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General introduction
The burden of obesity and the metabolic syndrome in the presence of 
increasing social stress
In today’s modern society, with sedentary lifestyle and comfort food readily available, the prevalence 

of obesity, type 2 diabetes (T2D), and cardiovascular disease (CVD) is rising tremendously. 

According to World Health Organization (WHO), in 2008 35% of adults worldwide were overweight 

and more than half a billion adults were obese (1). WHO has predicted these numbers to more 

than double by 2015. Obesity per se is a major risk factor for T2D, hypertension and CVD (2). Each 

year 2.8 million people die because of the complications induced by overweight and obesity 

(1). Clustering of risk factors for overall cardiovascular risk was f﻿irst described as the metabolic 

syndrome (MetS) by Kylin in the early 1920 as constellation of hypertension, hyperglycemia 

and gout (3). Later, Raeven proposed insulin resistance as the common denominator for these 

individual cardiovascular risk factors, and over the following decades the MetS has been known 

as syndrome X, Raeven’s syndrome, and insulin resistance syndrome (4). To date, the MetS is 

considered as the most important cluster of risk factors for the development of T2D and CVD and 

subsequently increased mortality (5-8). Currently, several definitions are available for the MetS, 

of which the Third Report of the National Cholesterol Education Program’s Adult Treatment Panel 

(NCEP ATP III) is the most commonly used. To define the MetS according to the NCEP ATP III, at 

least 3 out of the following 5 criteria should be present: 1): central obesity (waist circumference 

>102 cm for men and >88 cm for women) 2): plasma high density lipoprotein-cholesterol (HDL-C) 

levels <1.03 mM (men) and <1.29 mM (women) 3): plasma triglycerides levels ≥1.7 mM 4): blood 

pressure ≥135/80 mmHg and 5): fasting glucose levels ≥6.1 mM (9). Today’s modern society is also 

characterized by chronic stress (10). Chronic stress, either social or otherwise, affects the activity 

of the hypothalamus-pituitary-adrenal (HPA) axis and facilitates changes in life style, like emotional 

“comfort” eating, and lack of sleep. Chronic stress is also associated with the development of 

central obesity, insulin resistance and MetS. Although the causes for the development of the 

MetS are most likely multi-factorial, it is plausible to assume an important role for chronic stress 

in aggravating (the development of) the MetS.

The (patho)physiology of the stress response
When an individual is exposed to a stressor, rapid changes occur within seconds to minutes through 

stimulation of both the sympathetic nervous system and the HPA axis. Perception of stress by an 

organism leads to secretion of corticotrophin releasing hormone (CRH) from the parvocellular 

compartment of the paraventricular nucleus (PVN) in the hypothalamus, which subsequently 

stimulates pituitary adrenocorticotropin (ACTH) secretion. Activation of ACTH receptors in the 

adrenal cortex leads to the synthesis and secretion of glucocorticoids (GC). GCs will then, in turn, 

down regulate the stress response by a negative feedback manner via their glucocorticoid (GR) 

and mineralocorticoid (MR) receptors in the hypothalamus, the pituitary, and the hippocampus 

(11). Secretion of GCs (i.e. cortisol in humans and corticosterone (CORT) in rodents) as a response 

to perceived stress are required to induce the necessary behavioral and metabolic adaptations for 

the individual to be able to adequately cope with the stressor (fight or flight).

In this thesis, we will focus on the metabolic adaptations. The metabolic effects of GCs 

include peripheral as well as central effects. Whereas the peripheral effects are directed towards 

9



1

recruitment of energy availability by reduction of energy stores for gluconeogenesis (12, 13), 

the central effects of GCs are anabolic and directed towards augmentation of energy stores by 

adjusting feeding behavior and intake of palatable foods to compensate for the energy loss (14). 

As a consequence, increased cortisol exposure, like during chronic stress, will further increase 

insulin levels and food intake, facilitating the development of obesity and the MetS (15). Thus, 

short-term exposure to stress, within the right context, helps the organism to adequately cope 

with the challenge. However, if the response is not sufficient, too extreme or prolonged, it 

can have deleterious adverse effects for the organism (11). Likewise, when a stressor becomes 

chronic, a vulnerable phenotype develops: an individual that has to do concessions in its 

behavioral and metabolic adaptations. Within the central nervous system, this is characterized 

by neurodegenerative changes and cognitive impairment. The resultant metabolic mal-adaptation 

manifests as abnormal recruitment and storage of fuel, resulting in abdominal obesity, and 

osteoporosis (16).

Peripheral GC metabolism is dependent on the activity of tissue-specific 11β-hydroxysteroid 

dehydrogenase (11β-HSD) type 1 and 2, which are enzymes that convert cortisone into its active 

form cortisol and vice versa. 11β-HSD-1 is predominantly expressed in the liver, adipose tissues and 

muscle where it can amplify the intracellular concentrations of cortisol available to bind its respective 

receptors (17) and is, therefore, at least in part responsible for the unfavorable side affects, such 

as insulin resistance and adiposity that are associated with increased GC exposure (18). 11β-HSD-2 

is more prominently expressed in the kidney, where it reduces GC effects by converting cortisol 

to cortisone. However, it has been implicated that 11β-HSD-2 might also play a role in obesity as it 

has been shown to be strongly correlated with adiposity (19).

Figure 1. Schematic presentation of the stress response. See text for explanation.
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Specific effects of GCs on insulin sensitivity, lipid metabolism, 
and atherosclerosis
GCs have strong anti-inflammatory properties and are widely used as immunosuppressive agents 

but they also play a major role in the metabolism of glucose, lipids and proteins. GCs stimulate 

lipolysis, proteolysis and hepatic glucose production thereby providing substrates for oxidative 

processes (12). Overstimulation of these catabolic processes can become detrimental for the 

individual leading to metabolic derangements such as the development of central obesity (20), 

hepatic steatosis (21), dyslipidemia with increased plasma trigyceride (TG) and non-esterified fatty 

acid (NEFA) levels (22), increased protein breakdown of muscle mass (23, 24) and insulin resistance 

accompanied by glucose intolerance (25). These side affects are dependent on the dose and the 

duration of treatment (25). 

GCs inhibit pancreatic insulin secretion by reducing glucose transporter (GLUT) 2 (26, 27) 

and glucokinase G6Pase (28, 29) expression and activity, thereby decreasing glucose uptake, ATP 

synthesis and calcium influx. Activation of serum and GCs-inducible kinase (SGK) 1 by GCs can also 

augment the inward repolarizing potassium currents by upregulating Kv ion channels (30) and 

thereby limiting calcium influx and insulin secretion. Furthermore, inhibition of DAGphospholipase 

by GCs (31), which leads to decreased activation of the protein kinase (PK) C can inhibit insulin 

secretion as well as the increased expression of α
2
 adrenergic receptors that lead to reduced cyclic 

adenosine monophosphate (cAMP) levels followed by decrease in PKA activity (31, 32). GCs can also 

reduce insulin biosynthesis by reducing the adenosine triphosphate (ATP)/adenosine diphosphate 

(ADP) ratio (33, 34) and by inducing β-cell apoptosis (35). 

In skeletal muscle, GCs decrease the expression and phosphorylation of insulin receptor 

substrate (IRS)-1, phosphatidylinositol 3-kinase (PI3-K), and PKB/Akt (36-38). GCs can also interfere 

with the migration of the GLUT4 to the cell surface (39) and also reduces glycogen synthesis (40). 

Furthermore, GCs do not just induce insulin resistance in skeletal muscle, but also facilitate protein 

breakdown and reduce protein synthesis by reducing the activation of eIF4E-binding protein 1 

(4E-BP1) and ribosomal protein S6 kinase 1 (S6K1) (41), providing substrate (i.e. amino acids) (42) 

for hepatic gluconeogenesis. Indeed, GCs stimulate endogenous glucose production by the 

liver, thereby increasing insulin resistance by activating genes involved in hepatic carbohydrate 

metabolism (43) and increasing the expression of enzymes involved in gluconeogenesis, including 

phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and peroxisome 

proliferator-activated receptor (PPAR)-α (44-48).

Dyslipidemia is a common side effect of increased GC exposure. GCs affect adipose tissue 

metabolism by increasing the expression and activity of hormone sensitive lipase (HSL) that 

hydrolyses TG in the adipocyte (49). Furthermore, GCs decrease lipoprotein lipase (LPL) activity in 

a site-specific manner (50-52). Consequently, fat mobilization (intracellular lipolysis) is stimulated 

increasing plasma NEFA and TG flux to the liver (53). GCs have been shown to induce intrahepatic 

lipid accumulation by decreasing FA oxidation and increasing TG synthesis (54, 55). This can lead 

to increased very low density lipoprotein (VLDL) synthesis, which further increases circulating TG.

Atherosclerosis is the most important manifestation of CVD, leading to myocardial infarction, 

congestive heart failure, stroke and peripheral artery diseases. Atherosclerosis is considered to be a 

complication of insulin resistance and dyslipidemia, which are present in the MetS and are associated 

with increased GC exposure as is seen in patients with Cushing’s syndrome (CS). Traditionally, 

it is thought that atherosclerosis develops as a consequence of cholesterol deposition in the 
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subendothelial layer after injury to the endothelium (56). Atherosclerotic lesion development can be 

triggered by increased plasma levels of low density lipoprotein (LDL), which leads to smooth muscle 

cell proliferation and can be taken up by residential macrophages to form foam cells (57). These 

processes precede the development of more complex fibrous lesions (56) in which inflammation 

is shown to play a significant role (58). 

Intriguingly, the role of GCs in the development of atherosclerosis is not yet clearly established 

in humans or in animals. GCs are known to induce vasoconstriction (59-62) and endothelial dysfunction 

(63), which can facilitate the atherosclerotic lesion development. On the other hand, GCs also have 

anti-proliferative and anti-migratory effects on vascular smooth muscle cells (64-67) that may inhibit 

the lesion development. Furthermore, it is unclear how GCs affect inflammation in the development 

of atherosclerosis, as both inhibition and stimulation of inflammation has been reported (68). 

However, these effects are at least to be considered dependent on GC concentration (69). 

Taken together, GCs acutely reduce insulin secretion and stimulate whole body lipolysis. 

However, under chronic conditions, this cycle of reduced pancreatic insulin secretion and decreased 

insulin sensitivity in skeletal muscle, liver and fat tissue results in insulin resistance and dyslipidemia, 

facilitating the development of other complications such as CVD including atherosclerosis.

Cushing’s syndrome as a human model of chronic stress
CS, a rare clinical syndrome characterized by prolonged exposure to inappropriately increased 

GCs, was first described by Harvey Cushing in 1932. CS can be considered as the clinical human 

monosymptomatic equivalent for severe chronic stress. The most common cause of endogenous CS 

is an adrenocorticotropin-secreting pituitary adenoma. Other causes include ectopic ACTH secretion 

by neuroendocrine tumors or ACTH-independent cortisol overproduction by adrenal tumors or 

adrenal hyperplasia. Exogenous CS, induced by exogenous sources of GCs, such as steroid treatment 

in autoimmune diseases or prevention of graft rejection in transplantation, is very prevalent (70).

Regardless of the cause, patients with CS are exposed to supra-physiological levels of cortisol 

and display several features of chronic stress, such as depression, anxiety and cognitive impairment 

(71, 72), but they also have a phenotypical resemblance to, and fulfill the criteria for, the MetS 

(70). Indeed, CS patients have markedly increased cardiovascular morbidity and mortality (73) 

suggesting that excessive exposure to GCs is involved in the pathogenesis of MetS and central 

obesity. Furthermore, patients with MetS show increased GC metabolism (74), but the underlying 

mechanisms are only partially understood. 

Intriguingly, some of the features of MetS and certain psychopathologies in CS patients 

prevail after the removal of cortisol excess. Indeed, one year after remission, CS patients still suffer 

from impaired glucose tolerance (75) and increased insulin levels after oral glucose tolerance test 

(76). Furthermore, CS patients have an increased waist circumference after one year of remission 

(75, 76) and even after long-term remission higher visceral fat mass has been observed without 

affecting the body mass index (77). 

Epidemiological and other evidence for an association between increased 
baseline activity of the HPA axis and cardiovascular disease or obesity
The link between GCs and CVD was reported first in de 1950s, reporting elevated cortisol to be 

associated with (premature) atherosclerosis (78). Besides CS also in patients otherwise chronically 

exposed to increased GCs, like patients with congenital adrenal hyperplasia (79) and patients 
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that underwent angiography (80), increased cortisol appeared to correlate with increased intima 

media thickness (IMT). In agreement with these findings, manipulation of cortisol exposure at 

the tissue level through stimulation or abrogation of 11-β-HSD-1 activity can increase or regress 

fat accumulation in visceral depots, and well as other features of the MetS (see also subparagraph 

1.6 for references) Taken together, an increased activity of the HPA axis has been linked to the 

development of MetS (81), which has recently led to propose a pathogenic role of cortisol in the 

MetS (82). In human obesity, however, the results are rather inconclusive and not well studied. In 

obese women, urinary excretion of free cortisol is increased (83), and in men a significant correlation 

was found between salivary cortisol and both body mass index (BMI) and waist-to-hip ratio (84). 

However, it appears that cortisol secretion is increased in obese subjects primarily because of 

increased clearance and increased distribution volume, thereby resulting into secondary central 

activation of the HPA axis but with normal circulating cortisol concentrations (85, 86). Furthermore, 

the potency of ACTH to stimulate cortisol production was found to be decreased in obesity (85). In 

addition, a flattened circadian cortisol secretion rhythm in patients with T2D has been found (87). 

Thus, obesity appears to induce compensatory changes in the baseline, non-stressed, activity of 

the HPA axis, that are not unequivocally characterized by increased HPA axis activity. In addition, 

circulating cortisol levels do not always reflect the activity of the HPA axis in the central nervous 

system, nor in peripheral tissues.

Animal models of (features of) the MetS in relation to the HPA axis
Due to the similarities between the MetS and the phenotype of CS, it has been suggested that 

GCs and, in particular, increased circulating GCs might play a role in the development of MetS. A 

number of studies using different rodent models have studied the association of the activity of the 

HPA axis and various components of the MetS. The most commonly used method is high fat diet 

(HFD) feeding resulting in diet-induced obesity (DIO). One of the best-characterized models in 

this respect is the male C57Bl/6 mouse fed a HFD, where HFD induces profound insulin resistance 

and obesity (88-91). However, CORT levels, or any other parameter of the HPA axis was measured 

in only a minority of these studies. Intriguingly, the experimental mouse models of obesity and 

the MetS reveal conflicting results with respect to whether the HPA-axis is activated. Given the 

well-known time and context dependent effects of GCs, these discrepancies might be explained 

by methodological differences between the studies, including differences in rodent models. As 

the effect of HFD on HPA axis activity in the context of MetS requires further investigation, several 

studies indicate that comfort food reduces HPA axis activation and facilitates stress recovery. Indeed, 

it has been shown in rats that palatable food intake reduces the signs of stress and promotes weight 

gain, even in a chronic stress condition (92-94). These findings indicate that palatable food, such as 

HFD, has the ability, at least acutely, to reduce the stress response, facilitate recovery from stress, 

and dampen the HPA axis activity.

The effect of GCs on certain features of the MetS has also been studied in adrenalectomized 

models, where CORT concentrations are clamped to a desired level by subcutaneously implanted 

GC pellets. In combination with streptozotocin-induced destruction of pancreatic β-cells and 

subsequent exogenous insulin replacement, these studies have provided important information 

on the relative contribution of each hormone on feeding behavior, choice of food, weight gain and 

fat deposition (95). However, clamped CORT levels do not reflect normal physiology due to the 

loss of tissue sensitivity for GCs as a result of continuous high exposure. Therefore, new methods of 
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increasing GCs in the circulation are emerging, by adding them to the food (96) or drinking water 

(97), which to some degree retains the diurnal rhythm. Furthermore, 11β-HSD-1 enzyme inhibition or 

deficiency in mice results into improvement of metabolic parameters (98-100), indicating that tissue 

exposure to GCs is associated with features of MetS not just in humans but also in animal models.

As insulin resistance and obesity are readily and well studied in mouse models of DIO, 

atherosclerosis as a complication of MetS presents a challenge as wild-type mice do not develop 

atherosclerosis even in the presence of high cholesterol diet (HCD). Development of atherosclerosis 

can, however, be studied in genetically modified mouse models, which naturally over time or in 

the presence of HCD, readily develop atherosclerosis, such as the apoE-knockout (apoE-/-) mouse 

(101), the LDL receptor-knockout mouse (ldlr-/-) (102), the APOE*3-Leiden transgenic mouse (103), 

and the APOE*3-Leiden.CETP (E3L.CETP) mouse (104). To date, the effect of GCs and stress has 

mainly been investigated in other animal models such as dogs, pigs and rabbits (105). The limited 

number of studies performed in mice reveals contradictory results on whether increased GC 

exposure aggravates atherosclerosis like in CS patients, or does not influence the development 

of atherosclerosis (106, 107). 

Taken together, the relationship between the MetS and the HPA axis has been studied to 

some degree previously in animal models. However, several of these studies suffer from differences 

in methodological approach e.g. using methods that are not standardized to be stress-free or 

otherwise disrupt normal physiology greatly, which might mask true effects. Furthermore, 

differences in genetic predisposition for the development of certain features of the MetS, or 

otherwise modified (e.g. adrenalectomized) animal models will most likely affect the results. 

Outline of the present thesis
In this thesis, we aimed to expand our knowledge on the pathophysiological aspects that underlie 

both the basal activity of the HPA axis during the development of obesity, and the effects of a period 

of GC excess on reversibility of metabolic parameters and atherosclerosis in mice.

In chapter 2, we performed a systematic review of studies on DIO mouse models. Although 

feeding HFD easily induces features of MetS, the rodent models reveal conflicting results with 

respect to the HPA axis activation. Therefore, we included only original mouse studies reporting 

parameters of the HPA axis after high fat feeding, and at least one basal CORT level with a proper 

control group. Studies with adrenalectomized mice, transgenic animals only, HFD for less than 

2 weeks, or other interventions besides HFD, were excluded. Subsequently, in chapter 3, we aimed 

to evaluate non-stressed diurnal HPA axis activity in mice in detail during obesity development. As 

stated in sub-paragraph 1.6, obesity-prone male C57Bl/6J mice were fed HFD or LFD for 12 weeks, 

and a detailed assessment of the activity of the HPA axis was made measuring circadian plasma 

CORT concentrations, activation of the HPA axis in the central nervous system (CRH, and GR mRNA 

expression in the hippocampus, amygdala, and hypothalamus), and activation of the HPA axis in 

peripheral tissues (11β-HSD-1 and -2 expression in adipose tissue and liver). In the second part of 

the thesis, given the observations in humans with CS, we aimed to address the potential long-term 

effects of a period of GC overexposure in mice that develop DIO or atherosclerosis. CS is associated 

with an increased incidence of MetS, and increased cardiovascular morbidity and mortality, even 

after long-term correction of GC excess. However, the causal relation between the episode of 

cortisol overexposure and long-term changes is not established and is difficult to assess in humans 

because of the rarity and heterogeneity of CS. Therefore, in chapter 4, we performed a study in 
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male C57Bl/6J mice, fed either a LFD or HFD, were given CORT or vehicle in the drinking water for 

4 weeks, followed by a washout period. Plasma circadian CORT, lipids, insulin, and glucose levels 

were assessed at regular intervals. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic 

clamp, and lean and body- and fat masses with dual-energy X-ray absorptiometry (DEXA). Finally, in 

chapter 5, we investigated the effects of both transient and continuous GC excess, again induced 

via CORT in the drinking water, on insulin sensitivity and atherosclerosis development in female 

APOE*3-Leiden.CETP (E3L.CETP) mice. These mice have a human-like lipoprotein metabolism 

and develop atherosclerosis upon feeding a Western-type diet. In chapter 6, a synopsis of all 

major findings is given. In addition, the data presented in this thesis are discussed in the context 

of potential implications of overexposure to stress (hormones) on the development of obesity 

and CVD in every-day-life.
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