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2 Electronic shot noise in fractal
conductors

2.1 Introduction

Diffusion in a medium with a fractal dimension is characterized
by an anomalous scaling with time t of the root-mean-squared
displacement ∆. The usual scaling for integer dimensionality d is
∆ ∝ t1/2, independent of d. If the dimensionality d f is noninteger,
however, an anomalous scaling

∆ ∝ t1/(2+α) (2.1)

with α > 0 may appear. This anomaly was discovered in the early
1980’s [144, 7, 21, 46, 109] and has since been studied extensively
(see Refs. [53, 57] for reviews). Intuitively, the slowing down of
the diffusion can be understood as arising from the presence of
obstacles at all length scales – characteristic of a selfsimilar fractal
geometry.

A celebrated application of the theory of fractal diffusion is to
the scaling of electrical conduction in random-resistor networks
(reviewed in Refs. [135, 111]). According to Ohm’s law, the con-
ductance G should scale with the linear size L of a d-dimensional
network as G ∝ Ld−2. In a fractal dimension the scaling is modified
to G ∝ Ld f−2−α, depending both on the fractal dimensionality d f
and on the anomalous diffusion exponent α. At the percolation
threshold, the known [53] values for d = 2 are d f = 91/48 and
α = 0.87, leading to a scaling G ∝ L−0.97. This almost inverse-linear
scaling of the conductance of a planar random-resistor network
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contrasts with the L-independent conductance G ∝ L0 predicted by
Ohm’s law in two dimensions.

All of this body of knowledge applies to classical resistors, with
applications to disordered semiconductors and granular metals
[128, 29]. The quantum Hall effect provides one quantum me-
chanical realization of a random-resistor network [140], in a rather
special way because time-reversal symmetry is broken by the mag-
netic field. Recently [35], Cheianov, Fal’ko, Altshuler, and Aleiner
announced an altogether different quantum realization in zero
magnetic field. Following experimental [89] and theoretical [56]
evidence for electron and hole puddles in undoped graphene1,
Cheianov et al. modeled this system by a degenerate electron gas2

in a random-resistor network. They analyzed both the high-tempe-
rature classical resistance, as well as the low-temperature quantum
corrections, using the anomalous scaling laws in a fractal geometry.

These recent experimental and theoretical developments open
up new possibilities to study quantum mechanical aspects of frac-
tal diffusion, both with respect to the Pauli exclusion principle
and with respect to quantum interference (which are operative in
distinct temperature regimes). To access the effect of the Pauli prin-
ciple one needs to go beyond the time-averaged current Ī (studied
by Cheianov et al. [35]), and consider the time-dependent fluctua-
tions δI(t) of the current in response to a time-independent applied
voltage V. These fluctuations exist because of the granularity of
the electron charge, hence their name “shot noise” (for reviews, see

1Graphene is a single layer of carbon atoms, forming a two-dimensional honey-
comb lattice. Electrical conduction is provided by overlapping π-orbitals, with
on average one electron per π-orbital in undoped graphene. Electron puddles
have a little more than one electron per π-orbital (n-type doping), while hole
puddles have a little less than one electron per π-orbital (p-type doping).

2An electron gas is called “degenerate” if the average occupation number of a
quantum state is either close to unity or close to zero. It is called “nondegen-
erate” if the average occupation number is much smaller than unity for all
states.
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Refs. [24, 19]). Shot noise is quantified by the noise power

P = 2
∫ ∞

−∞
dt 〈δI(0)δI(t)〉 (2.2)

and by the Fano factor F = P/2eĪ. The Pauli principle enforces
F < 1, meaning that the noise power is smaller than the Poisson
value 2eĪ – which is the expected value for independent particles
(Poisson statistics).

The investigation of shot noise in a fractal conductor is partic-
ularly interesting in view of two different experimental results
[41, 37] that have been reported. Both experiments measure the
shot noise power in a graphene flake and find F < 1. A calcula-
tion [141] of the effect of the Pauli principle on the shot noise of
undoped graphene predicted F = 1/3 in the absence of disorder,
with a rapid suppression upon either p-type or n-type doping.
This prediction is consistent with the experiment of Danneau et
al. [37], but the experiment of DiCarlo et al. [41] gives instead an
approximately doping-independent F near 1/3. Computer simula-
tions [118, 80] suggest that disorder in the samples of DiCarlo et al.
might cause the difference.

Motivated by this specific example, we study here the fundamen-
tal problem of shot noise due to anomalous diffusion in a fractal
conductor. While equilibrium thermal noise in a fractal has been
studied previously [110, 51, 43], it remains unknown how anoma-
lous diffusion might affect the nonequilibrium shot noise. Existing
studies [77, 31, 68] of shot noise in a percolating network were in
the regime where inelastic scattering dominates, leading to hopping
conduction, while for diffusive conduction we need predominantly
elastic scattering.

2.2 Results and discussion

We demonstrate that anomalous diffusion affects P and Ī in such a
way that the Fano factor (their ratio) becomes scale independent as
well as independent of d f and α. Anomalous diffusion, therefore,
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produces the same Fano factor F = 1/3 as is known [18, 96] for
normal diffusion. This is a remarkable property of diffusive con-
duction, given that hopping conduction in a percolating network
does not produce a scale-independent Fano factor [77, 31, 68]. Our
general findings are consistent with the doping independence of
the Fano factor in disordered graphene observed by DiCarlo et al.
[41].

To arrive at these conclusions we work in the experimentally
relevant regime where the temperature T is sufficiently high that
the phase coherence length is � L, and sufficiently low that the
inelastic length is� L. Quantum interference effects can then be
neglected, as well as inelastic scattering events. The Pauli principle
remains operative if the thermal energy kT remains well below the
Fermi energy, so that the electron gas remains degenerate.

We first briefly consider the case that the anomalous diffusion on
long length scales is preceded by normal diffusion on short length
scales. This would apply, for example, to a percolating cluster of
electron and hole puddles with a mean free path l which is short
compared to the typical size a of a puddle. We can then rely on the
fact that F = 1/3 for a conductor of any shape, provided that the
normal diffusion equation holds locally [97, 136], to conclude that
the transition to anomalous diffusion on long length scales must
preserve the one-third Fano factor.

This simple argument cannot be applied to the more typical class
of fractal conductors in which the normal diffusion equation does
not hold on short length scales. As representative for this class, we
consider fractal lattices of sites connected by tunnel barriers. The
local tunneling dynamics then crosses over into global anomalous
diffusion, without an intermediate regime of normal diffusion.

2.2.1 Sierpiński lattice

A classic example is the Sierpiński lattice [130] shown in Fig. 2.1
(inset). Each site is connected to four neighbors by bonds that
represent the tunnel barriers, with equal tunnel rate Γ through each
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barrier. The fractal dimension is d f = log2 3 and the anomalous
diffusion exponent is [53] α = log2(5/4). The Pauli exclusion
principle can be incorporated as in Ref. [84], by demanding that
each site is either empty or occupied by a single electron. Tunneling
is therefore only allowed between an occupied site and an adjacent
empty site. A current is passed through the lattice by connecting
the lower left corner to a source (injecting electrons so that the site
remains occupied) and the lower right corner to a drain (extracting
electrons so that the site remains empty). The resulting stochastic
sequence of current pulses is the “tunnel exclusion process” of Ref.
[112].

The statistics of the current pulses can be obtained exactly (albeit
not in closed form) by solving a master equation [12]. We have cal-
culated the first two cumulants by extending to a two-dimensional
lattice the one-dimensional calculation of Ref. [112]. To manage the
added complexity of an extra dimension we found it convenient
to use the Hamiltonian formulation of Ref. [119]. The hierarchy of
linear equations that we need to solve in order to obtain Ī and P is
derived in the appendix.

The results in Fig. 2.1 demonstrate, firstly, that the shot noise
power P scales as a function of the size L of the lattice with the
same exponent d f − 2− α = log2(3/5) as the conductance; and,
secondly, that the Fano factor F approaches 1/3 for large L. More
precisely, see Fig. 2.2, we find that F− 1/3 ∝ L−1.5 scales to zero as
a power law, with F− 1/3 < 10−4 for our largest L.

2.2.2 Percolating network

Turning now to the application to graphene mentioned in the
introduction, we have repeated the calculation of shot noise and
Fano factor for the random-resistor network of electron and hole
puddles introduced by Cheianov et al. [35]. The results, shown
in Fig. 2.3, demonstrate that the shot noise power P scales with
the same exponent L−0.97 as the conductance G (solid lines in
the lower panel), and that the Fano factor F approaches 1/3 for
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large networks (upper panel). This is a random, rather than a
deterministic fractal, so there remains some statistical scatter in the
data, but the deviation of F from 1/3 for the largest lattices is still
< 10−3 (see the circular data points in Fig. 2.2).

2.3 Conclusion

In conclusion, we have found that the universality of the one-third
Fano factor, previously established for normal diffusion [18, 96,
97, 136], extends to anomalous diffusion as well. This universality
might have been expected with respect to the fractal dimension
d f (since the Fano factor is dimension independent), but we had
not expected universality with respect to the anomalous diffusion
exponent α. The experimental implication of the universality is that
the Fano factor remains fixed at 1/3 as one crosses the percolation
threshold in a random-resistor network – thereby crossing over
from anomalous diffusion to normal diffusion. This is consistent
with the doping-independent Fano factor measured in a graphene
flake by DiCarlo et al. [41].

Appendix 2.A Calculation of the Fano factor for
the tunnel exclusion process on a
two-dimensional network

Here we present the method we used to calculate the Fano factor
for the tunnel exclusion process in the Sierpiński lattice and in the
random-resistor network. We follow the master equation approach
of Refs. [112, 12]. The two-dimensionality of our networks requires
a more elaborate bookkeeping, which we manage by means of the
Hamiltonian formalism of Ref. [119].
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2.A.1 Counting statistics

We consider a network of N sites, each of which is either empty or
singly occupied. Two sites are called adjacent if they are directly
connected by at least one bond. A subset S of the N sites is
connected to the source and a subset D is connected to the drain.
Each of the 2N possible states of the network is reached with a
certain probability at time t. We store these probabilities in the
2N-dimensional vector |P(t)〉. Its time evolution in the tunnel
exclusion process is given by the master equation

d
dt
|P(t)〉 = M |P(t)〉 , (2.3)

where the matrix M contains the tunnel rates. The normalization
condition can be written as 〈Σ|P〉 = 1, in terms of a vector 〈Σ| that
has all 2N components equal to 1. This vector is a left eigenstate of
M with zero eigenvalue

〈Σ|M = 0, (2.4)

because every column of M must sum to zero in order to conserve
probability. The right eigenstate with zero eigenvalue is the station-
ary distribution |P∞〉. All other eigenvalues of M have a real part
< 0.

We store in the vector |P(t, Q)〉 the conditional probabilities that
a state is reached at time t after precisely Q charges have entered
the network from the source. Because the source remains occupied,
a charge which has entered the network cannot return back to
the source but must eventually leave through the drain. One can
therefore use Q to represent the number of transfered charges. The
time evolution of |P(t, Q)〉 reads

d
dt
|P(t, Q)〉 = M0 |P(t, Q)〉+ M1 |P(t, Q− 1)〉 , (2.5)

where M = M0 + M1 has been decomposed into a matrix M0

containing all transitions by which Q does not change and a matrix
M1 containing all transitions that increase Q by 1.
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The probability 〈Σ|P(t, Q)〉 that Q charges have been transferred
through the network at time t represents the counting statistics. It
describes the entire statistics of current fluctuations. The cumulants

Cn =
∂nS(t, χ)

∂χn

∣∣∣∣
χ=0

(2.6)

are obtained from the cumulant generating function

S(t, χ) = ln

[
∑
Q
〈Σ|P(t, Q)〉 eχQ

]
. (2.7)

The average current and Fano factor are given by

Ī = lim
t→∞

C1/t, F = lim
t→∞

C2/C1. (2.8)

The cumulant generating function (2.7) can be expressed in
terms of a Laplace transformed probability vector |P(t, χ)〉 =

∑Q |P(t, Q〉 eχQ as

S(t, χ) = ln 〈Σ|P(t, χ)〉 . (2.9)

Transformation of Eq. (2.5) gives

d
dt
|P(t, χ)〉 = M(χ) |P(t, χ)〉 , (2.10)

where we have introduced the counting matrix

M(χ) = M0 + eχ M1. (2.11)

The cumulant generating function follows from

S(t, χ) = ln 〈Σ| etM(χ) |P(0, χ)〉 . (2.12)

The long-time limit of interest for the Fano factor can be im-
plemented as follows [12]. Let µ(χ) be the eigenvalue of M(χ)

with the largest real part, and let |P∞(χ)〉 be the corresponding
(normalized) right eigenstate,

M(χ) |P∞(χ)〉 = µ(χ) |P∞(χ)〉 , (2.13)

〈Σ|P∞(χ)〉 = 1. (2.14)
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Since the largest eigenvalue of M(0) is zero, we have

M(0) |P∞(0)〉 = 0⇔ µ(0) = 0. (2.15)

(Note that |P∞(0)〉 is the stationary distribution |P∞〉 introduced
earlier.) In the limit t→ ∞ only the largest eigenvalue contributes
to the cumulant generating function,

lim
t→∞

1
t

S(t, χ) = lim
t→∞

1
t

ln [etµ(χ) 〈Σ|P∞(χ)〉] = µ(χ). (2.16)

2.A.2 Construction of the counting matrix

The construction of the counting matrix M(χ) is simplified by
expressing it in terms of raising and lowering operators, so that it
resembles a Hamiltonian of quantum mechanical spins [119]. First,
consider a single site with the basis states |0〉 = (1

0) (vacant) and
|1〉 = (0

1) (occupied). We define, respectively, raising and lowering
operators

s+ =

(
0 0
1 0

)
, s− =

(
0 1
0 0

)
. (2.17)

We also define the electron number operator n = s+s− and the hole
number operator ν = 11− n (with 11 the 2× 2 unit matrix). Each
site i has such operators, denoted by s+i , s−i , ni, and νi. The matrix
M(χ) can be written in terms of these operators as

M(χ) = ∑
〈i,j〉

(
s+j s−i − νjni

)
+ ∑

i∈S
(eχs+i − νi) + ∑

i∈D
(s−i − ni), (2.18)

where all tunnel rates have been set equal to unity. The first
sum runs over all ordered pairs 〈i, j〉 of adjacent sites. These are
Hermitian contributions to the counting matrix. The second sum
runs over sites in S connected to the source, and the third sum runs
over sites in D connected to the drain. These are non-Hermitian
contributions.
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It is easy to convince oneself that M(0) is indeed M of Eq. (2.3),
since every possible tunneling event corresponds to two terms in Eq.
(2.18): one positive non-diagonal term responsible for probability
gain for the new state and one negative diagonal term responsible
for probability loss for the old state. In accordance with Eq. (2.11),
the full M(χ) differs from M by a factor eχ at the terms associated
with charges entering the network.

2.A.3 Extraction of the cumulants

In view of Eq. (2.16), the entire counting statistics in the long-time
limit is determined by the largest eigenvalue µ(χ) of the operator
(2.18). However, direct calculation of that eigenvalue is feasible
only for very small networks. Our approach, following Ref. [112],
is to derive the first two cumulants by solving a hierarchy of linear
equations.

We define

Ti = 〈Σ| ni |P∞(χ)〉 = 1− 〈Σ| νi |P∞(χ)〉 , (2.19)

Uij = Uji = 〈Σ| ninj |P∞(χ)〉 for i 6= j, (2.20)

Uii = 2Ti − 1. (2.21)

The value Ti|χ=0 is the average stationary occupancy of site i. Simi-
larly, Uij|χ=0 for i 6= j is the two-point correlator.

We will now express µ(χ) in terms of Ti. We start from the
definition (2.13). If we act with 〈Σ| on the left-hand-side of Eq.
(2.13) we obtain

〈Σ|M(0) + (eχ − 1) ∑
i∈S

s+i |P∞(χ)〉

= (eχ − 1) ∑
i∈S
〈Σ| s+i |P∞(χ)〉

= (eχ − 1) ∑
i∈S
〈Σ| νi |P∞(χ)〉

= (eχ − 1) ∑
i∈S

(1− Ti). (2.22)
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In the second equality we have used Eq. (2.4) [which holds since
M ≡ M(0)]. Acting with 〈Σ| on the the right-hand-side of Eq.
(2.13) we obtain just µ(χ), in view of Eq. (2.14). Hence we arrive at

µ(χ) = (eχ − 1) ∑
i∈S

(1− Ti). (2.23)

From Eq. (2.23) we obtain the average current and Fano factor in
terms of Ti and the first derivative T′i = dTi/dχ at χ = 0,

Ī = lim
t→∞

C1/t = µ′(0) = ∑
i∈S

(1− Ti|χ=0), (2.24)

F = lim
t→∞

C2

C1
=

µ′′(0)
µ′(0)

= 1− 2 ∑i∈S T′i |χ=0

∑i∈S (1− Ti|χ=0)
. (2.25)

Average current

To obtain Ti we set up a system of linear equations starting from

µ(χ)Ti = 〈Σ| ni M(χ) |P∞(χ)〉 . (2.26)

Commuting ni to the right, using the commutation relations [ni, s+i ] =
s+i and [ni, s−i ] = −s−i , we find

µ(χ)Ti = ∑
j(i)

Tj − kiTi + ki,S + (eχ − 1) ∑
l∈S

(Ti −Uli). (2.27)

The notation ∑j(i) means that the sum runs over all sites j adjacent
to i. The number ki is the total number of bonds connected to site
i; ki,S of these bonds connect site i to the source.

In order to compute Ti|χ=0 we set χ = 0 in Eq. (2.27), use Eq.
(2.15) to set the left-hand-side to zero, and solve the resulting
symmetric sparse linear system of equations,

−ki,S = ∑
j(i)

Tj − kiTi. (2.28)

This is the first level of the hierarchy. Substitution of the solution
into Eq. (2.24) gives the average current Ī.
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Fano factor

To calculate the Fano factor via Eq. (2.25) we also need T′i |χ=0. We
take Eq. (2.27), substitute Eq. (2.23) for µ(χ), differentiate and set
χ = 0 to arrive at

∑
l∈S

(Uli − TlTi)− ki,S = ∑
j(i)

T′j − kiT′i . (2.29)

To find Uij|χ=0 we note that

µ(χ)Uij = 〈Σ| ninj M(χ) |P∞(χ)〉 , i 6= j, (2.30)

and commute ni to the right. Setting χ = 0 provides the second
level of the hierarchy of linear equations,

0 = ∑
l(j),l 6=i

Uil + ∑
l(i),l 6=j

Ujl − (ki + k j − 2dij)Uij

+ k j,STi + ki,STj, i 6= j. (2.31)

The number dij is the number of bonds connecting sites i and j if
they are adjacent, while dij = 0 if they are not adjacent.
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Figure 2.1: Lower panel: Electrical conduction through a Sierpiński
lattice. This is a deterministic fractal, constructed by
recursively removing a central triangular region from
an equilateral triangle. The recursion level r quanti-
fies the size L = 2ra of the fractal in units of the el-
ementary bond length a (the inset shows the fourth
recursion). The conductance G = Ī/V (open dots, nor-
malized by the tunneling conductance G0 of a single
bond) and shot noise power P (filled dots, normalized
by P0 = 2eVG0) are calculated for a voltage difference V
between the lower-left and lower-right corners of the lat-
tice. Both quantities scale as Ld f−2−α = Llog2(3/5) (solid
lines on the double-logarithmic plot). The Fano factor
F = P/2eĪ = (P/P0)(G0/G) rapidly approaches 1/3,
as shown in the upper panel.
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Figure 2.2: The deviation of the Fano factor from 1/3 scales to zero
as a power law for the Sierpiński lattice (triangles) and
for the random-resistor network (circles).
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Figure 2.3: Same as Fig. 2.1, but now for the random-resistor net-
work of disordered graphene introduced by Cheianov
et al. [35]. The inset shows one realization of the net-
work for L/a = 10 (the data points are averaged over
' 103 such realizations). The alternating solid and
dashed lattice sites represent, respectively, the electron
(n) and hole (p) puddles. Horizontal bonds (not drawn)
are p-n junctions, with a negligibly small conductance
Gpn ≈ 0. Diagonal bonds (solid and dashed lines) each
have the same tunnel conductance G0. Current flows
from the left edge of the square network to the right
edge, while the upper and lower edges are connected by
periodic boundary conditions. This plot is for undoped
graphene, corresponding to an equal fraction of solid
(n-n) and dashed (p-p) bonds.
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