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Part I  

 

Aim and outline of this thesis 

 

The aim of the studies presented in this thesis is to develop and evaluate a technique to 

make transgene products used in gene-therapy applications “invisible” (i.e. stealthed) to the 

immune system. In addition to the use of previously described Gly-Ala repeat (GAr) domain 

of the Epstein-Barr virus nuclear antigen-1 (EBNA-1) we identified and studied new 

inhibitors, from EBNA-1 itself, and from another herpes-virus protein. 

 In Chapter 1, part 2.1, we give a general overview of gene therapy and cancer gene 

therapy. We briefly discuss the status of the clinical studies, and the vectors and genes used in 

these studies. One of the hurdles in gene therapy is the immune system. In part 1.2.2 we 

discuss immune responses against one of the most frequently used vectors for gene therapy, 

the adenoviral vector. In addition, we evaluate the solutions that have been proposed as well 

as their feasibility. It is not only an immune response to the (viral) vectors that hampers the 

applicability of them in gene therapy. There is also ample evidence of transgene-product 

induced immune response. Part 1.2.3 reviews this problem. It is evident that many viruses 

have evolved strategies to counteract the presentation of neoantigens. Some of their 

mechanisms are reviewed in part 1.2.4. 

 The cellular immune response against transgene-encoded neoantigens is a major 

hurdle in gene therapy applications where long-term expression of transgenes is desired. 

Therefore new approaches are needed to prevent rapid clearance of transduced cells. We 

exploited the Gly-Ala repeat (GAr) domain of the EBNA-1, since the GAr prevents cytotoxic 

T lymphocyte epitope generation. In Chapter 2, the first results on this domain are described. 

Our data show that the fusion proteins retain their activity and we show how the GAr can be 

used to stealth transgene products. 

 Upon closer examination of the EBNA-1 gene we found a nested ORF. In this ORF 

there was a long repeat present, but because of the frame shift, this consisted of the acidic 

residues glutamine, glutamic acid, and glycine. We therefore named this repeat the GZr. We 

tested this repeat in the same way as the GAr and could show that also this repeat is capable 

of inhibiting antigen presentation in vitro. The results are described in Chapter 3. 

 The herpes simplex virus 1 (HSV-1) thymidine kinase (TK) is frequently used as a 

produg-activating enzyme in experimental gene therapy. However, in some studies a cellular 

immune response was mounted against this enzyme, thereby thwarting the therapy. Chapter 

4 deals with the modifications we made in the HSV-TK gene to blunt the immune response. 

First we fused HSV-TK with the GAr. In addition, we introduced modifications, which would 
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prevent splicing-out of the codons coding for the active site, and we made point mutations 

that have been described to enhance the affinity for the prodrug gancoclovir (GCV).  

  Since the GAr works very efficient in preventing a harmful immune response we set 

out to identify other proteins with similar functions. The kaposi sarcoma herpes virus (KSHV) 

a.k.a. human herpes virus 8 (HHV-8) has a protein that is, like EBNA-1, involved in episomal 

maintenance of the virus genome. This protein, the latency-associated nuclear antigen-1 

(LANA-1), has a long acidic repeat. Remarkably, the last one-third of the repeat is strongly 

similar to newly found GZ-repeat protein that is encoded by the EBNA-1 ORF. In Chapter 5 

we show that also LANA-1 can affect the presentation of antigens.  
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Part 2 

 

2.1 General introduction on gene therapy and cancer gene therapy 

 

2.1.1 General gene therapy 

 

Gene therapy is a potentially powerful form of molecular medicine that it broadly 

applicable. It provides the prospect of treating a wide variety of inherited as well as acquired 

diseases. 

The basic concept of gene therapy is simple: the introduction of genetic information 

into target cells to alleviate the effects of an inherited or acquired disorder. This may 

slowdown disease progression or even lead to a cure. To achieve this, a gene has to be 

efficiently transferred into cells or tissues. Basically, either viral or non-viral gene-transfer 

vectors can do this. Peter Medawar, the winner of the Nobel prize for Medicine and 

Physiology in 1960, defined a virus as 'a piece of bad news wrapped up in protein'. This 

would argue in favor of the development and use of non-viral vectors for gene therapy. 

Although conceptually safer, non-viral vectors are usually less efficient than viral vectors.  

This is the main reason why defective viruses are broadly employed as gene-therapy vectors 

in experimental gene therapy. 

 Retrovirus-based vectors were the first used clinically for gene therapy. Nowadays 

many more viruses are clinically evaluated as gene transfer vectors, i.e. adenovirus, herpes 

virus, adeno-associated virus, and most recently, lentivirus. The most popular vectors used in 

clinical trials are the retroviruses (27%) and the adenoviruses (26%) (Wiley website, 2005). In 

these vectors viral genes are removed to cripple the viruses and to provide space for inserting 

the therapeutic transgene.  

  Integration into the host genome might be necessary in those cases where a life-long 

expression of the transgene is needed. However, there is a risk of disrupting the expression of 

essential genes associated with vector integration into the host genome. The so-called 

insertional mutagenesis by vector DNA is a potential hazard to the patient participating in 

gene therapy studies. The integration of the vectors was long thought to be random. Recent 

studies however, have revealed that different retroviruses have quite different preferences for 

integration in human chromosomes. Human immunodeficiency virus (HIV) strongly favors 

active genes (Schroder et al., 2002), whereas murine leukemia virus (MLV) favors integrating 

near transcription start sites and only weakly favors active genes (Mitchell et al., 2004). This 

suggests that integration site selection is affected by different interactions at the integration 

site. Tethering through protein-protein interactions may play a role in target-site selection. 
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This offers the possibility to steer integration to a safe site within the genome by generating 

fusion proteins that tether the integrase to a specific target sequence (Bushman, 2003). An 

example of a clinical study where retroviral vectors have been used for a hereditary disease is 

given below. 

 The most successful trial in gene therapy was done by Alain Fischer and collaborators 

in children suffering from X-linked SCID-X1 (Severe Combined ImmunoDeficiency). In this 

hereditary disorder, there is a block in the development of T and natural killer (NK) cells due 

to a mutation in the gene for the γc cytokine receptor subunit. Stem cells from the 

hematopoietic system were harvested from patients, stimulated and transduced ex vivo with 

an MLV-based retroviral vector, expressing the γc cytokine receptor subunit. Then the cells 

were re-infused into the young patients (Cavazzana-Calvo et al., 2000). The patients were 

closely followed for 10 months and during this period they were expressing the γc receptors 

on their T and NK cells. Moreover the cell counts and function were comparable to age-

matched controls. Unfortunately, three years after gene transfer three of the children 

developed T-cell leukemia (Hacein-Bey-Abina et al., 2003a). Upon examination of blood 

samples it became clear that the leukemia cells contained a single intact copy of a retroviral 

vector that had integrated in or near the LMO2 oncogene on chromosome 11 (Hacein-Bey-

Abina et al., 2003b). This gene is originally identified as a break-point of a translocation that 

causes a type of T-cell leukemia. It appears that the retroviral insertion caused increased 

expression of the gene. The insertion was already detectable well before the children showed 

any clinical symptoms. This is a major setback, for this approach. However, one has to keep 

in mind that the alternative treatment option for the children having SCID-X1 is bone marrow 

transplantation. Whereas this has an almost 100% success rate if the donor is a perfect match, 

the success rate drops to less than 80% for partially matched donors and recipients. In the case 

of partial matching there are also long term problems, including incomplete B-cell function 

and possible Graft-versus-Host disease (GVHD). For the patients enrolled in this study no 

HLA-matched donors could be identified. 

 The adenoviral vectors have a quality that can be favored over retroviruses. Whereas 

oncoretroviruses need dividing cells to integrate for transgene expression, adenoviruses can 

also transduce quiescent cells. There are over 50 different human adenoviral serotypes, but so 

far most vectors have been derived form the serotypes 2 and 5, the most common serotypes 

(Horwitz, 1996). This can of course be detrimental to gene transfer and expression due to pre-

existing immunity. These problems are overviewed in detail in Chapter 1, part 2.2. 

 The most illustrious trial conducted with adenoviral vectors is, without a doubt, the 

trial that resulted in the tragic death of Jesse Gelsinger. It was a phase-I trial aimed at the 

correction of the ornithine transcarbamylase deficiency (Batshaw et al., 1999). The trial was 

designed to test the safety of an E1/E4-deleted recombinant adenoviral vector. Jesse 

participated in the study and received the highest dose. Four days later he died of an 

unexpected extreme reaction of his innate immunity to the vector. Although it was known that 
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adenoviral vectors trigger immune response at high doses, the extent of the immune response 

had not been predicted from earlier experiments. Analysis of the vector distribution also 

revealed that this was not limited to the intended target organ, the liver, but was also present 

in the spleen, lymph node and bone marrow. The transduction efficiencies for all these organs 

were even comparable. This event prompted a temporary halt on gene therapy trials with 

adenovirus vectors. This result and the circumstances in which this trial had been organized 

and was carried out led to much debate in the aftermath of this incident.  

 

2.1.2 Cancer gene therapy 

 

 The two examples above of gene therapy trials both addressed hereditary 

(monogeneic) diseases, which consist of only 9% of the indications. Statistics however, shows 

that the most frequent use of gene therapy is in cancers (66%) (Wiley website, 2005). Here 

the gene therapy tries to selectively eliminate cancer cells. A major problem here is to achieve 

sufficiently high transduction and expression efficiencies of the transgenes specifically in the 

cancerous cells while leaving the patient's normal cells unharmed. 

 A most obvious way to target growth regulation in cancer cells is to introduce tumor 

suppressor genes. Some cancers are a direct result of loss of tumor suppressors. The most well 

know tumor suppressor gene is p53. A number of different viral vectors have been made for 

transfer and expression of the p53 gene. Especially adenoviral vectors have been evaluated 

frequently and these have been shown to increase p53 amounts in p53-deficient cells. This 

resulted in cells growth inhibition and apoptosis in synergy with chemotherapeutic agents 

(Yen et al., 2000; Horio et al., 2000). Other tumor-directed strategies are the introduction of 

dominant-negative genes, induction of apoptosis, use of tumor-specific viruses, tumor-

specific gene expression, or introducing agents that sensitize tumors to radiation and 

chemotherapy (Gottesman, 2003).  

One of these strategies is the use of oncolytic viruses, i.e. viruses that preferentially 

replicate in tumor cells. The results are reason for optimism. It began with the discovery that 

adenovirus lacking the E1B 55K gene (called ONYX-015) would replicate inefficiently in 

normal cells, and is more efficient in p53-deficient cells (Heise et al., 1999; Biederer et al., 

2002; Yoon et al., 2001). Other viruses that are currently evaluated are Newcastle Disease 

Virus,  (Pecora et al., 2002), and reovirus (Etoh et al., 2003; Kilani et al., 2003; Shah et al., 

2003; Norman et al., 2004). 

Also by prodrug-activation of suicide gene therapy researchers try to achieve specific 

lysis of tumor cells. Best known in this respect is the herpes simplex virus 1 (HSV1) 

thymidine-kinase (TK) gene. HSV-TK is the archetypical enzyme used in gene-directed 

enzyme prodrug therapies (GDEPT). Its capacity to convert the antiherpetic nucleoside 

analogues ganciclovir and aciclovir to toxic nucleotides has been used effectively in gene 

therapy protocols to eradicate tumor cells and lymphocytes that expressed the HSV-TK 
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transgene upon virus-mediated gene transfer. Although effective, in some applications the use 

of the HSV-TK is limited by the induction of a cellular immune response against the HSV-TK 

protein. Since HSV-TK is not restricted to tumor cells, the specificity of this approach has to 

come either from tumor-specific transduction or from tumor-cell specific expression of the 

transgene. 

Tumor-specific gene expression of suicide genes or tumor suppressor genes is mostly 

achieved by the use of tumor cell-specific transcription regulatory units. Two cancer types 

where the expression is indeed quite specific make use of vectors carrying pancreatic cancer-

specific (Yoshida et al., 2002; Wesseling et al., 2001) and prostate cancer-specific (DeWeese 

et al., 2001; Martiniello-Wilks et al., 2002) transcription units. 

There are three main strategies tested for host-directed cancer gene therapy. Targeting 

the tumor angiogenesis pathway, protecting the normal tissue, especially bone marrow, from 

the toxic effects of chemotherapy, and by activating the immune system. 

Angiogenesis can be inhibited constitutive expression of inhibitors of angiogenesis 

like angiostatin and endostatin. However, the expression has to be limited to the tumor site. A 

drawback of anti-angiogenesis treatments is the requirement of long-term treatment, at least 

until regression or apoptosis deprive tumor cells from their vasculature. 

Protecting bone marrow cells by introducing protecting genes has not been possible 

yet, because of the low transduction frequency of the hematopoietic stem cells. However, 

progress is made here and this might help in the protection. 

The immune system of patients has proved to be a potentially useful target. Mostly, 

immune effector cells like dendritic cells (DCs), NK cells, and CD8+ cells are targeted. 

Currently, treatments under development in this category are introduction of cytokines 

exposure of these cells to cloned antigens to amplify their immune reactivity (Dallal and 

Lotze, 2001; Reyes-Sandoval and Ertl, 2001). 

However, it is clear that although the concept is elegant and straightforward, gene 

therapy in general, and cancer gene therapies in particular, are difficult to develop in clinically 

efficacious treatments. There are many pitfalls and major challenges lie ahead in further 

understanding the limitations of the current procedures and their solutions.  Nevertheless, the 

field of cancer gene therapy has delivered proof-of-concept and will move forward from 

bench to bedside. 

 

 

2.2  Immune responses against adenoviral vectors and their transgene 

products: a review of strategies for evasion 
Crit. Rev. in Oncol./Hematol. (2004) 50:51-70 (adapted) 
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Abstract  

Human adenoviruses have been adopted as attractive vectors for in vivo gene therapy since 
they have a well-characterized genomic organization, can be grown to high titres and 
efficiently transduce a wide spectrum of dividing and non-dividing cells. However, the first-
generation of adenoviral (Ad) vectors yielded only transient expression of the transgene in 
most immunocompetent mice. This constituted a major limitation of this early vector type. In 
contrast, persistent transgene expression can be established in immunodeficient mice. This 
suggests that the immunogenicity of adenoviral vectors limits the effective period of 
adenovirus-based gene therapy. Much effort has been put in devising strategies to circumvent 
the limitations imposed onto gene therapy by the immune system. Improvements in vector 
design have significantly improved the performance of the adenovirus vectors. Based on these 
results it is reasonable to anticipate that new modifications of the vectors 
will overcome some of the immunological barriers and will further expand the applicability of 
adenovirus-derived vectors. 

© 2003 Elsevier Ireland Ltd. All rights reserved. 

Keywords: Gene therapy; Adenovirus; Immunology; Viral vectors 
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1. Immune responses against adenoviral vectors  

1.1. The immune responses against adenovirus vectors limit their applicability  

In the field of gene therapy, the first-generation adenoviral (Ad) vectors are the nowadays 

best-studied Ad vectors. They lack the E1 region and sometimes the E3 region (Fig. 1). 

Deletion of the E1 genes increases the space for transgenes, severely diminishes the 

expression of residual viral genes and renders the recombinant adenovirus replication-

defective. However, deletion of E1 is insufficient to completely abrogate viral gene 

expression. Several studies demonstrated a low expression level of both early and late genes, 

which resulted in the activation of Ad-specific cytotoxic T lymphocytes (CTLs) [1–8]. The 

cellular immune response eliminates the Ad vector-transduced cells and thereby extinguishes 

transgene expression. A cellular immune response can also be induced by the transgene 

expression. However, the contribution of the transgene expression to the elimination of 
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transduced cells is still controversial and seems dependent on the recipient, the route of 

administration and the origin of the transgene [1,8–12].  

In general, the cellular immune response towards adenovirus antigens is activated by 

antigen-presenting cells (APCs). After the uptake of the Ad particle, viral proteins and 

transgene products are processed into small oligopeptides, which are presented by the major 

histocompatibility complex (MHC) class-I molecules at the cell surface. It is noteworthy that 

the de novo synthesis of viral proteins does not appear to be required for antigen presentation, 

since psoralen-treated, UV-cross-linked, inactive adenovirus vectors still cause activation of a 

cellular immune response [13]. The binding of CD8
+ 

T cells to this peptide–major 

histocompatibility complex (MHC) class-I initiates the formation of Ad-specific or transgene-

product-specific CTLs (see Fig. 2). The interaction between CD28 and B7 plays a co-

stimulatory role in this activation [14]. The cellular immune response is further stimulated by 

CD4
+ 

helper cells primarily belonging to the Th1 subset [7,11,15]. In contrast to the CD8
+ 

T 

cells, these CD4
+ 

helper cells are activated by epitopes from the input virions, which are 

presented by MHC class-II molecules at the surface of APCs (Fig. 2).This activation triggers 

the Th1 cells to secrete interleukin-2 (IL-2) and interferon-γ (IFN-γ). These cytokines, in turn, 

induce the differentiation of CD8
+ 

T cells into CTLs [16,17]. In addition, IFN-γ causes the up 

regulation of MHC-I expression in Ad-transduced cells and consequently facilitates their 

recognition by CTLs [11,15]. Moreover, activated CD4
+ 

helper cells have also been suggested 

to destroy Ad-transduced cells themselves, resembling in this way primary CTLs [18]. 

 

Fig. 1. Schematic outline of the various types of adenovirus vectors. The graph depicts the location of the early gene clusters E1–E4, the late 

transcription unit (L), and the inverted terminal repeats (ITR). The � represents the position of the encapsidation signals.  

 
 

Apart from the cellular immune response, the adaptive immune system also includes a 

humoral component, which constitutes a second hurdle to persistent transgene expression. 

This humoral immune response is initiated by the binding of adenovirus particles to the 

surface immunoglobulin of B cells [19]. After internalization and processing of the virus, the 
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adenovirus-derived epitopes are presented at the surface of the B cell by MHC-II molecules 

(Fig. 2). The resulting antigen–MHC-II complex can be recognized by activated T helper cells 

of the Th2 subset [11,20]. This specific CD4
+ 

helper cell subset releases cytokines, like IL-4, 

IL-5, IL-6 and IL-10, which provide indispensable signals for the B cells to differentiate into 

plasma cells [20]. As a result, the plasma cells secrete antibodies (Abs), which are directed 

towards the adenoviral capsid. Although T helper cells of the Th1 subset are poor initiators of 

the humoral immune response, they do play a role in Ab-isotype switching [21]. Whereas Th2 

cells control the production of the Ab isotypes IgG1, IgG2b, IgA and IgE by cytokines, such 

as IL-4, Th1 cells control the switch to IgG2a or IgG3 by means of IFN-γ secretion 

[20,22,23].  

The development of Ad-specific antibodies does not contribute to the elimination of Ad-

transduced cells and hence does not affect the persistence of transgene expression [12]. 

However, Ad-specific Abs will bind the Ad vector and thereby prevent cell entry and promote 

opsonization by macrophages. Consequently, Ad-specific Abs hamper the efficacy of repeated 

administrations of the Ad vector, which would be required to keep the transgene expression at 

the desired level. Thus, although repeated administrations of the Ad vector can prolong 

expression of the transgene in immunodeficient recipients, the efficiency is dramatically 

reduced in immunocompetent recipients [1,7,24–28]. Moreover, a large proportion of the 

human population harbours humoral immunity to Ad vectors as a result of previous infections 

[24]. Consequently, effective adenovirus-mediated gene transfer in humans may be frustrated 

even at the first administration of an Ad vector. It is noteworthy that vector-specific immunity 

does not prevent vector-specific activation of the innate immune system that occurs at very-

high vector doses [29].  

Apart from Ad-specific Abs, neutralizing Abs might also be generated against the transgene 

product. These transgene-product-specific Abs can neutralize the trangene product once it 

enters the circulation and thereby abrogate the effect of gene transfer, irrespectively of 

persistence of transgene expression [9,10,30]. Moreover, several studies have indicated that, 

instead of the immunogenicity of adenoviral proteins, the immunogenicity of foreign 

transgene-encoded proteins is a primary determinant of the persistence of transgene 

expression [9,10,30–33]. The contribution of foreign transgene products to the observed 

immune responses is not unexpected, but it represents a substantial hurdle for gene therapy of 

hereditary diseases. The immune response to the transgene product may be dependent on the 

nature of the mutation that affects the endogenous gene. Such correlation has been found in 

hemophilia patients transfused with blood-clotting factor VIII. Inhibitory antibodies develop 

in a proportion of patients with hemophilia A following replacement therapy. In the patients 

with severe molecular defects (viz. intron-22 inversions, large deletions, and stop mutations) 

about one in every three patients develop an inhibitor response. In contrast, inhibitors occur in 

only 1 in 20 patients with small deletions and antigen (i.e. clotting factor IX in an murine  
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Fig. 2. Activation of the host’s immune system upon adenoviral gene transfer. Antigen-presenting cells (APCs) process de novo synthesized 

viral proteins or transgene products and present these to CD8
+ 

T cells by means of MHC class-I molecules. This causes the CD8
+ 

T cells to 

form cytotoxic T lymphocytes (CTL), which specifically destroy the transduced target cells. The proliferation of CTLs is further stimulated 

by CD4
+

 

helper cells of the Th1 subset. Their activation is triggered by epitopes from the input virus, which are presented by MHC class-II 

molecules on the cell surface of APCs. Apart from the cellular immune response, CD4
+ 

T helper cells also participate in the activation of the 

humoral immune response. Binding of the Ad vector to B cells and interaction with an activated T helper cell induce B cells to differentiate 

into plasma cells. The subsequent production of Ad-specific neutralizing antibodies limits the beneficial effect of a repetitive administration 

of the same Ad vector by blocking its cellular entry.  

hemophilia B model) may even induce tolerance to the therapeutic antigen [36]. The 

immunogenicity of the transgene may be depend on the synthesis of the neoantigen in the 

antigen-presenting cells (see below) [37]. Hence, it will be essential to monitor immune 

responses to the transgene products in all patients enrolled in gene-therapy studies.  
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Obviously, strategies to prevent the cellular and humoral immune responses, e.g. adaptive 

immunity towards the adenovirus vector and to the transgene product may lead to significant 

improvement of gene therapy of hereditary diseases. Hence, research is mainly focused on 

these components of the host’s immune response. However, the innate immune responses, as 

a first line of defence also influence vector persistence. The non-specific innate immune 

response acts rapidly after viral entry [38]. The early phase of the host’s immune response is 

predominantly brought about by neutrophils, macrophages and natural killer (NK) cells and 

lasts about 4 days, until the adaptive immune response is fully activated [39]. The activation 

of the adaptive immune response is much more rapid upon re-infection of the same pathogen, 

which is due to the so-called immunologic memory.  

The contribution of the early immunity to the clearance of adenoviral vectors was initially 

reported by Worgall et al. [40]. After intravenous administration of a first-generation Ad 

vector to immunocompetent and immunodeficient mice, 90% of the viral genome was 

eliminated from the liver within the first 24 h. Similar vector elimination was seen after in-

tratracheal administration, although in this case the vector loss was 70% within 24 h [41]. 

After the fatal incident in a clinical trial for treatment of patients with a deficiency in the liver 

enzyme ornithine transcarbamylase (OTC) [42], it became evident that the innate immune 

system is highly activated by intravascular administration of high doses of Ad vectors [43]. 

Subsequent animal experiments could reproduce the events albeit with higher vector doses. In 

mice, an acute cytokine response is mediated by macrophages and dendritic cells. Within 6 h 

high amounts of IL-6, IL-12 and TNF-α are released. Depletion of DCs and macrophages 

blocked the production of these inflammatory cytokines. In addition, this prevented the CTL 

response against the transgene-expressing cells in the liver. These data indicated that DCs and 

macrophages are essential for both innate and adaptive immunity [43,44]. Similar findings 

were also reported in a study on the activation of innate immunity in non-human primates 

[43,44]. In the OTC clinical trial, the production of IL-6, but not TNF-α was first detected at 2 

h and peaked at 8 h after vector administration. In all but one patient, the IL-6 levels returned 

to base line by 24 h. In the other patient, the IL-6 response was severely prolonged and did 

not return to baseline. This was associated with an acute and lethal systemic inflammatory 

response and multi-organ failure [42–44]. Remarkably, immunity to Ad does not prevent the 

vector-induced toxicity [29]. So, besides modulation of the adaptive immune response, the 

modulation of the early immune responses might also be required to facilitate effective gene 

transfer in vivo with Ad vectors.  

1.2. Attenuation of the early immunity  

 

1.2.1. Feasibility of macrophage depletion  

Upon administration, a major fraction of the Ads is eliminated within the first 24 h. This 

rapid clearance has directed research towards modulation of the non-specific, early immunity 
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[40,41]. Macrophages and Kupffer cells are important components of the innate immune 

system and, consequently, are an interesting target for the attenuation of the early clearance of 

adenoviral vectors. The dose–response after intravenous administration of adenovirus vectors 

is essentially non-linear. Low doses of adenovirus vectors are taken up by Kupffer cells and 

macrophages and quickly degraded. Only after saturating these cells, the adenoviruses 

transduce the hepatocytes [43,45]. To assess the contribution of macrophages to the clearance 

in an in vivo situation, these cells were transiently depleted by means of a dichloromethylene 

bisphosphate (Cl2MBP) or gadolinium chloride (GdCl3) treatment [41,46–48]. In mouse lung, 

the depletion of alveolar macrophages significantly attenuated vector elimination [41]. 

Twenty-four hours after intratracheal administration, the lungs of macrophage-depleted mice 

contained two times more viral DNA than control mice. Depletion of Kupffer cells from the 

liver by GdCl3 or Cl2MBP revealed a similar effect on the viral genome level after in-

travenous administration [46,48].  

Besides the effect on the innate immune response, Kupffer-cell depletion also resulted in a 

prolonged persistence of vector DNA and transgene expression. Recently, long-term 

expression of blood-clotting factor VIII has been achieved after macrophage and Kupffer-cell 

depletion in factor VIII knock-out mice [49,50]. Possibly, elimination of these cells affects the 

adaptive immune system, which can be attributed to their function as APCs. Nevertheless, the 

macrophage-depleting effect of GdCl3 or Cl2MBP does not counteract the rapid vector 

elimination completely. This implies that adenoviral degradation by macrophages is only 

partially responsible for the observed vector elimination within 24 h after administration.  

These data are extremely important for our understanding of the precise roles of the 

macrophages and Kupffer cells in the elimination of vector DNA. However, it is not likely 

that strategies involving depletion of the entire macrophage or Kupffer-cell populations will 

become applicable in a clinical gene-therapy setting. 

 

1.2.2. Possible vector modifications  

Although Kupffer-cell depleting agents have a beneficial effect on the efficacy of gene 

transfer, their clinical application might be hampered by pharmacological side effects and an 

increased susceptibility to those diseases, which are normally eliminated by the innate 

immune system [48]. Hence, adaptations of the vector are preferred to the immunomodulation 

of the recipient. The short time lag and the non-specific action of the innate immune response, 

however, severely complicate the applicability of vector modification. The expression cassette 

and vector dose do not affect this type of early vector clearance [40]. In addition, second-

generation Ad vectors are eliminated with similar efficiency, which suggests that the innate 

immune response is dependent on the vector capsid components [51]. Hitherto, no adenoviral 

vectors that evade the innate immune system have been reported.  

Since the non-specific adenoviral uptake into macrophages seems not to be influenced by 
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modifications of the Ad vector genome, the attenuation of the early vector clearance should be 

focused on other early-induced, antiviral defence mechanisms. Kuzmin et al. [46] suggested 

two different vector-elimination routes. Within 24 h after administration, they observed 

degradation of viral DNA in hepatocytes and vector secretion into the bile, which accounted 

for a 2-log decrease in viral DNA levels in the liver of BALB/c mice. The relevance of these 

Ad vector elimination routes is further supported by the observation that hepatic uptake of 

more than 90% of the administered virus dose is a specific, receptor-mediated phenomenon 

[52]. This leaves a minor role for the non-specific uptake of virus in the hepatic sinusoids and 

suggests that modification of the adenoviral tropism might have some potential for 

diminishing the early clearance of adenoviral vectors.  

The success of a re-targeting approach is dependent on the possibility to circumvent NF-κB 

activation, which is seen as the key regulator of early, antiviral immune responses. This is 

based on the capacity of NF-κB to activate the expression of several cytokines, such as TNF-

α and interferons, which induce vector clearance via cytolysis and inflammatory responses 

[47,53]. NF-κB is activated within 20 min after vector administration and might be induced 

by binding of the viral fibre to the adenovirus receptor. However, penton–integrin interaction 

or endosome rupture might also trigger NF-κB activation, which renders the effect of re-

targeting on the early immune responses uncertain [47]. Presumably, the direct reduction of 

NF-κB or cytokine function might provide better leads for vector adaptations. This was 

supported by observations on bcl-2 transgenic mice, which were intravenously injected with 

an adenoviral vector encoding the IκBα super suppressor, IκBM [54]. Suppression of NF-κB 

by IκBM and Bcl-2 improved the vector persistence. Expression of IκBM alone was, 

however, insufficient to prevent the clearance of vector DNA.  

The inhibition of the TNF-α function forms another possibility to diminish the early 

immune responses. One way to accomplish this might be provided by adenovirus itself. The 

E3-encoded proteins E3-14.7K and E3-10.4K/14.5K have been shown to inhibit the TNF-α-

mediated apoptosis of virally-infected cells [55–58]. In addition, NF-κB and TNF-α both 

activate the E3 promoter, which suggests an evolutionary benefit of the E3-encoded proteins 

at high levels of NF-κB and TNF-α [59]. Since the E3-region is not essential for viral 

replication in tissue culture, this domain usually deleted from adenoviral vectors to increase 

the space for transgenes. However, the performance of adenoviral vectors, which retained the 

E3-region proved better in terms of transgene expression and reduction of the adaptive im-

mune response [60,61]. Whether these positive effects can be attributed to a diminution of the 

early immune responses is unclear, but it seems unlikely that Ad vector-mediated E3-14.7K 

and E3-10.4K/14.5K expression might completely abolish the clearance of vector DNA 

observed within 24 h post-administration. 
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1.3. Circumventing the adaptive immune response by adaptations of the patient  

1.3.1. Immunomodulation  

The lack of long-term transgene expression with Ad vectors is generally attributed to the 

cytotoxic and the humoral immune responses, which are strongly induced by Ad vectors. To 

increase the persistence of the transgenes, various studies have aimed at creating a temporary 

unresponsiveness of the host immune system. Some success has been obtained with 

immunosuppressive agents like cyclosporin A, cyclophosphamide, deoxypergualin and 

FK506, which have shown to attenuate the cellular and, in some cases, humoral immune 

responses [25,62–67]. A similar effect can be established with cytoablative regimens like anti-

CD4, anti-CD8 or anti-T cell receptor antibodies. The anti-CD8 or anti-T cell receptor Abs 

cause the depletion of CTLs and extend transgene expression [61,68]. Apart from the attenu-

ation of the CTL response, the transient depletion of CD4
+ 

T cells by anti-CD4 Abs also 

prevented the development of anti-Ad neutralizing Abs. Although it was not unequivocally 

demonstrated [69,70], this permitted in several cases repeated administrations of the Ad 

vector [61,71–73]. Nevertheless, application of these regimens is hampered generally by 

limited efficacy, potential toxicity, and impairment of pre-existing immunity.  

To evade these disadvantageous effects, an alternative strategy is preferred, which 

attenuates the host’s immune response by a blockade of co-stimulatory interactions between 

APCs, T cells and B cells. Such a co-stimulatory signal is provided by the interaction between 

B7 and CD28, which is required for the activation of CD4
+ 

and CD8
+ 

T cells by APCs (Fig. 

2). Elimination of the B7–CD28 co-stimulation can be established by CTLA4Ig, a 

recombinant molecule, which binds to B7 and thereby blocks the interaction with CD28. 

Systemic co-administration of CTLA4Ig and an Ad vector resulted in prolonged transgene 

expression, correlating with reduced T cell activation [69,74,75]. Although the B7–CD28 

interaction also affects the humoral branch of the immune apparatus, a secondary 

administration of the adenoviral vector was inefficient, unless the CTLA4Ig was locally 

produced by means of an Ad vector with a CTLA4Ig expression cassette [76,77].  

An alternative co-stimulatory signal, which is used to modulate the host immune response, 

is mediated by CD40 and CD40 ligand (CD40L). The interaction of CD40L on activated 

CD4
+ 

T cells and CD40 on B cells stimulates the humoral immune response. The interruption 

of this interaction can be established by an anti-CD40 ligand Ab, which was shown to inhibit 

the production of Ad-specific neutralizing Abs and facilitate a repeated administration of an 

Ad vector in mouse lung and liver [78–80]. In addition, the cellular immune response was 

also affected, which caused a prolonged persistence of transgene expression. Similar results 

were obtained in the lungs of a non-human primate model [81]. Since the interventions in co-

stimulatory interactions primarily acted on separate arms of the immune response, a more 

pronounced effect was anticipated if CTLA4Ig and anti-CD40L Ab were combined. Indeed, 

transient inhibition of both co-stimulatory pathways induced a prolonged transgene 
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expression in mouse liver (>180 days) and alveoli (>90 days). Additionally, it permitted 

secondary transduction upon re-administration of the same Ad vector [82,83].  

In spite of the extended effect of gene transfer by means of immunosuppressants, the above-

mentioned agents exert their effect via a non-specific attenuation of the host immune 

response. This entails a risk for the patient in case of simultaneous infections with other 

microorganisms at the time of treatment. Moreover, the immunosuppressants are associated 

with various potential side effects. Therefore, in general immunosuppression is not a preferred 

approach in clinical gene therapy.  

 

1.3.2. Specific immune tolerance to the adenoviral vector  

In order to limit the risks that are associated with systemic immunosuppression, the 

adaptation of the host immune response should be Ad-specific. In mice, a state of immuno-

logic unresponsiveness to the Ad vector can be obtained by means of an intrathymic 

inoculation [84,85]. Transplantation of adenovirus-infected pancreatic islets into the thymus 

of adult mice or a direct intrathymic injection of the Ad vector in neonates impaired the Ad-

specific cellular immune response, which prolonged hepatic transgene expression upon 

intravenous administration of Ad vectors. In mice, the intrathymic inoculation did not affect 

the humoral immune response, which prevented a repetitive administration of Ad vectors. In 

Gunn rats, however, these strategies also abrogated the humoral immune response to Ad vec-

tors. Administration of the Ad vector during the neonatal period or direct intrathymic 

inoculation of the Ad antigens inhibited the development of Ad-specific CTLs and anti-Ad 

neutralizing Abs [86,87]. This tolerization allowed a prolonged transgene expression by 

repetitive administrations of the Ad vector. Moreover, the induced tolerance did not include 

wild-type (wt) adenovirus. Injection of wt Ad5 into tolerized animals mounted a wt Ad-

specific CTL response.  

Despite its Ad specificity, the feasibility of these tolerization methods for clinical 

application is uncertain. Although many inherited disorders can be diagnosed early in child-

hood or even prenatally, the human immune system is at birth at a higher developmental stage 

than that of rodents. This might affect the result of the tolerization. In addition, the human 

thymus involutes during life, which limits the applicability period of the intrathymic 

administration and excludes a large part of the human population. Moreover, it is still 

unknown whether the induced tolerance is permanent or requires a regularly repeated 

intrathymic injection. Apart from the impact on the patient, the lack of permanent tolerance 

will obviously impair the utility of the intrathymic tolerization even further.  

In this context, the utility of oral tolerization will have more potential for future human 

application. As was demonstrated by Ilan et al. [88], Gunn rats could be tolerized to the Ad 

vector by an oral administration of the main adenoviral capsid proteins. Subsequent 

administration of an Ad vector showed a reduced development of anti-Ad-specific CTLs and 
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neutralizing Abs. This permitted a prolonged transgene expression by repetitive injections of 

the Ad vector. Tolerance to an immunogenic transgene product might be induced in a similar 

way [89,90]. Thus, oral tolerization seems a potential and specific method to overcome a 

major hurdle for Ad-mediated gene therapy. Interestingly, pre-existing immunity to ade-

novirus did not hamper the effect of oral tolerization to an Ad vector [91]. However, it still 

has to be investigated whether oral tolerance to an Ad vector excludes wt adenovirus. In view 

of the morbidity and mortality associated with an adenovirus infection in 

immunocompromised patients, the absence of tolerance to wt adenovirus is of major 

importance to the safety of this tolerization method [92,93].  

 

 

1.4. Circumventing the specific immune response by adapting the adenoviral vector  

1.4.1. Multiple-deleted vectors  

Preferably, abrogation of the Ad-induced immune response should be accomplished without 

any kind of immune suppression with its consequent risk for the patient. This implies that the 

immunogenicity of the adenoviral vector itself should be diminished in order to evade the host 

immune response. The most generally applied Ad vector is the first-generation E1-deleted 

vector, which, in many cases, also lacks the non-essential E3 region. As has been demon-

strated, this vector elicits an intense immune response, which is, at least in part, caused by a 

residual expression of viral antigens [1–8]. Based on the assumption that reduction of the 

adenoviral genome would lead to a further limitation or complete elimination of early and late 

viral gene expression, initial attention was focussed on the additional deletion of the E2A or 

E4 region [94–99]. The E2A gene encodes a DNA-binding protein (DBP), which is essential 

for the initiation and elongation of viral DNA synthesis, for the modulation of E4 

transcription and for the expression of the late viral genes via activation of the major late 

promoter (MLP) [4,100]. The E4 region, which contains seven open reading frames (ORFs), 

is essential for viral DNA replication, late gene expression, efficient assembly of the virus 

particle and inhibition of host-cell protein synthesis [94,101,102].  

Initial studies on the effect of doubly defective vectors were performed with constructs that 

carried the H5ts125 mutation in the E2A gene, in addition to the E1-and E3-deletions. This 

temperature sensitive (ts) mutant is defective at the non-permissive temperature (39 °C), 

while its function is not affected at the permissive temperature (32 °C). Such a conditional 

effect has the concomitant advantage that it does not require the generation of a new helper 

cell line, which complements the lack of E1 and E2A function. In comparison to a first-

generation Ad vector, the ∆E1/tsE2A Ad vector exhibited a reduction in late virus-gene 

expression, a diminished infiltration of CD8
+ 

T cells and a prolonged transgene expression in 

several animal models [2,3,5,103]. In contrast, Fang et al. [104] observed no improved 

performance with a similar ∆E1/tsE2A vector in Balb/c mice and haemophilia B dogs. This 
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inconsistency might be caused by a variation of the transgene, promoter, recipient or 

administered dose. In the latter study, however, the performance of the vector was correlated 

to the serum level of transgene product. Due to a humoral immune response to the transgene 

product or a silencing of the trans-gene promoter, the detected transgene product might 

deviate considerably from the persistence of the vector genome and consequently mask the 

effect of the E2A mutation.  

Nevertheless, irrespective of the actual improvement brought about by the tsE2A mutation, 

the persistence of the ∆E1/tsE2A vector in the liver of immunocompetent mice (>70 days) 

was clearly inferior to that of a first-generation virus in immunodeficient animals (>300 days) 

[3,25]. Although several factors might be involved, it is generally accepted that, in vivo, at a 

body temperature of 37 °C, mutant DBP is not completely inactivated and might diminish the 

effect on vector persistence [3,5,95,103]. The elimination of this residual effect of mutant 

DBP is easily accomplished by the deletion of the E2A region from the vector. Apart from the 

guaranteed absence of DBP, it will also reduce the risk of RCA formation during Ad vector 

propagation and additionally prevent a possible reversion of the ts mutation to the wild-type 

phenotype. Accordingly, E1-and E2A-deleted (∆E1/∆E2A) vectors and their complementing 

cell lines were generated [95,97,98]. As anticipated, with these ∆E1/∆E2A vectors neither 

viral DNA replication, nor late-protein synthesis in human cells was discernable in the 

infected cells [4,95,97]. However, in vivo, the ∆E1/∆E2A Ad vector did not reveal 

significantly lower vector toxicity than a ∆E1 Ad vector [105,106]. Moreover, no differences 

were observed in Ad-specific CTL activity and the development of anti-Ad Abs, resulting in a 

similar persistence of their viral DNA in liver and lung of immunocompetent mice [4]. So, in 

general, the ∆E1/∆E2A vector did not meet the expectations that were raised by the 

∆E1/tsE2A vector, although the deletion of E2A showed a more pronounced effect on late 

gene expression than the tsE2A mutation [95].  

How the difference in vector persistence between the ∆E1/tsE2A and ∆E1/∆E2A vector can 

be explained remains unknown. Many factors might be involved, which even include a 

possible negative effect of the complete lack of DBP. Normally, the transcription of E4 is 

inhibited by the action of DBP 6 h post-infection [100,107,108]. This implies that E4 

expression is prolonged if E2A is deleted, which might affect the immune response [109]. 

Presumably, the mutant DBP from the ∆E1/tsE2A vector exhibit residual activity at 37 °C, 

which is sufficient for controlling the E4 expression and might contribute to the prolonged 

persistence of this vector.  

Simultaneously with the above-mentioned deletion mutants, E1-and E4-deleted (∆E1/∆E4) 

vectors and their complementing cell lines were being developed [94,96,99]. Like the 

∆E1/∆E2A vector, the ∆E1/∆E4 vectors induced a significant reduction of late gene 

expression [4,110–112]. Additionally, absence of the E4 region resulted in a decreased 

expression of E2A and a block of viral DNA replication [110]. Consequently, the E4 deletion 
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resulted in a decreased vector toxicity and inflammation profile in vivo [106,111,112]. Its 

beneficial effect on in vivo vector persistence remains, however, controversial [4,110,112]. 

Moreover, the expression of the transgene from a ∆E1/∆E4 vector is sometimes considerably 

lower than that from a first-generation Ad vector [110,113]. This effect may be explained by 

the observation that persistent transgene expression from the CMV or RSV promoter is 

dependent on the availability of E4 proteins [114].  

To assess the role of the individual E4 gene products in transgene expression and vector 

toxicity, a series of different ∆E1/∆E4 vectors, which retained one or a combination of the 

various E4 ORFs, was analysed [106,115]. In vitro, expression from the CMV promoter was 

clearly abolished when E1 and E4 were completely deleted. However, the retention in the 

vector of ORF3,4 or ORF3,6,7 prevented the decline of expression [115]. In vivo, the 

requirements for optimal transgene expression are generally the same. However, E4 ORF6,7 

is responsible for the elevated toxicity and inflammatory responses of the vector in liver 

[106,115]. So, although the deletion of E4 is beneficial to vector performance, it will reduce 

the persistence of transgene expression in context of a CMV or RSV promoter unless E4 

ORF3 or E4 ORF3, 4 are retained.  

Recently, a novel vector was reported, which combined the profitable effects of the E2A 

and E4 deletions [109]. This ∆E1/∆E2A/∆E4 vector lacked the E1, the E2A and the E4 

regions, except E4 ORF3. In comparison to a ∆E1/∆E2A vector, this vector revealed a further 

attenuation of immunogenicity and liver toxicity, as well as an elevated transgene expression 

[109]. 

  

1.4.2. Helper virus-dependent vectors  

Although the second-generation Ad vectors showed significant reduction of the late viral 

gene expression and attenuated cytotoxicity, the objective of persistent transgene expression 

was not reached. Since the ∆E1/∆E2A/∆E4 vector resulted in a better performance, further 

improvement was expected, if all or most viral genes would be removed [109]. This should 

restrict the immunogenicity of the vector entirely to the injected viral capsid proteins and the 

transgene product. In addition, its safety profile should be enhanced and its insert capacity 

increased to its maximum. However, the propagation of such vectors is complicated, because 

all adenoviral functions should be complemented in trans. Basically, this can be accomplished 

by using a regular E1-complementing cell line in combination with an E1-deleted helper 

virus, which explains the designation of this generation of Ad vectors as ‘helper-dependent’ 

Ad (HD) vectors.  

In time, several strategies have been developed to generate HD vectors [116]. In the most 

straightforward strategy, the transgene-containing expression cassette was cloned within the 

ITR and packaging signal (�) sequences. Although this approach established the production 
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of infective HD virions, the yield of the HD vector was low and the contamination with helper 

virus was relatively high (�1%) [117–119]. A more advanced strategy generated the HD vec-

tor in 293 cells by means of the Cre-recombinase, which excised a loxP-flanked region of 

adenovirus genes [120,121]. As demonstrated by Lieber et al., a 25 kb region was efficiently 

deleted and resulted in formation of infective 9 kb HD virions. Moreover, it could be 

propagated at high titres with less than 0.5% contamination of undeleted virus. Nevertheless, 

in mice the persistence of the truncated genome was very short (<5 days).  

The most successful and nowadays most frequently applied strategy to generate HD vectors 

is a combination of both approaches. The HD genome is constructed by cloning, while the 

Cre-lox system is applied to the helper virus to minimize contamination of the HD vector 

batch [122]. To that end, loxP-sites were inserted around the packaging signal of the helper 

virus, so that excision by Cre-recombinase would render the helper unpackagable (Fig. 3). 

Serial passages of the HD vector in helper virus-infected 293-Cre cells produced a high titre 

of the HD vector. In addition, the produced HD vector batch contained less than 0.01% 

contamination with helper virus [122]. However, the efficiency of production is dependent on 

the actual size of the HD genome, as was demonstrated by Parks et al. [123]. Whereas HD 

vectors with a genome size of 75–105% of the wild-type genome were efficiently packaged, 

HD vectors were inefficiently packaged and prone to rearrangements, if their genome size was 

less than 75% of the wild-type. Whether this also explains the observed instability of the 9 kb 

HD vector is unclear. However, all analysed HD vectors with a genome within the specified 

limits showed prolonged persistence [124–126].  

In many cases, the preferred HD-genome size is obtained by the supplemental use of 

“stuffer” DNA. The impact of the stuffer is however not limited to the discussed size 

constraints. The origin and nature of the stuffer DNA also affect the performance of the HD 

vector [127,128]. While HD vectors with prokaryotic stuffer DNA (bacteriophage λ DNA) 

induced the development of stuffer-directed CTLs, the stuffer DNA obtained from the human 

hypoxanthine–guanine phosphoribosyltransferase (HPRT) gene showed no such CTL 

response and enhanced transgene expression [127]. The distinction between these two 

fragments might be due to differences base composition. Nevertheless, the elimination rate of 

both vectors from mouse liver was similar. Irrespective of its beneficial human origin, the 

presence of several Alu repeats, a MAR and two retroviral long terminal repeats (LTR) in the 

HPRT stuffer might interfere with vector propagation and stability, as well [128]. To optimize 

the production and efficacy of an HD vector, stuffer DNA should lack known signals and 

repeat units. With these criteria in mind, two human DNA fragments, termed HSU and AFO, 

were selected. Insertion of these fragments as stuffer DNA into an HD vector had a positive 

effect on the replication of HD vector versus helper virus. Moreover, an HD vector with HSU 

or AFO fragments showed a higher transgene expression in mice, than an HD vector with 

HPRT-derived stuffer DNA [128].  

Until now, the most extensively studied HD vector contains the complete human α1-
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antitrypsin (hAAT) locus and a 9 kb fragment from the HPRT gene, which brings the HD 

genome within the preferred size limits [124]. Intravenous administration of this HD vector in 

C57BL/6J mice yielded a high level of hAAT expression (50 µg hAAT/ml serum), which 

remained for at least 10 months. A first-generation Ad vector with a cDNA-based expression 

cassette induced a maximum expression level of 2 µg hAAT/ml serum, which declined to less 

than 0.1 µg/ml over 10 months. Since the latter vector contained hAAT cDNA in contrast to 

the HD vector, which harbours a genomic hAAT gene, some of the difference in serum levels 

may be explained by the different expression cassettes. The elevated and prolonged transgene 

expression from the HD vector was accompanied by a decreased acute and chronic toxicity. 

This was probably due to the complete elimination of viral gene expression and was even 

observed at the highest applied dose of 3.2 × 10
11 

virus particles [124,129]. Subsequent 

application of the HD-hAAT vector in non-human primates instead of in mice confirmed its 

performance: intravenous administration of this HD vector into baboons resulted in hAAT 

expression for more than 12 months in two out of three animals [126].  

Similar results were obtained with HD vectors encoding the mouse erythropoietin (mEPO), 

mouse leptin, and human blood-clotting factors VIII and IX [50,125,130,131]. In mice, these 

vectors showed a significant attenuation of the host immune response and a prolonged 

transgene expression. Moreover, in comparison to its first-generation equivalent, the HD-

mEPO vector demonstrated a 100-fold increase in transgene expression per infectious 

particle. This allowed considerable reduction of the vector dose, which prevented formation 

of anti-Ad neutralizing Abs and permitted, consequently, readministration of the HD vector.  

The performance of the HD-mLeptin vector was, however, less successful when it was 

applied to a relevant animal model, the leptin-deficient, ob/ob mouse [131]. This could be 

attributed to the immunogenicity of leptin in this animal model, which resulted in the 

development of leptin-specific Abs and a gradual loss of vector DNA. The impact of the 

immunogenicity of the transgene product was confirmed by an HD vector encoding full-

length dystrophin in combination with β-galactosidase [117,119]. Whereas LacZ transgenic 

mice revealed a prolonged cytoplasmic β -gal expression after intramuscular administration of 

the HD vector, non-transgenic mice showed a reduced expression period, which was 

combined with CD4
+ 

and CD8
+ 

T cell infiltration [132].  

In general, the deletion of all Ad genes reduces the toxicity and inflammatory immune 

response and concomitantly results in a prolonged transgene expression, if the HD genome is 

stabilized by the insertion of stuffer DNA. These benefits are even more pronounced if the 

stuffer DNA is optimized for human application. Nevertheless, even after gene transfer with 

HD vectors host immune response may be mounted that are directed against the transgene 

product and viral capsid proteins [13]. 
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Fig. 3. Generation and propagation of the helper virus-dependent adenoviral (HD) vector. The adenoviral genes that are deleted from the HD 

vector are provided in trans by an E1-deleted helper virus and an E1-complementing cell line. To limit the simultaneous propagation of 

helper virus, the packaging signal of this virus is flanked by loxP-sites. The stable expression of Cre-recombinase in the helper cell line 

allows the excision of the packaging signal and renders the helper virus genome unpackagable. Besides the necessity of the cis-acting 

elements, the inverted terminal repeats (ITR) and the packaging signal (�), the HD vector backbone also contains a transgene. In order to 

allow stable propagation and efficient packaging, non-viral “stuffer” DNA is used to supplement the HD vector backbone up to 75% (27 kb) 

of the size of the wt adenovirus genome. 293-Cre: a 293-cell line derivative that stably expresses the Cre-recombinase. 

 

1.4.3. The positive effects of adenovirus early region 3 (E3)  

The E3 region is deleted from most adenoviral vectors, because it is not essential for viral 

replication and provides extra space for transgenes. It is, however, unlikely that a non-

essential region, which covers about 10% of the viral genome, would have survived 

evolutionary selection. Indeed, several E3-encoded proteins are involved in the modulation of 

the host immune system [55–58]. Although the E3-encoded proteins E3-10.4K, E3-14.5K and 
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E3-14.7K are predominantly involved in the modulation of the innate immune response, the 

impact of their effect extends towards the adaptive immune system [57]. This was 

demonstrated in E3-14.7K transgenic mice, which revealed a significant reduction of the 

cellular immune response upon intratracheal administration of an Ad vector [133]. The 

humoral immune response against the Ad vector was, however, not markedly affected.  

Another E3-encoded protein, i.e. E3-19K, might reduce the adaptive immune response more 

directly. This transmembrane 19 kDa glycoprotein is located in the endoplasmic reticulum 

(ER) and inhibits the transport of MHC-I molecules to the cell surface. To that end, it contains 

an MHC-I-binding domain and a microtubule-binding carboxyl terminus, which retains the 

resulting complex in the ER [134–136]. In vitro, E3-19K expression clearly reduced the level 

of MHC-I molecules on the cell surface and abrogated their recognition and subsequent lysis 

by specific CTLs [137]. In addition, in vivo administration of an Ad β-gal vector, which 

contained an E3-19K expression cassette, failed to stimulate the proliferation of Ad vector-

specific, as well as, β-gal-specific CTLs [138]. This implies that the retention of MHC-I by 

E3-19K is not restricted to the adenoviral antigens, but extends to antigens of other origin as 

well [138]. Moreover, the application of an E3-19K-expressing Ad vector showed enhanced 

transgene persistence in the lung and the liver of B10.HTG mice [139]. However, E3-19K did 

not establish a similar effect in BALB/c mice. This might be explained by the different 

affinity of E3-19K for the various murine MHC-I haplotypes. Whereas E3-19K interacts effi-

ciently with H-2D
b
, H-2K

d 
and H-2L

d 
alleles, weak or no association was seen with H-2D

k
, H-

2D
d 

and H-2K
b 

alleles [139,140]. Although this might indicate a limited applicability of E3-

19K in human gene therapy, it has been reported that E3-19K interacts with all analysed 

human MHC-I molecules, albeit with different affinities [141,142]. Notably, the E3-19K from 

human adenoviruses has evolved to function optimally in humans and might perform less well 

in other recipients. A similar functionality profile is reported for ICP47. This protein from 

Herpes simplex virus prevents the peptide loading of MHC-I molecules efficiently in man, but 

lacks this functionality in mouse [143,144].  

Obviously, the most pronounced immune-modulating effect would be obtained if the 

potentials of E3-14.7K, E3-10.4K/14.5K and E3-19K were combined. This was most simply 

accomplished by the re-introduction of the whole adenoviral E3 region in the Ad vector 

[60,61]. Application of this vector in Gunn rats showed a clear inhibition of CTLs towards 

Ad-infected cells [60]. Remarkably, the humoral immune response towards the Ad vector was 

inhibited as well. This facilitated re-administration of the vector and consequently resulted in 

prolonged transgene expression. The unexpected inhibition of Ad-specific neutralizing Abs 

might be explained by a reduction of antigen release as a consequence of the diminished CTL-

and TNF-α-induced cytolysis. In addition, the TNF- α-induced stimulation of dendritic-cell 

function can be hampered by the expression of E3-14.7K and E3-10.4K/14.5K and 

concomitantly limit the antigen presentation by these cells [60]. So, these preliminary in vivo 
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data reveal great potential for E3-encoded proteins. However, their performance in man and, 

subsequently, their impact for gene therapy with adenoviral vectors are to be addressed in 

future research.  

 

 

1.4.4. The potential of gene and vector targeting  

Although the re-insertion of the E3-region is presented as an adaptation of the adenoviral 

vector, E3-encoded proteins exert their effect via immunomodulation of the transduced cells. 

Consequently, this adaptation can be seen as a local adaptation of the recipient, as well. At 

first glance, the E3-induced ignorance of the immune system does not seem to cause any risk 

for the patient, since it did not prevent a normal immune response upon subsequent exposure 

to an E1-and E3-deleted vector [60]. However, one should note that the immune ignorance 

might not be limited to the antigens obtained from vector and transgene expression, but may 

hold for all antigens from the transduced cell. This implies that its transformation into a 

malignant cell might escape immune surveillance, as well, with all its consequences.  

Preferably, adaptations of the adenoviral vector should reduce the host immune response to 

the vector and trans-gene product more specifically. Such specific attenuation of the immune 

response directed against the transgene product can be established by means of cell-specific 

promoters, which limit the transgene expression to the preferred cell type or tissue. 

Consequently, this would prevent unintended transgene expression in professional APCs, 

which initiate, at least partially, the observed cellular immune response [8–11,37,132]. 

Remarkably, the impact of the chosen promoter extends to the humoral immune response, as 

well. This is most clearly illustrated by the Ad-mediated expression of human α1-antitrypsin, 

which varies among different mouse strains [1,33]. Whereas hAAT expression, driven by a 

ubiquitous promoter (RSV or PGK) is prolonged in C57BL/6J mice (>8 weeks), hAAT 

expression in C3H/HeJ and CBA/J mice is limited (2–4 weeks). This strain-dependent varia-

tion in persistence of the hAAT protein is correlated to the development of hAAT-specific 

Abs [33]. In contrast, prolonged hAAT expression and absence of Ab development is shown 

when hAAT is expressed from its endogenous promoter in C3H/HeJ mice [124,145]. So, 

unless the recipient is somehow tolerant to the transgene product, the expression from 

ubiquitous promoters will be limited by a host immune response to the transgene product. The 

effect of an endogenous tissue-specific promoter was confirmed by a direct comparison of 

first-generation vectors, which expressed hAAT from a ubiquitous mouse PGK promoter or a 

liver-specific mouse-albumin promoter. The PGK promoter induced a hAAT-specific Ab 

response in C3H/HeJ mice, which limited the expression period. In contrast, expression from 

the albumin promoter was not hampered by any Ab response and persisted for more than 44 

weeks [145]. Similar results were obtained after expression of human apo A-I [37]. When 

comparing vectors with the hepatocyte-specific apo C-II promoter and the ubiquitously 
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expressed murine MHC II E� promoter, the latter vector induced a major humoral immune 

response to the transgene product (apo A-I) whereas the hepatocyte-specific promoter did not 

induce a humoral response. This supports the hypothesis that promoters that are not expressed 

in the antigen-presenting cells may be applicable to prevent the humoral response. However, 

other reports suggest that the use of liver-specific promoters (viz. the human α1-antitrypsin 

gene promoter, a chimeric apoE/apoCII promoter, and the albumin gene promoter, re-

spectively) was not sufficient to prevent the humoral responses against the secreted antigens 

[50,146]. This shows that although liver-specific promoters may reduce the induction of 

trangene-product-directed immune responses, their use may not be sufficient to prevent them 

altogether.  

The immune response to a foreign antigen can be affected by the nature of the antigen itself, 

the dose and route of delivery, and the presentation of the antigen to immune-surveying cells. 

Since the first two options were similar in the comparative study in C3H/HeJ mice, the lack of 

hAAT expression in professional APCs might cause the observed tolerance to hAAT. Indeed, 

in baboons, the application of a similar vector, which contained the complete human hAAT 

locus, induced a prolonged expression of hAAT (>10 months). It could, however, not prevent 

the development of hAAT-neutralizing Abs in one out of three baboons [126]. Nevertheless, a 

well-chosen promoter, that limits the expression of the trans-gene to the tissue or cell type of 

choice, might contribute significantly to the reduction of the host immune response directed to 

the transgene product.  

A similar or even more pronounced effect might be established by the modification of 

adenoviral tropism in order to transduce only the cell type of interest [52,147]. Since the 

adenovirus receptors are broadly expressed [148–152], specific targeting will prevent the 

transduction of unintended cells, like APCs [153,154]. This might result in a reduction of the 

cellular, as well as, the humoral immune response to vector and transgene product. In 

addition, adenoviral infection activates NF-κB, which stimulates cytokine production and 

thereby triggers the host immune response. A targeted Ad vector circumvents the natural 

infection route and might consequently prevent the stimulation of NF-κB and subsequent 

events [47,147]. Moreover, vector targeting will induce the efficacy of the vector. This 

permits the reduction of the administered dose and might concomitantly limit the 

inflammatory response.  

Although the advantages of targeted adenoviral vectors are generally accepted, in vivo 

application of a properly targeted vector has not been reported yet. So, the actual impact of 

vector targeting on the immune response still has to be established.  

 

1.4.5. Use of viral inhibitors of antigen processing  

Cellular immune response against transgene-encoded neoantigens the may predominate 

upon use of the HD Ad vectors. Transgene-product immunity is prominent following 
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adenovirus-mediated transfer of the Escherichia coli-derived LacZ gene, encoding 

β−galactosidase. In rodents, strong immune responses against this neoantigen were observed 

following adenovirus-mediated gene transfer into liver, muscle, lung and brain, leading to 

local inflammation, destruction of the transduced cells, and loss of transgene expression 

[74,155–157]. Antigen-specific major histocompatibility complex class-I restricted cytotoxic 

T lymphocytes are the prime suspects responsible for target cell destruction [8,18,74,158]. 

This requires prior activation of CD4
+ 

T cells [6,7,11,18,51,159–162]. Also in primates a CTL 

response directed against the transgene product has been shown to occur after retrovirus-

mediated gene transfer [163,164]. In a clinical trial aiming at inducing a graft-versus 

leukaemia response, 8 of 24 treated patients developed a specific cytotoxic CD8
+ 

T cell-

mediated immune response against the cells genetically engineered to express the herpes 

simplex virus 1 (HSV1) thymidine-kinase (TK) gene. This led to the selective elimination of 

the modified cells [164].  

Previous attempts to reduce the T cell responses against the neoantigens during gene 

therapy focused on blocking the MHC classes-I and -II restricted T cell responses, or the pre-

vention of co-stimulation of T cells [12,75,80,158,160–162]. However, these approaches were 

either not fully effective or resulted in a general immunosuppression. In the ideal strategy the 

presentation of the transgene-derived peptides by MHC class-I is selectively prevented, which 

eliminates specifically the cellular immune response against the neoantigens encoded by the 

transgene.  

Under normal circumstances, the CD8
+ 

CTL response plays an important role in the control 

of virus infections, generating effector cells that kill infected cells upon recognition of viral 

peptides presented by MHC class-I molecules. Given the important role of CTLs in the con-

trol of virus-spread, it is no surprise that viruses have developed numerous strategies that 

frustrate and abrogate antigen-presentation [165–167]. In general, the viruses interfere with 

antigen presentation by frustrating the cell’s capacity to generate or present antigenic 

peptides. In few cases, the inhibition blocks presentation of specific polypeptides. One such 

example comes from the Epstein–Barr Virus (EBV) nuclear-antigen 1 (EBNA-1). EBNA-1 is 

expressed in latent EBV-infected cells. Here it is indispensable for the virus as it is required 

for the maintenance of the viral episomes. Although EBNA-1-specific CTLs have been 

described in infectious mononucleosis patients and healthy carriers, they cannot recognize 

EBV-infected cells [168–173]. The failure to recognize endogenously expressed EBNA-1 has 

been attributed to the glycine-alanine repeat (GAr) domain in the EBNA-1 sequence that 

protects EBNA-1 from proteasomal degradation and subsequent presentation in the context of 

MHC class-I [174,175]. This successful immune-evasion strategy points to the unique 

opportunity to hide cells expressing transgenes from CTL-mediated target-cell destruction by 

incorporation of the GAr sequence into the transgene. We have demonstrated recently that 

fusing the β-galactosidase with the GAr sequence is compatible with enzyme function, and 
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prevents presentation of β-gal-derived peptides by MHC class-I. Hence, the cells were 

insensitive to antigen-specific CTL. Preliminary evidence suggests that the persistence of 

transgene expression was increased in vivo, as a result of the evasion of the anti transgene-

product immunity [176].  

 

1.4.6. Repetitive administration for prolonged transgene expression  

In spite of all efforts to reduce the cell-mediated immune response against transduced cells, 

complete tolerance to transduced cells will not be a warrant for long-term trans-gene 

expression. This is mainly due to the episomal nature of the adenoviral DNA, which leaves 

the transgene mainly unintegrated in the host. Although the lack of efficient integration is 

beneficial in terms of the risks related to insertional mutagenesis, it makes vector persistence 

dependent on the absence of proliferation of the host cells. Obviously, re-administration of the 

adenoviral vector could obviate this lack in integrating capacity, if the efficiency of vector 

delivery at repeated administration was not limited by the development of Ad-specific Abs 

[7,25,177].  

The classification of human adenoviruses into six subgroups is based on criteria like 

hemagglutination properties, oncogenicity and DNA homology. Within these subgroups a 

further division into different serotypes is based on their antigenic cross-reactivity [100,178]. 

On the basis of this classification, it was hypothesized that the Ad neutralizing Abs could be 

circumvented by the alternating use of different Ad serotypes. This was initially confirmed by 

a repetitive administration of Ad serotypes from different subgroups. The immunization of 

mice by an intraperitoneal administration of wt Ad7 (subgroup B) or wt Ad4 (subgroup E) 

virions did not affect subsequent gene transfer by an Ad5 (subgroup C) vector [179]. Similar 

results were obtained if mice were immunized by an intratracheal administration of wt Ad4 or 

wt Ad30 (subgroup D) virus [28]. Moreover, subsequent immunization with Ad4 and Ad30 

virus could not prevent efficient gene transfer by the Ad5 vector either.  

The benefit of using different Ad serotypes for repetitive administration was even extended 

to serotypes from the same subgroup by Mack et al. [27]. Two weeks after the first 

administration with an Ad2 or Ad5 vector, either the same or the other serotype was 

administered intratracheally. The administration of the alternating serotype established 

transgene expression at a level, which equalled that obtained in naive animals. In contrast, 

transgene expression after re-administration of the same serotype Ad vector was at least 70% 

less than the expression in naive animals.  

This implies that the sequential use of multiple adenoviral vectors will help to evade anti-

Ad neutralizing Abs generated by previously administered serotypes. However, this strategy 

requires the verification of each serotype for its safety and efficacy. In addition, each new Ad 

vector might need its own helper cell line, although the helper cell line might be 

interchangeable for serotypes within the same subgroup. From this point of view, the single 
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alteration of the immunodominant capsid components or, more precisely, of the 

immunodominant capsid epitopes would create more readily applicable vectors.  

The adenovirus capsid mainly consists of three components: fibre, penton base and hexon. 

These components are therefore seen as the major targets for neutralizing antibodies. As can 

be deduced from In vitro analyses, the contribution of anti-penton-base antibodies to the 

neutralization of the Ad vector is limited [180,181]. This is partially explained by the 

observation that the RGD-epitope from the penton base, which interacts with αvβ3/β5 

integrins and is involved in the internalization of the virus, escapes from antibody neu-

tralization [182]. Although the anti-fibre antibodies neutralized the Ad vector rather efficiently 

in in vitro assays, they seem to lack neutralizing activity in vivo [181]. This was demonstrated 

by means of an Ad5 vector with Ad7-derived fibres (Ad5/F7) [183]. Whereas the chimerical 

Ad5/F7 vector was neutralized in Sprague–Dawley rats, which had been immunized 

intraperitoneally by wt Ad5 virus, it was unaffected in rats immunized by wt Ad7 virus. It has, 

however, not been demonstrated unequivocally that anti-fibre antibodies do not contribute to 

the neutralization of infection in vivo at all. The nature of the humoral immune response 

depends on the route of administration and the used intraperitoneal administration induces 

predominantly an anti-hexon Ab response [184,185]. Moreover, in vitro a synergistic effect of 

the anti-fibre and -penton base Abs is observed, which suggests an underestimation of their 

neutralizing effect if each of their contributions is considered separately [180].  

Nevertheless, the anti-hexon Abs appear to be the most important effectors of Ad 

neutralization. The anti-hexon Abs exert their neutralizing effect via a very efficient single-hit 

mechanism, which requires just one Ab per virion [181]. Possibly, the attachment of one Ab 

is sufficient to prevent the conformational changes in the hexon that are necessary to rupture 

the endosome [181,186]. In addition, anti-hexon Abs occur both after intraperitoneal and 

intravenous administration of the Ad vector. Subsequent analysis of the hexon for type-

specific antigenic determinants identified loop1 and 2 (L1 and L2, respectively) as the 

putative neutralizing epitopes [187]. This paved the way for strategies aiming at the evasion 

of anti-Ad neutralizing Abs by alteration of immunodominant capsid epitopes. To test the 

feasibility of this approach, L1 and L2 from the Ad5 vector were replaced by their 

counterparts from Ad2 [188]. Unfortunately, these modifications did not permit efficient 

transduction of Sprague–Dawley rats, which had been pre-immunized with an Ad5 vector, 

although neutralization was more pronounced after the re-administration of a native Ad5 

vector or an Ad5 vector containing solely the Ad2-derived L2 loop. However, if the replaced 

hexon region was extended from L1 to L4 and derived from Ad12 instead of Ad2, the anti-

Ad5 neutralizing Abs in immunized C57BL/6 mice were unable to neutralize the chimerical 

Ad5/H12 vector. The chimerical vector could efficiently transduce the liver of immunized 

mice, while transduction by the Ad5 vector was absent [189]. This implies that the inclusion 

of the L4 domain into the region of replacement is of more importance than would be 

expected on the basis of the relative conservation of the sequences. Additionally, the effect 
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might be augmented by shifting from the rather homologous serotype Ad2 to the most 

divergent serotype Ad12 (subgroup A). Of course, the use of a different animal model might 

affect the outcome as well.  

A completely different approach for circumventing Ad-specific Abs consists of coating of 

the adenovirus capsid with an agent that shields the particle from the neutralizing antibodies. 

An initial attempt was performed with a combination of the cationic lipid GL-67 and 

dioleoylphosphatidylethanolamine-polyethylene glycol (DOPE-PEG) [190]. In vitro analysis 

of the GL-67/ DOPE-PEG-coated adenovirus showed that the particle was partially shielded 

from immune plasma. Furthermore, intranasal administration of a coated vector to immunized 

mice resulted in substantially higher transduction efficiencies than that of the unshielded Ad 

vector. However, intravenous administration revealed no significant protection against Ad-

directed Abs in the circulation. Similar results were obtained with an alternative coating 

procedure, which included the covalent attachment of the activated PEG, 

tresylmonomethoxypolyethylene glycol (TMPEG) to the surface of the adenovirus particle 

[191]. In vitro, the TMPEG-coated adenovirus was almost completely shielded from the 

neutralizing Abs. Moreover, high titres of Ad-specific Abs in pre-immunized mice could not 

attenuate the infection efficiency of TMPEG-coated adenovirus upon intranasal 

administration. In a separate study PEGylation allowed significant gene transfer to the liver on 

readministration, suggesting protection from neutralizing immunity [192].  

Since the HD vector and first-generation Ad vectors contain similar antigens, the same 

approaches to circumvent anti-Ad neutralizing Abs can be applied to the HD vector. 

However, the HD vector is more easily adapted to a different serotype, because it requires 

only a simple change of the helper virus serotype. In accordance with the humoral immune 

response to the first-generation Ad vector, the neutralizing Abs against an HD-Ad2 vector do 

not cross-react with an HD-Ad5 vector [193]. Whereas intravenous administration of an HD-

Ad2 vector was a 100-times less efficient in HD-Ad2-immunized mice than in naive mice, the 

administration of an HD-Ad5 vector in the Ad2-immunized mice revealed no loss in 

transduction efficiency [193].  

Remarkably, efficient re-administration is not necessarily limited to vectors from an 

alternative serotype, but can be established by the same vector as well. Initially, this was only 

accomplished by means of an intranasal administration, although this could not prevent the 

development of neutralizing Abs in the circulation [194]. However, Maione et al. [125] 

demonstrated that intravenous re-administration of an HD vector can be as effective as the 

first administration. This was due to the high vector efficiency, which provided a therapeutic 

transgene expression at a relative low virus dose (3 ×10
5 

IU). Since the development of 

neutralizing Abs was not triggered up to 1.2×10
6 

IU, re-administration of the HD vector 

established gene transfer at virtually 100% efficiency.  

Although still preliminary, the latter data bring a repetitive use of the same Ad vector 

without tedious tricks or invasive treatment of the patient within reach. The potential of this 
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approach; however, is completely dependent on a low vector dose and requires a profound 

quest for efficient expression cassettes.  

 

1.4.7. Prospects for an immune-tolerated adenoviral vector  

Immunomodulation of the patient in order to prolong the effect of gene transfer seems 

inextricably associated with side effects. Consequently, modification of the Ad vector is the 

most desirable way of minimizing the induction of host immune responses and thereby 

increasing the feasibility of the Ad vectors for gene therapy of hereditary diseases. The most 

obvious approach for reducing the immune response to the Ad vector and Ad-transduced cells 

is the deletion of all adenoviral genes in order to eliminate the residual expression of viral 

antigens, which is responsible, at least partially, for the observed immunogenicity of the first-

generation Ad vectors. Indeed, the HD vectors could bring about a stable expression in 

immunocompetent mice for at least 10 months, which resembled the performance of the first-

generation Ad vector in immunodeficient mice [25,124]. Hence, HD vectors seem to outclass 

the second-generation Ad vectors in gene-therapeutic performance, although the HD vectors 

and second-generation Ad vectors were never compared directly.  

Obviously, this will limit the application of the second-generation Ad vectors in favour of 

the HD vectors, but should not imply that their role in gene therapy is finished. As helper 

virus, needed for the construction and production of HD vectors, the second-generation Ad 

vector offers several benefits over the currently used first-generation Ad vector. Firstly, the 

use of a second-generation adenovirus will reduce the possibility of RCA formation. In 

addition, contamination of an HD vector batch with a second-generation Ad helper virus will 

be less immunogenic, due to the diminished expression of residual virus genes. However, 

double deletion-complementing cell lines are generally less efficient helpers, which result in a 

1–2-log reduction of the virus yield [97,105]. Recently, this drawback was overcome by the 

generation of an efficient E1-and E2A-complementing cell line, the so-called E2T cell line, 

which allows the propagation of E1/E2A vectors to titres similar to those of E1 vectors 

propagated on 293 cells [98]. A derivative of this helper cell line, the E2T-Cre6 cell line 

stably expresses Cre-recombinase and might enable efficient propagation of an HD vector 

with the help of a doubly deleted helper virus [195]. Despite this progress, one should realize 

that the production and purification of HD vectors is still a multi-step process, which may be 

difficult to apply at an industrial scale.  

Although the development of the HD vector holds considerable promise for in vivo gene 

therapy, it is unlikely that it will be sufficient to eliminate the host immune response 

completely. Specifically, it does not affect the immunogenicity of the transgene product. A 

carefully selected promoter that prevents transgene expression in professional APCs might 

diminish the host immune response to the transgene product. A similar effect might be 

accomplished by vector targeting. Moreover, specific transduction of target cells might 
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increase the vector’s efficacy, as well, and concomitantly permit reduction of administered 

doses. Possibly, such adaptations might make the reinsertion of E3-19k, E3-14.7k and E3-

10.4/14.7k superfluous. However, their use should be considered when application of a 

targeted HD vector appears to be insufficient to evade the host immune response. Especially, 

if it turns out that E3-14.7k and E3-10.4/14.7k attenuate the non-adaptive immune response, 

the addition of these regions might considerably affect the efficiency of the Ad vector.  

It should be realized that the performance of most Ad vector modifications has been tested 

in animal models, which might be suggestive, but not necessarily representative for the 

performance in humans. Moreover, as demonstrated in mice, one specific vector can induce 

different immune responses in several strains of one species [1,33]. This makes it even harder 

to predict the effect of a vector modification in the genetically diverse human population.  

In view of the Ad vector performance in humans, another point of concern is raised by pre-

existing immunity to the adenovirus. Since most people have suffered from an adenovirus-

mediated common cold, the efficiency of gene transfer by the Ad vector might be reduced by 

residual Ad-specific Abs. This concern was confirmed by the analysis of human sera, which 

revealed Ad-specific Abs in virtually all tested individuals [24,180]. However, in vitro 

analysis showed that only 40–55% of these Abs had neutralizing activity [24,189]. Moreover, 

pre-existing immunity did not prevent transduction by Ad vectors in vivo [196]. Nevertheless, 

the efficiency of gene transfer may be affected considerably, if the recipient has recently 

suffered from an adenoviral infection and carries large amounts of Ad-specific Abs. As a 

work around, vectors are being developed from serotypes with a very low prevalence of virus-

neutralizing immunity in the humans, such as Ad35 [197,198].  
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2. Conclusion  

Our extensive knowledge on adenovirus biology and the functions of its genes, in 

combination with our insight in the precise mechanisms that lead to the induction of cellular 

and humoral immune responses against Ad vectors, the Ad vector-transduced cells and the 

transgene products have facilitated the development of vectors that evade the immune system. 

The data obtained in murine models and in some cases non-human primates have underscored 

the considerable gain in vector performance that has been achieved. This suggests that the 

host’s immune system may not be the insuperable hurdle for Ad-based gene therapy that it 

sometimes may seem to be. However, care should be taken when extrapolating results from 

animal experiments to humans. There is ample evidence for a marked interspecies hetero-

geneity in the responses of the innate and adaptive immune systems, and within a species 

considerable strain differences may occur [1,9,43,45,199]. In humans too, we should an-

ticipate a significant heterogeneity in the immune responses to Ad vectors. In addition, vector-

neutralizing immunity is known to occur in a significant fraction of the human population. 

These factors, in combination with the non-linearity of the dose response after intravenous 

administration of Ad vectors, make it difficult to predict the effects of the vector 

administration of the currently available Ad vectors. Several of the new vector modifications 

reviewed in this paper may lessen the impact of these factors. Yet extensive clinical testing 

will be needed to establish whether the suggested modifications suffice to allow the Ad vector 

to evade the host immune system to such an extent that Ad-based gene therapy for treatment 

of hereditary diseases comes within reach. Meanwhile, the Ad’s capacity to provoke an 

immune response may be exploited for alternative purposes by using the adenovirus particles 

as adjuvant [200] or as safe vaccine against lethal pathogens [201,202].  
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2.3 Transgene product directed immune responses 

 

Whether for the treatment of genetic or acquired diseases, such as cancer and AIDS, 

the efficacy of most gene therapy protocols will depend on persistent, high-level expression of 

transgene-encoded proteins. In many instances, these proteins will constitute new antigens, 

and thus the induction of immune responses against transgene products is of concern for long-

term efficacy of these therapies. 

 Transgene-product immunity is prominent upon adenovirus-mediated gene transfer, 

e.g. against the Escherichia coli β-galactosidase, and the Tet-transactivater protein in animal 

models. Intraperitoneal injection of a replication-defective (E1-deleted) adenovirus harboring 

the E.coli β-galactosidase LacZ gene induced a long-lasting β-galactosidase-specific 

cytotoxic T-cell response. This response was even more specific then when mice were 

vaccinated with the known LacZ immunogenic peptide. This indicates that immunization with 

rAd vectors promotes greater reactivity against naturally processed β-galactosidase (Juillard 

et al., 1995). 

Instillation of a similar LacZ containing, E1-deleted adenovirus (Ad) in the lungs of 

mice elicited CTL responses both to the transgene and to the virus itself. The high expression 

of β-galactosidase (>80%) in the airways declined to undetectable levels by day 28 and was 

associated with peribronchial and perivascular lymphocytic infiltrates. Lymphocyte harvested 

from these animals showed specific lysis of cells infected with AdLacZ and a reduced level of 

specific lysis of adenovirus-infected cells expressing alkaline phosphatase. Cells infected with 

retroviruses expressing LacZ were also readily lysed and cells infected with retroviruses 

harboring alkaline phosphatase were spared from lysis, indicating that both transgene and 

vector virus elicited CTL. However, in mice tolerant to β-galactosidase there was also a 

transient expression of the β-galactosidase transgene observed. This indicates that although 

CTLs are readily induced by the transgene, the immune response against the virus is still 

capable of eradicating transduced cells (Yang et al., 1996b). Similar data were obtained when 

the virus was administered via the tail vein (Yang et al., 1996a). 

A strong LacZ-specific response was observed after subcutaneous injection of tumor 

cells in syngeneic mice. Normally injection of these cells give rise to tumors, but when the 

LacZ transgene was inserted this was abrogated. Not only LacZ specific CLTs were found, 

but also CTLs against the cell line. Since the cells harboring LacZ were able to produce 

tumors in nude mice, the involvement of T cells is implicated (Abina et al., 1996). 

 Not only LacZ is capable of inducing an immune response. Immunocompetent mice 

receiving an intramuscular injection with identical replication-defective adenovirus, encoding 

either self (murine) or foreign (human) erythropoietin, showed markedly distinct reactions. 

Animals injected with the human erythropoietin displayed only transient elevations in 

hematocrits, followed by anemia, whereas animals injected with murine erythropoietin 



Introduction 

 46 

displayed elevated hematocrits of approximately 80%, which were stable for at least 112 days. 

The main determinant of transgene loss was the appearance of CTLs against the transgene, 

but one has to keep in mind that in these vectors not only E1 was deleted, but also E3 

(Tripathy et al., 1996). 

  There are also two studies on the immunogenecity of (HSV) thymidine kinase (TK). 

A fusion between hygromycin (hyg) and TK (HygTK) was expressed in renal cell carcinoma 

(RCC) cell lines. The cytotoxic T-cell responses obtained were not specific for RCC antigen, 

but for both the Hyg and TK genes. However, the CTL reactivity was predominantly directed 

against the TK epitope, whereas only a modest reactivity was observed against the Hyg 

epitope (Jung et al., 1998). Not only in vitro as in the last study was observed, but also in vivo 

there are CTLs against TK. This is even the first study to show that these immune responses 

are not restricted to rodents, but also occur in patients. In a clinical trial aiming at inducing a 

graft-versus-leukemia response, 8 of 24 treated patients developed a specific cytotoxic CD8+ 

T cell-mediated immune response against donor T cells genetically engineered to express the 

TK gene. This led to the selective elimination of the modified cells (Thomis et al., 2001). 

 That non-human primates do also elicit an immune response against transgenes is  

evident from the study of Latta-Mahieu et al.. They used the tetracylcine-activated 

transcription factor commonly used in preclinical gene therapy, rtTA2-M2. In primates they 

injected intramuscular plasmid or adenoviral vectors encoding rtTA-M2 and looked at the 

cellular and humoral immune responses. They could show the presence of rtTA2-M2-sepcific 

interferon-γ (IFN-γ)-secreting cells, CTLs specific for rtTA2-M2 and specific anti-rtTA2-M2 

antibodies. This all corresponded to a reduced expression and duration of the transgene that 

was transcribed under the control of rtTA2-M2 (Latta-Mahieu et al., 2002). 

 The last examples of proteins with known immunogenecity are the much-used visual 

reporter proteins, enhanced green and yellow fluorescent protein (eGFP and eYFP). These 

proteins are readily detectable using techniques of fluorescence microscopy, flow cytometry, 

or macroscopic imaging. In a first study it was shown that eGFP is readily detected by eGFP-

specific CTLs after injection of adenovirus containing the eGFP gene into mice (Gambotto et 

al., 2000). A study by Morris et al. used lentiviral vectors encoding eGFP or eYFP. They 

transduced hematopoietic stem cells (HSCs) with these lentiviruses and observed complete 

disappearance of genetically modified eGFP/eYFP-expressing cells in 5 baboons that received 

the transplants. In 4 out of the 5 animals cytotoxic T cells specific for the transgenes were 

detected, demonstrating that immune reactions were responsible for the loss of transgene 

expression (Morris et al., 2004). 

 Since almost all of the studies above blame the specific cytotoxic T cells for the loss 

of the diverse transgenes it might be an option to circumvent CTL priming. Indeed, studies 

performed by Cordier et al. and Joos et al. highlight the effect of the vector on induction of 

CTLs and therefore expression of a transgene product. In mice with muscular dystrophy they 

had good results using a recombinant AAV (rAAV) vector expressing γ-sarcoglycan, a 
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subunit of the dystrophin-glycoprotein complex, which was missing in these mice. The 

expression of γ-sarcoglycan was driven by a muscle-specific promoter, a truncated version of 

muscle creatine kinase gene promoter. If the promoter was changed to ubiquitous 

cytomegalovirus (CMV) promoter lower levels of the trangene expression were observed and 

an immune respone to γ-sarcoglycan was apparent. This effect was also obtained when they 

changed γ-sarcoglycan in β-galactosidase (Cordier et al., 2001). Jooss et al. pinpointed this 

effect on dendritic cells (DCs) professional antigen presenting cells (APCs). Muscle fibers 

transduced with rAAV expressing LacZ elicited no CTL response or humoral immunity. 

When adenoviral vectors with LacZ were used there was a vibrant T-cell response to the 

transgene product that destroyed the targeted muscle fibers. Indeed these CTLs were also 

capable of eradicating rAAV-transduced muscle fibers. Moreover, adoptive transfer of DCs 

infected with AdLacZ lead to immune-mediated elimination of rAAV-LacZ transduced 

muscle fibers. AAV-LacZ transduced DCs failed to demonstrate β-galacosidase activity and 

were therefore also unable to elicit transgene immunity in adoptive transfer experiments 

(Jooss et al., 1998). 

 All in all there is ample evidence for transgene-induced immune responses in both 

rodents and (non-human) primates. The prime candidates for this target cell destruction are 

the MHC class-I restricted CTLs. Under normal circumstances, the CD8+ CTL response plays 

an important role in the control of virus infections, generating effector cells that kill infected 

cells upon recognition of viral peptides presented by MHC class-I molecules. Given the 

important role of CTLs in the control of virus-spread, it is no surprise that viruses have 

developed numerous strategies that frustrate and abrogate antigen-presentation. More on 

antigen presentation, viral immune evasion and our strategy to circumvent unwanted 

trangene-specific CTLs is given in the next part of the introduction (part 2.4). 

 

 

Part 2.4 Antigen processing, DRiPs and viral immune evasion 
 

2.4.1 Antigen processing 

 

 The adaptive immune system has evolved a remarkable array of cell surface molecules 

that are crucial mediators of cell-to-cell communication and thereby contribute to the 

organization of effective responses against invading pathogens and developing tumors. 

Antigen-presenting molecules, like MHC I and II, have a central role in the process of binding 

and presenting self-derived, pathogen-derived or tumor-associated antigen directly to T 

lymphocytes. The extracellular domains of these antigen-presenting proteins possess a high 
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degree of polymorphism that contributes to the diversity of peptides antigens that can be 

presented and subsequently recognized by T-cell receptors (TCR). 

 There are two distinct pathways operating to present peptides. The first involves the 

generation of T-cell epitopes through the processing and loading of exogenous derived 

antigens onto antigen-presenting molecules within the endocytic compartment of professional 

antigen presenting cells (APCs).  This process has been recognized to constitute of the MHC 

II restricted antigen presentation to CD4+ T cells. The second constitutes of endogenous 

peptide presentation of self- and pathogenic proteins via the proteasomal cleavage and 

subsequently MHC I restricted antigen presentation to CD8+ T cells. More recently an 

alternative pathway, the so-called “cross-presentation” i.e. presentation of exogenous antigens 

by classical MHC I molecules, has been recognized for its importance especially in CD8+ T 

cell-mediated immunity against tumor, bacterial and viral antigens and tolerance to self-

antigens. All these pathways will be discussed here in more detail. 

 Although MHC II molecules are nowadays also recognized to be capable of presented 

some endogenously synthesized antigen, they are primarily characterized as molecules that 

acquire and present exogenous antigens (Watts, 1997). There are specialized endolysosomal 

compartments in APCs, so-called MHC II compartments (MIICs), where the MHC II 

molecules acquire these antigens (Watts, 1997; Guagliardi et al., 1990; Peters et al., 1991). It 

is supposed that endocytic sorting motifs in the cytoplasmic tails of  MHC II molecules have 

crucial roles to transport them to the MIICs (Bakke and Nordeng, 1999; Lizee et al., 2005). 

MIICs are thought to intersect with the endocytic pathway in APCs and contain internalized 

antigens derived from the extracellular environment (Amigorena et al., 1994; Hiltbold and 

Roche, 2002; Guermonprez et al., 2002). MHC II molecules are heterodimers, which consists 

of an α and a β chain. Each newly synthesized molecule binds to trimerized invariants chains 

(Ii) in the endoplasmatic reticulum (ER) lumen. Ii serves to prevent the binding of peptides 

derived from the secretory pathway and also mediates sorting from the trans-Golgi into MIICs 

of the endocytic pathway (Lotteau et al., 1990; Cresswell, 1996; Roche and Cresswell, 1990; 

Odorizzi et al., 1994). Once in this acidic environment of the MIIC, the Ii is degraded by 

proteolytic enzymes of the cathepsin family (Villadangos et al., 1999) to leave the class II-

associated Ii peptide (CLIP) in the peptide-binding groove. The CLIP fragment is removed by 

the MHC-encoded HLA-DM molecule (Denzin and Cresswell, 1995). This is a non-classical 

MHC II molecule and promotes MHC II antigenic peptide binding by proteolytic removal of 

CLIP (Sherman et al., 1995; Alfonso and Karlsson, 2000). After antigenic binding the MHC 

II heterodimers are transported to the cell surface for presentation to CD4+ T cells. The 

heterodimers can recycle from the membrane through early endocytic compartments that are 

different from the MIICs, which are late endosomal compartments (Hiltbold and Roche, 2002; 

Harding et al., 1989). The pH is however low enough to facilitate peptide exchange, which 

can be a second, distinctly different, source of antigenic peptides to be presented on the cell 

membrane (Lindner and Unanue, 1996; Griffin et al., 1997). 
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  MHC I molecules are classically known to present antigens that are synthesized 

intracellularly (Pamer and Cresswell, 1998). They consist of a membrane-integrated 

glycoprotein, the MHC heavy chain, a small soluble protein, β2 microglobulin (β2m) and 

present short peptides usually of 8-10 amino acids. There is a constitutive process in the cell, 

which cleaves cytosolic and nuclear proteins into peptides for loading on the MHC I. All 

proteins that are expressed in a cell are eligible for this processing, including viral or bacterial 

proteins synthesized endogenously. The most general entrance to the cytosolic protein 

degradation pathway (i.e. proteasomal degradation) of substrates involves the conjugation of 

ubiquitin on internal lysines (Ciechanover, 1994; Hochstrasser, 1996). The ubiquitinating 

mechanism involves three enzymatic activities, proteins called E1, E2 and E3. They work in a 

serial order activating ubiquitin first and then covalent linking of it to specific lysine residues 

in the target protein. Subsequently polyubiquitination can occur via conjugation of additional 

ubiquitin molecules to lysine residues in the ubiquitin itself (Hochstrasser, 1996). This 

polyubiquitin chain may serve two main purposes: one, to unfold the target proteins, and two, 

as recognition elements for cytosolic proteasome complexes. Not only old proteins have their 

fate in the proteasomal degradation machinery, but also so-called defective ribosomal 

products (DRiPs). The defective translation products of ribosomes, which are supposed to be 

error prone, are a rapid and important source of peptides for MHC I (Yewdell et al., 1996). 

More details on DRiPs will be given further on in this part. 

 The proteasome is a multi catalytic complex, which resides in the cytosol. It has a 

barrel-shaped catalytic core, the 20S proteasome, which consists of 4 heptameric rings. The 

two outer rings consist of 7 different but homologues α subunits (α1-α7) that provides the 

structure, control the access to the catalytic core and interact with regulatory factors (Groll et 

al., 1997). The two inner rings are each composed of 7 β subunits (β1-β7) of which three 

display catalytic activity (β1-d, β2-Z and β5-MB1). The central gate formed by the α subunits 

is normally closed by their N-termini and this keeps the proteasome in an inactive state (Groll 

et al., 1997; Groll et al., 2000). The 26S proteasome is formed through the ATP-dependent 

association of two 19S regulator complexes (Ferrell et al., 2000) with the two outer α-rings of 

the 20S core (Peters et al., 1994; Voges et al., 1999). The 19S base, which binds to the 20S 

core, is responsible for the ATP-dependent opening of the central gate and therefore the 

activation of the 20S core (Glickman and Ciechanover, 2002) as well as the unfolding of the 

protein substrates (Braun et al., 1999; Strickland et al., 2000). The 19S lid (the upper part) is 

thought to play a role in the recognition of poly-ubiquitinated proteins and is essentially 

required for their degradation. 

 The catalytic machinery of proteasomes is replaced under conditions of IFN-γ 

induction.  There are three IFN-γ inducible proteasome subunits, βi1, βi2 and βi5, and these 

harbor active sites and replace the corresponding constitutive b-subunits upon de novo 

proteasome synthesis. In consequence, new 20S core complexes with altered proteolytic 

properties are generated. This altered proteasome system forms the immunoproteasome, 
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which has a connection with the cellular immune response (Aki et al., 1994; Hendil et al., 

1998). This immunoproteasomes are constitutively expressed in cells with antigen presenting 

functions like cells in the thymus, spleen and lymphnodes (Macagno et al., 1999; Stohwasser 

et al., 1997; Eleuteri et al., 1997). The presence of the immuno-subunits enhances the 

presentation of a major subset of virus-derived antigen peptides (Schwarz et al., 2000; Sijts et 

al., 2000a; Sijts et al., 2000b; van Hall et al., 2000). 

 After peptide generation by the proteasome, the peptides are transported into the ER 

via the transporter associated with antigen processing (TAP). TAP is a heterodimer with two 

subunits, TAP.1 and TAP.2 (Monaco, 1992). Both TAP subunits have a N-terminal 

hydrophobic region with multiple transmembrane domains and a cytosolic C-terminal ATP-

binding domain. In vitro studies have demonstrated the ability of TAP to translocate peptides 

across the ER membrane (Shepherd et al., 1993; Androlewicz et al., 1993; Neefjes et al., 

1993). The binding site for peptides is comprised of regions of both TAP.1 and TAP.2 at the 

C-terminal end of the hydrophobic segment, adjacent to the cytosolic hydrophilic domain. 

Peptide binding to TAP is ATP-independent, while translocation is ATP-dependent (Neefjes 

et al., 1993; Androlewicz and Cresswell, 1994). There is a large range in peptide binding 

affinity depending on the peptide sequence and this may vary three orders of magnitude 

(Uebel et al., 1997). The current model of (nonameric) peptide binding to TAP suggests that 

the peptide backbone as well as side chain interactions at positions 1 to 3 and 9 are 

predominantly involved in this process (Schumacher et al., 1994; Uebel et al., 1997). 

 In the ER the transported peptides are mounted on the MHC I molecule. Proper 

folding of the MHC I molecules is a prerequisite for leaving the ER and shuttle to the 

membrane. The β2m subunit is obligate in this perspective and its absence leads to misfolding 

and degradation of the heavy chain and therefore no expression of MHC I molecules on the 

cell surface (Williams et al., 1989; Zijlstra et al., 1990). Also, absence of expression of either 

or both of the TAP genes leads to poor MHC I expression on the cell surface (Cerundolo et 

al., 1990; Salter and Cresswell, 1986). Since heavy chain-β2m dimers are formed, this 

suggests that bound peptide is an essential component of a class I molecule as well as β2m 

expression is. The native conformation of an MHC class I molecules requires therefore 

peptide association and β2m to satisfy ER quality control processes before shuttling to the 

membrane via the trans-Golgi network. Here they present the peptides to the CD8+ cells. 

After several hours they are transported to the lysosomes for degradation. 

 In most somatic cells this is the only pathway of MHC I presentation. In contrast, in 

APCs there is an alternative pathway (Yewdell et al., 1999; Heath and Carbone, 2001). APCs 

can present exogenously derived antigens in the context of MHC I molecules in a process 

called cross-presentation. Upon phagocytosis of exogenous proteins there is limited 

proteolysis and these degradation products are exported to the cytosol. Loading of exogenous 

antigens onto MHC I molecules occurs within a specialized endocytic (lysosomal-associated 

membrane protein-1 (LAMP-1) positive) compartments, rather than in the ER (Lizee et al., 
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2003; Guermonprez et al., 2003; Houde et al., 2003; Ackerman et al., 2003). These 

compartments contain all components necessary for cross-presentation, like MHC I, β2m and 

TAP and even proteasomal complexes, which are associated with the cytoplasmic face of the 

compartments (Guermonprez et al., 2003; Houde et al., 2003; Ackerman et al., 2003). It is 

now known that this cross-presentation of exogenous antigens to CD8+ T cells leads to cross-

priming, a process which is essential for establishing tolerance to self-antigens, as well as for 

generating optimal cell-mediated immune responses against numeral viral, bacterial and 

tumor antigens in vivo (Kurts et al., 1996; Sigal et al., 1999; Svensson and Wick, 1999; Huang 

et al., 1994; Lizee et al., 2003). 

 

2.4.2 Defective Ribosomal Products (DRiPs) 

 

The CD8+ T cells play an important role in the immune responses to many 

intracellular pathogens. Peptides of 8 to 11 residues are presented to the CD8+ T cells via the 

MHC class I. These peptides are derived from a diverse set of cellular and foreign proteins 

and no proteins are known to escape peptides generation by this mechanism (Yewdell and 

Bennink, 1992; Townsend and Bodmer, 1989).The vast majority of class I  bound peptides 

derive from endogenously synthesized proteins, but also exogenous proteins, introduced 

either artificially or during bacterial or viral infection, can be processed for presentation by 

the MHC class I pathway (Yewdell and Bennink, 1992). Most of these small peptides are 

generated by the proteasome (Voges et al., 1999). The proteasome is the major protease used 

in eukaryotic cells to degrade damaged or misfolded proteins. After proteasomal cleavage the 

peptides are transported to the ER via the TAP transporter. Here they are loaded onto the 

newly synthesized MHC class I molecules and transported via vesicles to the cell membrane 

where they are presented to the CD8+ T cells.  

The sources of proteasomal substrates are not clearly defined. In the initial model old 

proteins were degraded by the proteasome. A major problem to this theory is that virally 

infected cells can be recognized by CD8+ T cells in less then 60 minutes after viral 

penetration (Esquivel et al., 1992). Since it takes MHC class I molecules 10 to 15 minutes to 

reach the cell surface once they are loaded with peptides, it is hard to believe that there are 

already virus proteins that served there goal and are degraded “of old age”.  The current 

model is that most of the peptides produced for MHC class I loading are derived from the so-

called Defective Ribosomal Products (DRiPs). There is a wide variety of DRiPs identified. 

Not only truncated or misfolded proteins, but also the products that are translated from 

alternative open reading frames are considered as DRiPs (Yewdell et al., 2003; Yewdell et al., 

1996). Indeed several proteins are produced by translation of alternative ORFs (Fetten et al., 

1991; Malarkannan et al., 1995; Shastri et al., 1995; Wang et al., 1996; Mayrand and Green, 

1998; Mayrand et al., 1998; Schwab et al., 2003) and from non-AUG start codons 

(Malarkannan et al., 1995; Shastri et al., 1995; Schwab et al., 2003). These DRiPs are shown 
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to play an important role in peptide generation (Yewdell et al., 1996; Schubert et al., 2000; 

Reits et al., 2000) and are actually the main source of antigenic peptides for long-lived 

proteins (Khan et al., 2001). 

DRiPs are also identified as a source for new tumor antigens. Here an increasing 

number of unexpected transcriptional or translational products have been found. Tumor-

specific T cells were shown to recognize epitopes that were derived from intron sequences 

(Coulie et al., 1995; Guilloux et al., 1996; Lupetti et al., 1998; Robbins et al., 1997), from 

alternative ORF products (Ronsin et al., 1999; Probst-Kepper et al., 2001; Wang et al., 1996; 

Aarnoudse et al., 1999; Wang et al., 1998) or even from reverse strand transcription (Van Den 

Eynde et al., 1999). 

DRiPs are nowadays more and more understood and there is ample evidence that 

especially in peptide generation and therefore CTL destruction of infected cells, they play a 

large role and are necessary. 

 

2.4.3 Viral immune evasion 

 

It should come to no surprise that many viruses have evolved strategies to counter 

proteasomal degradation, peptide generation, and MHC class I transport. The human 

cytomegalovirus (HCMV) is the most notorious virus in this perspective and encodes in its 

unique short region of the viral genome for at least five proteins (US2, US3, US6, US10 and 

US 11) that inhibit MHC class I pathway (Tortorella et al., 2000; Furman et al., 2002). There 

are numerous sites in the pathway where viruses can act and HCMV targets them all. 

TAP represents an obvious target for viral inhibition, because the vast majority of 

peptides presented by MHC I molecules are generated in the cytosol and require translocation 

across the ER membrane. Both the herpes simplex virus (HSV) ICP47 and the HCMV US6 

gene products exploit this bottleneck. ICP47 inhibits peptide binding to TAP, but does not 

affect ATP binding (Tomazin et al., 1996; Ahn et al., 1996b). ICP47 acts as a competitive 

inhibitor of peptide binding, because its affinity for TAP is 10-1000 fold greater than most 

peptides. It is not translocated across the ER membrane and it remains TAP associated, 

thereby blocking the TAP for other peptides. US6 is ER localized and acts totally opposite, in 

that it inhibits peptide translocation, but not peptide binding (Lehner et al., 1997; Hengel et 

al., 1997; Ahn et al., 1997). It prevents conformational rearrangements of TAP and ATP 

binding to TAP (Hewitt et al., 2001; Kyritsis et al., 2001). Since ATP binding is crucial, it 

starves the TAP from its energy and no peptides will enter the ER. 

Another option is destruction or retention of MCH I molecules in the ER. HCMV US2 

and US11 are expressed in the ER and expression of either of these proteins causes a rapid 

degradation of newly synthesized MHC I heavy chains (Wiertz et al., 1996b; Wiertz et al., 

1996a). Both proteins can redirect the MHC I to the cytosol where it is degraded by the 

proteasome. Moreover, HCMV US3 retains MHC I in the ER by binding to it and therefore 
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sequesters them in the ER (Ahn et al., 1996a). The adenovirus E3-19K protein forces 

retention of the MHC I in the ER via an ER retrieval signal in its cytoplasmic tail (Paabo et 

al., 1989). Murine CMV (MCMV) gp40 also retains MHC I in the cell, but does so in the cis-

Golgi compartment (Ziegler et al., 1997). A different way of destructing MHC I has the 

human herpesvirus 7 (HHV 7). Its U21 gene product binds to the MHC I in the ER and targets 

them subsequently to the lysosome, where they are both degraded (Hudson et al., 2001). 

Arrival at the cell membrane does not protect MHC I from viral interference. The 

Kaposi’s sarcoma-associated herpes virus (KSHV or HHV 8) encodes two proteins K3 and 

K5 and expression of either of them causes rapid down-regulation of MHC I from the plasma 

membrane by clathrin-dependent endocytosis (Ishido et al., 2000; Coscoy and Ganem, 2000). 

Once inside the cell the MHC I molecules are sorted into an acidic endocytic compartment 

where they are degraded by acidic proteases (Coscoy and Ganem, 2000; Lorenzo et al., 2002). 

Also human immunodeficiency virus 1 (HIV-1) Nef down-regulates MHC I on the cell 

surface. This Nef mediated internalization of MHC I is clathrin-independent and the class I 

molecules are sequestered in the trans-Golgi network (Schwartz et al., 1996; Le Gall et al., 

2000; Greenberg et al., 1998). But already in the first step of antigen generation, proteolysis 

of proteins, two examples exist that display interference with this proteolysis. HCMV 

expresses a viral phosphoprotein, pp65, which inhibits the generation of HCMV specific T-

cell epitopes (Gilbert et al., 1996). 

More important for this thesis is the Epstein-Barr virus (EBV) encoded nuclear 

antigen I (EBNA 1) proteins which interferes with its proteasomal degradation. Epstein Barr 

Virus (EBV) is a gamma herpes virus and infects over 90 % of the human adult population. It 

is considered to be the classic example for immune surveillance of persistent viral infections 

in humans (Klein, 1994). It has three latency programs, which differ in protein expression 

profiles. However, the Epstein Barr virus nuclear antigen 1 (EBNA-1) is expressed in all 

latency programs and is therefore associated with all EBV-related malignancies. 

 EBNA-1 is essential for the maintenance of the viral genome as stable episomes 

during latency. It binds as a dimer to the viral origin of replication and ensures B-cell growth 

(Bochkarev et al., 1996; Shah et al., 1992; Yates et al., 1985; Rowe et al., 1992). Although 

EBNA-1-specific cytotoxic-T lymphocytes (CTLs) circulate in patients (Blake et al., 1997; 

Blake et al., 2000; Rickinson and Moss, 1997), the EBNA-1-positive cells are not recognized 

and killed. This has been attributed to the presence of the large glycine and alanine-rich repeat 

(GAr), which is not required for genome maintenance or cellular transformation (Lee et al., 

1999), but has an immune evasion function. The GAr domain of EBNA-1 prevents cytotoxic 

T-lymphocyte (CTL)- epitope generation (Ossevoort et al., 2003) by inhibiting the 

proteasomal degradation (Levitskaya et al., 1997; Levitskaya et al., 1995). The inhibition 

requires the interaction of at least three alanine residues of the GAr with adjacent hydrophobic 

binding pockets of a putative receptor at the proteasome (Sharipo et al., 2001). Although 

efficient, the GAr may not be sufficient to prevent the generation and presentation of 
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antigenic peptides altogether (Voo et al., 2004; Tellam et al., 2004; Lee et al., 2004). 

Especially, the GAr may not inhibit the synthesis of defective ribosomal products (DRiPs) 

that may generate antigen-specific antigenic peptides.  

We used this GAr in our studies to create 'stealthed' transgenes for use in gene-therapy 

applications. The choice for the GAr domain of EBNA-1 was based on the small impact of the 

strategy to other endogenous expressed proteins. The strategies described in this part that 

decrease the MHC I content on the cell membrane have a major limitation. Cells deficient in 

self-MHC I products are recognized by natural killer (NK) cells and killed by these. Since the 

GAr acts purely in-cis, this should be no problem for our approach. 
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A major obstacle in gene-therapy protocols is T-cell-mediated destruction of transgene-

expressing cells. Therefore new approaches are needed to prevent rapid clearance of 

transduced cells. We exploited the Gly-Ala repeat (GAr) domain of the Epstein–Barr virus 

nuclear antigen-1, since the GAr prevents cytotoxic T-lymphocyte-epitope generation. Here 

we show that three different enzymes (viz. the E. coli LacZ gene encoded b-galactosidase, 

firefly luciferase, and HSV1 thymidine kinase) fused with the GAr retained their function. 

Moreover, linking GAr with b-galactosidase successfully prevented recognition of GAr-LacZ-

expressing cells by b-galactosidase-specific CTL. Nonetheless, vaccination with a GAr-LacZ 

adenovirus or with an allogeneic cell line expressing GAr-LacZ resulted in the induction of b-

gal-specific CTL. This demonstrates that the GAr domain does not inhibit crosspresentation 

of antigens, but only affects breakdown of endogenously synthesized proteins. These data 

demonstrate how the GAr domain can be exploited to create immuno‘stealth’ genes by hiding 

transgene products from CTL-mediated immune attack.  
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Introduction  

The transfer of genes holds promise as a therapeutic approach for the treatment of a 

wide variety of diseases. One of the limitations imposed onto gene therapy is the immune 

response directed against vector and/or trans-gene product.
1–4 

While beneficial for the 

development of recombinant vaccines against infectious agents
5,6 

and tumor cells,
7,8 

it 

significantly impedes the development of those gene-therapy approaches where persistent 

expression of the transgenes encoding neoantigens is required. Long-term humoral and 

cellular immunity against several viral-vector systems prevails in a large part of the 

population, or may be induced upon the first vector administration. This may frustrate 

(re)administration of the vector and lead to elimination of the transduced cells. Developments 

in the viral and nonviral technology greatly improved the efficiency of the gene-transfer 

vectors. Retroviral, lentiviral, adenoviral, and adeno-associated viral vectors are available 

from which all virus-derived protein-coding genes have been re-moved.
9 

This eliminated, 

albeit not completely,
10 

the problem associated with the cellular-immune response against the 

vector-derived antigens.  

However, a cellular immune response against neoantigens encoded by the transgene may still 

be induced. This problem has been most prominently described following adenovirus-

mediated transfer of the E.coli-derived LacZ gene, encoding b-galactosidase. Strong immune 

responses against β-galactosidase have been observed in rodents following adenovirus-

mediated gene transfer into liver, muscle, lung, and brain, leading to local inflammation, 

destruction of the transduced cells, and loss of transgene expression.
4,11–13 

Antigen-specific 

major histocompatibility complex (MHC) class-I restricted cytotoxic T lymphocytes (CTL) 

are the prime suspects responsible for target cell destruction.
13–16 

This requires prior activation 

of CD4
+ 

T cells.
1,16–23 

Also in primates a CTL response directed against the transgene product 

has been shown to occur.
24,25 

In a clinical trial aiming at inducing a graft versus leukemia 

response, eight of 24 treated patients developed a specific cytotoxic CD8
+ 

T-cell-mediated 

immune response against the cells genetically engineered to express the Herpes Simplex 

Virus 1 (HSV1) thymidine-kinase (TK) gene. This led to the selective elimination of the 

modified cells.
25 

 

Previous attempts to reduce the T-cell responses against the neoantigens during gene therapy 

focused on blocking the MHC class I-and class II-restricted T-cell responses, or the 

prevention of costimulation of T cells.14,18–20,26–28 However, these approaches were either not 

fully effective or resulted in a general immunosuppression. The ideal strategy would 

selectively prevent the presentation by MHC class I of the transgene-derived peptides.  
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Under normal circumstances, the CD8
+ 

CTL response plays an important role in the 

control of virus infections, generating effector cells that kill infected cells upon recognition of 

viral peptides presented by MHC class I molecules. Given the important role of CTL in the 

control of virus-spread, it is no surprise that viruses have developed numerous strategies that 

frustrate and abrogate antigen presentation.
29,30 

One such example comes from the Epstein–

Barr Virus (EBV) nuclear-antigen 1 (EBNA-1). EBNA-1 is expressed in latent EBV-infected 

cells. Here it is indispensable for the virus as it is required for the maintenance of the viral 

episomes. Although EBNA-1-specific CTL have been described in infectious mononucleosis 

patients and healthy carriers, they cannot recognize EBV-infected cells.
31–36 

The failure to 

recognize endogenously expressed EBNA-1 has been attributed to the glycine-alanine repeat 

(GAr) domain in the EBNA-1 sequence that protects EBNA-1 from proteasomal degradation 

and subsequent presentation in the context of MHC class I.37,38 This successful immune-

evasion strategy points to the unique opportunity to hide cells expressing transgenes from 

CTL-mediated target-cell destruction by incorporation of the GAr sequence into the 

transgene.  

Here, we show that inclusion of the full EBNA-1-derived GAr domain does not inhibit 

enzyme function. A recombinant adenovirus expressing the GAr-containing LacZ gene as its 

transgene was able to deliver a functional enzyme after infection in mice invivo, resulting in 

the induction of a strong β-galactosidase-specific CTL response in the recipient mice. 

However, these murine antigen-specific CTL did not recognize cells expressing the GAr-

transgene fusion, demonstrating that the EBNA-1-derived GAr can be exploited to create 

‘stealth’ transgenes by hiding the transgene-expressing cells from CTL-mediated immune-

attack.  
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Figure1 

Schematic outline of the chimaeric Gly-Ala repeat constructs. Indicated are the Gly-Ala repeat unit (GAr; aminoacids 90–328) and the 

nuclear localization signal (nls, aa 378–386). The open reading frames of 

E.coli β-galactosidase, HSV1-TK, and firefly luciferase start at aa 427. In the C-terminal part of LacZ, the H-2
d 

CTL epitope is indicated (aa 

1303–1311). Also indicated are the deletions of the GAr region and the nls that were made in luciferase. 

 

 

Results  

 
GAr does not inhibit protein function  

To study whether the GAr domain can be exploited to enhance the persistence of gene 

expression by minimizing CTL-mediated recognition of transgene-expressing cells, we first 

tested whether enzymes retained their function if fused with the full-length GAr domain. To 

this end, we constructed plasmids encoding GAr-β-galactosidase (pGAr-LacZ), GAr-HSV-

thymidine kinase (pGAr-TK), and GAr-luciferase (pLXRN-GAr-Luc; Figure 1). Transfection 

experiments revealed that the functional properties of the enzymes were not affected as 

evidenced from β-galactosidase activity in Hep2 cells (Figure 2a), [
3
H]thymidine 

incorporation and ganciclovir sensitivity in Rat2 cells (Figure 2b), and luciferase activity in 

911 cells (Figure 2c), respectively. Thus, these data indicate that the GAr does not inhibit the 

function of proteins harboring the full-length GAr. A slight (three-fold) reduction in luciferase 

activity can be attributed to the presence of the GAr in the transcription unit, and a mere two-

fold reduction to the nls. However, functionally the vectors are equivalent to the unmodified 

predecessors.  

 

Delivery of GAr-LacZ by a recombinant adenovirus  

As recombinant viruses most efficiently facilitate gene transfer, we generated a 

recombinant adenovirus (rAd5) with the GAr-LacZ gene (rAd5-GAr-LacZ) to test the 

stability of the repeats in the adenovirus backbone. Whereas manipulation of plasmids with  
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Figure 2 

GAr fusion enzymes retain their activity. (a) Activity of GAr-β-galactosidase. Hep2 cells were infected with rAd5-nls-LacZ or rAd5-GAr-

LacZ (4 PFU/cell). At 48h postinfection, the cells were fixed and stained for β-galactosidase activity. In addition, H1299 cells grown in 10-cm 

dishes were infected with rAd5-nlsLacZ or rAd5-GArLacZ with 10 PFU/cell. After 48h, protein extracts were made and size-fractionated by 

SDS-PAGE, transferred to nitrocellulose membranes and probed with an anti-LacZ mouse monoclonal antibody (Roche, Basel, Switzerland). 

(b) Activity of GAr-TK. The TK-deficient cell line Rat2 (R2, TK-) was used to generate stable cell lines containing the various plasmids. 

CBeb.C1 and CDNA.C1 are G418-resistant Rat2 cells obtained after transfection of the empty pCBeb and pCDNA3.1 plasmids, 

respectively. GArTK.C1 and C10 are independent G418-resistant clones of Rat2 cells stably expressing the pGAr-TK plasmid. TK.C9 and 

C13 are two independent G418-resistant Rat2 clones derived by transfection of the plasmid pCDNA-TK. Rat1 (R1) is the TK
+ 

parental cell 

line from which Rat2 had been derived. [
3

H] thymidine incorporation (± s.d.) is represented per 10
6 

cells. The inset depicts a Western 

analysis of the Rat2 clones with a polyclonal goat anti-HSV-TK antibody. The faster-migrating band in clone GAr-TK.C1 may result from 

splicing within the TK coding region.
59 

The same cell lines were analysed for their ganciclovir sensitivity by growing these cells for 48h in 

the presence of varying concentrations of ganciclovir. Cell viability was determined with the WST-I colorimetric assay. (c) Activity of GAr-

luciferase. Cultures of 911 cells were transfected with pCBeb (as a negative control), pLXRN-GAr-luc and the GAr- and nls-deletion 

derivatives. Cells were lysed 18h post-transfection and the luciferase activity was measured in the lysates. The mean of three experiments is 

shown, expressed as light units/10
6

cells ± 1 s.d. 

 

 
the full-length GAr proved difficult as the repeats lead to frequent internal deletions in the 

GAr domain (DJMvdW and MO, unpublished observations), rAd5 vectors carrying the GAr-

LacZ fusion gene could be generated and be propagated with titers similar to those of vectors 

lacking the GAr domain. Western analysis of infected cells detected β-galactosidase at the 

expected molecular weights of 150 kDa for GAr-LacZ and 115 kDa for nls-LacZ (Figure 2a). 

This confirms that the entire GAr-β-galactosidase fusion protein was synthesized. Infection of 
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Hep2 cells with rAd5-nls-LacZ as well as rAd5-GAr-LacZ with 4 plaque-forming units 

(PFU)/cell yielded β-galactosidase activity in approximately 50% of the cells 2 days after 

infection (Figure 2a). Similarly, intracellular staining revealed that the amount of β-

galactosidase present after infection of Hep2 cells with rAd5-GAr-LacZ with 10 PFU/cell was 

similar to the amount observed after infection with rAd5-nls-LacZ (data not shown). Thus, 

rAds harboring the GAr repeats can be stably propagated and used to deliver efficiently 

functional GAr fusion genes to cells.  

 
 

 

Figure 3 

Delivery by rAd leads to the expression of the entire GAr-LacZ with the same efficiency as delivery of nls-LacZ. To determine the efficiency 

of gene delivery, MEC were infected with 10 PFU/cell of rAd5-GAr-LacZ and rAd5-nls-LacZ, respectively. At 2 days postinfection, the β-

galactosidase activities were determined by intracellular FACS staining with the fluoreporter LacZ flowcytometry kit (Molecular Probes Inc., 

Eugene, OR, USA). The dotted line represents the signal in rAd5-nls-LacZ-infected cells, the solid line depicts the signal in rAd5-GAr-LacZ-

infected cells. In the lower panel, the negative controls are shown for both cell populations. 

 

 

GAr inhibits recognition of LacZ-expressing cells by CTL  

As recognition of transgene expressing cells by CTL is an important limitation for 

prolonged transgene expression invivo, we investigated whether target cells infected with 

rAd5-GAr-LacZ could present the H-2L
d
-restricted CTLepitope Lac876–884 

(TPHPARIGL)
39 

to LacZ-specific CTL. Therefore, BALB/c mouse embryo cells (MEC) were 

infected with either rAd5-nls-LacZ or rAd5-GAr-LacZ. After 2 days, when both infected 

MEC populations expressed similar transgene levels as determined by intracellular FACS 

staining (Figure 3), as well as by determination of β-galactosidase activity (data not shown), 
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the cells were used as stimulators for LacZspecific CTL. LacZ-expressing MEC but not GAr-

LacZ-expressing MEC were efficiently recognized by LacZ-specific CTL as determined by an 

interferon-γ production assay (Figure 4). The GAr-LacZ-expressing and LacZ-expressing 

MEC did not differ in MHC expression and the GAr-LacZ-expressing MEC were efficiently 

recognized by LacZ-specific CTL after loading with Lac876–884 peptides (data not shown). 

These findings indicate that, despite similar transgene expression, the GAr inhibits the 

generation of CTL epitopes derived from LacZ. 

 
 

 

Figure 4 

GAr prevents the presentation of the LacZ-encoded CTL epitope TPHPARIGL to LacZ-specific CTL. Xc9 MEC were mock-infected, 

infected with 5 PFU/cell rAd5-nls-LacZ or rAd5-GAr-LacZ. After 2 days, at the time when 10 000 LacZ-specific CTL were added to 15 000 

infected cells (E:T ratio 1:1.5), the LacZ expression of MEC infected with rAd5-nls-LacZ or rAd5-GAr-LacZ was similar to LacZ expression 

as determined by intracellular FACS with a fluoreporter LacZ flowcytometry kit (Figure3). After 24h CTL activation was determined by 

measuring the IFN-γ produced by LacZ-specific CTL in the supernatant. Xc9 MEC infected with rAd5-nls-LacZ but not with rAd5-GAr-

LacZ are efficiently recognized by β-galactosidase-specific CTL. 

 
 

Induction of β-galactosidase specific CTL  

The above studies show that GAr-LacZ-expressing target cells are poorly recognized 

by β-galactosidase-specific CTL. To study whether the GAr fused with β-galactosidase would 

also inhibit CTL induction in vivo, we immunized mice with rAd5-GAr-LacZ as well as with 

rAd5-nls-LacZ viruses (10
8 

PFU/mouse), as controls. At 21 days postinjection, splenocytes 

were harvested and analyzed for the presence of β-galactosidase-specific CTL. Mice 

vaccinated with either rAd5-nls-LacZ and rAd5-GAr-LacZ viruses mounted a strong β-

galactosidase-specific CTL response (Figure 5). Together, these data indicate that the GAr 

does inhibit CTL recognition but not CTL induction.  

Since presentation of β-galactosidase-derived CTL epitopes by GAr-LacZ-expressing 

target cells is strongly inhibited by the action of the GAr, it is conceivable that CTL directed 

against GAr-containing proteins are primed via an indirect pathway, which is not hampered 
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by the activity of the GAr. To study the mechanism responsible for priming of CTL directed 

against GAr-containing antigens, we set out to vaccinate BALB/c mice (H-2
d
) with GAr-

LacZ-expressing C57BL/6 (H-2
b
) cells unable to present the LacZ epitope to β-galactosidase-

specific CTL directly. MEC from C57BL/6 mice were infected with 1 PFU/cell rAd5-GAr-

LacZ. After 2 days, the cells were thoroughly washed, irradiated,
40 

and used for vaccination of 

the completely allogeneic BALB/c mice (H-2
d
). As the allogeneic H-2

b 
MHC expressed by 

the immunizing MEC cannot prime H-2
d
-restricted host CTLs directly, generation of β-

galactosidase-specific CTL requires crosspriming, that is, the uptake and H-2
d
-restricted 

representation of antigen by host antigen-presenting cells (APC). Vaccination of BALB/c 

mice with the completely allogeneic vaccine resulted in the induction of a β-galactosidase-

specific CTL response, indicating that GAr-LacZ crossprimes CTL (Figure 6). To exclude the 

possibility that BALB/c anti-C57BL/6 allospecific CTL induced by immunization of BALB/c 

mice with C57BL/6 cells crossreacted on the β-galactosidase epitope, we vaccinated BALB/c 

mice with uninfected C57BL/6 cells. These mice, however, did not generate β-galactosidase-

specific immunity (Figure 6).  

 

 

 

Figure 5 

Vaccination with rAd5-GAr-LacZ leads to induction of a strong β-galactosidase-specific CTL response. BALB/c mice were naive, were 

immunized with 10
8 

PFU rAd5-nls-LacZ or with 10
8 

PFU rAd5-GAr-LacZ by intraperitoneal administration. After 3 weeks, β-galactosidase-

specific CTL activity was analysed in a cytotoxicity assay on BALB/c MEC (H-2
d

; control, ♦), LacZ-peptide-loaded BALB/c MEC (�), and 

LacZ-transfected BALB/c MEC (�). The rAd5-GAr-LacZ-immunized animals have mounted a β-galactosidase-specific CTL response 

similar to rAd5-nls-LacZ vaccinated animals.  

 

 

We were unable to isolate detectable amounts of rAd5-GAr-LacZ virus from the 

C57BL/6 MEC 2 days postinfection (<0.01 PFU/cell) by washing or freeze– thawing the 

vaccine cells. Hence the maximum amount of free viruses administered with the vaccine 

(<400 PFU) is well below the minimal amount of viruses required to induce an immune 

response (>10
6 

PFU/ mouse; data not shown). Thus the induction of the immune response 

cannot be attributed to carry-over of free rAd5-GAr-LacZ vector viruses with the vaccine. 

Taken together, these data indicate that GAr-β-galactosidase crossprimes CTL and explain 
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why LacZ-specific CTL induction is not blocked, whereas recognition of GAr-LacZ-

expressing cells is inhibited by the action of the GAr.  

 

 

Prolonged LacZ expression in vivo by delivery of GAr-containing LacZ  

We have demonstrated that while the GAr domain protects antigens from destruction 

by antigen-specific CTL in vitro, it does not inhibit the induction of antigen-specific CTL in 

vivo. To assess whether insertion of the GAr will result in prolonged transgene expression in 

vivo, we injected either rAd5-GAr-LacZ or rAd5-nls-LacZ into the gastrocnemius muscle of 

two groups of BALB/c mice (H-2
d
). At days 8 and 19 postinjection, the muscles were 

analyzed for β-galactosidase activity as a read-out for transgene expression. At day 19, β-

galactosidase-positive cells are present in the muscle transduced with rAd5-GAr-LacZ. In 

contrast, the β-galactosidase-positive cells were eradicated in the rAd5-nls-LacZ-injected 

muscle, demonstrating that the GAr prolongs transgene expression in vivo(Table 1). Similar 

results were obtained after injection of rAd5-GAr-LacZ in the gastrocnemius muscle of the 

right leg and rAd5-nls-LacZ left leg of the same mouse (Table 2), excluding a bias due to 

difference in immunity of the GAr-LacZ and nls-lacZ proteins. Thus, the GAr-β-galactosidase 

persists longer than the nls-LacZ-derived control protein. 

 
 

Table 1 

Intramuscular β-galactosidase expression at various times after vector administration  

 

Day rAd5-GAr-LacZ rAd5-nls-LacZ 
rAd5-nls-LacZ 

(nu/nu) 

8 4(4) 4(4) 1(1) 

19 4(4) 1(4) 1(1) 

 
The vectors rAd5-GAr-LacZ or rAd5-nls-LacZ were injected (10

8
 

PFU/injection) into the left gastrocnemius muscle of two groups of 

BALB/c mice (H-2
d

) and as controls into BALB/c nu/nu mice. At days 8 and 19, the muscles were taken out and sections were stained for β-

galactosidase activity, as a read-out for transgene expression. No β-galactosidase expression was discernable in the contralateral muscles. 

The values represent the number of mice showing β-galactosidase activity at the site of injection and the total number of mice tested (in 

parenthesis).  

Table 2  

Intra-animal comparison of intramuscular β-galactosidase expression after adenovirus-mediated transfer of nls-LacZ and GAr-LacZ  
 

Day rAd5-GAr-LacZ rAd5-nls-LacZ 
rAd5-nls-LacZ 

(nu/nu) 

8 3(3) 2(3) 1(1) 

19 3(3) 0(3) 1(1) 

 

The vectors rAd5-GAr-LacZ and rAd5-nls-LacZ were injected (10
8 

PFU/injection) into the left and right gastrocnemius muscle of 

BALB/c mice (H-2
d

), respectively. BALB/c nu/nu mice served as controls. At days 8 and 19, the muscles were taken out and sections were 

stained for β-galactosidase activity. The values represent the number of mice showing β-galactosidase activity at the site of injection and, the 
total number of mice tested (in parentheses). 
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Figure 6 

Vaccination of BALB/c mice with rAd5-GAr-LacZ-infected allogeneic cells induces LacZ-specific CTL. BALB/c mice were immunized 

with uninfected (a) or 4×10
4 

rAd5-GAr-LacZ-infected MEC derived from a C57BL/6 mouse (b). After 3 weeks, LacZ-specific CTL activity 

was analyzed. The β-galactosidase-specific CTL activity was analysed in a cytotoxicity assay on BALB/c MEC (H-2
d

; control, ♦), LacZ-

peptide-loaded BALB/c MEC (�), and LacZ-transfected BALB/c MEC cells (�). Mice vaccinated with infected C57BL/6 MEC, but not 

immunized with uninfected MEC, have mounted a strong β-galactosidase-specific CTL response, indicating that the GAr does not inhibit 

crosspriming of CTL. 

 

 

Discussion  

 

In this study, we evaluated the use the EBNA1-derived GAr element to prevent 

presentation of transgene-derived neoantigens. We provide three examples where fusion of 

the GAr domain did not impede the function of three popular reporter proteins. We also show 

that the GAr element does not affect induction of transgene-directed CTL activity upon 

adenovirus-mediated transfer and expression of a GAr-LacZ fusion gene. However, 

recognition of transgene-expressing cells by antigen-specific CTL is abolished sufficiently to 

prevent cytolysis by β-galactosidase-specific CTL.  
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The mode of action employed by the GAr domain to inhibit antigen processing is not 

fully understood. Studies by Levitskaya et al
37 

showed that the GAr domain of EBNA-1 acts 

as a cis-inhibitory activity of MHC class I-restricted presentation. The GAr domain inhibited 

the ubiquitin/proteasome-dependent proteolysis pathway by interference with protein folding 

or otherwise inhibiting the capacity of the target protein to bind components of the ubiquitin-

dependent proteasome pathway.
38 

Recent studies demonstrate that small synthetic GAr-

derived peptides do not inhibit polyubiquitination, but rather inhibit stable association of the 

protein with proteasomes.
41 

However, the effect of these peptides on antigen presentation was 

not determined.
42,43 

Subsequent studies have shown that cotranslational ubiquitination of 

EBNA-1 can override the GAr-mediated inhibition of proteasomal degradation and restore the 

endogenous processing and presentation of MHC class I-restricted CTL epitopes.
44 

This 

suggests that the GAr domain not only prevents proteasomal degradation but also 

ubiquitination of GAr domain-containing proteins. Alternatively, experiments with p53 GAr 

fusion proteins suggest that the GAr domain acts on events between ubiquitination and 

proteasomal degradation.
45 

The observation that the GAr does not inhibit priming of CTL is 

important and consistent with reports describing the presence of EBNA-1-specific CTL in 

EBV-seropositive individuals.
31–36 

As antigen presentation by professional APC, most likely 

DC, is crucial to the initiation of virus-specific CTL responses, the presence of EBNA-1-

specific CTL in EBV-positive donors suggests that antigen processing for MHC class I by 

specialized APC is not hampered by the GAr. In case EBV-specific CTL are induced through 

the direct route following EBV infection of DC, these observations would indicate that 

antigen presentation in DC differs intrinsically from presentation by ‘nonprofessional’ APC. 

Alternatively, EBV-specific CTL could have been primed in an indirect manner 

(crosspriming), as this is likely representing the dominant way by which CTL responses are 

induced in vivo.40,46,47  

In case EBV-specific CTL are indeed primed in an indirect manner following uptake 

of viral antigens derived from EBV-infected cells, the presence of EBNA-1-specific CTL 

points to the possibility that the GAr does not affect the processing of exogenously acquired 

EBNA-1-antigens.
34–36 

The GAr domain does not inhibit CTL priming via the indirect 

pathway, as vaccination with completely allogeneic tumor cells expressing GAr-LacZ resulted 

in a strong LacZ-specific CTL response. As these completely allogeneic tumor cells lack the 

proper MHC class I restriction element, generation of Lac-Z-specific CTL must involve 

uptake and H-2
d
-restricted re-pre-sentation of antigen by host APC. Although not the subject 

of this study, it is tempting to speculate that the (GAr-containing) antigens taken up by DC 

are initially processed in endosomal/lysosomal compartments resulting in the liberation of the 

GAr from the antigenic CTL epitope. In this way, the processing of the CTL epitope is 

separated from the inhibitory influence of the GAr on proteasomal antigen degradation and 
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would explain the observation that CTL priming proceeds in an uninhibited fashion, while 

recognition of GAr-LacZ-expressing target cells is severely inhibited.  

The immune response against neoantigens encoded by the vector or by the transgene 

represents a major limitation for the successful clinical application of gene therapy for the 

treatment of chronic diseases where long-term transgene expression is desired. Currently, 

vector systems are being developed from which all vector-derived protein-coding regions 

have been removed. Nonetheless, the immune response against the transgene product itself is 

not circumvented by these approaches, limiting the persistence of transduced cells. As CTL-

mediated immune attack is the most important effector mechanism responsible for the 

destruction of transgene-expressing cells, we sought to determine whether transgene-

expressing cells could be rescued by the insertion of the GAr in a transgene of interest. 

Indeed, prolonged transgene expression was detected in mice treated with rAd5-GAr-LacZ, 

consistent with the prominent role of the cellular immunity to transgene-encoded products on 

the persistence of transgene expression.
3 

Nonetheless, we did not achieve persistent transgene 

expression in vivo, which is likely to be the result of the use of the first-generation E1-deleted 

adenoviral vectors. These vectors are notorious for their immunogenicity due to the leaky 

expression of viral genes residing in the vector.
3,48 

 

The GAr provides a powerful and specific tool to inhibit the presentation of transgene-

derived antigens to CD8
+ 

CTL. Provided that the GAr is also functional in human cells, it may 

be exploited in gene-therapy applications involving expression of new antigenic proteins, for 

example, in hereditary protein deficiencies, in enzyme/prodrug or ‘suicide’ strategies that 

employ bacterial or viral enzymes, and in hiding bacterial transcription-regulating proteins, 

that is, those used in the tetracycline-regulated gene-expression systems. Since the GAr 

specifically targets the proteasome pathway and therefore the destruction of transgene-

expressing cells via CD8+ CTL, it is questionable if the system works as well for secreted and 

proteolytically activated proteins like blood-clotting factors FVIII and FIX. Although this 

study did not look into this, it is unlikely that the GAr system will be effective in such 

application. Whereas the longevity of the cells making the secreted proteins may increased, 

fragments of the secreted proteins may still be processed and presented despite the presence 

of the GAr.  

The GAr approach may eliminate the risks that are associated with other immune 

suppressive approaches that have been described. Many of these are not antigen specific and 

aim at a more general immunosuppression, which enhances the risk of opportunistic 

infections that cannot be counteracted by the immune system. In contrast, the GAr provides 

an antigen-specific approach to temper CTL-mediated immune destruction, as is also evident 

from the effectiveness by which EBV exploits the GAr to prevent CTL-mediated destruction 

of EBNA1-expressing B cells in humans.  
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Materials and methods  
 

Construction of the GAr fusion constructs  

The LacZ gene carrying the EBNA-1 Gly-Ala repeats was constructed by inserting the LacZ gene into plasmid pCMV-

EBNA (Invitrogen, Groningen, The Netherlands) (Figure 1). Firstly, plasmid pCBeb was created from plasmid pCMV-

EBNA by converting the BstXI site to a BglII site by insertion of a BglII adapter that was created by annealing the 

synthetic oligonucleotides 5’-TACGAGATCTGAAG-3’and 5’-AGATCTCGTACTTC-3’ (the BglII site is 

underlined). Secondly, a 3072 bp BamHI fragment of the retroviral vector pBag,
49 

which carries the LacZ-coding 

region except the first two codons, is inserted into the BglII site of pCBeb to generate pGAr-LacZ.  

Similarly, the plasmids pGAr-TK and pGAr-Luc were created. For the first, a PCR was performed on the wtHSV1 

(strain17) DNA to obtain the TK gene. Primers TK-for (5’-CAGGATCCTGACCATGGCTTCGTACCCCT 

GCCATC-3’) and TK-rev (5’-GTGGATCCTGATCAGTTAGCCTCCCCCATCTCCCG-3’) containing extensions 

with BamHI restriction sites (underlined) were used and subsequently the TK gene was cloned into the pCBeb 

plasmid. For the latter, another PCR was performed on pCMVluc, a plasmid containing the luciferase gene. Primers 

Cl.luc-for (5’-GCAGATCTCCATGGAAGACGCCAAAAACAT-3’) and Cl.luc-rev (5’-GCAGATCTC 

GAGCTAGCTCAATTTGGACTTTCCGCC-3’) containing BglII sites (underlined) were used and the fragment 

cloned into pCBeb. The modified GAr-luc gene was inserted into vector pLXRN, in which the Mo-MuLV LTR 

promoter drives expression of the luc gene. The nls and GAr region were deleted by PCR mutagenesis using the 

QuikChange Site-directed Mutagenesis Kit (Stratagene Europe, Amsterdam, The Netherlands) according to the 

manufacturer ’s protocols. In all plasmids, the presence of the sequences coding for the GAr was verified by restriction 

analyses and DNA sequencing, as these repeats negatively affected the replication of the plasmid DNA and, as a result, 

had a tendency to be lost during propagation. The control plasmid pCDNA-TK contains the unmodified HSV-TK 

cDNA.  

 

Adenoviral vector construction  

The adenoviral vector pAd-GAr-LacZ was constructed following the procedures described.
50

 The CMV-EBNA-LacZ 

cassette was excised from pGAr-LacZ as a 5125 bp BamHI–HindIII fragment and inserted into plasmid pShuttle-

CMV,
50 

digested with BglII and HindIII, to create pSEbLacZ. The adenoviral vector plasmid pAd5-GAr-LacZ was 

made by homologous recombination between pSEbLacZ and pAdEasy1
50 

in E.coli BJ5183. To generate recombinant 

viruses, PacI-digested pAd5-GAr-LacZ was transfected into 911 cells.
51 

In all experiments, the vector rAd5-nls-LacZ 

served as a control. This vector contains the LacZ codons fused with the SV40 large T-derived nuclear localization 

signal (nls). Amplification, propagation, and screening for replication-competent adenovirus were performed as 

described.
52,53 

 

Plaque assays were performed essentially as described.
51 

Briefly, adenovirus stocks were serially diluted in 1 ml 

DMEM/2% HS and added to near-confluent 911 cells in six-well plates. After 2 h of incubation at 37°C/5% CO2, the 

medium was replaced by agar-containing culture medium. All batches were checked for integrity of the transgene by 

PCR and Southern analysis.  

 

Western analyses  

H1299 cells were infected with rAd5-nlsLacZ or rAd5GArLacZ with 10 PFU/cell. After 48 h, protein extracts were 

made and size-fractionated by SDS-PAGE, transferred to Immobilon-P nitrocellulose membranes, and probed with an 

anti-LacZ mouse monoclonal antibody (Roche, Basel, Switzerland). After incubation with a peroxidase-conjugated 

goat-anti-mouse secondary antibody, the protein was visualized by enhanced chemiluminescence (Amersham 

Pharmacia Biotech, Roosendaal, The Netherlands). Similarly, Rat2 clones were analyzed for the presence of HSV-TK. 

Protein extracts were made and 50 mg was size-fractionated by SDS-PAGE, transferred to Immobilon-P nitrocellulose 

membranes, and probed with a rabbit anti-HSV-TK antiserum (1/250 diluted), kindly provided by Dr M Janicot 

(Aventis-Gencell, Vitry-sur-Seine, France) and visualized with a peroxidase-conjugated goat-anti-rabbit secondary 

antibody.  
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Enzymatic assays  

Luciferase and β-galactosidase activity assays were performed as described.
54,55 

The [
3

H]thymidine incorporation 

assays and the ganciclovir sensitivity assays to detect HSV-TK activity were performed in Rat2 cells as described.
56 

Cell viability was assessed with the WST-1 colorimetric assay (Roche diagnostics, Almere, The Netherlands) 

according to the manufacturer ’s description.  

Generation and analysis of CTL bulk cultures  

BALB/c mice were vaccinated by intraperitoneal injection as described in the legends to the figures. After 3 weeks, β-

galactosidase-specific CTL were generated as follows: 5×10
6 

spleen cells per well were cocultured for 6 days with 10% 

irradiated BALB/c-derived stimulator cells expressing the LacZ gene (P13.1 cells)
57 

in 24-wells plates. Next, effector 

cells were harvested and dead cells were removed by density centrifugation on Lympholyte M (Cedarlane, Hornby, 

Canada). These cells were used in a cell-mediated lymphocyte cytotoxicity assay as described previously.
58 

 

 

LacZ expression in vivo  

At day 0, 12 Balb/c mice received an injection into the gastrocnemius muscle of one leg with 1×10
8 

PFU rAd5-nls-

LacZ. Another group of 12 Balb/c mice received i.m. in one leg with 1×10
8 

PFU rAd5-GAr-LacZ. Additionally, three 

nude mice were injected i.m. with 1×10
8 

PFU rAd5-nls-LacZ in one leg and 1×10
8 

PFU rAd5-GAr-LacZ in the other. 

At days 8 and 19, four animals of each group and a nude mouse were killed and the gastrocnemius muscles were 

isolated from both legs. As negative control a naive mouse was killed, whereas the nude mouse served as positive 

control.  

Alternatively, six Balb/c mice and two Balb/c
nu/nu 

nude mice were injected i.m. with 1×10
8 

PFU rAd5-nls-LacZ in one 

leg and 1×10
8 

PFU rAd5-GAr-LacZ in the other. These muscles were collected at days 8 and 19 (three Balb/c and one 

nude). A naive mouse served as negative control. In both protocols, the muscles were flash frozen in TissueTek using 

liquid nitrogen. Sections (10 mm) that were cut were either directly stained or stored at −80°C until further use.  
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Abstract 

 

The Epstein Barr Virus Nuclear Antigen-1 (EBNA-1) has a 249 amino-acids long glycine and 

alanine-rich repeat, which can function as an in cis-acting inhibitor of antigen processing. 

This cannot fully prevent antigenic peptide presentation since such peptides may be derived 

from defective ribosomal products. These DRiPs are an important source of immunogenic 

peptides and may be derived from translation of alternative open reading frames of the 

messenger. The EBNA-1 messenger contains a large nested open reading frame. Translation 

starting at an alternative initiator AUG downstream of the canonical initiation codon would 

yield a strongly acidic protein with a calculated molecular weight of 40.7 kDa. This protein 

would contain a 238 amino-acids long glycine, glutamine, and glutamic acid-rich repeat. We 

fused the nested ORF with the Escherichia coli-derived LacZ gene and showed β-

galactosidase activity upon transfer of the fusion gene into cultured cells. Cells producing the 

unmodified β-galactosidase readily present the H-2Ld-restricted CTL epitope TPHPARIGL. 

In contrast, the same CTL epitope is not presented upon expression of the fusion gene. 

Deletion of two-thirds of the repeat does not affect its capacity to inhibit antigenic peptide 

generation. From these data we conclude that the glycine, glutamine, and glutamic acid-rich 

repeat of the nested ORF protein of EBNA-1 can act as a cis-acting inhibitor of antigen 

processing.  

 

 

Introduction 

 

Epstein Barr Virus (EBV) is a gamma herpes virus and infects over 90% of the human adult 

population. It is considered to be the classic example for immune surveillance of persistent 

viral infections in humans (Klein, 1994). It has three latency programs, which differ in protein 

expression profiles. However, the Epstein Barr virus nuclear antigen 1 (EBNA-1) is expressed 

in all latency programs and is therefore associated with all EBV-related malignancies. 

EBNA-1 is essential for the maintenance of the viral genome as stable episomes 

during latency. It binds as a dimer to the viral origin of replication and ensures B-cell growth 

(Bochkarev et al., 1996; Shah et al., 1992; Yates et al., 1985; Rowe et al., 1992). Although 

EBNA-1-specific cytotoxic-T lymphocytes (CTLs) circulate in patients (Blake et al., 1997), 

the EBNA-1-positive cells are not recognized and killed. This has been attributed to the 

presence of the large glycine and alanine-rich repeat (GAr), which is not required for genome 

maintenance or cellular transformation (Lee et al., 1999), but has an immune evasion 

function. The GAr domain of EBNA-1 prevents cytotoxic T-lymphocyte (CTL)- epitope 

generation (Ossevoort et al., 2003) by inhibiting the proteasomal degradation (Levitskaya, et 

al., 1997; Levitskaya et al., 1995). The inhibition requires the interaction of at least three 

alanine residues of the GAr with adjacent hydrophobic binding pockets of a putative receptor 
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at the proteasome (Sharipo et al., 2001). Although efficient, the GAr may not be sufficient to 

prevent the generation and presentation of antigenic peptides altogether (Voo et al., 2004; 

Tellam et al., 2004; Lee et al., 2004). Especially, the GAr may not inhibit the synthesis of 

defective ribosomal products (DRiPs) that may generate antigen-specific antigenic peptides. 

These DRiPs are shown to play an important role in peptide generation (Yewdell et al., 1996; 

Schubert et al., 2000; Reits et al., 2000) and are actually the main source of antigenic peptides 

for long-lived proteins (Khan et al., 2001). Here we show that the EBNA-1 messenger RNA 

contains a nested open reading frame, preceded by a translation-initiation codon. The putative 

initiation codon adheres to the Kozak consensus sequence, in that it has an A at position -3 

and a G in position +4 (Kozak, 1986; Kozak, 1997). Use of this ORF would yield a strongly 

acidic 40.7 kDa protein. Here we demonstrate that this protein can function as a cis-acting 

inhibitor of antigen presentation. These data indicate that also translation of the alternative 

ORF of the EBNA-1 mRNA will not result in abundant presentation of antigenic peptides and 

also this ORF can function as a mechanism to prevent the presentation of antigenic peptides.  

 

 

 Results  

 

 ‘In silico’ analysis of the EBNA-1 mRNA sequences revealed a long open-reading 

frame that initiates at the third AUG codon. This start site is in open reading frame (ORF) +1 

relative to the EBNA-1 ORF. Translation of the +1 ORF would yield a long and acidic protein 

of 370 amino acids and an estimated molecular weight of 40.7 kDa. The protein is strongly 

acidic and would contain 127 Glutamic-acid residues, 90 Glutamine residues and 69 Glycine 

residues. The polypeptide tract rich in Gly and Glx residues was named GZ- repeat (GZr) 

region  (fig. 1). The AUG that could serve as translation initiation codon is part of the 

sequence 5’-ACCAUGG and is identical to the optimal Kozak consensus sequence.   

 To study if the alternative open reading frame could be used, we generated a fusion of 

the GZr protein with the E.coli-derived LacZ gene. From the plasmid pGAr-LacZ, we deleted 

two nucleotides distal of the GAr region, merging the GZr protein ORF with the LacZ ORF. 

Transfection of the resulting plasmid pGZORF into 293T cells resulted in readily detectable β-

galactosidase activity. This demonstrates that under the transfection conditions translation  

 

 
Figure 1 (page 95) 

Schematic outline of EBNA-1 and the alternative ORF+1 proteins (A) and the fusion proteins with �-galactosidase (B). (A) The EBNA-1 

coding region is depicted. The putative start codons of the alternative ORF (ORF +1) are indicated above the EBNA-1 sequence (bp = base 

pairs). Also indicated are the codons for the GAr in EBNA-1, and GZr in the ORF +1 protein, as well as the stop for the ORF +1 

polypeptides. (B) Indicated are the Gly-Ala repeat region GAr, amino acids 90-328, the nuclear localization signal nls, aa 378-386, the entire 

repeat deletion aa 41-376, the deletions creating the miniGAr aa 107-248 and the miniGZr aa 106-260. The LacZ gene starts after aa 420 of 

the EBNA-1 ORF. In the LacZ gene the H2d epitope aa 1303-1311 is indicated. In GZORF-LacZ the third AUG is depicted as start of the 

alternative ORF +1. The arrows flanking the GZr in GZr-LacZ indicate the site of the 2 bp the insertion and deletion, respectively.
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initiation can initiate at the 3rd AUG of the EBNA1-containing mRNA’s (fig. 2 and 3). This 

indicates that, under normal conditions, not only the GAr-containing EBNA-1 could be 

synthesized, but also GZr-containing polypeptides from the nested ORF. Although the GZORF-

LacZ protein is present in the transfected cells in relatively low amounts, the polypeptide may 

be degraded by proteasomes and yield antigenic peptides.  

To facilitate studies on this protein, we enhanced its synthesis by constructing a 

plasmid in which the GZr region was linked to the bona fide EBNA-1 N terminus, allowing 

translation initiation to initiate at the 1st AUG. This construct allows a side-by-side 

comparison of GAr-LacZ and GZr-LacZ. In addition, we generated plasmids from which we 

deleted the GAr or GZr repeats from the LacZ fusion genes. The resulting plasmid encodes a 

LacZ with a small N-terminal extension consisting of 85 amino acids of the EBNA-1 ORF. In 

addition, we isolated some spontaneous deletion plasmids with repeat lengths considerably 

smaller than the 239 amino acids of the GAr and GZr. Two of these, with repeat lengths 

coding for 97 (in pMiniGAr-LacZ) and 82 amino acids (in pMiniGZr-LacZ), were used for 

further studies. All constructs are depicted in figure 1.  

 

 

 

 
 

 

Figure 2  

Western-blot analysis of the different LacZ fusion proteins. 293T cells and 293T cells expressing miniGZr-LacZ, miniGAr-LacZ, GZr-LacZ, 

GZORF-LacZ, GAr-LacZ and ∆r-LacZ genes were lysed and protein extracts were size fractionated by SDS-PAGE. The western blot was 

analyzed with a monoclonal mouse anti-LacZ antibody. All proteins migrate according to their expected size (indicated in the table 

underneath) and no smaller products are visible. 
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The plasmids were transferred into 293T cells and the translated proteins were 

analyzed by Western-blot analysis. All LacZ fusion genes yielded equivalent amount of β-

galactosidase protein (fig. 2), except the GZORF-LacZ fusion. The apparent molecular weight, 

as deducted from the mobility of the proteins on SDS PAGE gels, was in good agreement 

with the calculated molecular weight. In-situ staining of the transfected 293T cells for β-

galactosidase activity demonstrated that the fusion proteins were biologically active (fig. 3A).  

Furthermore, analysis of β-galactosidase activity in protein lysates by galactolight assay 

further confirmed the activity of the fusion proteins. When the ratio of the activity and protein 

contents is plotted, it shows a clear difference between the constructs starting at the original 

EBNA-1 ATG and the GZORF-LacZ. All repeat- and mini repeat containing LacZ as well as 

the LacZ deleted for the repeats show equivalent levels of activity (fig. 3B). Only the GZORF-

LacZ plasmid shows a significantly reduced activity level. In contrast, the GZr-LacZ, in 

which the GZr-LacZ fusion protein is translated from the AUG normally used by EBNA-1, 

has a lacZ level similar to the GAr-LacZ fusions. Since both proteins contain a GZr region of 

the same length, we decided to use GZr-LacZ for all further research. 

 

 

 

 

Figure 3  

In-situ β-galactosidase activity assay (A) and galactolight assay 

(B) of the transfected 293T cells. A 293T cells were transfected 

with miniGZr-LacZ, miniGAr-LacZ, GZr-LacZ, GZORF-LacZ, 

GAr-LacZ and ∆r-LacZ-encoding plasmids. After 48 hours, the 

cells were fixed, and stained overnight. (B) 293T cells were 

transfected with miniGZr-LacZ, miniGAr-LacZ, GZr-LacZ, 

GZORF-LacZ, GAr-LacZ and ∆r-LacZ encoding plasmids. After 

48 hours, the cells were lysed and galacton was added. The β-

galactosidase activity is normalized for the protein concentration 

in the lysate. 



The nested ORF in EBNA-1 encodes a GZ-rich protein, which acts as an in cis inhibitor of antigen processing 

 98

For further studies we generated cell lines stably expressing the fusion genes. We 

tested the stable cell lines by a western-blot analysis and found the proteins being present in 

similar amounts (fig. 4A). All constructs yielded protein of the expected size and no 

degradation products were apparent. These cell lines were tested for β-galactosidase activity 

by in-situ staining (fig. 4B). As a positive control served the cell line BB16, a stable B77-

derived cell line expressing an unmodified LacZ gene (Hoeben et al., 1991). In contrast to the 

fusion constructs, which contain the EBNA-1-derived nuclear localization signal, β-

galactosidase is distributed in the cytoplasm of the BB16 cells. The cell lines expressing the 

fusion gene and the BB16 cells all had similar levels of activity, as is evident by the in-situ 

staining. The expression levels were further confirmed by galactolight assays (fig. 4C). Taken 

together, our data show that all cell lines have similar amounts of β-galactosidase antigen and 

activity. 

To measure antigenic peptide presentation, these cell lines expressing the fusion genes 

were tested for the presentation of LacZ-derived peptides (H2L
d, TPHPARIGL, indicated in 

fig. 1) with an interferon-gamma (IFNγ) production assay using the cells expressing the fusion 

genes as targets. The generation of LacZ-specific CTLs was effective and the CTL recognized 

the positive control BB16 cells, but not the parental LacZ-negative B77 cells  (fig 5A). Fusion 

of the full-length GAr reduced the amount of IFNγ produced clearly. Also fusion of the GZr 

repeat reduced INFγ production. Remarkably, the MiniGAr and MiniGZr mini repeats are 

more efficiently inhibiting INFγ production.  When we loaded the cell lines with β-

galactosidase peptide, all cell lines stimulated the antigen-specific CTLs (data not shown), 

demonstrating that the presence of the repeats does not frustrate the cells’ capacity to present 

the β-galactosidase peptides. Naïve CTLs did not induce an IFNγ response.  

From these data we conclude that GZ repeat that is derived from nested open reading 

frame in the EBNA-1 mRNA is able to inhibit presentation of linked antigens. These findings 

demonstrate that not only the GAr-derived sequences, but also other simple repeat sequences 

can inhibit antigen presentation. Further research should reveal which step in the chain of 

processes that leads to the presentation of antigenic peptides is inhibited. 

 

 

Discussion 

 

The Gly-Ala repeat (GAr) domain of the Epstein-Barr virus nuclear antigen-1 (EBNA-1) 

prevents cytotoxic T-lymphocyte (CTL)- epitope generation (Ossevoort et al., 2003) by 

inhibiting the proteasomal degradation (Levitskaya et al., 1997; Levitskaya et al., 1995). 

However, this may not be sufficient to prevent the generation and presentation of antigenic 

peptides, since the GAr might not prevent formation of defective ribosomal products (DRiPs) 

(Voo et al., 2004; Tellam et al., 2004; Lee et al., 2004). There is a wide variety of DRiPs 

identified nowadays. Not only truncated or misfolded proteins, but also the products that are  
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Figure 4 

Characterization of the stable B77 cell lines. B77 cells were transfected with plasmids encoding miniGZr-LacZ, miniGAr-LacZ, GZr-LacZ, 

GAr-LacZ, and ∆r-LacZ proteins respectively. After establishing stable cell lines, the cells expressing miniGZr-LacZ, miniGAr-LacZ, GZr-

LacZ, GAr-LacZ, and ∆r-LacZ, as well as B77 and BB16 cells (B77 cells expressing LacZ) were lysed and protein extracts were size 

fractionated by SDS-PAGE (A). The western blot was analyzed with a monoclonal mouse anti-LacZ antibody. All proteins migrate at the 

expected size, and no smaller products are visible. (B) The same cell lines, as well as B77 and BB16 were fixed stained in-situ. (C) Stable 

B77 cell lines expressing the miniGZr-LacZ, miniGAr-LacZ, GZr-LacZ, GAr-LacZ, and ∆r-LacZ constructs, and B77 and BB16 cells were 

lysed and galacton was added. Plotted is the normalized β-galactosidase activity. 
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translated from alternative open reading frames are considered as DRiPs (Yewdell et al., 

2003; Yewdell et al., 1996). Indeed several proteins are produced by translation of alternative 

ORFs (Fetten et al., 1991; Malarkannan et al., 1995; Shastri et al., 1995; Wang et al., 1996; 

Mayrand & Green, 1998; Mayrand et al., 1998; Schwab et al., 2003) and from non AUG start 

codons (Malarkannan et al., 1995; Shastri et al., 1995; Schwab et al., 2003). These DRiPs are 

shown to play an important role in peptide generation (Yewdell et al., 1996; Schubert et al., 

2000; Reits et al., 2000) and are actually the main source of antigenic peptides for long-lived 

proteins (Khan et al., 2001). 

Here we describe that polypeptides derived after translation of an alternative open 

reading frame of the EBNA-1 mRNA can inhibit presentation of linked antigens. This 

alternative ORF was observed after in-silico analysis of the EBNA-1 mRNA sequences and 

revealed a long open reading frame that initiates at ORF +1 from the original translation 

initiation site. It contains a repeat unit of the same length as the GAr and is rich in Gly (G) 

and Glx (Z) residues. Therefore, it was named GZ-rich repeat (GZr) region (fig. 1). We show 

that the alternative ORF is translated upon transfection of an EBNA-1 expression vector, 

although the steady state level of the GZr-fusion protein is lower than of the bona fide GAr 

fusion protein. 

There are two possible alternative translation-initiation sites. The second AUG is 

followed by a single sense codon before a nonsense codon is encountered. The third and the 

fourth AUG codons in EBNA-1 are both in the +1 frame and would result in translation of the 

GZr containing polypeptide. The third AUG is has an optimal Kozak consensus sequence. It 

contains the A at -3 and a G at +4 and it has two Cs at positions -1 and -2. The fourth AUG 

contains a G residue at +4 and -3 (Kozak, 1986; Kozak, 1997). As can be seen in figures 2 

and 3, the GZORF fusion protein is present in low levels. This is not unusual for alternative 

ORFs (Fetten et al., 1991; Malarkannan et al., 1995; Shastri et al., 1995) and does not seem to 

interfere with the capacity to generate peptides and elicit a CTL response (Wang et al., 1996; 

Mayrand & Green, 1998; Mayrand et al., 1998; Schwab et al., 2003). 

To enhance fusion protein synthesis and to make a more fair comparison between the GAr 

and the GZr fusion proteins, we made a GZr-LacZ fusion starting at the original AUG of 

EBNA-1 translation initiation. We also constructed a deleted version lacking the repeat 

regions and isolated comparable mini-repeats for both GAr and GZr. We could map which 

parts were deleted, and this mini-repeats were included in this study since it is known that 

short EBNA-1 derived glycine and alanine-rich sequence of only 8 amino acids are able to 

significantly inhibit proteasomal degradation of instable reporter protein (Sharipo, et al., 

2001; Sharipo, et al., 1998; Dantuma, et al., 2000). 

All these constructs were well expressed and retained their β-galactosidase activity. 

The stable cell lines all exhibited similar amounts of the fusion proteins and the biological 

activities of the proteins were equivalent (fig. 4). The cell lines were tested for peptide 

presentation (fig. 5). 
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Figure 5  

LacZ-specific CTLs were generated and co-cultured for 48 hours together with B77, B77 expressing miniGZr-LacZ, miniGAr-LacZ, GZr-

LacZ, GAr-LacZ, and ∆r-LacZ genes. Thereafter, the supernatant was collected and the amount of IFNγ was determined. (A) Absolute IFNγ 

production of the different cell lines. (B) Relative IFNγ production. BB16, the B77-derived cell line expressing unmodified β-galactosidase, 

is set to 100 percent. 

 

 

Introduction of a full length repeat, both GAr and GZr, significantly decreased the IFNγ 

production. However, the mini-repeats blocked presentation more efficiently, as is evident by 

reduced IFNγ production. The mechanism for the more potent inhibition is unclear. Maybe 

these shorter proteins form less DRiPs then longer proteins, on the basis of size and inherent 

difficulties in folding or assembly (Schubert et al., 2000). Furthermore, we know that over-

expression of either GAr- or GZr-containing polypeptides in B77 and MEC cells does not 

decrease the amount of MHC I on the cell surface (data not shown). These findings 

demonstrate that not only the GAr-derived sequences, but also other simple repeat sequences 

can inhibit antigen presentation.  
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The observation that also the GZr repeat blocks presentation of linked antigens is 

intriguing. Sharipo et al. (2001) suggested that the inhibitory effect of the GAr requires at 

least three alanine residues in a β-strand conformation with adjacent hydrophobic binding 

pockets of a putative receptor (Sharipo, et al., 2001).  In the case of the GZr there are no 

alanine residues present and since the whole repeat is strongly acidic, it is highly unlikely that 

there will be hydrophobic pockets involved in the receptor part. This suggests that the GZr 

repeat functions in a different way. It remains to be established whether the GZr repeat 

protein is produced EBV infected cells and whether this protein has any physiological 

function. 

In conclusion, we demonstrate that the GZr protein that can be translated from the 

nested ORF of the EBNA-1 mRNA can function as an in cis-acting inhibitor of antigen 

presentation. This ORF may function as a mechanism to prevent the presentation of antigenic 

peptides that are generated by translation of alternative open reading frames of the EBNA-1 

messenger RNA. Further research should reveal which step in the chain of processes that 

leads to the presentation of antigenic peptides is inhibited. Nonetheless, the new GZ repeat 

may be used to stealth antigenic proteins in gene-therapy applications in which eradication of 

the transduced cells would frustrate the therapy.  

 

 

Materials and Methods 

 

Construction of the GAr-fusion plasmids 

To obtain a fusion gene of LacZ and the EBNA-1 Gly-Ala repeats, the LacZ gene was 

inserted into plasmid pCMV-EBNA (Invitrogen, Groningen, The Netherlands). Firstly, 

plasmid pCBeb was created from plasmid pCMV-EBNA by converting the BstXI site to a 

BglII site by insertion of a BglII adapter that was created by annealing the synthetic 

oligonucleotides 5’-TACGAGATCTGAAG-3’ and 5’-AGATCTCGTACTTC-3’ (the BglII 

site is underlined). Secondly, a 3072 bp BamHI fragment of the retroviral vector pBag (Price 

et al., 1987), which carries the LacZ-coding region except the first two codons, was inserted 

into the BglII site of pCBeb to generate pGAr-LacZ. The presence of the intact GAr was 

confirmed by restriction analysis and the integrity of the complete fusion protein was 

confirmed by sequencing. 

To derive plasmids pGZORF-LacZ, pGZr-LacZ and p∆r-LacZ from plasmid pGAr-

LacZ, the QuickChange Site-directed Mutagenesis Kit (Stratagene Europe, Amsterdam, The 

Netherlands) was used according to the manufacturer’s protocols.  

To create plasmid pGZORF-LacZ and therefore detect translation starting at the 3rd 

AUG of EBNA-1, primers (sense) 5’-CAGGAGGTGGAG//CGGGGTCGAGGAGGC-3’ and 

(antisense) 5’-GCCTCCTCGACCCCG//CTCCACCTCCTG-3’ were used to delete two 

nucleotides (indicated with’//’) at the end of the GAr-coding region of plasmid pGAr-LacZ. 



Chapter 3 

 103 

This resulted in a plasmid in which the LacZ open reading frame is in frame with the GZ open 

reading frame. To boost the translation of the GZr containing LacZ, plasmid pGZr-LacZ was 

created. It was obtained by insertion of two nucleotides (insertions are underlined) near the 

start of the GAr coding region in plasmid pGZORF-LacZ with the primers (sense) 5’-

CACGGTGGAACAGAGGAGCAGGAGCAG-3’ and (antisense) 5’-

CTGCTCCTGCTCCTCTGTTCCACCGTG-3’. In this plasmid translation of the GZ open 

reading frame is initiated at the AUG normally used for EBNA-1. 

A repeatless control was created to establish the effect of both the GAr and the GZr 

repeats. The codons for the repeats were deleted from plasmid pGAr-LacZ with the primers 

(sense) 5’-GGGGGTGATAACCATGGA|GGAGAAAAGAGGCCCAGG-3’ and (antisense) 

5’-CCTGGGCCTCTTTTCTCC|TCCATGGTTATCACCCCC-3’, (the | mark indicates the 

location of the junction), yielding plasmid p∆r-LacZ. All resulting PCR products were 

verified by restriction analyses and complete sequence analyses for the presence of the 

mutations and the repeat sequences and integrity of the fusion proteins. The repeat sequences 

were relatively unstable in the plasmids (Ossevoort et al., 2003). We isolated spontaneously 

deletion plasmids with smaller repeats of both the GAr and GZr. By sequencing, the deletion 

was mapped and the resulting plasmids were called pMiniGAr-LacZ and pMiniGZr-LacZ. 

 

Cell lines 

The 293T and B77 (a hypoxanthine phosphoribyltransferase-negative (HPRT-) BALB/c 3T3 

cell line) (Varmus et al., 1973) cell lines were cultured in DMEM (Gibco) containing 8% 

(vol/vol) fetal bovine serum, 100 IU of penicillin per ml, 100 µg of streptomycin per ml and 

0.2% glucose. P13.1 (Lammert et al., 1996) cells were cultured in IMDM (Gibco) containing 

8% (vol/vol) fetal bovine serum, 100 IU of penicillin per ml, 100 µg of streptomycin per ml, 

28 µM β-mercaptoethanol and 500 µg hygromycin B per ml.   

Stable B77-derived cell lines expressing the different LacZ variants were made by 

plasmid transfection of cell cultures in 6-well plates with 2.7 µg LacZ construct and 0.3 µg 

pRSV-neo per well using the Calcium Phosphate co-precipitation technique (Graham & van 

der Eb, 1973). After 48 h, medium was replaced with medium containing 500 µg G-418 

sulfate (Geneticin, Gibco) per ml. After elimination of the G418-sensitive cells, the cultures 

were maintained on medium with 200 �g G418 per ml. For isolation of clonal cell lines, 

highly diluted single-cell suspensions were seeded and monoclonal cell populations were 

isolated and expanded. The cells were evaluated for the presence of E. coli β-galactosidase by 

in-situ staining and galactolight activity assay. 

 

β-galactosidase assays 

Cell cultures were assayed for β-galactosidase activity by X-gal (5-bromo-4-chloro-3-inodyl-

β-D-galactopyranoside) staining as described (Hoeben et al., 1991). Briefly, cells were 
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washed with ice-cold Phosphate-buffered saline containing 0.5 mM MgCl2, and fixed with 

5.4% formaldehyde, 0.8% glutaraldehyde in PBS at 4˚C. After washing, the cells were 

incubated in 5mM Potassium Ferricyanide, 5mM Potassium Ferrocyanide, 2mM MgCl2 and 1 

mg X-gal per ml PBS and incubated at 37˚C for 4-16 h. The β-galactosidase activity was also 

assayed by Galactolight assay (Applied Biosystems) according to the manufacturers 

instructions. In brief, cultured cells were washed twice in ice-cold PBS and lysed in lysis 

buffer (25mM Tris-phosphate pH 7.8, 2mM DTT, 2mM 1,2-diaminocyclohexane-N,N,N’,N’-

tetraacetic acid, 10% glycerol, 1% Triton X-100). Ten µl lysate was added to 100 µl of 

reaction buffer containing galacton and incubated at room temperature for 30 min. Hereafter, 

100 µl of accelerator was added and the β-galactosidase activity was measured with an 

illuminometer (Lumat LB, EG&G Bertholt). 

 

Western analysis 

Cells were lysed in RIPA buffer (50 mM Tris.Cl pH=7.5, 150 mM NaCl, 0.1% SDS, 0.5% 

DOC, 1% NP40) and protein extracts were size-fractionated by SDS-PAGE, transferred to 

Immobilon-P nitrocellulose membranes and probed with mouse anti-LacZ antibodies (1/500 

diluted, Roche) or mouse anti-actin antibodies (1/2000, ICN Biomedicals Inc., Aurora, OH, 

USA). After incubation with a peroxidase-conjugated goat-anti-mouse secondary antibody, 

the proteins were visualized by enhanced chemiluminescence (Amersham Pharmacia Biotech, 

Roosendaal, The Netherlands). 

 

Generation of b-galactosidase specific CTLs 

β-Galactosidase-specific CTL clones were generated by injecting BALB/c mice intra-

muscularly with 1*108 PFU rAd5-nls-LacZ. Two weeks post-injection, the mice were 

sacrificed and splenocytes were harvested. As a control, splenocytes were harvested from 

naïve mice. The splenocytes were stimulated with 5000-rad irradiated The LacZ-expressing 

P13.1 cells for 1 week. Hereafter the effector cells were ready for use. 

 

IFNγ ELISA 

In 96-wells plates, 5000 or 2500 effectors were co-cultured with 20,000 targets/well in 

triplicate in the presence of 10U IL-2 per ml for 2 days at 37 ºC, at 5% CO2.  One day prior to 

harvesting of the supernatants, maxisorb plates (Nunc) were coated with 1 µg/ml 

allophycocyanin-conjugated Rat αM-IFNγ antibody (BD Biosciences) in sodium-carbonate 

buffer (pH=9.6) overnight at 4ºC. The coated plates were washed 4 times with PBS 

containing 0.05% Tween-20 and subsequently blocked with PBS containing 1% BSA and 

0.05% Tween-20, for 1 hour at 37ºC. After 4 washes the plates were incubated with the 

supernatants for 2 h at 37ºC. A standard series starting with 10 ng IFNγ (recombinant murine 

IFNγ, Tebu-bio) per ml medium was diluted 1 in 2 till a final concentration of 9.7 pg per ml. 



Chapter 3 

 105 

This standard series and a blank were added to the plates in duplicate. After 4 washes, 0.5 µg 

per ml biotinylated RatαM-IFNγ monoclonal antibody (BD Biosciences) in block solution 

was added as conjugate and incubated for 1 h at room temperature. Thereafter the plates were 

washed 4 times and subsequently streptavidin conjugated poly-Horseradish Peroxidase 

(Sanquin reagents, Amsterdam, The Netherlands) was added at a concentration of 133 ng per 

ml in block solution and incubated for 1 h at room temperature. The plates were washed again 

4 times, and 4.5mM 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt 

(ABTS, Sigma-Aldrich) with H2O2 was added to the plates, and OD was measured at 415 nm. 
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Abstract 

 

The cellular immune response against transgene-encoded neoantigens is a potential hurdle in 

gene therapy applications where long-term expression of transgenes is desired. Here a new 

optimized derivative of the Herpes Simplex Virus 1-Thymidine Kinase gene is described. The 

HSV-TK gene is frequently used in experimental studies on gene-directed enzyme prodrug 

therapy. In the optimized gene, the HSV-TK coding region is fused with the codons for the 

Gly-Ala repeat of the Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) to prevent 

proteasomal degradation of the HSV-TK. To measure the protective effect in vitro, a model 

CTL epitope derived from the ovalbumin was inserted in the TK. Cells expressing the GAr-

modified TK do not present TK-derived peptides in the MHC. Furthermore, conservative 

nucleotide substitutions were introduced, which prevent splicing, as well as mutations that 

render the TK-expressing cells more sensitive to ganciclovir (GCV). The GAr HSV-TK 

fusion protein is fully functional in vitro. This HSV-TK gene may be especially useful in 

those gene therapy applications where an immune response against the transgene-encoded 

product would frustrate the treatment. 

 

 

Introduction 

 

The cellular immune response against transgene-encoded neoantigens is a major setback in 

gene therapy applications where long-term expression of transgenes is desired. Transgene-

product immunity is prominent upon adenovirus-mediated gene transfer, e.g. against the 

Escherichia coli β-galactosidase and the Tet transactivator protein in animal models. In 

rodents, strong immune responses against this neoantigen were observed following 

adenovirus-mediated gene transfer into liver, muscle, lung and brain, leading to local 

inflammation, destruction of the transduced cells, and loss of transgene expression.1-4 The 

prime candidates for this target cell destruction are the antigen-specific major 

histocompatibility complex class I (MHC class I) restricted cytotoxic T lymphocytes 

(CTLs).1,5-7 Also in primates a CTL response directed against the transgene product has been 

shown to occur after retrovirus-mediated gene transfer.8,9 In a clinical trial aiming at inducing 

a graft-versus-leukemia response, 8 of 24 treated patients developed a specific cytotoxic CD8+ 

T cell-mediated immune response against the cells genetically engineered to express the 

herpes simplex virus 1 (HSV1) thymidine-kinase (TK) gene. This led to the selective 

elimination of the modified cells.9  

HSV-TK is the archetypical enzyme used in gene-directed enzyme prodrug therapies 

(GDEPT). Its capacity to convert the antiherpetic nucleoside analogues ganciclovir and 

aciclovir to toxic nucleotides has been used effectively in gene therapy protocols to eradicate 

tumor cells and lymphocytes that expressed the HSV-TK transgene upon virus-mediated gene 
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transfer. Although effective, in some applications the use of the HSV-TK is limited by the 

induction of a cellular immune response against the HSV-TK protein. 

 The cellular immune response may also frustrate other cancer gene therapy 

applications. The TK/ganciclovir (GCV) combination is very potent and can be used to 

eradicate tumor cells. Here the metabolic bystander effect is enhancing its effectiveness. 

Transport of phosphorylated GCV via gap junctions to neighboring cells sensitizes also the 

neighboring non-transduced cells (reviewed by Van der Eb et al., 2004).10 A preexisting 

immune response directed against HSV-TK may frustrate the efficacy especially if a 

significant time period exists between vector administration and the onset of GCV 

administration. This may be the case in those applications where the HSV-TK gene has been 

included in a vector as fail-safe.11,12 

 Under normal circumstances, the CD8+ CTL response plays an important role in the 

control of virus infections, generating effector cells that kill infected cells upon recognition of 

viral peptides presented by MHC class-I molecules. Given the important role of CTLs in the 

control of virus-spread, it is no surprise that viruses have developed numerous strategies that 

frustrate and abrogate antigen-presentation.13-15 In general, the viruses interfere with antigen 

presentation by frustrating the cell’s capacity to generate or present antigenic peptides. In few 

cases, the inhibition blocks presentation of specific polypeptides. One such example comes 

from the Epstein-Barr Virus (EBV) nuclear-antigen 1 (EBNA-1). EBNA-1 is expressed in all 

latency programs of the virus and is indispensable for the virus as it is required for the 

maintenance of the viral episomes. Although EBNA-1-specific CTLs have been described in 

infectious mononucleosis patients and healthy carriers, they cannot efficiently recognize 

EBV-infected cells.16-21  

The failure to recognize endogenously expressed EBNA-1 has been attributed to the 

glycine-alanine repeat (GAr) domain in the EBNA-1 sequence. It is shown that the GAr 

blocks proteasomal degradation in-cis and therefore presumably the subsequent presentation 

in the MHC class-I context.22,23  

In a previous study we showed that this system could be used to create a ‘stealthed’ 

version of the E.coli-derived LacZ gene encoding �-galactosidase. Fusions of the EBNA-1 

GAr with �-gal prevented presentation of �-gal-derived peptides. This resulted in full 

protection of the cells against �-gal-specific CTL. The GAr-�-gal fusion protein retained its 

full �-gal activity. In addition, we demonstrated that the GAr fusions with the firefly 

luciferase and the HSV-TK yielded functional proteins 24. Here we describe the construction 

and characterization of new immuno ‘stealth’ variants of the HSV-TK for use in experimental 

gene therapy. 
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Figure 1 

Schematic outline of the chimaeric Gly-Ala repeat constructs with TK. Indicated are the Gly-Ala repeat region (GAr; aminoacids 90-328), 

the nuclear localization signal (nls, aa 378-386, deleted from all constructs), the point mutations in the splice-donor and acceptor sites to 

abolish splicing (SD, SA, aa 544 and 620), the sr39TK mutations and their new aa composition (aa 594-596 and 603, 604) and the inserted 

OVA epitope (aa 431-438). The HSV1-TK gene starts at aa 420. Of all constructs, also variants with a deletion of the GAr region (i.c. amino 

acids 41 to 376) were generated. 

 

Results 

 

In a previous study we have shown that fusion of the HSV-TK with amino acids 1- 420 of 

EBNA-1, which encompasses the glycine and alanine-rich region (GAr) of EBNA-1, was 

compatible with enzyme function. The EBNA-1 fragment used contains the nuclear 

localization signal of EBNA-1 in addition to the GAr. As a result the GAr-TK fusion proteins 

accumulate in the nucleus, in contrast to the wild-type HSV-TK protein (fig 2). To test 

whether normal sub-cellular localization could be restored, the amino acids 378 to 388 

encoding the nuclear localization signal (nls) were removed from plasmid pcDNA3.1-GAr-

TK,24 generating plasmid pcDNA3.1-GAr-TK�nls. Upon transfection in 293T cells, the GAr-

TK�nls protein is indistinguishable in sub-cellular distribution from the wild-type protein. 

Therefore in all subsequent experiments the ∆nls variants of the GAr-TK fusions were used. 
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Figure 2. 

Sub-cellular localization of the different TK proteins. 293T cells were transfected with wt-TK, GAr-TK, GAr-TK∆nls, ∆GAr-TK or ∆GAr-

TK∆nls. Cells were incubated with rabbit anti-HSV-TK antiserum and a FITC-conjugated goat-anti-rabbit secondary antibody. The nucleus 

was stained with Propidium Iodide and the cells were analyzed by a confocal laserscan microscopy. Deletion of the nls but not the GAr 

restores the wt-TK distribution pattern. 
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Figure 3 

Deletion of the nls, GAr or SD/SA sites do not alter GCV 

sensitivity. Rat2 cell lines containing different TK constructs 

were seeded 3000 cells per well, 0.6 cm2, with different 

concentrations GCV. After 4 days cell viability was assessed 

with the WST-1 colorimetric assay.  

 

It has been demonstrated that the HSV-TK coding region contains cryptic splice-donor 

and splice-acceptor sites flanking the codons for the catalytic domain.31 These were removed 

from the GAr-TK�nls construct by conservative mutagenesis as described previously to 

generate the construct GAr-TK�nlsSD-/SA-. This prevented splicing as described previously. 

Indeed, no spliced product could be detected by RT-PCR after transfection of this plasmid 

(data not shown). Therefore in all subsequent experiments the SD-/SA- variants of the GAr-

TK gene were used.  

To verify the functionality of these plasmids, these were transfected into Rat2 cells 

and the resulting clones were tested for GCV sensitivity. Cells were seeded in 96-well plates 

and different concentrations GCV were added to the medium. After 5 days the viability of the 

cells was determined. As shown in figure 3, all the cell lines containing the various GAr, nls 

and SD-/SA- modifications were sensitive to the GCV, indicating that the plasmids encode 

functional TK variants. 

So far no immunodominant CTL epitopes have been identified in the HSV-TK. To test 

the presentation of antigenic peptides by of the various TK constructs, a model CTL epitope 

was inserted in the N-terminal region of TK (Fig. 1). It has been shown that this part of the 

protein is dispensable for TK activity.32 The ovalbumin epitope SIINFEKL (OVA 257-264) 

was used.33,34 This allowed the use of an established CTL clone, B3Z 29, to test antigen 

presentation in vitro.  

We first inserted the coding regions for GAr-TK∆nlsSD-/SA- and ∆GAr-TK∆nlsSD-

/SA- into a lentiviral vector. Subsequently, the OVA epitope was inserted creating pGAr-

ovaTK∆nlsSD-/SA- and p∆GAr-ovaTK∆nlsSD-/SA-, respectively. Lentiviral particles were 

generated by the quadruple transfection technique and quantified by p24 ELISA. Vectors with 

and without GAr region could be grown to similar titers (data not shown). To transfer the 

variant TK genes into B16 cells (H2-Kb), we exposed the cells to approximately 80 ng of 

p24/105 cells for each vector. PCR analysis of DNA isolated from the transduced cell 

populations did not reveal evidence for rearrangements or deletions in the GAr region. 

Western-blot analysis revealed the presence of proteins of the expected sizes (Fig 4).  



Characterization of an immuno’stealth’ derivative of the herpes simplex virus thymidine kinase gene 

 116

 

Figure 4 

All modified TK genes are efficiently expressed. B16 cells and 

B16 cells expressing GAr-TK∆nls, ∆GAr-TK∆nls, GAr-

ovaTK∆nls or ∆GAr-ovaTK∆nls were lysed and protein extracts 

were size fractionated by SDS-PAGE. The western blot was 

analyzed with a polyclonal rabbit anti-HSV-TK antibody. All 

bands are at the expected size and no smaller products are 

visible. The bands migrating at 48 and 60 kDa are resulting from 

the cross reactivity in the assay with a B16-derived cellular 

protein and the immunoglobulin light chains, respectively. 

 

Moreover, the GAr containing proteins reveal a homogeneous band, demonstrating the 

integrity and the stability of the vectors with the GAr element. The GCV-sensitivity assay did 

not reveal differences between the TK variants with and without the OVA peptide (Fig 5). 

This demonstrates that insertion of the OVA epitope into the N-terminal part of TK does not 

significantly affect its capacity to convert GCV. 

To test the presentation of the OVA peptide, the variant-TK expressing cell 

populations were exposed to B3Z CTL hybridoma cells. In these cells, recognition of the 

OVA epitope induces the expression of an IL2-promoter that drives expression of a LacZ 

gene. The accumulation of LacZ was assayed by CPRG assay (Fig. 6). In the absence of the 

OVA peptide no β-gal activity can be detected. Expression of ∆GAr-ovaTK∆nlsSD-/SA- leads 

to a strong induction of the reporter. However, if the GAr region is linked to the epitope as in 

the GAr-ovaTK∆nlsSD-/SA- expressing cells, the peptide is not presented as is evident from 

the lack of induction of the β-gal reporter. This demonstrates that the GAr repeat can prevent 

presentation of the OVA epitope.  

To enhance the applicability of the GAr-modified TK we introduced the activating 

mutations of the sr39 mutant described by Black et al. in GAr-TK∆nlsSD-/SA- to generate 

GAr-TK sr39∆nlsSD-/SA-. The sr39 mutant was isolated after semi-random mutagenesis and 

has a Km value of 14.3-fold lower then wt-TK.35,36 However, under the conditions used here 

we could show no enhancement for GCV sensitivity (data not shown). 
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Figure 5 

Insertion of the OVA epitope does not essentially alter GCV 

sensitivity at higher GCV concentrations. B16 cell lines 

containing different TK constructs were seeded 3000 cells per 

well, 0.6 cm2, with different concentrations GCV. After 4 days 

cell viability was assessed with the WST-1 colorimetric assay.  

 

 

Discussion 

 

Herpes Simplex Virus-derived thymidine kinase (HSV-TK) is the archetypical enzyme used 

in gene-directed enzyme prodrug therapies (GDEPT). Its capacity to convert the antiherpetic 

nucleoside analogues ganciclovir and acyclovir to toxic nucleotides has been used effectively 

in gene therapy protocols to eradicate tumor cells and lymphocytes that expressed the HSV-

TK upon virus mediated gene transfer. Although effective, the use of the HSV-TK is limited 

by the induction of a cellular immune response against the HSV-TK protein. Upon infusion of 

HSV-TK-expressing T lymphocytes, 8 of 24 recipients developed an immune response 

against the transgene product. One avenue to circumvent this problem is to develop new 

‘human’ suicide genes.9,37,38    

As an alternative approach to evade the antigen-specific immune response we 

evaluated the use of the Glycine-Alanine repeat (GAr) region of the nuclear antigen 1 

(EBNA-1) of the Epstein Barr Virus (EBV) to protect HSV-TK derived peptides from being 

presented. Here we provide evidence that fusing the GAr region of the EBNA-1 to HSV-TK 

reduces the presentation of transgene-product-derived peptides in vitro. Furthermore, we 

introduce some extra features that could be optimizing the TK gene even more. Fusions of the 

entire N-terminal sequence (aa 1- 420) of EBNA-1 with TK lead to a markedly changed 

subcellular localization TK. We were able to restore the normal cell distribution pattern of the 

modified-TKs by deleting the nls from the EBNA-1 derived sequences. In addition, we 

introduced mutations to prevent splicing, something that is known to occur in up to 5% of the 

cells expressing TK after retrovirus-mediated gene transfer. Previously we have shown that 

fusing the GAr with TK does not alter the effectiveness of the enzyme. In this study we show 

that the mutations we made to restore the distribution pattern and to prevent the splicing 

maintained the enzymatic activity of the encoded TK. Furthermore, we could show that  
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Figure 6 

GAr protects the OVA epitope from being recognized. Target 

cells were seeded 6250 per 0.6 cm2 well and 50000 B3Z cells 

were added (n = 3). After o/n incubation CPRG was added and 

OD was measured at 595 nm. Depicted is one representative 

experiment of four experiments. The B3Z cells react on the 

presence of the OVA epitope in absence of the GAr and OVA 

epitope. The presence of the GAr completely abolishes the 

recognition. 

 

 

insertion of the OVA epitope did not overtly alter the capacity of TK to convert GCV. When 

we monitored for presentation of the OVA epitope using B3Z indicator cells, we observed a 

clear difference between ovaTK with or without the GAr, indicating that fusing the GAr to 

TK does indeed frustrate presentation even in highly stable enzymes as TK. So far, we have 

been unable to test the effect of the GAr on TK presentation in mice. We did not see 

significant differences in tumor take between naive mice and mice that were vaccinated with a 

first generation adenovirus vector that carriers the HSV-TK gene, upon challenge with B16 

cells, B16 GAR-TK∆nls cells, and B16 ∆GAR-TK∆nls cells (data not shown). These data 

suggest that expression of the HSV-TK does not lead to the induction of antigen-specific CTL 

in C57/BL6 mice. 

Although an EBNA-1 derived glycine and alanine-rich sequence of only 8 amino acids 

in length was found to significantly inhibit proteasomal degradation of instable reporter 

protein,39,40 it remains to be established if such short sequences are sufficient to fully prevent 

antigen-presentation and CTL-mediated cell destruction. We will therefore direct further 

research into the reduction of the repeat length while maintaining the beneficial effect of the 

GAr in our system.  

A recent study demonstrated that the GAr does not fully prevent the generation of 

antigenic peptides of full-length EBNA-1.41 This is attributed to the formation of so-called 

defective ribosomal products or DRiPs. Several differences between the latter study and ours 

should be noted. The full length EBNA-1 was studied in human B-cells and lymphoblastoid 

cell lines (LCLs). Whereas specific lysis is observed in the GAr-containing EBNA-1, more 

efficient lysis could be obtained when the GAr was deleted from EBNA-1, confirming a 

stealthing effect of the GAr in the natural context. This is in accordance with the data from 

Lee et al.,42 who also noted a partial protective effect of GAr in its natural context. 
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Furthermore, deletion of the GAr greatly reduces the half-life of EBNA-1 in B cells. This is 

consistent with a negative effect of the GAr on the efficiency of proteasomal degradation.22 In 

addition, we have studied the effect of the GAr with HSV-TK (this study), LacZ and 

luciferase,24 and GFP (M.O. & A.Z., unpublished data). These proteins are rather stable 

already and therefore may require less stabilization by the GAr, to sufficiently inhibit 

antigenic-peptide formation.  

Nonetheless, our data describe an immuno ‘stealthy’ HSV-TK gene. We demonstrated 

that the ‘stealthy’ variant could confer GCV sensitivity to the transduced cells. It also evades 

recognition by established CTL. However, formal proof of its efficacy in humans awaits 

demonstration of the protective effects against human TK-directed CTL. This could be tested 

with CTL isolated from patients that have received TK-modified cells and mounted a TK-

specific CTL response. We kindly invite anyone who has such material to initiate such studies 

using the vectors described here.   

 

 

Materials and Methods 

 

Construction of the GAr fusion genes 

The HSV-TK gene containing plasmids are all derived from pGAr-TK.24 To create p∆GAr-

TK, pGAr-TK∆nls, p∆GAr-TK∆nls, pGAr-TK∆nlsSD-/SA- and pGAr-TK sr39∆nlsSD-/SA- the 

QuikChange Site-Directed Mutagenesis Kit (Stratagene Europe, Amsterdam, The 

Netherlands) was used according to the manufacturer’s protocols with the primers listed in 

Table 1.  

First, the leucine-rich nuclear localization signal (nls) was deleted from the pcDNA3.1-GAr-

TK with primer set 1 creating pcDNA3.1-GAr-TK∆nls. Following the manufacturer’s 

suggestion both primers were chosen to have completely complementary sequences. In the 

sequence, the mark indicates the junction. Primer set 2 was used to delete the GAr (from 

amino acids 41 to 376) from the pcDNA3.1-GAr-TK, yielding pcDNA3.1-∆GAr-TK. To 

obtain pcDNA3.1-∆GAr-TK∆nls that lacks both the nls and the GAr, primer set 3 was used 

on plasmid pcDNA3.1-GAr-TK∆nls to remove the GAr. 

The plasmid lacking the cryptic splice-donor and splice-acceptor sites (SD-/SA-) was 

created from pcDNA3.1-GAr-TK∆nls. First primer set 4 was used to insert conservative 

changes that remove the splice-donor site (the mutation is shown in bold). After mutagenesis 

the presence of this mutation was verified by DNA sequence analysis. The resulting plasmid 

was used as template to create the pcDNA3.1-GAr-TK∆nlsSD-/SA- by mutagenesis with 

primer set 5 (the mutation that is introduced is shown in bold) to inactivate the cryptic splice-

acceptor site. A similar strategy was used to create pcDNA3.1-∆GAr-TK∆nlsSD-/SA- by 

starting with plasmid pcDNA3.1-∆GAr-TK∆nls. 
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Table 1:  Primers used for the construction of the TK mutants. 

Primers Sequence 5’-3’  

1 ∆nls-fw GGTCGTGGACGTGGAGAA|CAGTCATCATCATCCGGG 

 ∆nls-rv CCCGGATGATGATGACTG|TTCTCCACGTCCACGACC 

2 ∆GAr-fw GGGGGTGATAACCATGGA|GGAGAAAAGAGGCCCAGG 

 ∆GAr-rv CCTGGGCCTCTTTTCTCC|TCCATGGTTATCACCCCC 

3 ∆GAr2-fw GGGGGTGATAACCATGGA|GGAGAACAGTCATCATCATCC 

 ∆GAr2-rv GGATGATGATGACTGTTCTCC|TCCATGGTTATCACCCCC 

4 SD—
fw CCGCCTCGACCAAGGTGAGATATC 

 SD—
rv GATATCTCACCTTGGTCGAGGCGG 

5 SA—
fw CAGCATGACCCCCCAAGCCGTGCTGGCGTTC 

 SA—
rv GAACGCCAGCACGGCTTGGGGGGTCATGCTG 

6 OVA-fw CGCGAGCATCATTAATTTCGAGAAGCTGGC 

 OVA-rv CGCGGCCAGCTTCTCGAAATTAATGATGCT 

7 sr391-fw CCGGCCCTCACCATCTTCCTCGACCGCCATGGG 

 sr391-rv CCCATGGCGGTCGAGGAAGATGGTGAGGGCCGG 

8 sr392-fw CGCCATCCCATCGCCTTCATGCTGTGCTACCCGGCC 

 sr392-rv GGCCGGGTAGCACAGCATGAAGGCGATGGGATGGCG 

9 TK splice-fw CTCGACCAGG|GCCGTGCT 

 TK-rv2 CGACGAAGCTTAGTTAGCCTCCCCCATCTCCCG 

 

The mark in primer sets 1-3 indicated where the nls or the GAr was deleted. The bold and underlined letters in the other primers indicate 

mutations. The mark in primer 9 indicates the junction of the spliced TK. 

 

 

In the resulting plasmids, the ovalbumin (OVA)-derived CTL epitope (SIINFEKL, 

257-264) was inserted in frame in the thymidine kinase coding region. The plasmids were 

digested with MluI. A unique site for this enzyme is present in the region of the TK gene 

coding for the N-terminus. Primer set 6 was annealed generating MluI overhangs, and the 

double-stranded product was cloned into the MluI site of the (∆)GAr-TK∆nlsSD-/SA- 

plasmids, creating pcDNA3.1-(∆)GAr-OVA-TK∆nlsSD-/SA- . 

All PCR products were characterized by restriction analysis and the presence of the 

mutations was verified by DNA sequence analysis. For the lentiviral system, the complete 

GAr-TK∆nlsSD-/SA- and ∆GAr-TK∆nlsSD-/SA- coding regions were excised by SpeI and 

XhoI digestion and cloned into the pRRL vector digested with the same enzymes,25 yielding 

pRRL-GAr-TK∆nlsSD-/SA- and pRRL-∆GAr-TK∆nlsSD-/SA-.  

On the latter plasmids, primer set 7 was used to create the mutations of the TKsr39 at amino 

acids 594-596 (Fig 1). After confirmation of the presence of these mutations, primer set 8 was 

used on this template to create the mutations of the TKsr39 at the amino acids 603 and 604, 

yielding pRRL-GAr-TKsr39∆nlsSD-/SA- and pRRL-∆GAr-TKsr39∆nlsSD-/SA-. The PCR 

products were confirmed by restriction analysis and sequencing for the presence of the 

mutations and the GAr. 

 



Chapter 4  

 121 

Cell lines 

The 293T  cells 26, B16 cells 27, and the thymidine-kinase deficient  Rat2 28 cells were cultured 

in DMEM (Gibco) containing 8% (vol/vol) fetal bovine serum, 100 IU of penicillin per ml, 

100 µg of streptomycin per ml and 0.2% glucose.  The B3Z indicator cells 29 were cultured in 

IMDM (Gibco) containing 8% (vol/vol) fetal bovine serum, 100 IU of penicillin per ml, 100 

µg of streptomycin per ml, 28 µM β-mercaptoethanol and 500 µg hygromycin B per ml.  

Stable Rat2 cell lines expressing the different TK variants were made by transfection 

of 10 cm dishes with 9 µg TK construct and 1 µg pRSVneo using the Ca-Phosphate 

coprecipitation technique.30 After 48 h, medium was replaced with medium containing 800 µg 

G418 sulphate (Geneticin, Gibco) per ml. After elimination of the G418-sensitive cells, the 

cultures were maintained on medium with 200 �g G418 per ml and used as polyclonal 

cultures. The cells were evaluated for the presence of the TK protein by immunofluoresence 

and ganciclovir (GCV) sensitivity assays. 

B16 cell lines stable expressing TK variants were made by transduction with 

lentiviruses at 1 ng p24/5000 cells o/n in the presence of 8 µg/ml polybrene. The next day, 

cells were seeded sparsely and monoclonal cell lines were isolated and expanded. Monoclonal 

cell lines were assayed for TK expression by western analysis and GCV sensitivity. 

 

Virus production 

Lentiviruses were produced using the quadruple transfection technique as described.25 Briefly, 

293T cells (60-70 % confluent) were transfected using the Ca-Phosphate co-precipitation 

technique. In a Ø 10 cm dish, 3.5 µg pCMV-VSVG, 6.6 µg pMDLg/RRE, 5 µg pRSV-REV 

and 10 µg transfer vector plasmid were added. After 48 h and 72 h, the virus-containing 

supernatant was harvested by collecting the medium and filtrating through a 45-µm filter (Pall 

Gelman, Portsmouth, UK). The virus-containing supernatant was stored at –80ºC until use. 

The p24 amounts were determined by ELISA (Gentaur, Brussels, Belgium) and served as a 

surrogate measurement of the transducing titer, by assuming that 1 ng p24 is the equivalent of 

2500 transducing particles.    

 

Enzymatic assays 

Ganciclovir sensitivity assays to detect HSV-TK activity were performed in Rat2 cells or B16 

cells as indicated. Briefly, 3000 cells were seeded per 0.6 cm2 well, with different 

concentrations of GCV (Cymevene®, Roche diagnostics, Almere, The Netherlands) in 

triplicate. Cultures were grown for 4 days at 37ºC, 5% CO2. Cell viability was assessed with 

the WST-1 colorimetric assay (Roche) according to the manufacturer’s description. 

Chlorophenolred-β-D-galactopyranoside (CPRG, Calbiochem) assays to detect presentation 

of OVA, target cells were seeded 12000-6000-3000 per 0.6 cm2 well and 50000 B3Z cells 
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were added. After o/n incubation at 37ºC, 5% CO2, CPRG was added and OD was measured 

at 595 nm. 

 

Western analyses 

B16 cells or B16 cells expressing GAr-TK∆nls, ∆GAr-TK∆nls, GAr-ovaTK∆nls or ∆GAr-

ovaTK∆nls were lysed in RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.1% SDS, 0.5% 

DOC, 1% NP40) and protein extracts were size fractionated by SDS-PAGE, transferred to 

Immobilon-P nitrocellulose membranes and probed with rabbit anti-HSV-TK antiserum 

(1/250 diluted), kindly provided by Dr M Janicot (Aventis-Gencell, Vitry-Sur-Seine, France). 

After incubation with a peroxidase-conjugated goat-anti-rabbit secondary antibody, the 

proteins were visualized by enhanced chemiluminescence (Amersham Pharmacia Biotech, 

Roosendaal, The Netherlands). 

 

RT-PCR 

293T cells were transfected with GAr-TK∆nls or GAr-TK∆nlsSD-/SA- using the Ca-

Phosphate coprecipitation technique. After 48 h, RNA was extracted using the Absolutely 

RNA®, RT-PCR miniprep kit (Stratagene Europe, Amsterdam, The Netherlands) according to 

the manufacturer’s protocol. Superscript II (Clontech) was used to reverse transcribe 4 µg of 

RNA (DNaseI treated). After reverse transcription, a PCR was performed with primer set 9. 

The forward primer was chosen to overlap the junction after splicing occurred, to show 

exclusively spliced, and therefore inactive, TK. The PCR products were analyzed on a 1% 

agarose slab gel. 

 

Localization study 

293T cells were transfected with wt-TK, GAr-TK, GAr-TK∆nls, ∆GAr-TK or ∆GAr-

TK∆nls with the Ca-Phosphate coprecipitation technique. After 48 h, cells were fixed with 

methanol and subsequently incubated with rabbit anti-HSV-TK antiserum (1/250 diluted). 

After incubation with a FITC-conjugated goat-anti-rabbit secondary antibody and Propidium 

Iodide staining of the nucleus, the cells were analyzed by a Confocal LaserScan Microscope 

(CLSM, Leica DM IRBE, Leica microsystems B.V., Rijswijk, The Netherlands) using the 

Leica confocal software. 
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Abstract 

 

Kaposi Sarcoma Herpes Virus (KSHV), also known as Human Herpes Virus 8 (HHV8), can 

persist as an episome in target cells. The Latency-Associated Nuclear Antigen 1 (LANA-1) is 

a key component of the latency process, and may be a functional equivalent of the EBNA-1 

protein of Epstein-Barr Virus. EBNA-1 can subdue immune recognition by virtue of a long   

glycine and alanine-rich repeat, which interferes with the proteasomal degradation of 

EBNA-1 and in this way averts the presentation of antigenic peptides. LANA-1 contains a 

strongly acidic repeat region of approximately 580 amino acids, which consists almost 

exclusively of aspartic-acid, glutamine, and glutamic-acid residues. Despite the LANA-1 

repeat is not homologous to the EBNA-1 Gly-Ala-rich repeat, we demonstrate that this acidic 

region interferes with antigen processing in-cis. Upon transfection of expression vectors 

containing LANA-1-eGFP fusion genes the cells did not present an ovalbumin-derived H2Kb-

restricted CTL epitope inserted at the C-terminus of the fusion protein. Deletion of the central 

acidic-repeat region of LANA-1 abolished the capacity of LANA-1 to block antigen 

presentation. Similar to the EBNA-1-derived Gly-Ala-rich repeat, the LANA-1 repeat does 

not inhibit presentation in trans: co-transfection of LANA-1 expression vectors does not 

inhibit presentation of the OVA epitope from the GFPova fusion protein. These data 

demonstrate that the acidic repeat region of LANA-1 can function as in-cis acting inhibitor of 

antigen presentation. This may contribute to the immune evasion of cells latently infected by 

KSHV.  

 

 

Introduction 

 

Kaposi Sarcoma Herpes Virus (KSHV) also called Human herpes virus 8 (HHV8), is a 

gamma herpes virus associated with AIDS-related lymphoproliferative disorders 20,25. Like 

other herpes viruses KSHV can persist for life in a latent form in infected cells 5,29,33. 

One of the most studied proteins implicated in herpes virus latency is the Epstein-Barr 

Virus (EBV) Nuclear Antigen 1 (EBNA-1). EBNA-1 binds to the viral origin of replication 

and to metaphase chromosomes 14 17,30,37, thus allowing EBV episomal maintenance within 

the infected cell and equal partitioning to the daughter cells. EBNA-1 is the only viral protein 

present in all EBV-associated tumours. By a mechanism not totally understood yet, the Gly-

Ala repeat can interfere with the proteasomal degradation and prevent cytotoxic T lymphocyte 

epitope generation 15,16,21. The current model explaining this phenomenon dictates that a long 

stretch of alanines interspaced by 1, 2 or 3 glycines would give to EBNA-1 the appropriate 

conformation to interact with a proteasomal component that contain a hydrophobic pocket 27. 

Although this 30 to 200 GA repeat (depending on virus isolates) confers a benefit mechanism 
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for the virus, it appears that this sequence has not been evolutionary conserved, since none of 

the other herpes virus proteins contain a homologous repeat. 

Like EBV, KSHV infects human B cells, macrophages, endothelial cells, and epithelial cells. 

The infected cells are not eradicated from host cells by the immune system, suggesting that 

KSHV developed a strategy to evade the immune system 5,12,13,24. During latency, KSHV 

persists as a multicopy circular episomal DNA in the nucleus, and here it expresses a small 

subset of viral genes. One of the proteins encoded by these genes is the Latency-Associated 

Nuclear Antigen 1, LANA-1 (also called LNA or LNA-1), the EBNA-1 homologue in KSHV 
1. LANA-1 is a large multi-functional nuclear protein of 1162 amino acids, expressed from 

ORF73, and is involved in numerous cellular processes 9. It has been reported to improve 

dissemination of KSHV by modulating expression of oncosuppressor proteins 6,8,23. The 

central region of LANA-1 is occupied by a long acidic sequence that can be arbitrary divided 

in 3 parts: aspartic acid/glutamic acid (DE), glutamine/glutamic acid (QE), and aspartic 

acid/glutamin (DQ) 2 repeats. The function of the central domain is not well described yet, but 

seems to be required for the activation of the latent EBV promoter Cp34. LANA-1 contains 

two nuclear localisation signals (nls), one located in the N-terminal part (aa 24 to aa 30) 22 and 

one in the C-terminal part 26. LANA-1 is associated with heterochromatin during interphase 

and with chromosomes during mitosis 19,31.  

Here we demonstrate that the Latency-Associated Nuclear Antigen-1 of KSHV can 

inhibit the presentation of antigenic peptides. In this respect it resembles latency-associated 

proteins in EBV and MHV68 1. The mechanism involved is not clear but it is evident that the 

long central acidic region of LANA-1 is required for this  inhibition. 

 

 

Results 

 

 To examine the effect of LANA-1 on antigen presentation in vitro, we generated a 

Green fluorescent protein gene that carries the codons for a heterologous CTL epitope 

(Fig.1A). The resulting protein GFPova can be used to monitor the antigen presentation with 

the well-characterized B3Z CTL hybridoma cell line 28. Briefly, B3Z can recognize Ova 

peptide (SIINKFEL) when the peptide is presented in the context of H2Kb MHC I. 

Recognition induces expression of the IL-2 gene, which can be monitored by the induction of 

an heterologous IL-2 promoter linked to the E.coli lacZ gene. Responsiveness of B3Z to 

GFP/GFPova transfected cells, evaluated by LacZ quantification, shows 8 fold increase in 

H2Kb context, whereas no induction is observed without the appropriate MHC I molecules 

(Fig.1B), demonstrating the specificity of the assay. 

To assess whether LANA-1 or EBNA-1 can affect this presentation, H2Kb 293T cells were 

co-transfected with GFPova and increasing amounts (0, 0.05, 0.1, 0.2, 0.8 µg DNA) of LANA- 
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Figure 1 

EBNA-1 and LANA-1 have no in-trans acting inhibitory effect 

on OVA presentation. (A) Schematic diagram of GFP and 

GFPova showing the insertion of the octameric antigenic peptide 

(OVA) SIINFEKL. (B) B3Z assay on OVA expressing cells. 

293T cells were transfected with 0.8 µg of pRRL-CMV-

GFP/GFPova and 0.2 µg MHC I encoding plasmid (pcDNA 

H2Kb/H2Db). β-galactosidase activity was measured 24h after 

co-culture (48h post transfection). (C) Trans-inhibition B3Z 

assay. 293T cells were cotransfected like previously (1B) with 

increasing amounts of pCMV-EBNA-1 or pcDNA3.1-LANA-1. 

Point "0" H2Db is used to normalized LacZ activity and arbitrary 

set to 1. 

 

 

1 or EBNA-1 expressing vector. In the negative control (GFPova only), we observed, like 

previously, a strong induction of β-galactosidase activity in the presence of H2Kb indicating 

that the Ova epitope is efficiently recognized by the B3Z hybridomas (Fig.1C). As expected, 

EBNA-1 does not affect the antigen presentation in-trans, as is evident from the absence of 

significant differences in LacZ expression upon EBNA-1 co-transfection (p=0.0901 compared 

to mock-transfected cells at 0.8 µg DNA). Also LANA-1 did not affect antigen presentation 

in-trans in this assay (p=0.2702). 

 To evaluate whether LANA-1 could inhibit antigen presentation in-cis we generated 

new GFPova fusion proteins (Fig.2A). We and others have shown previously that the Gly-Ala 

repeat of EBNA-1 can interfere with the antigen processing 21. We fused the N-terminal part 

of EBNA-1 to GFPova, generating the EBNA-GFPova to serve as a positive control in our 

experiments. A similar construct was generated in which the Gly-Ala repeat of EBNA-1 was 

replaced by LANA-1, resulting in LANA-GFPova. From the latter clone a deletion construct 

was made from which the codons for the central acidic region, i.e. aa 360 to aa 911, were  
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Figure 2 

GFP fusion proteins. (A) Schematic diagram of pRRL-CMV-EBNA-GFPova, pRRL CMV-LANA-GFPova and pRRL-CMV-LANA∆r-GFPova. 

(B) Cellular localization of modified GFP. Confocal microscopy pictures taken 60h after transfection in 911 cells. (C) Western blot analysis 

of protein extracts from 911 transfected cells expressing GFP / GFPova / LANA-GFPova / LANA∆r-GFPova / EBNA-GFPova. Anti-GFP 

antibody is used for the detection, and loading control is provided by anti-Actin. 
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Figure 3 

LANA acts as an in-cis-inhibitor of antigen processing. (A) 

FACS analysis of 293T transfected cells. 15h after transfection 

with 0.8 µg of GFP  / GFPova / EBNA-GFPova / LANA-GFPova 

expressing vector, percentage of GFP positive cells is 

determined in order to evaluate the amount of target cells. Ratio 

1:2 is used between GFP positive cells and B3Z hybridomas. 

(B)&(C) LacZ activity expressed from the B3Z CTL after co-

culture with 293T transfected cells. GFP is used to normalized 

LacZ activity and arbitrary set to 1. 

 

 

removed (Fig. 2A).  In the LANA-1 fusion genes the codons for the nls sequences have been 

retained leading to predominant nuclear localization of the fusion proteins (Fig. 2B). EBNA-

GFPova is present as the specific stippled perinuclear pattern described before. We checked the 

expression level of each fusion protein by western analysis. All constructs (GFP, GFPova, 

LANA-GFPova, LANA∆r-GFPova, EBNA-GFPova) are expressed at equal levels and the fusion 

proteins migrate at the position consistent with their expected molecular weights of 27, 28, 

170, 85, and 64 kDa, respectively (Fig.2C).  

 To evaluate the ability of LANA-1 to inhibit the ova-peptide presentation in-cis, we 

co-transfected 293T cells with increasing amounts (0, 0.05, 0.1, 0.2, 0.4, 0.8 µg DNA) of the 

expression vectors for GFP, GFPova, EBNA-GFPova, and LANA-GFPova and either H2Kb or 

H2Db MHC I expression vectors. The percentages of target cells expressing the GFP protein 

was  determined by FACS analysis (Fig.3A). A ratio 1:2 between GFP-positive cells and B3Z 

hybridomas was used. Sixteen hours post transfection, no significant differences were noted 

either in percentage of GFP positive cells or in mean fluorescence intensity (MFI) (data not 

shown) between the different constructs. In the presence of H2Kb, we observed a strong 

response of B3Z against the GFPova expressing cells. The activation is specific since no LacZ 

activity was detected in the H2Db context or in the GFP expressing cells. Furthermore, the 

dose-response curve reaches a plateau already at 0.1 µg DNA with a maximal induction 

comprised between 8 and 12 times compared to the background signal (i.e. GFP without the 

OVA epitope). When LANA-1 is fused to GFPova we found a significant (60%-80%)  
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Figure 4 

The acidic region from LANA-1 is required for a maximal 

inhibitory effect. (A) FACS analysis of 293T transfected cells 

30h after transfection. (B) & (C) β−galactosidase activity. 

Similar experiment as described in figure 3 with 293T cells 

transfected with GFP / GFPova / LANA-GFPova / LANA∆r-

GFPova expressing vectors

. 

 

inhibition of LacZ activity (Fig.3C). Surprisingly, we noticed that the CTL were able to 

recognize the EBNA-GFPova expressing cells (5 to 10-fold LacZ induction and no statistical 

differences were observed at 0.8 µg between GFPova and EBNA-GFPova expressing cells). 

Similar assays were conducted to further examine this inhibitory effect of LANA-1. 

293T cells were co-transfected with increasing amounts of GFP, GFPova, LANA-GFPova or 

LANA∆r-GFPova expression vectors and mixed with B3Z cells (Fig 4). Again B3Z cells did 

not recognize the Ova epitope in H2Db context, and LANA-1 can inhibit the ova presentation 

(more than 60% of inhibition compared to GFPova transfected cells with 0.1 and 0.8 µg DNA) 

(Fig.4B). Interestingly, Fig 4C shows that after deletion of the central region, LANA-1 loses 

its capacity to inhibit the response of the hybridoma against OVA. Indeed, the difference 

between GFPova and LANA∆r-GFPova transfected cells is not significantly different (p = 

0.0772, 0.2745, 0.8154, 0.4121, and 0.6345, respectively, at 0.05, 0.1, 0.2, 0.4, and 0.8 µg 

DNA). 

Taken together these results suggest that LANA-1 from the KSHV can function as an 

in-cis acting inhibitor of antigen processing. This activity is dependent on the presence of the 

large central acidic-repeat region. 
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Discussion 

 

In KSHV LANA-1 is one of the subset proteins expressed during the latency phase. Also, it is 

expressed at high level in all Kaposi sarcoma (KS) associated malignancies 38 39. Here we 

demonstrate that LANA-1 can prevent the presentation of linked antigens by MHC I. This 

may facilitate LANA-1 to prevent eradication of LANA-1 producing cells by the cellular 

immune system. So far, only the K3 and K5 gene products of KSHV were know to be 

involved in immune evasion7. The K3 and K5 gene products block the endocytosis of MHC I 

molecules3 and the down-regulate accessory proteins involved in T-cell stimulation4. The fact 

that LANA-GFPova can escape recognition by the OVA-peptide specific B3Z hybridoma 

suggests that LANA-1 is immunologically invisible. The central role of LANA-1 in latency 

and long-persistence of KSHV genome in mammalian cells, is supported by LANA disruption 

studies after transposon-based mutagenesis on a KSHV BAC38. 

 Functional similarities between the latency-associated proteins of EBV (EBNA-1) and 

MHV (ORF73), demonstrate that KSHV kept a similar but still unknown mechanism to 

control latency. However, it appears that the presence of Gly-Ala repeat is not a prerequisite 

to facilitate evasion of the immune system during latency since MHV-68 ORF73 lacks the 

long alanine stretch. Although surprisingly, our results indicate that the Gly-Ala repeat, in this 

system, is unable to protect the OVA presentation, these results are consistent with IFNγ 

release assay performed with EBNA1-GFP or EBNA1-GAr-del-GFP35 (GAr deleted form). 

 Despite the controversy around this inhibitory effect32 36, we and others, have already 

demonstrated, under certain conditions, that the Gly-Ala repeat can be very efficient as well21, 

suggesting that the effectiveness of immune evasion is transgene and context-dependent. 

Another hypothesis we cannot exclude is the proteolysis of our fusion protein that then 

generates unprotected OVA epitopes. Interestingly, it seems that in addition to the 80kDa 

band observed on the western-blot, EBNA-GFPova can generate a smaller product (around 

30kDa) that could carry the OVA epitope but would not be linked to the protective Gly-Ala 

repeat (data not shown). 

 Even if the proteasome plays a central role in class I antigen generation, more than 

70% of the antigenic peptides secreted comes from Defective Ribosomal Products (DRiPs) 

constituting the primary source of CD8+T cell peptides 39. This could indicate that the 

inhibition in the case of LANA-1 could also rely on a more accurate control (quantitative or 

qualitative) of the protein synthesis –described before for EBNA-140. On the other hand, some 

particular characteristics previously reported, as a possible posttranslational modification like 

sumoylation18,34, that could interfere with antigen generation by stabilizing LANA-1, or the 

specific charge structure of the protein (basic N and C-terminal ends and acidic central 

region) 18could be some other pathways to investigate. 

Remarquably, it is interesting to note that even if EBV is so far the only characterized 

gamma herpes virus that kept a GA repeat during the evolution, a frame shift on this repeat 
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can generate a new repeat that presents more than 65% of homology with the central region of 

LANA-1 (Fig.5). These results combined to the one recently described by Bennett et al, on 

ORF73 from MHV68 1 showed that these viruses developed different strategies aiming at a 

similar goal,  the escape of the immune system. 

  A last attracting prospect for this work, besides the fundamental understanding of 

Herpes virus actions, is the possible utilization of such a sequence in gene therapy 

approaches. One of the major obstacles in gene therapy is T cell mediated destruction of 

transgene expressing cells. Until now one of the potential candidates that can be used to 

stealth proteins for the immune system is the Gly-Ala repeat of EBNA-1. Unfortunately, as 

mentioned previously, recent studies on EBNA-1 reveal its weakness, so it becomes more and 

more important to find new inhibitory sequences of antigen processing in order to develop 

"stealth-gene library". 

In this perspective LANA-1 can be an alternative to EBNA-1 as in-cis-inhibitor of antigen 

processing since these two proteins does not have any effect in-trans on the OVA 

presentation.  

 

 

Materials and Methods 

 

Constructs 

To generate GFPova expressing vector, we introduced the Ova epitope (SIINFEKL) by 

mutagenic PCR (stratagene Kit) on pRRL-CMV-GFP vector using following primers:  

Forward: 5'-ACGAGCTGTACAAGAGCATAATTAATTTCGAAAAGCTCTAAGCGGCCGCGTC-3'  

Reverse: 5'-GACGCGGCCGCTTTAGAGCTTTTCGAAATTAATTATGCTCTTGTACAGCTCGTC-3' 

To check the in-cis-inhibitory effect of EBNA-1 and LANA-1 repeats, we fused respectively 

amino acids 1 to 430 and 1 to 1082 to GFPova. 

pRRL-CMV-EBNA-GFPova has been generated using a EBNA fragment from pLXRN-

EBNA-Luciferase (previously described 21) in pRRL-CMV-GFPova. 

pRRL-LANA-GFPova has been generated replacing a SalI/SalI EBNA fragment from pRRL-

CMV-EBNA-GFPova by a HindIII/XcmI fragment from pCDNA3.1 myc-LANA-1 (gift from 

Kenneth Kaye), creating pRRL-CMV-LANA-GFPova. 

pRRL-CMV-LANA∆r-GFPova construct was generated by deleting the central region by 

mutagenic PCR using following primers:  

Forward: 5'-GATGACAATGACAATAAGGATATCTTAGAGGAGGTGGAAGAG-3' 

Reverse: 5'-CTCTTCCACCTCCTCTAAGATATCCTTATTGTCATTGTCATC-3' 

All the fusions were checked by complete sequencing and immunoblot (Fig 2B).  
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Figure 5  

Amino acid alignment of LANA-1 and EBNA-1 frame shift. The EBNA-1 messenger contains a large nested open reading frame. 

Translation starting at an alternative initiator AUG downstream of the canonical initiation codon would yield an acidic protein (GZ) that 

presents 42% identity and 66% homology with LANA-1 protein according to SSearch analysis software. 
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Cell lines 

293T, U2OS, and 911 were grown in high glucose DMEM supplemented with 10% fetal 

bovine serum (Gibco BRL) and penicillin/Streptomycin, supplemented with 8% (vol/vol) 

fetal bovine serum, 100 IU of penicillin per ml, 100 µg of streptomycin per ml and 0.2% 

glucose 

The B3Z indicator cells11 (Kindly provided by R.E.M. Toes) were cultured in IMDM (Gibco) 

containing 8% (vol/vol) fetal bovine serum, 100 IU of penicillin per ml, 100 µg of 

streptomycin per ml, 28 µM β-mercaptoethanol and 500 µg hygromycin B per ml.  

All cells were maintained at 37 C in a humidified atmosphere of 5% CO2 in air. 

 

Transfection and FACS analysis 

293T, U2OS and 911 cells were transfected at 70% confluency using the Calcium Phosphate 

co-precipitation technique10. Transfection in 6-well dishes and 24-well dishes are respectively 

performed with a total of 5µg and 2µg DNA/well. 

24h or 48h after transfection as indicated, cells were resuspended in PBS-/- and the 

percentage of GFP positive cells was measured by FACS analysis (FACScan Becton-

Dickinson). GFP fluorescence was detected using a 530/30 nm bandpass filter (FL1 channel) 

following excitation with an argon ion laser source at 488 nm. Using a forward-scatter/side-

scatter representation of events, a region was defined to exclude cellular debris from the 

analysis. A number of events/FL1 (which reflects the fluorescence intensity) histogram was 

then established according to this region, and percentages of GFP-positive cells were 

determined in comparison to the negative control (untreated cells). Data analysis was 

performed using CellQuest 3.1 software (Becton–Dickinson). For each sample, 10,000 events 

were collected. 

 

Localization study 

911 cells were cultured in 6 well-plates on coverslips. 48h after transfection, cells were fixed 

with paraformaldehyde (PFA) 2% Tween-20 0.5% and washed 3 times with PBS/tween 

0.05%. Nuclear staining was performed using Propidium Iodide solution for 15 min. Slides 

were then analysed by Confocal Laser Scan Microscopy (CLSM, Leica DM-IRBE). 

 

Western blot 

Cells were treated with RIPA lysis buffer (50mM Tris pH 7.5, 150mM NaCl, 0.1% SDS, 

0.5% DOC, 1% NP40 + Protease Inhibitors). Proteins were quantified using BCA kit and 50 

µg protein was loaded. The samples were analysed on 15% (GFP/GFPova) or 8% (EBNA-

GFPova/LANA-GFPova) polyacrylamide-SDS. Proteins were transferred to Immobilon-P 

(Immobilon-P transfer membrane (PVDF); Millipore, Etten-Leur, The Netherlands) and 

treated with anti-GFP (1:1000), and anti-Actin (1:5000, clone C4; ICN Biomedicals, Inc., 

Zoetemeer, The Netherlands). After incubation with a peroxidase-conjugated goat-anti-mouse 
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secondary antibody, the proteins were visualized by enhanced chemiluminescence 

(Amersham Pharmacia Biotech, Roosendaal, The Netherlands). All antibodies were diluted in 

TBST (0.2% Tween 20, 150mM NaCl, and 10mM Tris) with 5% nonfat dried milk (Protifar 

Plus; Nutricia BV, Zoetermeer, The Netherlands). 

 

B3Z assay 

Determination of Ova presentation was determined as previously described 28. Briefly, 293T 

transfected cells were exposed to B3Z CTL. After o/n coculture plates were centrifuged 5 min 

at 1500 rpm, and lysed in luciferase Lysis Buffer (125 mM Tris-phosphate, pH 7.8, 10 mM 

CDTA, 10 mM DTT, 50% glycerol, 5% Triton X-100). 

β-Galactosidase activity was determined by luminometry as well (Lumat LB9501 

luminometer (Berthold, Wildbad, Germany)) using galactolight dual light kit (Tropix). 

Each experiment was performed in duplicate and repeated at least 3 times. Statistical analyses 

were realized using unpaired T test on graphpad.com. 
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General Discussion 

 
The studies presented in this thesis aimed at developing and evaluating a new technique to 

make transgene products used in gene-therapy applications “invisible” (i.e. stealthed) to the 

immune system. To this end we used the Gly-Ala repeat (GAr) domain of the Epstein-Barr 

virus nuclear antigen-1 (EBNA-1). We provided four examples of fusions with the GAr that 

did not impede the function of the reporter, i.e. the E.coli-derived �-galactosidase, herpes 

simplex virus-derived thymidine kinase (HSV-TK), firefly luciferase, and jellyfish green 

fluorescent protein (GFP). 

We showed that the GAr does not affect induction of transgene directed CTL activity 

upon adenovirus-mediated transfer and expression of a GAr-LacZ fusion gene. However, 

recognition of transgene-expressing cells by antigen-specific CTL is abolished sufficiently to 

prevent cytolysis by β-galactosidase-specific CTL. The observation that the GAr does not 

inhibit priming of CTL is important and consistent with reports describing the presence of 

EBNA-1 specific-CTL in EBV-seropositive individuals (Blake et al., 1997; Blake et al., 2000; 

Rickinson and Moss, 1997). This inability of completely preventing the generation and 

presentation of antigenic peptides, may be attributed to the fact that the GAr seems not 

entirely prevent formation of defective ribosomal products (DRiPs) (Voo et al., 2004; Tellam 

et al., 2004; Lee et al., 2004). These DRiPs play an important role in antigenic peptide 

generation (Yewdell et al., 1996; Schubert et al., 2000; Reits et al., 2000) and are actually the 

main source of antigenic peptides for long-lived proteins (Khan et al., 2001). However, there 

are marked differences between our studies and the DRiPs study of Tellam and collaborators. 

They studied the full length EBNA-1 in human B-cells and lymphoblastoid cell lines (LCLs). 

Whereas specific lysis is observed in the GAr-containing EBNA-1, more efficient lysis could 

be obtained when the GAr was deleted from EBNA-1, confirming a stealthing effect of the 

GAr in the natural context. This is in accordance with the data from Lee et al., who also noted 

a partial protective effect of GAr in its natural context. Furthermore, deletion of the GAr 

greatly reduces the half-life of EBNA-1 in B cells. This is consistent with a negative effect of 

the GAr on the efficiency of proteasomal degradation (Levitskaya et al., 1995). In addition, 

we have studied the effect of the GAr with rather stable proteins and therefore they may 

require less stabilization by the GAr, to sufficiently inhibit antigenic-peptide formation.  

 We showed that the GAr does not affect induction of transgene directed CTL activity 

upon adenovirus-mediated transfer and expression of a GAr-LacZ fusion gene. As antigen 

presentation by professional APC, most likely DC, is crucial to the initiation of virus-specific 

CTL responses, the presence of EBNA-1-specific CTL in EBV-positive donors suggests that 

antigen processing for MHC class I by specialized APC is not hampered by the GAr. Our data 

strongly suggest that cross-priming does occur, since we could show priming in an indirect 
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manner (non-matching MHC class I molecules). The presence of this EBNA-1-specific CTLs 

points to the possibility that GAr does not affect the processing of exogenously acquired 

EBNA-1 antigens. This can be explained by the fact that in the cross-priming pathway upon 

phagocytosis of exogenous proteins there is limited proteolysis and these degradation 

products are exported to the cytosol (Lizee et al., 2003; Guermonprez et al., 2003; Houde et 

al., 2003; Ackerman et al., 2003). This limited proteolysis probably results in the separation 

of the GAr from the antigenic CTL epitope. In this way, the processing of the CTL epitope is 

liberated from the inhibitory influence of the GAr on proteasomal antigen degradation, 

explaining the observation that CTL priming proceeds in an uninhibited fashion.  

 In addition to the GAr, we showed that an alternative ORF in EBNA-1 can also inhibit 

presentation of linked antigens. This ORF contains a repeat of the same length as GAr and is 

rich in Gly (G), Glu and Gln (Z) residues. Therefore we named it the GZ-rich repeat. 

Remarkably, this repeat is strongly similar to the last one-third of the latency-associated 

nuclear antigen-1 (LANA-1) from kaposi sarcoma herpes virus (KSHV) a.k.a. human herpes 

virus 8 (HHV-8). This protein is, like EBNA-1, involved in episomal maintenance of the virus 

genome. Also this repeat region is implicated with inhibition of antigenic presentation. This 

together suggests that (long) repeats in general have an inhibitory effect on antigen 

presentation. It is speculated by Sharipo and collaborators (2001) that the inhibitory effect of 

the GAr requires at least three alanine residues in a β-strand conformation with adjacent 

hydrophobic binding pockets of a putative receptor (Sharipo et al., 2001).  In the case of the 

GZr and the LANA-1, there are no alanine residues present and since the whole repeat is 

strongly acidic, it is highly unlikely that there will be hydrophobic pockets involved in the 

receptor part. This suggests that the GZr and LANA-1 repeats may function in a different 

way. 

In addition to the full-length repeats of GAr and GZr we were able to obtain mini-

repeats. These mini-repeats were tested as well since it is known that short EBNA-1 derived 

glycine and alanine-rich sequence of only 8 amino acids are able to significantly inhibit 

proteasomal degradation of instable reporter protein (Sharipo et al., 2001; Sharipo et al., 1998; 

Dantuma et al., 2000). Surprisingly, the mini-repeats blocked presentation more efficiently 

than the full length repeats. The mechanism for the more potent inhibition is unclear. Maybe 

these shorter proteins form less DRiPs then longer proteins, on the basis of size and inherent 

difficulties in folding or assembly (Schubert et al., 2000). 

Together, these results make out a small library of inhibitory sequences for the 

generation of “immunostealth” genes. This is useful in gene therapy approaches where a life-

long restoration of the defects is required. Furthermore, it can be used to create safer suicide 

genes from bacterial or viral origin. The most widely used suicide gene is the HSV-TK. Since 

this is a viral gene, problems can occur with its use. Indeed, upon infusion of HSV-TK-

expressing T lymphocytes, 8 of 24 recipients developed an immune response against the 

transgene product (Thomis et al., 2001). To circumvent this problem attempts to use human 



Chapter 6 

 149 

genes as suicide system, have been done. Of course in the use of human genes for suicide 

gene therapy, as is the case with Fas (Thomis et al., 2001) or caspase 8 (Carlotti et al., 2005) 

stealthing may not be necessary. However, the TK and ganciclovir combination has a very 

useful bystander effect, which makes this combination the system of choice for many gene 

therapy applications. 
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Summary 

 

Gene therapy is a potentially powerful form of molecular medicine and  potentially 

broadly applicable. It would provide treatments for a large number of inherited and acquired 

diseases. Ideally, the affected gene should be replaced, but most protocols aim at adding a 

correct copy of the afflicted gene. Often viruses are used to get the gene transferred into the 

cells. This can lead to an immune response against the vehicle, i.e. the virus. Expression of a 

“new” gene may also lead to synthesis of proteins foreign to the immune system. Cells 

producing these proteins will therefore be recognized as infected or aberrant and targeted for 

destruction. This is of course an unwanted effect in those applications where a life-long repair 

of the defect is desired. 

In Chapter 1, an overview is given of both immune responses against one of the most 

frequently used viral vectors, the adenovirus, and immune responses against transgene 

products. For better understanding this issue is discussed in the context of the current state of 

cancer- and gene therapy. In addition, a brief description is provided on how the immune 

system recognizes the presented peptides as well as viral mechanisms to evade the system. 

In Chapter 2, we use one of the known immune evasion mechanisms to “stealth” 

transgenes products. Here, we fuse the codons for the Gly-Ala repeats (GAr) of the Epstein-

Barr Virus (EBV) nuclear antigen 1 (EBNA-1) with three different transgenes, i.e. E.coli 

LacZ, firefly Luciferase and herpes simplex virus 1 (HSV1) thymidine kinase (TK). We show 

that fusion of the GAr does not lead to significant reductions in the activities of these proteins. 

Interestingly and to our surprise, the GAr-LacZ fusion protein is capable of inducing CTLs. 

However, when we tested cells infected with GAr-LacZ for recognition by LacZ specific 

CTLs, these cells were protected against lysis. This apparent paradox can be explained by 

cross-priming. We showed that in the absence of the correct MHC class I molecules, CTLs 

can be primed, indicating that cross-priming does occur. Moreover, we showed in animal 

experiments that GAr-LacZ-expressing cells resided longer in the body than the non-modified 

LacZ expressing cells. From these data we concluded that the EBV GAr system could well be 

used in gene therapy settings to prevent the immune system of reacting on transgenes. 

Upon closer examination of the EBNA-1 open reading frame (ORF), we found a 

nested (frame-shifted) ORF. This alternative ORF would yield a strongly acidic protein with a 

calculated molecular weight of 40.7 kDa. This protein would contain a 238 amino-acids long 

glycine, glutamine, and glutamic acid-rich repeat. The polypeptide tract rich in Gly and Glx 

residues was named GZ- repeat (GZr) region. In Chapter 3, we fused this nested ORF (GZr) 

with the LacZ gene and were able to show β-galactosidase activity upon transfer of the fusion 

gene into cultured cells. We set out to test this new repeat next to the original GAr, two mini 

constructs consisting of one third of the normal GAr or GZr and a construct lacking all 

repeats. All constructs were equally active for β-galactosidase and tested for recognition by 

LacZ specific CTLs. This showed that, in contrast to the repeat deleted construct, all the 
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constructs bearing repeats were at least partially protected for recognition by LacZ specific 

CTLs. Interestingly, the mini repeats, both miniGAr and miniGZr, were better in protecting 

the cells against recognition. Since the repeat-deleted construct and the normal LacZ-

expressing cells were recognized, we were able to show that this is a repeat-dependent 

mechanism. This shows that the GZ repeats might be another candidate to shield transgenes 

for the immune system. 

One of the examples of a transgene where an immune response was mounted against, 

is the herpes simplex virus 1 (HSV1) thymidine kinase (TK). In Chapter 4, TK was fused to 

the GAr to try to blunt the immune response against it. Since the EBNA-1 protein resides in 

the nucleus, it contains a nuclear localization signal (nls). Although there are no clues that a 

nuclear localization of TK is detrimental to the activity, we did remove the nls. This indeed 

restored the TK localization to normal and the GAr alone did not influence the localization. 

We introduced also some mutations in the TK to obtain a more sensitive and unsplicable TK. 

In our cell system the mutations did not have any effect on the activity. To evaluate the 

protective effect of the GAr, we introduced a marker CTL epitope in the constructs. Insertion 

of the ovalbumin (OVA) epitope did not alter the activity of TK as well. When cells 

expressing TK harboring the OVA epitope and GAr-TK with the OVA epitope, were 

cocultured with B3Z cells, capable of recognizing the OVA epitope, it was clear that the GAr 

could shield OVA for these cells. We therefore suggest that GAr-TK might be a good 

candidate to use in bone marrow transplantation protocols. 

The Kaposi sarcoma herpes virus (KSHV) / human herpes virus 8 (HHV-8) has a 

protein that is, like EBNA-1, involved in maintenance of the episome and therefore also in 

establishing latency. This protein, latency-associated nuclear antigen-1 (LANA-1), has a long 

acidic repeat where the last part is similar to the newly found GZ repeat. In Chapter 5 we 

investigated LANA-1's capabilities in immune evasion. When tested in-trans with a GFPOva 

fusion, both the EBNA-1 and LANA-1 failed to protect OVA for recognition. Then, a fusion 

was made of LANA-1 and GFPOva and similarly a GArGFPOva fusion protein. Both were 

expressed equally and localization studies confirmed that also LANA-1 has an nls. When the 

constructs then were tested for recognition by B3Z cells, LANAGFPOva showed clear 

reduction in recognition compared to GFPOva. In this setting however, the GArGFPOva 

fusion was not as efficient as we have previously seen. The repeat units in LANA-1 are also 

responsible for the protective effect like the GAr and GZr in EBNA-1. This was shown using 

a repeat-deleted construct, LANA∆rGFPOva, which showed similar characteristics as the 

GFPOva. In conclusion, this study describes for the first time an immune evasion effect of 

another herpes virus then EBV. Like EBNA-1 it also depends on repeats, but the mechanism 

by which it inhibits presentation of linked antigens remains to be established. 
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Samenvatting 

 

 Gentherapie is een potentieel effectieve vorm van moleculaire geneeskunde en 

potentieel wijd inzetbaar. Het zou een oplossing kunnen bieden voor zowel erfelijke en andere 

ziekten. In het gunstigste geval zou het beschadigde gen moeten worden vervangen door een 

gezond gen, maar de meeste gentherapie protocollen richten zich op het toevoegen van een 

correct gen. Voor het toevoegen van het gen in de zieke cellen wordt een vector gebruikt. Die 

vector, vaak een virus, kan ervoor zorgen dat er een immuun respons ontstaat tegen de gen-

drager. Ook de expressie van op deze manier toegevoegde correcte genen kan leiden tot het 

synthetiseren van eiwitten die onbekend zijn voor het immuunsysteem. De cellen die deze 

eiwitten produceren zullen daarom als geïnfecteerd of afwijkend worden beschouwd en 

worden opgeruimd door het immuunsysteem. Dit is natuurlijk een ongewild effect in de 

toepassing van gentherapie waar een levenslange reparatie van het defecte gen is gewenst. 

 In Hoofdstuk 1 wordt een overzicht gegeven van de immuun respons tegen zowel een 

van de meest gebruikte virale vectoren, het adenovirus, als de gebruikte transgenen en hun 

transgenproducten. Dit is ter wille van de duidelijkheid geplaatst in een context van de 

huidige stand van zaken bij kanker- en gentherapie. Daarbij is een korte beschrijving gegeven 

hoe het immuunsysteem antigene peptiden herkent en presenteert. Ook worden virale 

mechanismen beschreven om dit systeem te vermijden. 

 In Hoofdstuk 2 gebruiken we een bestaand immuunsysteem ontwijkend mechanisme 

om transgen producten onzichtbaar te maken (te “stealthen”). Hier fuseren we de codons van 

de Gly-Ala repeats (GAr) van het Epstein-Barr Virus (EBV) nuclear antigen (EBNA-1) met 

drie verschillende transgenen. We gebruiken het LacZ gen van de darmbacterie E. coli, het 

Luciferase gen van vuurvliegjes en het thymidine kinase (TK) gen van het herpes simplex 

virus 1 (HSV1). We laten zien dat fusie van deze GAr aan deze transgenen niet leidt tot een 

reductie in de activiteiten van deze eiwitten. Interessant genoeg en tot onze verbazing is het 

fusie-eiwit GAr-LacZ wel in staat om CTLs te induceren. Maar als we testen of GAr-LacZ 

geïnfecteerde cellen worden herkend door LacZ specifieke CTLs, zien we dat ze worden 

beschermd tegen lysis. Deze ogenschijnlijke paradox kan worden verklaard door het 

mechanisme van cross-priming. We laten zien dat zelfs in afwezigheid van de correcte MHC 

class I molecules CTLs kunnen worden geïnduceerd, wat er op wijst dat cross-priming 

inderdaad gebeurd. We laten in dier-experimenten ook nog zien dat cellen die GAr-LacZ tot 

expressie brengen langer in het lichaam blijven dan cellen die het ongemodificeerde LacZ tot 

expressie bengen. Uit deze data hebben wij de conclusie getrokken dat het EBV-GAr-systeem 

inderdaad kan worden gebruikt om  een immuun respons tegen de gebruikte 

transgenproducten te voorkomen in gentherapeutische protocollen. 

 Toen we het EBNA-1 open reading frame (ORF) beter bekeken, konden we ook een 

intern (frame-shifted) ORF vinden. Dit alternative ORF zou een eiwit tot expressie brengen 

dat sterk zuur was en een berekend moleculair gewicht heeft van 40.7 kDa. Dit eiwit zou een 
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lange zure repeat hebben van 238 aminozuren bestaande uit glycine (Gly), glutamine (Gln) en 

glutamine zuur (Glu). Deze repeat noemden we de GZ-repeat (GZr), omdat die bestaat uit 

alleen Gly (G) en Glx (Z) aminozuren. In Hoofdstuk 3 fuseren we deze nieuwe repeat (GZr) 

uit het nested ORF met het gen voor LacZ. Wanneer we dit fusie gen tot expressie brachten in 

cellen konden we duidelijke �-galactosidase activiteit aantonen. We testten deze nieuwe 

repeat samen met de eerder gebruikte GAr, twee mini repeat constructen die maar 1/3 van de 

normale GAr en GZr bevatten en een construct waar we alle repeats hebben uitgehaald. Al 

deze constructen lieten gelijke niveaus van �-galactosidase activiteit zien. Daarna testten we 

ze voor herkenning van het intracellulaire LacZ door LacZ specifiek CTLs. Alle constructen 

die repeats hadden, waren tenminste gedeeltelijk beschermd tegen herkenning door LacZ 

specifieke CTLs. De mini repeats, zowel miniGAr als miniGZr, waren beter in het 

beschermen tegen herkenning. De cellen die normaal LacZ of het repeatloze LacZ tot 

expressie brachten, werden wel herkend door LacZ speciefieke CTLs. Hierdoor kunnen we 

concluderen dat het mechanisme van het beschermen van de cellen berust op het hebben van 

repeats. Bovendien kan de GZr ook gebruikt worden voor het beschermen van transgenen 

tegen het immuunsysteem. 

 Een van de voorbeelden waarbij een transgen wordt herkend en opgeruimd door het 

immuun systeem is het herpes simplex virus 1 (HSV1) thymidine kinase (TK). In Hoofdstuk 

4 hebben we TK aan de GAr gefuseerd om de immuun respons te stoppen. Omdat het EBNA-

1 eiwit normaal in de kern aanwezig is, bezit het een nuclear localization signal (nls). Hoewel 

we geen aanwijzingen hebben dat TK in de celkern minder goed functioneert, hebben we toch 

de nls uit het construct verwijderd. Die verwijdering zorgde er inderdaad voor dat het fusie 

eiwit niet meer in de celkern tot expressie kwam. Een fusie van GAr alleen met TK (zonder 

nls) had geen enkel effect op de localisatie. We hebben mutaties aangebracht in het TK om 

het gevoeliger te maken voor de pro-drug ganciclovir (GCV). Ook hebben we mutaties 

aangebracht om ervoor te zorgen dat het actieve deel van TK er niet meer kan worden 

uitgehaald door middel van splicing. Deze mutaties hadden geen effect op de activiteit van 

TK. Om beter te kunnen beoordelen wat het beschermende effect van GAr is, hebben we een 

bekend CTL epitoop van ovalbumine (OVA) als marker ingebouwd in het TK. Het inbouwen 

van dit OVA epitoop zorgde ook niet voor een verminderde activiteit van TK. We hebben 

cellen die het GAr-TK met OVA epitoop of normaal TK met OVA epitoop tot expressie 

brengen samen gekweekt met B3Z cellen. Deze B3Z cellen kunnen het OVA epitoop 

herkennen waarna ze β-galactosidase to expressie brengen. In onze experimenten konden we 

na het samen kweken duidelijk zien dat wanneer het OVA epitoop is ingebouwd in GAr-TK 

er geen herkenning was door de B3Z cellen. Daaruit konden we concluderen dat GAr het TK 

kan beschermen en zouden wij het GAr gemodificeerde TK aanbevelen om te gebruiken in 

beenmerg-transplantatie protocollen. 

 Het Kaposi sarcoma hepes virus (KSHV)/humaan herpes virus 8 (HHV-8) heeft ook 

een eiwit dat net als EBNA-1 is betrokken bij het handhaving van het episoom en daarom ook 
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in het vestigen van latentie. Dit eiwit, latency-associated nuclear antigen-1 (LANA-1), heeft 

een lange zure repeat waarvan het laatste deel lijkt op de nieuw gevonden GZ repeat. In 

Hoofdstuk 5 hebben we LANA-1 getest in het vermijden van de immuun respons. Wanneer 

we EBNA-1 en LANA-1 in trans testten met een GFPOva fusie eiwit, zagen we dat beide 

eiwitten faalden in het beschermen van OVA. Daarna hebben we een fusie gemaakt van 

LANA-1 en GFPOva en op dezelfde manier GAr en GFPOva. Beiden kwamen tot hetzelfde 

expressie niveau en lokalisatie studies toonden aan dat LANA-1 ook een nls heeft. Wanneer 

de cellen werden getest voor herkenning door B3Z cellen liet LANAGFPOva een duidelijke 

reductie zien in herkenning ten opzichte van GFPOva. Hier was alleen het beschermende 

effect van GArGFPOva minder groot dan we eerder hebben laten zien. Ook in LANA-1 zijn 

de repeats verantwoordelijk voor het beschermende effect net zoals in het geval van de GAr 

en GZr in ENBA-1. Dit werd duidelijk nadat we konden aantonen dat een construct waar de 

repeats waren uitgehaald, LANA∆rGFPOva, hetzelfde reageerde dan normaal GFPOva. Dit 

leidt tot de conclusie dat we voor het eerst hebben kunnen aantonen dat er een 

immuunsysteem vermijdend effect is van een ander herpes virus dan het EBV. Net zoals in 

EBNA-1 zijn repeats hiervoor verantwoordelijk.  Het mechanisme van de bescherming voor 

de antigenen die eraan gekoppeld zijn, is nog niet ontrafeld. 
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List of Abbreviations 
 
 

aa  amino acid 

AAV  adeno-associated virus 

Ab  antibody 

Ad  adenovirus 

Ala  alanine 

APC   antigen presenting cell 

CLIP  class II-associated Ii peptide 

CMV  cytomegalovirus 

CTL   cytotoxic T lymphocyte 

DC  dendritic cell 

DRiPs  defective ribosomal products 

EBNA-1 Epstein-Barr virus nuclear antigen-1 

EBV  Epstein-Barr virus 

eGFP  enhanced green fluorescent protein 

ER  endoplasmatic reticulum 

eYFP  enhanced yellow fluorescent protein 

GAr  glycine-alanine repeat region 

GCV  ganciclovir 

GDEPT gene-directed enzyme prodrug therapy 

Gln  glutamine 

Glu  glutamic acid 

Glx  glutamine or glutamic acid 

Gly  glycine 

GVDH  graft-versus-host disease 

GZr  glycine-glutamine-glutamic acid repeat region 

HCMV human cytomegalovirus 

HHV-7 human herpes virus-7 

HHV-8 human herpes virus-8 

HIV-1  human immunodeficiency virus-1 

HSC  hematopoietic stem cells 

HSV-1  herpes simples virus-1 

Hyg  hygromycin resistance gene 

IFN-γ  interferon-γ 

KSHV  kaposi sarcoma herpes virus 

LAMP-1 lysosomal-associated membrane protein 

LANA-1 latency-associated nuclear antigen-1 



 162

MIIC  MHC II compartment 

MCMV murine cytomegalovirus 

MEC  mouse embryo cells 

MHC  major histocompatibility complex 

MLV  murine leukemia virus 

MOI  multiplicity of infection 

NK  natural killer cell 

nls  nuclear localization signal 

ORF  open reading frame 

OVA  ovalbumin 

PFU  plaque-forming units 

RCC  renal cell carcinoma 

SCID-X1 X-linked severe combined immunodeficiency 

TAP  transporter associated with antigen processing 

TCR  T-cell receptor 

TK  thymidine kinase 
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Chapters 2, figure 2. GAr fusion enzymes retain their activity. (a) Activity of GAr-β-galactosidase. Hep2 cells were infected with rAd5-nls-

LacZ or rAd5-GAr-LacZ (4 PFU/cell). At 48 h postinfection, the cells were fixed and stained for β-galactosidase activity. In addition, H1299 

cells grown in 10-cm dishes were infected with rAd5-nlsLacZ or rAd5-GArLacZ with 10 PFU/cell. After 48 h, protein extracts were made 

and size-fractionated by SDSPAGE, transferred to nitrocellulose membranes and probed with an anti-LacZ mouse monoclonal antibody 

(Roche, Basel, Switzerland). (b) Activity of GAr-TK. The TK-deficient cell line Rat2 (R2, TK-) was used to generate stable cell lines 

containing the various plasmids. CBeb.C1 and CDNA.C1 are G418-resistant Rat2 cells obtained after transfection of the empty 

pCBeb and pCDNA3.1 plasmids, respectively. GArTK.C1 and C10 are independent G418-resistant clones of Rat2 cells stably expressing the 

pGAr-TK plasmid. TK.C9 and C13 are two independent G418-resistant Rat2 clones derived by transfection of the plasmid pCDNA-TK. 

Rat1 (R1) is the TK+ parental cell line from which Rat2 had been derived. [3H]thymidine incorporation (± s.d.) is represented per 106 cells. 

The inset depicts a Western analysis of the Rat2 clones with a polyclonal goat anti-HSV-TK antibody. The faster-migrating band in clone 

GAr-TK C1 may result from splicing within the TK coding region.59 The same cell lines were analyzed for their ganciclovir sensitivity by 

growing these cells for 48 h in the presence of varying concentrations of ganciclovir. Cell viability was determined with the WST-I 

colorimetric assay. (c) Activity of GArluciferase. Cultures of 911 cells were transfected with pCBeb (as a negative control), pLXRN-GAr-luc 

and the GAr- and nls-deletion derivatives. Cells were lysed 18 h post-transfection and the luciferase activity was measured in the lysates. The 

mean of three experiments is shown, expressed as light units/106 cells ± 1 s.d. 
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Chapter 3, figure 3. In-situ β-galactosidase activity assay (A) and galactolight assay (B) of the transfected 293T cells. A 293T cells were 

transfected with miniGZr-LacZ, miniGAr-LacZ, GZr-LacZ, GZORF-LacZ, GAr-LacZ and ∆r-LacZ-encoding plasmids. After 48 hours, the 

cells were fixed, and stained overnight. (B) 293T cells were transfected with miniGZr-LacZ, miniGAr-LacZ, GZr-LacZ, GZORF-LacZ, GAr-

LacZ and ∆r-LacZ encoding plasmids. After 48 hours, the cells were lysed and galacton was added. The β-galactosidase activity is 

normalized for the protein concentration in the lysate. 
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Chapter 3, figure 4. Characterization of the stable B77 cell lines. B77 cells were transfected with plasmids encoding miniGZr-LacZ, 

miniGAr-LacZ, GZr-LacZ, GAr-LacZ, and ∆r-LacZ proteins respectively. After establishing stable cell lines, the cells expressing miniGZr-

LacZ, miniGAr-LacZ, GZr-LacZ, GAr-LacZ, and ∆r-LacZ, as well as B77 and BB16 cells (B77 cells expressing LacZ) were lysed and 

protein extracts were size fractionated by SDS-PAGE (A). The western blot was analyzed with a monoclonal mouse anti-LacZ antibody. All 

proteins migrate at the expected size, and no smaller products are visible. (B) The same cell lines, as well as B77 and BB16 were fixed 

stained in-situ. (C) Stable B77 cell lines expressing the miniGZr-LacZ, miniGAr-LacZ, GZr-LacZ, GAr-LacZ, and ∆r-LacZ constructs, and 

B77 and BB16 cells were lysed and galacton was added. Plotted is the normalized β-galactosidase activity. 
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Chapter 4, figure 2. Sub-cellular localization of the different TK proteins. 293T cells were transfected with wt-TK, GAr-TK, GAr-TK∆nls, 

∆GAr-TK or ∆GAr-TK∆nls. Cells were incubated with rabbit anti-HSV-TK antiserum and a FITC-conjugated goat-anti-rabbit secondary 

antibody. The nucleus was stained with Propidium Iodide and the cells were analyzed by a confocal laserscan microscopy. Deletion of the nls 

but not the GAr restores the wt-TK distribution pattern. 
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Chapters 5, figure 2. GFP fusion proteins. (A) Schematic diagram of pRRL-CMV-EBNA-GFPOVA, pRRL CMV-LANA-GFPOVA and pRRL-

CMV-LANA∆r-GFPOVA. (B) Cellular localization of modified GFP. Confocal microscopy pictures taken 60h after transfection in 911 cells. 

(C) Western blot analysis of protein extracts from 911 transfected cells expressing GFP / GFPOVA / LANA-GFPOVA / LANA∆r-GFPOVA / 

EBNA-GFPOVA. Anti-GFP antibody is used for the detection, and loading control is provided by anti-Actin. 
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