 3365	·	• •	• •	·	•	84
		4.3.7	CIZA J0649.3+1801	·	•	• •	·	·	86
		4.3.8	CIZA J010/./+5408	·	•	• •	·	·	89
		4.3.9	ADEII 2034	·	•	•••	•	•	89
		4.3.10 D:	KAC J1053./+5452	·	• •	•	·	•	90
	4.4	Discus		·	• •	•	·	•	90
		4.4.1	Comparison with the REFLEX and NORAS X-ray clusters.	·	•	•••	•	•	94
	4 7	4.4.2	x-ray peak and galaxy distribution separation	·	•	•••	•	•	96
		 Conclust 	ISIONS						99

5	Diffu of th	ise radi e most	to emission in the merging cluster MACS J0717.5+3745: the discover powerful radio halo	y 101
	5.1	Introdu	uction	102
	5.2	Observ	vations & data reduction	103
	5.3	Result	s: images, equipartition magnetic field & spectral index maps	104
	0.0	531	Fauinartition magnetic field strength	106
		532	Snectral index	107
	54	Discus	spectral meet	109
	5.1	5 4 1	Alternative explanations for the elongated radio structures	109
		542	Origin of the radio relic	110
	5.5	Conclu		111
6	Radi	io obsei	rvations of ZwCl 2341.1+0000: a double radio relic cluster	113
	6.1	Introdu	uction	114
	6.2	Observ	vations & data reduction	116
	6.3	Result	S	121
	6.4	Radio.	X-ray, and galaxy distribution comparison	123
	6.5	Spectr	al index & equipartition magnetic field strength	125
		6.5.1	Snectral index	125
		6.5.2	Equipartition magnetic field	126
	66	Discus	sion	127
	0.0	661	Alternative explanations	127
		662	Comparison of spectral indices and magnetic field strengths with other	127
		0.0.2	double relics	128
		663	Origin of the double relic	120
	67	Conch		130
	6.8	Appen	div: Compact sources at 610 MHz and ontical counterparts	130
	0.0	Арреп	dix. Compact sources at 610 MHz and optical counterparts	152
7	A do	ouble ra	idio relic in the merging galaxy cluster ZwCl 0008.8+5215	135
	7.1	Introdu	uction	136
	7.2	Observ	vations & data reduction	137
		7.2.1	GMRT observations	137
		7.2.2	WSRT 1.3–1.7 GHz observations	138
		7.2.3	Optical images & spectroscopy	139
	7.3	Result	S	140
		7.3.1	Redshift of ZwCl 0008.8+5215	140
		7.3.2	Thermal ICM and galaxy distribution	140
		7.3.3	Radio continuum maps	141
		7.3.4	Spectral index and polarization maps	144
		7.3.5	Radio galaxies in the cluster	145
	7.4	Discus	sion	147
		7.4.1	Origin of the double radio relic	147
		7.4.2	Radio luminosity profile for the eastern relic	151
		7.4.3	Simulated radio luminosity and spectral index profiles	152
		7.4.4	Equipartition magnetic field strength	153
	7.5	Conclu	usions	154

iv			

8	Part 8 1	icle acco	eleration on megaparsec scales in a merging galaxy cluster	157
	0.1	nppen.		105
9	The	"toothb	prush-relic": evidence for a coherent linear 2-Mpc scale shock wave i	in 1(0
	a ma	issive m	erging galaxy cluster?	169
	9.1	Introdu		170
	9.2	Observ	ations & data reduction	1/3
		9.2.1	GMRI observations	173
		9.2.2	WSRT observations	174
		9.2.3	WHT spectroscopy & imaging	174
	9.3	Results	s: redshift, X-rays, and radio continuum maps	174
		9.3.1	Redshift of 1RXS J0603.3+4214	174
		9.3.2	X-ray emission from the ICM	175
		9.3.3	Radio continuum maps	175
	9.4	Radio	spectra	178
		9.4.1	Spectral index maps	178
		9.4.2	Integrated radio spectra	182
	9.5	Radio o	color-color diagrams	182
		9.5.1	Spectral models	185
		9.5.2	Effect of resolution on surface brightness	186
		9.5.3	Color-color diagrams	187
			9.5.3.1 Color-color diagrams for B1 and B2+B3	187
			9.5.3.2 The effect of resolution and mixing	188
		9.5.4	Global spectrum	188
			9.5.4.1 Shift diagrams	188
	9.6	RM-sy	nthesis & polarization maps	189
		9.6.1	Polarization maps	189
		9.6.2	RM-synthesis	189
			9.6.2.1 Application to the L-band WSRT data	195
		9.6.3	The depolarization properties of the radio relic	195
	9.7	Discus	sion	197
		9.7.1	Relic spectra	198
		9.7.2	Alternative models to explain the relativistic electrons from the radio rel	ic 199
		9.7.3	Magnetic field	200
	9.8	Conclu	isions	200
10	Usin	g doubl	le radio relics to constrain galaxy cluster mergers: A model of doub	le
	radi	o relics :	in CIZA J2242.8+5301	203
	10.1	Introdu	lction	204
	10.2	Overvi	ew: Simulations of galaxy cluster mergers	205
	10.3	Numer	ical method	207
		10.3.1	Radio emission from shocks	207
		10.3.2	Initial conditions	209
	10.4	Results	S	210
		10.4.1	Radio maps	211
			10.4.1.1 Mass ratio	211

	014			
10.4.1.2 Impact parameter \dots	216			
10.4.1.3 Viewing angle	216			
10.4.1.4 β -model	219			
10.4.1.5 Cool core	219			
10.4.2 Spectral index	219			
10.5 Substructure & clumping	221			
10.6 Discussion	223			
10.6.1 Effect of dark matter dynamics	223			
10.6.2 Relic width and brightness profiles	223			
10.6.3 Origin of single radio relics	224			
10.6.4 A quantitative metric for the goodness of fit	224			
10.7 Summary	225			
11 The discovery of diffuse steep spectrum sources in Abell 2256	227			
11.1 Introduction	228			
11.2 Observations & data reduction	228			
11.3 Results	230			
11.3.1 Spectral indices	231			
11.4 Discussion	232			
11.5 Conclusions	233			
12 I OFAD Aboll 2256 abcomptions between 19 and (7 MHz	225			
12 LOFAR Adell 2250 observations between 18 and 67 MHz	200			
12.1 Introduction	230			
12.2 Observations & data reduction	237			
12.2.1 Primary beam correction, absolute flux-scale and self-calibration	240			
12.2.2 Radio images	242			
12.2.3 Spectral index map and integrated fluxes	243			
12.3 Discussion	245			
12.3.1 Source F	245			
12.3.2 Source AG+AH	246			
12.3.3 Radio relic and halo	247			
12.4 Conclusions	249			
Bibliography				
Nederlandse samenvatting	265			
Cumiculum vites	271			
Nawoord / Acknowledgements				