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5 Switching of electrical current by
spin precession in the first
Landau level of an inverted-gap
semiconductor

5.1 Introduction

A central goal of spin-transport electronics (or spintronics) is the
ability to switch current between spin-selective electrodes by means
of spin precession [151]. In the original Datta-Das proposal for such
a spin-based transistor [38], the current which is switched carries
both spin and charge. It has proven difficult to separate the effects
of spin precession from purely orbital effects (deflection of electron
trajectories), so most succesful implementations use a nonlocal
geometry [60] to modulate the spin current at zero charge current
[58, 85, 139]. Even in the absence of an orbital effect, the fact that
different electrons (moving along different trajectories) experience
different amounts of spin precession prevents a complete switching
of the current from one electrode to the other.

If the electron motion could somehow be confined to a single
spatial dimension, it would be easier to isolate spin effects from
orbital effects and to ensure that all electron spins precess by the
same amount. Complete switching of the current would then be
possible, limited only by spin relaxation processes. Edge state
transport in the quantum Hall effect is one-dimensional and spin
selective (in sufficiently strong perpendicular magnetic fields B⊥),
but spin precession plays no role in the traditional experiments
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Figure 5.1: Top panel: Schematic illustration of the one-
dimensional pathway along which the electron spin
is injected, precessed, and detected (filled circles: oc-
cupied states; open circles: empty states). Bottom
panel: Potential profile of the p-n junction, shown for
B⊥ > Bc (for B⊥ < Bc the labels E+ and E− should be
interchanged).

on a two-dimensional electron gas [17]. In this paper we show
how the quantum Hall effect in an inverted-gap semiconductor
offers the unique possibility to perform a one-dimensional spin
precession experiment.

The key idea is to combine the spin-selectivity of edge states
with free precession along a p-n interface. The geometry, shown
in Fig. 5.1, has been studied in graphene [146, 2, 105, 142] – but
there spin is only weakly coupled to the orbit and plays a minor
role [62, 1]. The strong spin-orbit coupling in inverted-gap semi-
conductors splits the first Landau level into a pair of levels E± of
opposite magnetic moment [74, 123]. One level E+ (say, with spin
up) has electron-like character and produces edge states in the
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conduction band. The other level E− (with spin down) has hole-
like character and produces edge states in the valence band. The
edge states from E+ and E− have opposite chirality, meaning that
one circulates clockwise along the edge while the other circulates
counter-clockwise. These spin-selective, chiral edge states provide
the spin injection at x = 0 and detection at x = W.

For the spin precession we need to combine states from E+ and
E−. This is achieved by means of a gate electrode, which creates a
smooth potential step (height U0, width d) centered at y = 0, such
that the Fermi level lies in the conduction band for y < 0 (n-doped
region) and in the valence band for y > 0 (p-doped region). At
the p-n interface states from the first Landau levels E+ and E−
overlap at the Fermi energy EF, to form a spin-degenerate one-
dimensional state. Spin precession can be realized externally by a
parallel magnetic field B‖ (in the x− y plane) or internally by bulk
or structure inversion asymmetry [74].

Good overlap at EF of the states from E+ and E− is crucial for
effective spin precession. The requirement is that the spatial sepa-
ration δy ' |E+ − E−|d/U0 of the states should be small compared
to the magnetic length lm = (h̄/eB⊥)1/2 (which sets their spatial
extent). This is where the inverted gap comes in, as we now explain.

Inversion of the gap means that the first Landau level in the con-
duction band goes down in energy with increasing magnetic field
(because it has hole-like character), while the first Landau level in
the valence band goes up in energy (because it has electron-like
character). As a consequence, the gap |E+ − E−| has a minimal
value Ec much less than the cyclotron energy h̄ωc at a crossover
magnetic field Bc. Indeed, Ec = 0 in the absence of inversion
asymmetry [74]. Good overlap can therefore be reached in an
inverted-gap semiconductor, simply by tuning the magnetic field.
In a normal (non-inverted) semiconductor, such as GaAs, the cy-
clotron energy difference between E+ and E− effectively prevents
the overlap of Landau levels from conduction and valence bands.

In the following two sections, we first present a general, model
independent analysis and then specialize to the case of a HgTe
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quantum well (where we test the analytical theory by computer
simulation).

5.2 General theory

We introduce a one-dimensional coordinate s± along the E± edge
states, increasing in the direction of the chirality (see Fig. 5.1). The
wave amplitudes ψ±(s±) of these two states can be combined into
the spinor Ψ = (ψ+, ψ−). Far from the p-n interface, ψ+ and ψ−
evolve independently with Hamiltonian

H0 =

(
H+ 0
0 H−

)
, H± = v±

(
−ih̄

∂

∂s±
− p±F

)
. (5.1)

This is the generic linearized Hamiltonian of a chiral mode, with
group velocity v± ≡ v(s±) and Fermi momentum p±F ≡ pF(s±).
Near the p-n interface the spin-up and spin-down states are coupled
by the generic precession Hamiltonian,

Hprec =

(
0 M∗

M 0

)
, (5.2)

with a matrix elementM to be specified later.
We seek the transfer matrix T, defined by

Ψ(s f
+, s f
−) = TΨ(si

+, si
−). (5.3)

We take for Ψ a solution of the Schrödinger equation,

(H0 + Hprec)Ψ = 0, (5.4)

at zero excitation energy (appropriate for electrical conduction
in linear response). The initial and final points si

± and s f
± are

taken away from the p-n interface. The unitary scattering matrix S
(relating incident and outgoing current amplitudes) is related to T
by a similarity transformation,

S =

(
v f
+ 0
0 v f

−

)1/2

T
(

vi
+ 0
0 vi

−

)−1/2

. (5.5)
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The two-terminal linear-response conductance G of the p-n junction
is given by the Landauer formula,

G =
e2

h
|S21|2. (5.6)

The transition matrix element M(s+, s−) between ψ+(s+) and
ψ−(s−) vanishes if the separation |s+ − s−| of the two states is
large compared to the magnetic length lm. We assume that B⊥ is
sufficiently close to Bc that |s+ − s−| < lm at the p-n interface y = 0,
0 < x < W, where we may take M = constant (independent of
x). At the two edges x = 0 and x = W we setM = 0, neglecting
the crossover region within lm of (0, 0) and (W, 0). (The precession
angle there will be small compared to unity for lm � h̄v±/|M|.)

In this “abrupt approximation” we may identify the initial and
final coordinates si

± and s f
± with the points (0, 0) and (W, 0), at

the two ends of the p-n interface. Integration of the Schrödinger
equation (5.4) along the p-n interface gives the transfer matrix, and
application of Eq. (5.5) then gives the scattering matrix

S = exp
[
−i

W
h̄

(
p+F M∗/

√
v+v−

M/
√

v+v− p−F

)]
. (5.7)

(We have assumed that v± and p±F , as well asM, do not vary along
the p-n interface, so we may omit the labels i, f .) One verifies that
S is unitary, as it should be.

Evaluation of the matrix exponent in Eq. (5.7) and substitution
into Eq. (5.6) gives the conductance,

G =
e2

h
sin2

( |peff|W
h̄

)
sin2 α. (5.8)

The effective precession momentum

peff =

(
ReM

v̄
,

ImM
v̄

,
δpF

2

)
(5.9)

(with δpF = p+F − p−F and v̄ =
√

v+v−) makes an angle α with the
z-axis. This is the final result of our general analysis.

85



5.3 Application to a HgTe quantum well

We now turn to a specific inverted-gap semiconductor, a quantum
well consisting of a 7 nm layer of HgTe sandwiched symmetrically
between Hg0.3Cd0.7Te [73]. The properties of this socalled topologi-
cal insulator have been reviewed in [74]. The low-energy excitations
are described by a four-orbital tight-binding Hamiltonian [23, 44],

H = ∑
n

c†
nEncn − ∑

n,m (nearest neighb.)
c†

nTnmcm. (5.10)

Each site n on a square lattice (lattice constant a = 4 nm) has four
states |s,±〉, |px ± ipy,±〉 – two electron-like s-orbitals and two
hole-like p-orbitals of opposite spin σ = ±. Annihilation operators
cn,τσ for these four states (with τ ∈ {s, p}) are collected in a vector

cn = (cn,s+, cn,p+, cn,s−, cn,p−).

States on the same site are coupled by the 4× 4 potential matrix
En and states on adjacent sites by the 4× 4 hopping matrix Tnm.

In zero magnetic field and without inversion asymmetry H de-
couples into a spin-up block H+ and a spin-down block H−, de-
fined in terms of the 2× 2 matrices

E+n = E−n = diag (εs −Un, εp −Un), (5.11)

T +
nm =

(
T −nm

)∗
=

(
tss tspeiθnm

tspe−iθmn −tpp

)
. (5.12)

Here Un is the electrostatic potential and θnm is the angle between
the vector rn − rm and the positive x-axis (so θmn = π − θnm). The
orbital effect of a perpendicular magnetic field B⊥ is introduced
into the hopping matrix elements by means of the Peierls substitu-
tion

Tnm 7→ Tnm exp[i(eB⊥/h̄)(yn − ym)xn].

This breaks the degeneracy of the spin-up and spin-down energy
levels, but it does not couple them.
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Spin-up and spin-down states are coupled by the Zeeman effect
from a parallel magnetic field (with gyromagnetic factor g‖) and by
spin-orbit interaction without inversion symmetry (parameterized
by a vector ∆). In first-order perturbation theory, the correction δE
to the on-site potential has the form [74]

δE = (∆ · σ)⊗ τy +
1
2 µBg‖(B‖ · σ)⊗ (τ0 + τz)

+ µBB⊥σz ⊗ (ḡ⊥τ0 + δg⊥τz). (5.13)

The Pauli matrices σ = (σx, σy, σz) act on the spin-up and spin-
down blocks, while the Pauli matrices τy, τz and the unit matrix τ0

act on the orbital degree of freedom s, p within each block.
The parameters of the tight-binding model for a 7 nm thick

HgTe/Hg0.3Cd0.7Te quantum well (grown in the (001) direction)
are as follows [74]: tss = 74.9 meV, tpp = 10.9 meV, tsp = 45.6 meV,
εs = 289.5 meV, εp = −33.5 meV, ḡ⊥ = 10.75, δg⊥ = 11.96, g‖ =
−20.5, ∆ = (0, 1.6 meV, 0).

The quantum well is symmetric, so only bulk inversion asymme-
try contributes to ∆. The p-n junction is defined by the potential
profile

U(x, y) = 1
2U0[1 + tanh(4y/d)], 0 < x < W, (5.14)

with U0 = 32 meV, d = 12 nm, and W = 0.8 µm. We fix the Fermi
level at EF = 25 meV, so that it lies in the conduction band for
y < 0 and in the valence band for y > 0. (We have checked that
none of the results are sensitive to the choice of potential profile
or parameter values.) The scattering matrix of the p-n junction is
calculated with the recursive Green function technique, using the
“knitting” algorithm1 of Ref. [65]. Results for G as a function of B‖
are shown in Figs. 5.2 and 5.3.

The dependence of the conductance on the parallel magnetic field
B‖ shows a striking “bullseye” pattern, which can be understood

1 The computer code for the knitting algorithm was kindly provided to us by
Dr. Waintal.
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Figure 5.2: Dependence of the conductance of the HgTe quantum
well on the parallel magnetic field B‖, calculated from
the tight-binding model for B⊥ = Bc = 6.09 T.

as follows. To first order in B‖, the edge state parameters v± and
p±F are constant, while the precession matrix element

M = ∆eff + µBgeff(B‖x + iB‖y) (5.15)

varies linearly. Substitution into Eqs. (5.8) and (5.9) gives a circu-
larly symmetric dependence of G on B‖,

G =
e2

h

(
1 +

(v̄δpF)
2

4|µBgeff|2|B‖ −B0|2

)−1

× sin2
[

W
h̄v̄

√
|µBgeff|2|B‖ −B0|2 + 1

4 (v̄δpF)2

]
, (5.16)

B0 = µ−1
B
(((
Re[∆eff/geff], Im[∆eff/geff], 0

)))
. (5.17)

The parallel magnetic field B0 corresponds to the center of the
bullseye, at which the coupling between the ± edge states along
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Figure 5.3: Dependence of the conductance on B‖y for B‖x = 0, at
three values of the perpendicular magnetic field. The
solid curves are calculated numerically from the tight-
binding model, the dashed curves are the analytical
prediction (5.16). The arrow indicates the value of B0

from Eq. (5.17). (Only the numerical curve is shown in
the upper panel, because the analytical curve is nearly
indistinguishable from it.)

the p-n interface by bulk inversion asymmetry is cancelled by the
Zeeman effect.

The Fermi momentum mismatch δpF vanishes at a perpendic-
ular magnetic field B∗ close to, but not equal to, Bc. Then the
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magnetoconductance oscillations are purely sinusoidal,

G =
e2

h
sin2[(W/h̄v̄)µBgeff|B‖ −B0|]. (5.18)

For a quantitative comparison between numerics and analytics,
we extract the parameters v± and p±F from the dispersion relation of
the edge states ψ± along an infinitely long p-n interface (calculated
for uncoupled blocks H±). The overlap of ψ+ and ψ− determines
the coefficients

∆eff = (∆x + i∆y)〈ψ−|τy|ψ+〉, (5.19)

geff =
1
2 g‖〈ψ−|τ0 + τz|ψ+〉. (5.20)

For B⊥ = Bc = 6.09 T we find v̄δpF = 0.86 meV, h̄v̄/W =

0.23 meV, ∆eff = −1.59 meV, geff = −4.99. The Fermi momen-
tum mismatch δpF vanishes for B⊥ = B∗ = 5.77 T. Substitution
of the parameters into Eq. (5.16) gives the dashed curves in Fig.
5.3, in reasonable agreement with the numerical results from the
tight-binding model (solid curves). In particular, the value of B0 ex-
tracted from the numerics is within a few percent of the analytical
prediction (5.17).

Because of the one-dimensionality of the motion along the p-
n interface, electrostatic disorder and thermal averaging have a
relatively small perturbing effect on the conductance oscillations.
For disorder potentials ∆U and thermal energies kBT up to 10% of
U0 the perturbation is hardly noticeable (a few percent). As shown
in Fig. 5.4, the conductance oscillations remain clearly visible even
for ∆U and kBT comparable to U0. In particular, we have found
that the center of the bullseye pattern remains within 10% of B0

even for ∆U as large as the p-n step height U0.

5.4 Conclusion

In conclusion, we have proposed a one-dimensional spin precession
experiment at a p-n junction in an inverted-gap semiconductor. The
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Figure 5.4: The solid blue curve in both panels is the same as
in Fig. 5.3, top panel, calculated for B⊥ = B∗ from
the tight-binding model at zero temperature without
any disorder. The dotted black curve in the lower
panel shows the effect of raising the temperature to
30 K ≈ U0/3kB. The dotted red curve and dashed green
curve in the upper panel show the effect of disorder
at zero temperature. The on-site disorder potential is
drawn uniformly from the interval (−∆U0, ∆U0), with,
respectively, ∆U = U0/4 and ∆U = U0/2.

conductance as a function of parallel magnetic field oscillates in a
bullseye pattern, centered at a field B0 proportional to the matrix
element ∆eff of the bulk inversion asymmetry. Our numerical and
analytical calculations show conductance oscillations of amplitude
not far below e2/h, robust to disorder and thermal averaging.
Realization of the proposed experiment in a HgTe quantum well
[74] (or in other inverted-gap semiconductors [82]) would provide a
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unique demonstration of full-current switching by spin precession.
As directions for future research, we envisage potential applica-

tions of this technique as a sensitive measurement of the degree
of bulk inversion asymmetry, or as a probe of the effects of inter-
actions on spin precession. It might also be possible to eliminate
the external magnetic field and realize electrical switching of the
current in our setup: The role of the perpendicular magnetic field
in producing spin-selective edge states can be taken over by mag-
netic impurities or a ferromagnetic layer [83], while the role of the
parallel magnetic field in providing controlled spin precession can
be taken over by gate-controlled structural inversion asymmetry.
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