
Architecture design in global and model-centric software development
Heijstek, W.

Citation
Heijstek, W. (2012, December 5). Architecture design in global and model-centric software
development. IPA Dissertation Series. Retrieved from https://hdl.handle.net/1887/20225

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/20225

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/20225

Cover Page

The handle http://hdl.handle.net/1887/20225 holds various files of this Leiden University
dissertation.

Author: Heijstek, Werner
Title: Architecture design in global and model-centric software development
Date: 2012-12-05

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20225
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter9
Conclusions

This dissertation addresses how software architecture and design is to be repre-
sented, disseminated and coordinated in the context of global software development.
To this end, the role of software architecture (as a process as well as an artifact)
was empirically assessed in various industrial contexts. In addition, the special
case of model-driven software development was addressed. This chapter contains
a summary and integration of the findings that were presented in the previous
chapters as well as an outline of future work.

9.1 Summary of Findings

In this section, the empirical evidence collected throughout this dissertation is summa-
rized and used to address the research questions central to this dissertation (Section 1.3).

9.1.1 RQ1: How is Software Architecture Represented, Disseminated and
Coordinated in the Context of Global Software Development?

This dissertation set out outlining how organizations tailor software development
process descriptions for the challenges that GSD introduces, from a process perspec-
tive (Chapter 2). Investigating how software development process descriptions are
tailored to accommodate for GSD, we found that the process approach to GSD is
dependent on organization size, maturity, intended use of the description and the
expertise and experience of the process engineers.

Subsequently, we presented and demonstrated our method to visualize GSD pro-
cesses consistent with an iconic process visualization (Chapter 3). These visualizations
uncovered aberrant distribution of analysis and design effort which were the result of

178 Conclusions

unclarities in the processes of communication and coordination of software architec-
ture.

We then explicitly analyzed the role of software architecture design in the context
in global software development by means of three case studies (Chapter 4). We found
that some problems relating to software architecture dissemination and coordination
processes led to poor architectural compliance. This, in turn, led to project overruns.
The dissemination of software architecture as well as the role of the software architect
are not formalized even though this might very well have benefited the development
process. An important benefit of the application of MDD tools and techniques is that
most of the software architecture is generated. As a result, architecture compliance
improves. While this mitigates the problems associated with disseminating software
architecture design, it introduces the problem of teaching developers to work with
a Domain-Specific Language (DSL), associated tooling and the MDD approach in
general.

Finally, we validated the findings from the case studies by means of a series of
interviews with experts (Chapter 5). We then integrated the factors that influence how
software architecture design is coordinated and disseminated and identified three main
drivers to explain these factors:

1. First, the strong implementation focus of software development project manage-
ment prematurely forces projects into the construction phase.

2. Second, a knowledge gap exists between the onshore and offshore location
regarding software architecture and its role during the software development life
cycle.

3. Third, cost reduction forces a move of responsibilities towards the offshore
software development location. This compounds the “knowledge gap” problems
as less resources are available for knowledge improvement (training) and more
work is required of less experienced team members. In addition, the added value
of activities related to implementation is more tangible than that of design-related
activities. As a result, the “’implementation focus” problem is aggravated.

9.1.2 RQ2: How can we design software architecture documentation so
that it is understood well by developers in the context of global soft-
ware development?

We designed and executed an experiment in which we evaluated how software de-
velopers comprehend software architecture representations from the perspective of
diagram-dominant versus text-dominant representations (Chapter 6). We found that
neither diagrams nor textual descriptions are significantly more efficient in terms of
communicating software architecture design. In addition, we found that diagrams
were not able to alleviate the difficulties participants with a native language other

Summary of Findings 179

than English had in extracting information from the documentation. However, while
diagrams were not superior regarding media effectiveness they still seemed to perform
a special role. Participants were more likely to use diagrams as their first source. They
were more likely to look at the diagram at the very moment when they provided
answers to questions of a topological nature.

Finally, we identified developer characteristics that can be used as developer per-
formance predictors: linguistic distance, media preference, experience and self-rated
modeling skill. The participants who performed best had a native language close
to English, looked at text more than at diagrams, were more experienced and rated
their own modeling skills to be relatively high. We conclude that, contrary to current
industrial practice, architecture documentation should be specifically tailored for its
audience in terms of the developer’s experience and native language and the general
readability of the text.

9.1.3 RQ3: How does the application of model-driven development tools
and techniques relate to the problems associated with global software
development?

We analyzed how the characteristics of a large scale, industrial model-driven devel-
opment project in the context of global software development compare to non-MDD
projects (Chapter 7). In MDD, models instead of code are the central development
artifact. We found that the same logic applied to code cannot be applied to models:
First, the majority of development effort was spend on developing the models. That
is significantly more than the time spent on code development in classical software
development. Second, most model elements were already present at one third of
the development process. The remaining development time was spent on altering
the models. In addition, 40 percent less defects were found in the MDD case when
compared to projects of similar size. Models and code are fundamentally different
and therefore not easily compared as we found absent, for example, a positive relation
between model size and model complexity on the one hand and model defects on the
other - relations that have often been observed in source code. Also, larger diagrams
were changed more often and worked on longer but did not necessarily contain more
defects.

We then analyzed how the application of MDD tools and techniques specifically
impact the problems associated with Global Software Development (Chapter 8). We
found that the use of models as a common language mitigated some of the problems
associated with socio-cultural distance and also resulted in fewer traveling back and
forth between the offshore and onshore locations. In addition, MDD techniques in
general and shared model ownership in particular forces more frequent interaction
between more team members.

Finally, an important implication of the use of code generation is that the software

180 Conclusions

g
lo

b
al

 s
o

ft
w

ar
e

d
ev

el
o

p
m

en
t

cost
reductionsis driven by

distancesintroduces -
[ch. 3, 4, 5]

-
[ch. 4, 5]

- [ch. 4, 5]

m
o

d
el

-d
ri

ve
n

d
ev

el
o

p
m

en
t

introduces

model-
centrality

code
generation

enables

+

[ch. 4, 5, 7, 8]

-
[ch. 3, 4,
 5, 7, 8]

+

[ch. 4, 5,
 7, 8]

software architecture
process

software
quality

project
success

benefits

benefits

[ch. 6]

[ch. 3, 4, 6]

finding or validation of earlier finding earlier finding

tailored
process

description

+
[ch. 2]

software architecture
(represented artefact)

software architecture
(mental model)

software architecture
(implemented software)

understandable
software architecture

representation

developer
knowledge
of design

compliance
to architecture

design

limit resources
to develop

reduce

reduce

 strains

automates

addresses

alleviates
problems

associated
with

determines
+

+aides

Figure 9.1: Cause-effect diagram integrating the main findings of the study

architecture is generated. Software architecture compliance is therefore automated.
Nevertheless, the application of MDD required more formal artifacts in terms of e.g.
more extensive and detailed design documentation and models that strictly adhere to
modeling guidelines. The architect played a central role in the continuous additional
training that team members required.

9.2 Contributions

The main contributions of this study and their interrelations are visualized in Figure 9.1.
First, this dissertation establishes that the software architecture process is significantly
different in the context of GSD when compared to co-located development. Second, we
have demonstrated a clear link between architecture compliance and project success in
terms of limiting rework. Third, we have presented evidence that the cost reductions
inherent to GSD limit the resources available for software architecture design and representation.
Fourth, we have found how developer knowledge of software architecture design:

1. can be positively influenced by improving diagrams and text in software archi-

Recommendations to Industry 181

tecture representation and training developers;

2. is limited by the socio-cultural, geographical and temporal distances in that GSD
introduces;

3. is hampered by cost reductions which limit the resources available for coordina-
tion of software architecture;

4. is less important in the context of MDD because the architecture is a stable
framework that is already implemented to enable code generation. Instead,
however, developers need to learn to work with a new development paradigm,
new tooling and a DSL.

Fifth, we found evidence for the principle that code generation increases the extent to
which a software implementation complies to its intended architecture as much of the
architecture is generated.

An important contribution that is not explicitly modeled in Figure 9.1 is that the
use of models as a central development artifact is fundamentally different from using
code. The logic or intuitions regarding effort and amount of defects that we have when
it comes to source code cannot be applied to models. However, the implications of
application of MDD tools and techniques are not yet clearly understood and therefore
warrant further study.

9.3 Recommendations to Industry

Following from the findings of this dissertation, we formulate five recommendations:

1. The problems associated with GSD should be specifically addressed in software develop-
ment process descriptions
Such an addition might be as informal as a (concrete) list of best practices. Prob-
lems that were encountered and solved in a specific project by means of technol-
ogy or a (set of) best practice(s) should find their way to the process description
so that other projects may benefit in the sense that similar mistakes are not re-
peated. Given that the majority of problems in GSD is thought to benefit from
intra-team member communication-related practices, the intended audience of
such an augmented process description should be all team members, rather than
project management.

2. The processes of dissemination and coordination of software architecture must be explic-
itly formalized

• Preferably, one or more experienced offshore developers should be involved
in the development of the architecture under guidance of an experienced
onshore architect.

182 Conclusions

• The most fundamental aspects of the architecture design should be devel-
oped before starting offshore construction.

• If budget allows, the development of an architecture POC in which new,
complex or otherwise unknown functionality is addressed, is recommended.

• The most knowledgeable architect should travel to the offshore location at
least once, preferably when the construction phase commences.

• When disseminating software design, validate that the receiving party made
the correct interpretation.

• The availability of the principal (onshore) architect should only be limited
to the extent that the knowledge and experience of the principal offshore
developer (the “technical lead”) allows this. Any cost savings from limited
association of the “expensive” onshore architect are unlikely to offset the
costs incurred by rework as a result of architectural noncompliance.

• Offshore developers should be able to directly contact the software architect
— preferably in a group so that effective use can be made of the architect’s
time. These sessions should be planned regularly to avoid developers
having to batch their questions.

• Developers should be coached to understand that knowledge of the role of
“their” component in relation to other components matters to the extent that
it determines the quality of their work.

3. Increase allocation of resources in architecture design
Upfront investment in architecture design is likely to lower budget overrun due
to having rework a faulty architecture implementation.

4. Create unambiguous and concise software architecture documentation that is specifically
tailored to its intended audience
Pay particular attention to the use of both text and diagrams, even for topological
information and annotating each (non-UML) diagram with a description of how
to read it. Additionally, investments in UML training for developers benefits
developer understanding of architecture representation.

5. Consider application of MDD tools and techniques to reduce the negative impact of
communication-related GSD problems
The use of models as a common language eases communication between on-
and offshore teams and enables a larger group of stakeholders to participate in
implementation-related discussions.

9.4 Future Work

As with all good research, the value of our findings in great part lies in the impetus
they provide to perform further research. We describe relevant directions for future

Future Work 183

work in the next sections.

9.4.1 In-dept Evaluation of the Role of Documentation in GSD

We argued that software documentation plays a more central role in GSD than in co-
located software development. In industrial practice, however, documentation is often
regarded as a by-product and information is preferably shared directly and informally
between people — hence the popularity of documentation-light Agile approaches.
We take the point of view that not more or less documentation must be created, but
better documentation. Nevertheless, advanced methods of documentation generation,
an increase in the level of technical maturity of clients and the advent of team wikis
do question the role of documentation in the software development process. Future
work in this direction should aim to quantify the usefulness of documentation by, for
instance, mapping the match between information need and availability and evaluating
the extent to which parts of existing documentation is perceived as adding value. The
outcome of such a study would be more lean documentation templates, a knowledge
support system and/or best practices for knowledge codification practices. The action
research paradigm is likely to be a suitable research method to address this topic.

9.4.2 Quantifying the Relation Between Developer Architecture Design
Understanding and Software Quality

This dissertation provides evidence which supports recommending upfront invest-
ments in architecture development and representation to ensure developer architecture
design understanding. While we take the stance that understanding of software ar-
chitecture design is beneficial for architecture compliance, we are unsure about the
mechanism underlying the nature of this relation. For example, how much should a
developer know about an architecture to ensure his software is compliant? All of it?
That seems uneconomical. Is it perhaps enough to understand the relation between
“his” components and neighboring parts of the system? To summarize: How much
better would developers implement if they know more about architecture? Such a
topic could be addressed by means of a quasi-experiment in the sense that a researcher
could invest in educating a selected group of developers with regards to the software
architecture.

9.4.3 Facilitating industrial application of MDD

This dissertation contains evidence for the significant impact of shifting from code to
models as central development artifacts. We also know that industrial application of
MDD is slow and that limited evidence exists for MDD’s potential benefits. Various
reasons have been offered to why MDD seems used so little and so often to no avail.
Reasons include unrealistic expectations, the problematic offering of MDD tooling and

184 Conclusions

a general lack of understanding of the concept of MDD. Future work should preferably
investigate industrial cases of MDD to collect factors that contribute to successful
industrial application.

