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1 Introduction

1.1 Normal and anomalous diffusion

Diffusion is the spreading of randomly moving particles from
regions with higher concentration to regions with lower concentra-
tion. The first class of diffusive processes to have been recognized
historically is now known under the name normal diffusion. Its
signature is the linear growth with time of the mean squared dis-
placement of a particle from its starting point,

(x*) = Dt. (1.1)

On long time scales all normal diffusive processes show the same
behavior and microscopic details of particle dynamics play no role
other than determining the value of the diffusion coefficient D.

The importance and generality of the concept of normal diffu-
sion was recognized in the nineteenth century. One of the first
milestones was the discovery of Brownian motion, the diffusion of
particles suspended in a fluid, by Scottish botanist Robert Brown in
1827 [27]. It was subsequently realized that phenomena seemingly
as different as the spreading of infected mosquitos [107] and the
conduction of heat in solids can be described in terms of normal
diffusion.

The driving force for diffusion need not be differences in concen-
tration, but can also be a difference in potential energy. Electrical
conduction in metals is usually also a normal diffusive process,
driven by differences in electrical potential (since differences in
electron concentration would violate charge neutrality) [39].

Though it is a remarkably general concept, normal diffusion fails
to describe all diffusive phenomena. Since the 1970s, increasingly



processes were found in nature [125] where the mean squared
displacement of a particle scales as a power of time different from
unity,

(x*) =Dt7, y#1. (1.2)
Examples include the foraging patterns of some animals [16], hu-
man travel behavior [26], and the spreading of light in a cloudy
atmosphere [40]. This kind of diffusion has been termed anomalous,
and can occur in two varieties: subdiffusion, where the particles
spread with time arbitrarily slower than normal diffusion (y < 1),
and superdiffusion, where they spread arbitrarily faster (y > 1, with
an upper limit v = 2 for ballistic motion without any scattering).

Random walks are stochastic processes in which particles move
in a sequence of randomly directed steps. The lengths s of the
steps and the duration 7 of a step are drawn from a probability
distribution P(s, 7). (For simplicity, we assume an isotropic random
walk, so P is independent of the direction of the step.) For a
random walk to be normal, the variance Vars = (s?) — (s)? of
the step size has to be finite as well as the average duration (7).
Then, according to the central limit theorem, the mean square
displacement after time ¢ will approach a normal distribution
with variance (¢/(t)) Vars. This is the reason for the previously
mentioned similarity of all diffusive processes.

If the requirements for a normal random walk are violated,
the random walk will be anomalous and the scaling of the mean
squared displacement will in general have a power law (1.2) with
v # 1. This can occur in several ways (See Ref. [145] for a detailed
presentation).

Superdiffusion happens if the step size distribution P(s) has a
heavy tail « 1/s'* for large s, with 0 < a < 2. If the duration
T = vs is simply proportional to the step size (with constant
velocity v) this leads to superdiffusive behavior with

v =max(3 —a, 2). (1.3)

Such an anomalous random walk is called a Lévy walk, after
the French mathematician Paul Pierre Lévy. Alternatively, one



Figure 1.1: Two random walks of 10* steps each, characterized by

a power-law-tailed step size distribution P(s) = a/s%"!

for s > 1, P(s) = 0 otherwise. The left walk is normal
with « = 3 (Brownian walk), while the right one has o =
3/2 which makes it superdiffusive (Lévy walk). One
clearly sees how individual steps play no dominant role
in normal diffusion, while superdiffusion is dominated
by individual long steps on all length scales.

might give each step the same duration 7, independent of the step
length. This socalled a Lévy flight has a divergent mean square
displacement at any time t > 79, and is therefore not physically
realistic.

Fig. 1.1 shows two realizations of power-law-tailed random walks
of which one is normal and one superdiffusive.

Another way to break normal diffusion is to have a step size
distribution with a finite variance, but to associate with the steps
durations drawn from a distribution with infinite mean. (See [11]
for an introduction.) This leads to subdiffusive behavior charac-
terized by v < 1. Effectively, this happens if the random walk
is performed on a fractal: a scale-invariant object of non-integer
fractal dimension dy embedded in Euclidean space of dimension
d > ds. The pieces of Euclidean space which are not part of the
fractal present obstacles to the walker that are present at all length
scales and slow down the diffusion. The value of v < 1 is specific
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Figure 1.2: Bright-field transmission electron microscope image of
a freely suspended graphene sheet. A homogeneous
and featureless region of a monolayer graphene is indi-
cated by the arrow; image from Ref. [93].

for each fractal and independent of the fractal dimension.

1.2 Dirac fermions and graphene

In 2004, Andre Geim and Konstantin Novoselov succeeded in
isolating for the first time one atom thick flakes of graphite. Their
achievement was awarded earlier this year with the Nobel prize in
Physics.

This new material, named graphene, is made up of a single
layer of carbon atoms arranged in a honeycomb lattice and was
previously thought to be unstable and therefore only to exist as
part of three-dimensional structures. With the wisdom of hindsight
the existence of one atom thick crystals can be reconciled with
theory [93]: slight corrugations of the monoatomic carbon film
reinforce it against destructive thermal vibrations. Fig. 1.2 shows a
photograph of a freely suspended piece of graphene.

The basic electronic properties of graphene which, mostly out
of theoretical curiosity, had been studied since the 1940s [143, 91]
could be verified by the experiments of Geim, Novoselov and others.
The most striking feature is the double-cone shaped dispersion
relation of electrons in graphene shown in the right panel of Fig.



Figure 1.3: Left panel: Honeycomb lattice of carbon atoms in
graphene. The unit cell contains two atoms, labeled A
and B (open and closed circles). Right panel: Brillouin
zone of graphene with a linear double cone spectrum
at its corners; independent cones are indicated by open
and closed circles. Illustration by C. Jozsa and B. J. van
Wees.

1.3. As the velocity of the charge carriers is given by the derivative
of the dispersion relation, we see that the speed of electrons in
graphene is a constant independent of energy (for energies small
enough such that the linear relation holds).

This is a most unusual property for particles in condensed matter
physics. (Usually, the velocity increases with the square root of the
energy.) It reminds of the energy-independent speed of photons,
and indeed the low-energy long-wave length physics of electrons
in graphene obeys the Dirac equation of relativistic quantum me-
chanics, or, more specifically, its two-dimensional massless version
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The A and B components of the wave function correspond to
excitations on the two sublattices of the honecomb lattice (see left
panel of Fig. 1.3) and form a spin-like degree of freedom called
pseudospin. The velocity v is the effective speed of light which in
graphene is about 10° m/s or 1/300 of the true speed of light.

Definition of the vector of Pauli matrices o = (0%, 0y, 0%) allows
to express Eq. (1.4) in the compact form

vp-op = Ey, (1.5)

with the momentum operator p = —ii(dy, d,) and the spinor ¢ =
(Y4,¥p). Electrons governed by Dirac equation are called Dirac
fermions.

The Dirac equation has only a single Dirac cone, while the disper-
sion relation of graphene shown in the right panel of Fig. 1.3 has
two independent cones called valleys. (Adjacent cones are indepen-
dent, while next-nearest-neighbors are equivalent upon translation
by a reciprocal lattice vector.) The existence of two independent
cones is accounted for by the valley degree of freedom and the
full* low energy physics has to be described by a four component
spinor ¥ = (¥4, Y5, —¥} ¥Y/,) satisfying the four-dimensional
Dirac equation

<Up-0' 0

0 op- o > Y =EY. (1.6)

In the low-energy limit described by the Dirac equation the two
valleys are decoupled, but in real graphene inter-valley scattering
can occur by potential features which are sharp on the atomic scale.

The Dirac equation gives rise to unusual transport properties.
Because the speed of Dirac particles is independent of their energy,

IThe true spin degree of freedom of electrons is still missing, but it only weakly
coupled to the dynamics and can be ignored.



1 T . . i i}
L/a =40 72

]Vimp/]\rtot =002 0 =
0.045 o -

o~ "o
i aomoy
= s & 50
o]
X = °
& g
% ED Oo
L |
= ac
S n
— Anderson
0.01 0.1 1 10 100

Figure 1.4: Computer simulation showing the dependence of the
average conductance (G) of a graphene sheet (length
L, width W) on the dimensionless disorder strength
Kp. The data points are for different sample sizes and
number of impurities Nimp per total number of lattice
points Niot. The conductance increases initially with
increasing disorder strength, while in a conventional
metal Anderson localization would suppress the con-
ductance (solid and dashed curves). For strong disorder
strengths intervalley scattering sets in, resulting in a
suppression of the conductance. Figure from Ref. [116].

they cannot be stopped by a potential barrier [34, 64]. This has
surprising consequences: adding disorder which is smooth on the
scale of atoms to a graphene sample can enhance the conductivity
[116] (Fig. 1.4). This behavior is in contrast to that of conventional
metals, where disorder reduces the conductivity.

The deviations from normal diffusion in these systems have a
quantum mechanical origin in the interference of electron waves.
In conventional metals the interference is destructive on average,
leading to a complete suppression of diffusion on long length



scales. This is the celebrated localization effect discovered by
Philip Anderson in 1957 [9]. For Dirac fermions the interference
is constructive on average, which is at the origin of the enhanced
conductivity seen in Fig. 1.4.

1.3 Shot noise of subdiffusion

Conductance, the ratio between applied voltage and the resulting
time-averaged current, is the basic quantity measured in electronic
transport experiments. How does the conductance of a diffusive
d-dimensional system scale with its linear size L? For normal
diffusion, the answer is given by Ohm’s law,

G =oL%2 (1.7)

The proportionality constant ¢ is the conductivity.

Transport by anomalous diffusion is fundamentally different: the
conductance depends on L with a different power than in Eq. 1.7.
As a consequence, the conductivity becomes scale dependent.

In the case of subdiffusion on fractals the conductance scales as
(reviewed in Refs. [135, 111])

G o L2/, (1.8)

with 7 the exponent that governs the mean-square displacement in
Eq. (1.2). Note that diffusion on a fractal is not just normal diffusion
in a medium with non-integer dimension 4 iz In that case, one
would expect G to scale as L% 2. Because v is smaller than 1 for
subdiffusion, conduction is suppressed stronger than would be
expected solely on the basis of the fractal dimension.

Given the special scaling of conductance with length for subdif-
fusion, one might ask how other transport properties scale. While
the time-averaged current determines the conductance, the time-
dependent fluctuations determine the shot noise power S. In terms
of the charge Q transmitted in a time 7, one has

§ = lim 2 (6Q%) /. (1.9)



The shot noise power is proportional to the applied voltage and
hence to the mean current

I = lim (Q) /7. (1.10)

T—00

The ratio F = S/2el is called the Fano factor. The Fano factor
is unity in the case where completely uncorrelated particles are
transmitted. Then, Q is Poisson-distributed which leads to F = 1.
A value F > 1 indicates bunching of charge carriers (particles
tend to arrive in groups more often than in the uncorrelated case),
whereas F < 1 is a signature of anti-bunching (particles arrive
less often in groups). Anti-bunching of electrons is a consequence
of the Pauli exclusion principle, which prevents two electrons to
occupy the same quantum mechanical state. For normal diffusion
the Pauli principle produces a Fano factor F = 1/3 [18, 96].

What is the Fano factor for subdiffusion on fractals? Shot noise
on fractals has been studied previously under circumstances that
the Pauli principle is not operative, because the average occupation
of a quantum state is much smaller than unity. (This is called a
nondegenerate electron gas.) One example is the regime of high-
voltage transport modeled by hopping conduction. Then I and S
scale differently with L, so that the Fano factor is scale dependent.
(See Fig. 1.5.) The Pauli principle is expected to govern the shot
noise for diffusive conduction in the regime of low voltages and
low temperatures, when the average occupation of a quantum state
is of order unity (a degenerate electron gas).

This regime has become experimentally relevant in view of the
discovery of electron and hole puddles in undoped graphene [89].
The puddles, shown in Fig. 1.6, form intertwined maze-shaped
clusters doped positively (p) or negatively (n). The n-type region
contains a degenerate electron gas and the p-type region contains a
degenerate hole gas. The current flows with less resistance within
an n-type or p-type region than across a p-n interface. Cheianov
et al. modeled [89] this system by a random resistor network as
illustrated in Fig. 1.7. The interconnected resistors in this model
form percolation clusters which are fractals with d; = 91/48.
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Figure 1.5: Fano factor as function of sample size from a Monte
Carlo simulation of two-dimensional hopping through
a disordered conductor. The Fano factor is scale depen-
dent because the average current and the noise power
scale with a different power of the sample size. Figure
from Ref. [68].

Several experiments have studied the Fano factor of graphene
recently. Measurements from two of these experiments, performed
by Danneau et al. in Helsinki [37] and by DiCarlo et al. in Harvard
[41] are shown in Figs. 1.8 and 1.9, respectively. In the Helsinki
experiment the Fano factor depends strongly on doping, with
a peak value of 1/3, while the Harvard measurements show a
doping-independent Fano factor of 1/3. The theory for shot noise
on a fractal developed in this thesis offers a way to reconcile these
two conflicting experiments.

1.4 Discretization of the Dirac equation
The standard model for graphene is the tight-binding approxi-

mation, in which the hopping of electrons between overlapping
orbitals of the atoms constituting the carbon sheet is directly con-
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Figure 1.6: Experimentally determined color map of the spatial
carrier density variations in a graphene flake. Blue
regions correspond to hole doping (p-type) and red
regions to electron doping (n-type). The black contour
marks the p-n interface. Figure from Ref. [89].

sidered. This model is widely used to study the properties of
graphene numerically. It can recover all electronic properties of
the material, but is viable for small flakes only, as the computation
times grow quickly with the number of atoms. To allow computer
modeling of larger flakes of graphene and to probe the physics
of a single Dirac cone, it would be useful to simulate the Dirac
equation (1.4) directly, and not only as the low-energy limit of
the tight-binding model. For this, the Dirac equation needs to be
discretized, i.e. put on a lattice. This can be done in real space or in
momentum space. The momentum space approach was developed
in Refs. [13] and [99], while the real-space approach is developed
in this thesis.

The discretization of the Dirac equation is notoriously difficult,
because of the socalled fermion doubling problem [98]. The most
straightforward way to discretize the Dirac equation in real space is
to define the wave function {(x, y) on a rectangular grid with lattice

11
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Figure 1.7: Random resistor network representation of a graphene
sheet with average zero doping. The conductance is g
within an n-type or p-type region (red or blue lines),
and has a smaller value across a p-n interface. (The
symbol v used in this figure is unrelated to the random-
walk exponent.) Figure from Ref. [35].

constant 2 and to replace the derivatives with finite differences,

axlp N lp(x+‘1/y)2_a’7b(x_a/y), (1.11)

ayI,b RN lp(x’y—l_u)z_alp(x/y — a). (1.12)

This discretization fails to describe the physics of a single Dirac
cone.

To see this, let us look at the dispersion relation of the discretized
equation. For simplicity, we consider only plane waves moving in
the x direction, so that k, = 0. Such plane waves have the general
form

p = ot (1.13)

Inserting this into the Dirac equation (1.4) with the substitutions

12
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Figure 1.8: Results from a transport experiment performed by R.
Danneau et al. on a graphene sheet. The measurements
are consistent with theoretical predictions for ballistic
transport at the Dirac point [141]. Left panel: Resis-
tance and conductivity as a function of gate voltage and
charge carrier density. The conductivity at the Dirac
point reaches the expected value 4¢?/ 7th. Right panel:
Fano factor as function of charge carrier density. At the
Dirac point, the value 1/3 is reached with F falling off
for both positive and negative doping. Figures from Ref.

[37]-

(1.11) and (1.12) gives the dispersion relation
E = ihav sin ka, (1.14)

plotted as the solid curve of Fig. 1.10.

We see that unphysical low-energy states, forming a second
Dirac cone, have appeared around kya = +71,k, = 0. There are
two additional cones, one around kya = 0,kya = £, and one
around kya = £7m,kya = =+, giving four in total in the first
Brillouin zone. These additional states are due to the fact that the

13
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Figure 1.9: Results from a transport experiment performed by Di-
Carlo et al. on a graphene sheet. Left panel: Resistance
and conductivity as function of gate voltage. Right
panel, lower part: Fano factor as function of gate volt-
age. The Fano factor has the value 1/3 independent of
doping. Figure from Ref. [41].

Dirac equation (1.4) is a first order differential equation. To be able
to evaluate the first derivatives at the same discretization points
as the wave function, we had to take differences over two lattice
sites in the difference operators (1.11) and (1.12). As a consequence,
waves with a spatial period 277/ |ky| below 4a are undersampled.
This problem is specific for massless Dirac fermions. It does not
arise for the Schrodinger equation, which massive fermions obey,
as it is second order in space.

The fermion doubling problem also plagues the discretization
of the Dirac equation in relativistic quantum mechanics. There
exist ways to circumvent it by shifting the energy of the doubled
states away from 0. One such method, the method of Wilson
fermions [147], gives a mass to the Dirac fermions and thereby
breaks a fundamental symmetry (socalled symplectic symmetry)
needed to explain transport properties in graphene. An alternative
method, known as the method of Kogut-Susskind fermions or as
the staggered fermion method [71, 134, 22], preserves the symplec-

14
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Figure 1.10: Solid curve: dispersion relation of the naively dis-
cretized Dirac equation showing fermion doubling: a
second Dirac cone appears at ky = 7. Dashed curve:
dispersion relation of the Dirac equation discretized
according to the method of staggered fermions. The
energy of the unphysical states at k, = £ has been
shifted away to oco.

tic symmetry and is therefore the method which we will apply to
graphene.

The dashed curve of Fig. 1.10 shows the dispersion relation of
the Dirac equation discretized according to the staggered fermion
method. The spurious Dirac cone has disappeared.

1.5 Topological insulators

In 1980 Klaus von Klitzing discovered that the conductance of
thin semiconductor layers at low temperatures and large perpen-
dicular magnetic fields is quantized in integer multiples of the
conductance quantum ¢?/h [69]. The mechanism for this quantum
Hall effect is illustrated in the left panel of Fig. 1.11 and can be
described as follows: Under the influence of the magnetic field the

15
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Figure 1.11: Left panel: the quantum Hall effect has a single con-
ducting channel along the edge. Because movement
in the channel is only possible in a single direction,
electrons cannot be scattered back by impurities (an im-
purity is symbolized by the red dot). Right panel: the
quantum spin Hall effect has two spin-polarized chan-
nels per edge of opposite spin (the spin orientation is
indicated by the short black arrows), propagating in
opposite directions. Backscattering is now forbidden
by Kramers theorem.

electrons move in quantized circular orbits (Landau levels), making
the bulk of the sample insulating. Electrons at the edges of the
samples cannot perform full circles and are forced to “skip along
the edge”. This leads to the appearance of conducting edge states
which propagate in a single direction only. Backscattering requires
scattering to the opposite edge, which is strongly suppressed if the
sample is sufficiently wide. Due to the absence of backscattering,
the transmission probability is unity for each edge channel at the
Fermi level. Each fully transmitted edge channel contributes ¢?/h
to the conductance, leading to the observed quantization.

An analogous quantization of the conductance in zero magnetic
field occurs in a new class of materials known as topological in-
sulators [50, 108]. This socalled quantum spin Hall effect requires
spin-orbit coupling to produce an unusual band structure (shown
schematically in Fig. 1.12) that leads to the appearance of an in-
sulating bulk and conducting edge channels. There are now two
counterpropagating edge channels at each edge, so backscattering

16



would not require scattering to the opposite edge. The reason that
backscattering is still forbidden is a rather subtle consequence of
time reversal symmetry.

Since a magnetic field is absent, the system is time reversal
invariant — its Hamiltonian H is unchanged by the anti-unitary
time-reversal operator ©:

OHO ! = H. (1.15)

Because the electrons have spin 1/2, the operator @? is equal to
—1. In this case, Kramers theorem states that all electron states are
at least twofold degenerate: Let us consider a state i at energy E,

Hy = Ey. (1.16)

Because of Eq. (1.15), the state @1 has the same energy E as 1. The
state @y cannot be equivalent to ¥, as assuming that @y differs
from ¢ just by a phase factor e’ leads to

@%P = @e’p = e VOY = e Vel =y, (1.17)

which contradicts the previously stated ® = —1. (The second
equality in Eq. (1.17) is due to ® being antiunitary.)

Kramers theorem tells us that there should be at least two states
at each energy. This forbids scattering between the counterpropa-
gating edge channels, because that would remove the crossing at
zero momentum in Fig. 1.12 and thus remove the degeneracy.

The spectrum near the crossing looks similar to that near the
Dirac point in graphene (cf. Fig. 1.10), and indeed, the electrons
moving in the edge channels are governed by a one-dimensional
version of the Dirac equation (1.4). Topological insulators are
therefore an alternative source of Dirac fermions and many of the
techniques developed in the study of graphene can be applied to
this new class of materials.

17
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Figure 1.12: Schematic comparison of the band structure of a topo-
logical insulator (left panel) and an ordinary insulator
(right panel). Both have an insulating bulk, but the
topological insulator has conducting edge states inside
the band gap. The crossing of the edge states cannot be
avoided because that would violate Kramers theorem
(requiring twofold degenerate energy levels).

1.6 Outline of this thesis

The research presented in the following chapters concerns the
anomalous diffusion of particles in general and Dirac fermions in
particular. One area of focus are the implications of anomalous
diffusion for electronic shot noise. Novel methods for simulation
of Dirac fermions (which might exhibit anomalous diffusion) were
developed. Finally, some aspects of transport of Dirac fermions in
topological insulators were studied numerically and analytically.

Chapter 2: Electronic shot noise in fractal conductors

Motivated by the experiments mentioned in Sec. 1.3, in Chapter 2
we study the shot noise of subdiffusion on fractals. The two kinds
of fractals we consider are the Sierpiriski gasket (a regular fractal)

18



and random planar resistor networks which arise from a model of
graphene. We determine the scaling with size L of the shot noise
power S due to elastic scattering in a fractal conductor. We find
a power-law scaling S o« L% ~2/7, with an exponent depending on
the fractal dimension dy and the anomalous diffusion exponent?
7. This is the same scaling as the time-averaged current I, which
implies that the Fano factor F = S/2¢l is scale independent. We
obtain a value F = 1/3 for anomalous diffusion that is the same
as for normal diffusion, even if there is no smallest length scale
below which the normal diffusion equation holds. The fact that F
remains fixed at 1/3 as one crosses the percolation threshold in a
random-resistor network may explain measurements of a doping-
independent Fano factor in a graphene flake [41].

Chapter 3: Nonalgebraic length dependence of transmission
through a chain of barriers with a Lévy spacing distribution

In Chapter 3 we analyze transport through a linear chain of barriers
with independent spacings s drawn from a heavy-tailed Lévy distri-
bution. We are motivated by the recent realization of a “Lévy glass”
[15] (a three-dimensional optical material with a Lévy distribution
of scattering lengths) of which our system is a one-dimensional
analogue. The step length distribution of particles in our system
also has a heavy tail, P(s) « s71=% for s — oo, but strong corre-
lations exist between subsequent steps because the same space
between two barriers will often be traversed back after a particle
gets scattered by a barrier. We show that a random walk along
such a sparse chain is not a Lévy walk because of these correlations.
Thus, by working in the lowest possible dimension, we can provide
a worst-case estimate for the effect of the correlations in higher
dimensions.

We calculate all moments of conductance (or transmission), in
the regime of incoherent sequential tunneling through the barriers.

2In Chapter 2 the symbol « is used for a differently defined anomalous diffusion
exponent: & =1/ — 2.
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The average transmission from one barrier to a point at a distance
L scales as L™ InL for 0 < a < 1. The corresponding electronic
shot noise has a Fano factor that approaches 1/3 very slowly, with
1/ In L corrections.

Chapter 4: Finite difference method for transport properties
of massless Dirac fermions

As shown in Sec. 1.4, a straightforward discretization of the mass-
less Dirac equation fails because of the fermion doubling problem.
In Chapter 4 we adapt a finite difference method of solution, de-
veloped in the context of lattice gauge theory, to the calculation
of electrical conduction in a graphene sheet or on the surface of a
topological insulator. The discretized Dirac equation retains a sin-
gle Dirac point (no fermion doubling), avoids intervalley scattering
as well as trigonal warping (a triangular distortion of the conical
band structure that breaks the momentum inversion symmetry),
and thus preserves the single-valley time reversal symmetry (=
symplectic symmetry) at all length scales and energies. This comes
at the expense of a nonlocal finite difference approximation of the
differential operator. We demonstrate the symplectic symmetry
by calculating the scaling of the conductivity with sample size,
obtaining the logarithmic increase due to antilocalization. We also
calculate the sample-to-sample conductance fluctuations as well as
the shot noise power, and compare with analytical predictions.

Our numerical results are in good agreement with a recent theory
of transport in smoothly disordered graphene by Schuessler et al.
[122]. Fig. 1.13 compares their analytical results (solid curve) with
our numerical data (rectangles). The same numerical results were
used to prepare Fig. 4.12.
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Figure 1.13: Fano factor as a function of conductivity for smoothly
disordered graphene. The solid curves show ballistic
and diffusive results of Ref. [122]. The dashed line
corresponds to the asymptotic value F = 1/3. The
solid rectangles are our numerical results, obtained
with the method of Chapter 4. The size of rectangles
corresponds to the statistical error estimate. Figure
from Ref. [122].

Chapter 5: Switching of electrical current by spin precession
in the first Landau level of an inverted-gap semiconductor

In Chapter 5 we show how the quantum Hall effect in a two-
dimensional topological insulator can be used to inject, precess,
and detect the electron spin along a one-dimensional pathway. The
restriction of the electron motion to a single spatial dimension en-
sures that all electrons experience the same amount of precession
in a parallel magnetic field, so that the full electrical current can
be switched on and off. As an example, we calculate the mag-
netoconductance of a p-n interface in a HgTe quantum well and
show how it can be used to measure the spin precession due to
bulk inversion asymmetry. A realization of this experiment would
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provide a unique demonstration of full-current switching by spin
precession.

Chapter 6: Theory of the topological Anderson insulator

In Chapter 6 we present an effective medium theory that explains
the disorder-induced transition into a phase of quantized conduc-
tance, discovered in computer simulations of HgTe quantum wells
[81]. Depending on the width of their innermost layer, such quan-
tum wells are two-dimensional topological insulators or ordinary
insulators. Our theory explains how the combination of a random
potential and quadratic corrections « pc;, to the Dirac Hamiltonian
can drive an ordinary band insulator into a topological insulator
(having conducting edge states). We calculate the location of the
phase boundary at weak disorder and show that it corresponds
to the crossing of a band edge rather than a mobility edge. Our
mechanism for the formation of a topological Anderson insulator is
generic, and would apply as well to three-dimensional semiconduc-
tors with strong spin-orbit coupling. It has indeed been adapted to
that case recently [49].
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