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3 Nonalgebraic length dependence
of transmission through a chain
of barriers with a Lévy spacing
distribution

3.1 Introduction

Barthelemy, Bertolotti, and Wiersma have reported on the fabri-
cation of an unusual random optical medium which they have
called a Lévy glass [15]. It consists of a random packing of glass
microspheres having a Lévy distribution of diameters. The space
between the spheres is filled with strongly scattering nanoparti-
cles. A photon trajectory therefore consists of ballistic segments
of length s through spherical regions, connected by isotropic scat-
tering events. A Lévy distribution is characterized by a slowly
decaying tail, p(s) ∝ 1/s1+α for s → ∞, with 0 < α < 2, such that
the second moment (and for α < 1 also the first moment) diverges.
The transmission of light through the Lévy glass was analyzed [15]
in terms of a Lévy walk [87, 129, 92] for photons.

Because the randomness in the Lévy glass is frozen in time
(“quenched” disorder), correlations exist between subsequent scat-
tering events. Backscattering after a large step is likely to result in
another large step. This is different from a Lévy walk, where sub-
sequent steps are independently drawn from the Lévy distribution
(“annealed” disorder). Numerical [76] and analytical [120] theo-
ries indicate that the difference between quenched and annealed
disorder can be captured (at least approximately) by a renormal-
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ization of the Lévy walk exponent – from the annealed value α to
the quenched value α′ = α + (2/d)max(0, α− d) in d dimensions.
Qualitatively speaking, the correlations in a Lévy glass slow down
the diffusion relative to what is expected for a Lévy walk, and the
effect is the stronger the lower the dimension.

To analyze the effect of such correlations in a quantitative manner,
we consider in this paper the one-dimensional analogue of a Lévy
glass, which is a linear chain of barriers with independently Lévy
distributed spacings s. Such a system might be produced artificially,
along the lines of Ref. [15], or it might arise naturally in a porous
medium [79] or in a nanowire [72]. Earlier studies of this system1

[52, 36, 14, 25] have compared the dynamical properties with those
of a Lévy walk. In particular, Barkai, Fleurov, and Klafter [14]
found a superdiffusive mean-square displacement as a function
of time [〈x2(t)〉 ∝ tγ with γ > 1] – reminiscent of a Lévy walk
(where γ = 3− α). No precise correspondence to a Lévy walk is
to be expected in one dimension, because subsequent step lengths
are highly correlated: Backscattering after a step of length s to the
right results in the same step length s to the left.

The simplicity of one-dimensional dynamics allows for an ex-
act solution of the static transmission statistics, without having
to assume a Lévy walk. We present such a calculation here, and
find significant differences with the L−α/2 scaling of the average
transmission expected [40, 78, 28] for a Lévy walk (annealed dis-
order) through a system of length L. If the length of the system is
measured from the first barrier, we find for the case of quenched
disorder an average transmission 〈T〉 ∝ L−α ln L for 0 < α < 1
and 〈T〉 ∝ L−1 for α > 1. Note that the nonalgebraic length de-

1The authors of Ref. [14] calculate a lower bound to the mean square displace-
ment, with the result 〈x2〉 ≥ tmin(2,3−α) if the initial position of the particle is
randomly chosen along the chain (so superdiffusion for any 0 < α < 2). If the
particle starts at a barrier (which corresponds to the situation we consider in
the present work), the result is 〈x2〉 ≥ t2−α (so superdiffusion for 0 < α < 1).
Earlier papers [52, 36] gave different results for the mean square displacement,
but a direct comparison is problematic because those papers did not notice
the dependence on the starting position.
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Figure 3.1: Linear chain of randomly spaced tunnel barriers. We
study the statistics of conductance (or transmission)
over a length L for a Lévy distribution of spacings p(s).

pendence for 0 < α < 1 goes beyond what can be captured by a
renormalization of α.

In the electronic context the average conductance 〈G〉 is propor-
tional to 〈T〉, in view of the Landauer formula. In that context it
is also of interest to study the shot noise power S, which quan-
tifies the time dependent fluctuations of the current due to the
granularity of the electron charge. We calculate the Fano factor
F ∝ 〈S〉/〈G〉, and find that F approaches the value 1/3 charac-
teristic of normal diffusion [18, 96] with increasing L – but with
relatively large corrections that decay only as 1/ ln L for 0 < α < 1.

3.2 Formulation of the problem

We consider a linear chain of tunnel barriers, see Fig. 3.1, with
a distribution of spacings p(s) that decays for large s as 1/sα+1.
A normalizable distribution requires α > 0. For 0 < α < 1 the
mean spacing is infinite. We take for each barrier the same mode-
independent transmission probability Γ� 1 (no ballistic transmis-
sion). The corresponding tunnel resistance is r = (h/e2)(NΓ)−1,
with N the number of transverse modes. In the electronic context
we require r � h/e2, so that the Coulomb blockade of single-
electron tunneling can be ignored.
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We work in the regime of incoherent sequential tunneling (no
resonant tunneling). This regime can be reached for N � 1 as a
result of intermode scattering, or it can be reached even for small
N as a result of a short phase coherence length. For sequential
tunneling the resistance R of n barriers in series is just the series
resistance nr [corresponding to a transmission probability T =

(nΓ)−1]. We measure this resistance

R(L) = r ∑
n

θ(xn)θ(L− xn) (3.1)

between one contact at x = 0 and a second contact at x = L > 0.
The numbers xn indicate the coordinates of the tunnel barriers and
θ(x) is the step function [θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0].

Without further restrictions the statistics of the conductance
would be dominated by ballistic realizations, that have not a single
tunnel barrier in the interval (0, L). The reason, discussed in Ref.
[14], is that the average distance between a randomly chosen point
along the chain and the nearest tunnel barrier diverges for any 0 <

α < 2 (so even if the mean spacing between the barriers is finite). To
eliminate ballistic transmission, we assume that one tunnel barrier
is kept fixed at x0 = 0+. (This barrier thus contributes r to the
resistance.) If we order the coordinates such that xn < xn+1, we
have

R(L) = r + r
∞

∑
n=1

θ(xn)θ(L− xn). (3.2)

We seek the scaling with L in the limit L → ∞ of the negative
moments 〈R(L)p〉 (p = −1,−2,−3, . . .) of the resistance. This
information will give us the scaling of the positive moments of the
conductance G = R−1 and transmission T = (h/Ne2)R−1. It will
also give us the average of the shot noise power S, which for an
arbitrary number of identical tunnel barriers in series is determined
by the formula [61]

S =
2
3

e|V|r−1[(R/r)−1 + 2(R/r)−3], (3.3)
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where V is the applied voltage. From 〈S〉 and 〈G〉 we obtain the
Fano factor F, defined by

F =
〈S〉

2e|V|〈G〉 . (3.4)

3.3 Arbitrary moments

The general expression for moments of the resistance is

〈R(L)p〉 = rp

〈(
1 +

∞

∑
n=1

θ(xn)θ(L− xn)

)p〉
, (3.5)

where the brackets 〈· · · 〉 indicate the average over the spacings,

〈· · · 〉 =
∞

∏
n=1

∫ ∞

−∞
dxn p(xn − xn−1) · · · , (3.6)

with the definitions x0 = 0 and p(s) = 0 for s < 0. We work out
the average,

〈R(L)p〉 = rp
∞

∑
n=1

np

(
n

∏
i=1

∫ ∞

−∞
dsi p(si)

)

× θ

(
n

∑
i=1

si − L

)
θ

(
L−

n−1

∑
i=1

si

)
. (3.7)

It is more convenient to evaluate the derivative with respect to L
of Eq. (3.7), which takes the form of a multiple convolution of the
spacing distribution2,

d
dL
〈Rp〉 = rp(2p − 1)p(L)

+ rp
∞

∑
n=2

[(n + 1)p − np]
∫ ∞

−∞
dxn−1 · · ·

∫ ∞

−∞
dx1

p(L− xn−1)p(xn−1 − xn−2) · · · p(x2 − x1)p(x1). (3.8)

2We cannot directly take the derivative of Eq. (3.5), because that would lead
(for p 6= 1) to an undefined product of θ(L − x) and δ(L − x). No such
complication arises if we take the derivative of Eq. (3.7).
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In terms of the Fourier (or Laplace) transform

f (ξ) =
∫ ∞

0
ds eiξs p(s), (3.9)

the series (3.8) can be summed up,

d
dL
〈Rp〉 = rp

2π

∫ ∞+i0+

−∞+i0+
dξ e−iξL

∞

∑
n=1

[(n + 1)p − np] f (ξ)n

=
rp

2π

∫ ∞+i0+

−∞+i0+
dξ e−iξL 1− f (ξ)

f (ξ)
Li−p[ f (ξ)]. (3.10)

The function Li(x) is the polylogarithm. The imaginary infinitesi-
mal i0+ added to ξ regularizes the singularity of the integrand at
ξ = 0. For negative p this singularity is integrable, and the integral
(3.10) may be rewritten as an integral over the positive real axis,

d
dL
〈Rp〉 = rp

π
Re

∫ ∞

0
dξ e−iξL 1− f (ξ)

f (ξ)
Li−p[ f (ξ)]. (3.11)

3.4 Scaling with length

3.4.1 Asymptotic expansions

In the limit L→ ∞ the integral over ξ in Eq. (3.11) is governed by
the ξ → 0 limit of the Fourier transformed spacing distribution.
Because p(s) is normalized to unity one has f (0) = 1, while the
large-s scaling p(s) ∝ 1/sα+1 implies

lim
ξ→0

f (ξ) =
{

1 + cα(s0ξ)α, 0 < α < 1,
1 + is̄ξ + cα(s0ξ)α, 1 < α < 2.

(3.12)

The characteristic length s0 > 0, the mean spacing s̄, as well as the
numerical coefficient cα are determined by the specific form of the
spacing distribution.
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The limiting behavior of the polylogarithm is governed by

Li1(1 + ε) = − ln(−ε), (3.13)

lim
ε→0

Li2(1 + ε) = ζ(2)− ε ln(−ε), (3.14)

lim
ε→0

Lin(1 + ε) = ζ(n) + ζ(n− 1)ε, n = 3, 4, . . . (3.15)

In combination with Eq. (3.12) we find, for 0 < α < 1, the following
expansions of the integrand in Eq. (3.11):

lim
ξ→0

1− f
f

Li−p( f ) = cα(s0ξ)α ln[−cα(s0ξ)α],

if p = −1, (3.16)

lim
ξ→0

1− f
f

Li−p( f ) = − ζ(−p)cα(s0ξ)α,

p = −2,−3 . . . (3.17)

For 1 < α < 2 we should replace cα(s0ξ)α by is̄ξ + cα(s0ξ)α.

3.4.2 Results

We substitute the expansions (3.16) and (3.17) into Eq. (3.11), and
obtain the large-L scaling of the moments of conductance with the
help of the following Fourier integrals (L > 0, α > −1):∫ ∞

0
dξ e−iξLξα ln ξ = iΓ(1 + α)e−iπα/2L−1−α

× (ln L + iπ/2 + γE − Hα), (3.18)∫ ∞

0
dξ e−iξLξα = −iΓ(1 + α)e−iπα/2L−1−α, (3.19)

Re
∫ ∞

0
dξ e−iξLiξ = 0, (3.20)

Re
∫ ∞

0
dξ e−iξLiξ ln ξ = − 1

2 πL−2. (3.21)

Here γE is Euler’s constant and Hα is the harmonic number. The
resulting scaling laws are listed in Table 3.1.

Two physical consequences of these scaling laws are:
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0 < α < 1 1 < α < 2
〈R−1〉 ≡ 〈G〉 L−α ln L L−1

〈Rp〉 ≡ 〈G−p〉, p = −2,−3, . . . L−α L−α

Table 3.1: Scaling with L of moments of conductance (or, equiva-
lently, transmission).

• The Fano factor (3.4) approaches 1/3 in the limit L → ∞,
regardless of the value of α, but for 0 < α < 1 the approach
is very slow: F− 1/3 ∝ 1/ ln L. For 1 < α < 2 the approach
is faster but still sublinear, F− 1/3 ∝ 1/Lα−1.

• The root-mean-square fluctuations rms G =
√
〈G2〉 − 〈G〉2

of the conductance become much larger than the average
conductance for large L, scaling as rms G/〈G〉 ∝ Lα/2/ ln L
for 0 < α < 1 and as rms G/〈G〉 ∝ L1−α/2 for 1 < α < 2.

3.5 Numerical test

To test the scaling derived in the previous sections, in particu-
lar to see how rapidly the asymptotic L-dependence is reached
with increasing L, we have numerically generated a large number
of random chains of tunnel barriers and calculated moments of
conductance and the Fano factor from Eqs. (3.2)–(3.4).

For the spacing distribution in this numerical calculation we took
the Lévy stable distribution3 for α = 1/2,

p1/2(s) = (s0/2π)1/2s−3/2e−s0/2s. (3.22)

Its Fourier transform is

f1/2(ξ) = exp(−
√
−2is0ξ)⇒ c1/2 = i− 1. (3.23)

3For efficient algorithms to generate random variables with a Lévy stable distri-
bution, see Refs. [33, 88].
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Inserting the numerical coefficients, the large-L scaling of con-
ductance moments for the distribution (3.22) is

lim
L→∞
〈G〉 = 1

r
(2πL/s0)

−1/2[ln(2L/s0) + γE], (3.24)

lim
L→∞
〈Gp〉 = 2ζ(p)

1
rp (2πL/s0)

−1/2, p ≥ 2. (3.25)

The resulting scaling of the conductance fluctuations and Fano
factor is(

rms G
〈G〉

)2

≡ 〈G
2〉

〈G〉2 − 1 ≈ (π2/3)(2πL/s0)1/2

[ln(2L/s0) + γE]2
− 1, (3.26)

F ≈ 1
3
+

(4/3)ζ(3)
ln(2L/s0) + γE

. (3.27)

In Fig. 3.2 we compare these analytical large-L formulas with the
numerical data. The average conductance converges quite rapidly
to the scaling (3.24), while the convergence for higher moments
(which determine the conductance fluctuations and Fano factor)
requires somewhat larger systems. We clearly see in Fig. 3.2 the
relative growth of the conductance fluctuations with increasing
system size and the slow decay of the Fano factor towards the
diffusive 1/3 limit.

3.6 Conclusion and outlook

In conclusion, we have analyzed the statistics of transmission
through a sparse chain of tunnel barriers. The average spacing of
the barriers diverges for a Lévy spacing distribution p(s) ∝ 1/s1+α

with 0 < α < 1. This causes an unusual scaling with system length
L (measured from the first tunnel barrier) of the moments of trans-
mission or conductance, as summarized in Table 3.1. A logarithmic
correction to the power law scaling appears for the first moment.
Higher moments of conductance all scale with the same power
law, differing only in the numerical prefactor. As a consequence,
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sample-to-sample fluctuations of the transmission become larger
than the average with increasing L.

This theoretical study of a one-dimensional “Lévy glass” was mo-
tivated by an optical experiment on its three-dimensional analogue
[15]. The simplicity of a one-dimensional geometry has allowed
us to account exactly for the correlations between subsequent step
lengths, which distinguish the random walk through the sparse
chain of barriers from a Lévy walk. We surmise that step length
correlations will play a role in two and three dimensional sparse
arrays as well, complicating a direct application of the theory of
Lévy walks to the experiment. This is one line of investigation for
the future.

A second line of investigation is the effect of wave interference on
the transmission of electrons or photons through a sparse chain of
tunnel barriers. Here we have considered the regime of incoherent
sequential transmission, appropriate for a multi-mode chain with
mode-mixing or for a single-mode chain with a short coherence
length. The opposite, phase coherent regime was studied in Ref.
[25]. In a single-mode and phase coherent chain interference can
lead to localization, producing an exponential decay of transmis-
sion. An investigation of localization in this system is of particular
interest because the sparse chain belongs to the class of disordered
systems with long-range disorder, to which the usual scaling theory
of Anderson localization does not apply [115].

A third line of investigation concerns the question “what is the
shot noise of anomalous diffusion”? Anomalous diffusion [92]
is characterized by a mean square displacement 〈x2〉 ∝ tγ with
0 < γ < 1 (subdiffusion) or γ > 1 (superdiffusion). The shot noise
for normal diffusion (γ = 1) has Fano factor 1/3 [18, 96], and Ref.
[48] concluded that subdiffusion on a fractal also produces F =

1/3. Here we found a convergence, albeit a logarithmically slow
convergence, to the same 1/3 Fano factor for a particular system
with superdiffusive dynamics. We conjecture that F = 1/3 in the
entire subballistic regime 0 < γ < 2, with deviations appearing in
the ballistic limit γ→ 2 – but we do not have a general theory to
support this conjecture.
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Figure 3.2: Scaling of the average conductance (bottom panel), the
variance of the conductance (middle panel), and the
Fano factor (top panel), for a chain of tunnel barriers
with spacings distributed according to the α = 1/2
Lévy stable distribution (3.22). The data points are cal-
culated numerically, by averaging over a large number
of random chains of tunnel barriers. The solid curves
are the analytical results (3.24)–(3.27) of the asymptotic
analysis in the L→ ∞ limit.
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