
Architecture design in global and model-centric software development
Heijstek, W.

Citation
Heijstek, W. (2012, December 5). Architecture design in global and model-centric software
development. IPA Dissertation Series. Retrieved from https://hdl.handle.net/1887/20225
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/20225
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/20225


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20225   holds various files of this Leiden University 
dissertation. 
 
Author:  Heijstek, Werner 
Title:  Architecture design in global and model-centric software  development 
Date:  2012-12-05 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20225
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter8
Analysis of the Consequences of
Model-Driven Development for
Global Software Development

The promotion of models over code to first-class entities is a central theme of
Model-Driven Development (MDD). In theory, this has a profound impact on the
architectural process and the work of the software architect. MDD is emergent
in GSD projects and the main challenges in GSD include difficulties to share
knowledge, to align tasks and to obtain and maintain a shared mental model.
In theory, MDD has the potential to mitigate some of these difficulties. In this
chapter we aim to understand (1) how the application of MDD tools and techniques
affects the architectural process and (2) how this relates to the problems commonly
associated with GSD.

This chapter is based on the following publication:

Werner Heijstek and Michel R. V. Chaudron (2010) The Impact of Model-
Driven Development on the Software Architecture Process. In Proceedings of the
36th Euromicro Conference on Software Engineering and Advanced Applications (SEAA
2010) pages 333–341, Lille, France



158 Analysis of the Consequences of Model-Driven Development for GSD

8.1 Introduction

Recent studies focus on decision making in the process of software architecting (e.g.
Kruchten et al., 2005). As a result, the practice of software architecting and the po-
sition of the software architect in the software development process are under in-
vestigation (Clements et al., 2007, Farenhorst et al., 2009). Also in Global Software
Development (GSD) projects, where software architecture is often transferred from
one development location to the other, the role of the software architect is not clearly
defined. In distributed settings, software architects have to interact with software
developers through (often great) geographical, temporal and socio-cultural distances.
So far, it has been unclear how these challenges are coped with in industrial practice.

At the same time, MDD tools and techniques claim improved team communication,
better (or even automatic) architecture compliance and resulting productivity gains.
Application of these tools demands a shift in boundaries between traditional roles in
the software development process as the code is no longer the central artifact – the
model is. This would have a profound impact on the architectural process and the
work of the software architect who has to work with a different set of tools, a different
vocabulary, a different type of development team. The architect also has an increased
responsibility to maintain consistency throughout the development process.

MDD is emergent in GSD projects (Jiménez et al., 2009). The main challenges in
GSD include sharing knowledge, to align tasks and to obtain and maintain a shared
mental model (Cannon-Bowers et al., 2001, Espinosa et al., 2001). In theory, MDD has
the potential to mitigate some of these difficulties. Using models as the central artifact
enables teams to use software architecture and design to direct team composition,
development process and even communication structures. In this chapter, we aim
to understand (1) how the use of MDD tools and techniques affects the architectural
process and (2) how these impact the problems commonly associated with GSD.

The outline of this chapter is as follows: Section 8.2 contains an overview of the
study objective and the data collection and analysis methods. Section 8.3 outlines
related work. Sections 8.4 and 8.5 discuss the results and the specific impact of MDD
on GSD. Finally, Section 8.6 contains conclusions and future work.

8.2 Objectives and Data collection and Analysis Methods

In this chapter, we address RQ3 (Section 1.3). One of the main implications that Šmite
et al. list in their recent structured literature review of empirical evidence in GSD is
that there exists a “gap regarding in-depth empirical investigations addressing particular
aspects of software engineering.” They continue to note that “thus, future research ought to
evaluate different practices, methods and techniques rather than mainly focus on managerial
problem-oriented lessons learned.” We have motivated that existing studies hint at the
positive influence that MDD could have on the GSD process. Therefore, it is not only



Related Work 159

necessary to understand what the impact is of using MDD tools and techniques in the
context of GSD in general. Specifically, we will address the impact in the context of the
problems associated with GSD. The research question addressed in this chapter can
therefore be formulated as follows:

How does the application of model-driven development tools and techniques impact
the problems associated with Global Software Development?

The subject of our analysis is the case outlined in Chapter 7. To analyze our data, we
apply the grounded theory approach. We used semi-structured interviews to survey
a subset of the project team members. We interviewed both the project manager and
lead architect before, during and after the project. The lead architect was interviewed
extensively six times over the course of two years. In the first interviews, the structure
of the project and the approach were discussed. The high amount of interviews was
needed because the contracting organization was not used to manage MDD projects
and therefore had limited insight in the approach and progress of the project. We
also extensively interviewed other team members including designers, developers,
lead developers, project leaders, a test manager, a system analyst and an estimation &
measurement officer involved in sizing and tracking the project.

During the interviews we asked questions regarding the impact of the application
of MDD on the activities of the participant and on the process of software development
in general. All questions were directed at (1) identifying every possible architectural
process-related differences with a non-MDD project and (2) finding all possible con-
founding factors. An audio-recording was made of all interviews. The next step
involved transcribing and coding the audio recordings. All separate statements made
by the subject were collected in a list. We then marked each statement that related
to MDD. After this initial coding process, we grouped the statements and identified
(formulated) a common impact factor that best described all statements in one group.
We then removed and merged duplicate and overlapping impact factors and we es-
tablished whether the impact was either (1) caused by the application of MDD, (2) the
cause of MDD and other, non-MDD, factors or (3) most likely not the cause of MDD.
We then confronted the interview participants with these distilled lists to validate our
interpretations. We repeated the coding process and updated factor descriptions in the
same way.

8.3 Related Work

This section addresses related work regarding the generic impact of MDD on the
software architecture process and the (potential) benefits of application of MDD in the
context of GSD.



160 Analysis of the Consequences of Model-Driven Development for GSD

8.3.1 General Impact on the Software Architecture Process

A commonly adopted framework for MDD is Model-Driven Architecture (MDA,
Kleppe et al., 2003, Object Management Group, 2003b,a). MDA is a specific MDD
approach that employs UML, MOF (Object Management Group, 2006) and XMI (Ob-
ject Management Group, 2007). A study by The Middleware Company (2003) of the
application of MDA specifically mentions “architectural advantages.” The study explains
that by application of MDA, an architect is forced to spend more time designing an
architecture due to the necessity to also model high-level domain entities. The Middle-
ware Company argues that increased upfront design effort reduces “the possibility of
introducing architectural flaws into your system later in the development life cycle.” The study
further reports on an experiment in which the same application is developed by two
teams of developers. One team applies MDA and one team does not. The MDA team
finished their development ahead of schedule and significantly faster. Advantages of
the application of MDD reported, include increased ease of communication of the de-
sign (including to the client) and consistency between design and code. Both are closely
related to the core activities of a software architect. According to a survey by Staron
(2006), the main aims for adopters of MDD were: improving quality by increasing
understanding, improving communication within development team and traceability
throughout software development artifacts (models). These three expected benefits
are directly related to the responsibilities of a software architect. Application of MDD
is therefore expected to alter the role of the software architect. Farenhorst et al. (2009)
list five categories of architecting activities. At least three categories are expected to be
impacted by adopting MDD. First, communication of architecture design is expected
to be easier because models are the dominant artifact throughout the project. Second,
quality assessment will likely be more important because of the more formal nature
of MDD. Lastly, a stronger focus is expected on documentation due to the use of a
Domain-Specific Language (DSL). A DSL is a modeling language that, by design, is
particularly fit to express concepts related to a specific field or e.g. a branch of business.

8.3.2 MDD in Global Software Development

On the surface, MDD appears to have the potential to mitigate some of the difficulties
that are associated with GSD. Using models as the central artifact would enable teams to
use software architecture and design to direct team composition, development process
and even communication structures. The main challenges in GSD include sharing
knowledge, to align tasks and to obtain and maintain a shared mental model (Cannon-
Bowers et al., 2001, Espinosa et al., 2001). The sources of these challenges are to be
found in the three types of distance that are introduced in GSD projects: geographical
distance, temporal distance and socio-cultural distance.

The model-centric nature of MDD and some of the requirements that lie at its
foundation could have a positive influence on the problems associated with GSD.



Related Work 161

Limited related work exists that explicitly addresses this conjecture. Nevertheless,
evidence of the potential positive influence of MDD on GSD can be found in various
studies. For example, that the higher level of abstraction inherent to MDD facilitates
more effective stakeholder communication is explicitly mentioned in the context of
GSD in many other studies. For example:

• “explicit, shareable models and descriptions [. . . ] facilitate collaboration between develop-
ers on an abstract level” (Pahl, 2005),

• “ great advantages of [our MDD language] in the context of global software development
[include] a common understanding of the software being developed” (Heistracher et al.,
2006),

• “advantages of a unified, model-driven approach to requirements elicitation include
significantly improved communication” (Berenbach and Gall, 2006).

In addition, the advantages of the use of common tools on GSD is often referred to. For
example:

• “[MDD] tool vendors develop more and more tools to be applied during architecture
development.” (Spanjers et al., 2006);

• “Enforcing common tools and processes makes collaboration much easier ” (Lings et al.,
2007);

Only limited more detailed evidence is available. For example, Lester and Wilkie
(2004) present an empirical evaluation of the selection of a commercial CASE tool that
supports UML in the context of a large GSD project. Lester and Wilkie specifically aim
to address the problem that “the lack of synchronization between design models and source
code, for a development team working in different time zones, can lead to strained relationships
between the geographically disparate sites.” MDD brought forth a host of tools that support
model-code correspondence in general and code generation in particular.

Another example of more detailed analysis of the role of MDD-related tools and
techniques is the work by Clerc et al. (2007). In this study, a case is reported in which
distributed team organization was formed strictly along the lines of an architectural
design — including dependency and subsystem-related constraints on communication.
The authors claim that this helped GSD-related problems they define as “difficulty to
build a team.”

Application of MDD requires the early and complete definition of an architectural
framework. This is in line with the requirement that an architecture must be sufficiently
mature to be able to distribute team composition, development process and commu-
nication structures (Mullick et al., 2006, Conway, 1968). In line with the previous
finding, Clerc et al. (2007) also found that “alignment via architecture” is beneficial. They
found that in the same case, “alignment of tasks and responsibilities [was] mainly done
via the architecture,” they go on to exemplify this by noting that, “[r]equirements [were]



162 Analysis of the Consequences of Model-Driven Development for GSD

assigned to subsystems, which [had] dedicated resources assigned.” Apart from a similar
requirement regarding early architecture maturity, this model-centric method of project
management is much in line with the premise of MDD in which models are even more
central.

Another specific study of benefits of MDD techniques to GSD problems was exe-
cuted by Andaloussi and Braun (2006) who outline their experiences in developing a
model-driven test framework based on the the UML 2 testing profile (Schieferdecker
et al., 2003). In their effort, Andaloussi and Braun specifically sought to obtain com-
munication benefits for GSD teams: “The advantage is to represent the system and its
tests through one single notation.” In preliminary findings of a case study in which they
implemented their framework, they found that through using the test framework they

“[overcame] the language barriers in releasing the test specification from [a] textual description
filled with buzzwords and jargon.” In addition, they note that they made “nearshore more
independent from offshore, in avoiding initial training phases and requiring only standard
skills (UML, U2TP and TTCN-3).” Their use of a DSL made it easier to distribute the
architecture in small components, which in turn increased comprehensibility.

8.4 Results

In this section, the results of the analysis of the case (as outlined in Chapter 7) are
discussed. Structured around the three core concepts behind MDD (Section 1.1.5), we
will discuss the influences of application of MDD on the GSD that were found in the
project under study. We will particularly address the ramifications for the software
architecture process. An overview of the implications of adoption of MDD in GSD on
the software architecture process is presented in Figure 8.1.



R
esults

163

Figure 8.1: Factor integration graph (Ð→ denotes cause and effect)



164 Analysis of the Consequences of Model-Driven Development for GSD

8.4.1 Model-Centrism

Source code is not easy to communicate even between those who understand the pro-
gramming language. In addition, source code represents one of many representations
of the system to be built. In traditional software development, each stakeholder has his
own preferred representational conventions to describe the system. In MDD, models,
rather than code, are treated as first-class entities. As models are abstractions of more
technical details, the potential proportion of team members that understand the models
is larger.

All team members noted that intra-team communication was much easier because
the models were used as a single point of reference was used. Models were numbered
and requirements engineers, the architect and even project management would refer to
that same model number to discuss an particular issue that was relevant to their role.
As a result, use of models as a common language eases communication and enables a
larger group of stakeholders to participate in implementation-related discussions. The
strongest evidence exist in literature for this particular effect of application of MDD.

A substantial amount of the architectural process is spend on communication of
design and architectural decisions. By introducing models as a common language
that is used throughout the development process, this time-consuming undertaking
becomes less laborious. The project team members that were interviewed acknowledge
that technical discussions related to aspects of the system were easier to conduct
than they were used to in non-MDD projects. Reasons consistently mentioned for
the discussion benefits were that the models could be used as a basis for discussion
and because more different team members of different disciplines were familiar with
the models. This translated to fewer traveling back and forth between the offshore
and onshore locations than normally would be the case in projects of similar size and
complexity.

In the following sections we discuss two other effects that model-centrality had
on the case. First, the transition to models as a common language is easier for some
disciplines than for others. Particularly, business analysis were reluctant to work with
software CASE tools. Second, as more stakeholders are directly involved with the
models (now the central development entities), “collective ownership” becomes an
important development concept.

Common Language as a Challenge

In the case, a group of requirement engineers were only willing to participate in
modeling their use-cases more formally on the condition that they would not be
concerned with what they referred to as “programming.” However, the models they
made were directly generated to code, code that would be directly used in the system
and which would become the vast majority of the final code of which the system would
be comprised. Another example are a group of business analysts who refused to work



Results 165

with a UML case tool as they regarded it “technical work”. They eventually left the
project.

The technical possibilities and potential advantages in terms of synergy offered by
consistent use of diagrams from early requirement workshops to the generation of a
working software system are evident. Much is lost and misunderstood in translation
of requirements to architecture to design to source code. And while MDD does not
completely remove the need for translation, the use of models as a central language
at least limits it. In practice, this implies that more team members need to be able
to communicate in a common language. Nevertheless, a clear distinction between
business related activities and IT-related activities is still often made in software
engineering practice. Requirements engineers do not write source code, developers
do not bother with domain models and a project manager might not be up to speed
with specific testing techniques employed. However, the central use of models requires
team members from all disciplines to work with the same language, concepts and tools.

Collective Model Ownership

The notion of “collective ownership” stems from the rules of Extreme Program-
ming ((XP), Beck, 1999). It encompasses the notion that team members are collectively
responsible for various aspects of the system under development, specifically system
design. The key benefit that this practice aspires to obtain is the elimination of bottle-
necks for changes to certain aspects of the system. In addition, people that are bottle
necks may leave a project at any time, taking with them valuable information regarding
an aspect of the system only they had deep understanding of. Developers tend to
prefer to be responsible for their part of the system. Because less code is written and
this code is more complex, developers must more often work with code that they did
not author themselves. It is not possible to couple a developer to a particular use case.
In fact, no developer should have objections to working at another use case or to have
somebody change code related to a use case they initially authored.

The architect explained that all designers need to be able to develop and expand
most models. While some of the more complex models were still assigned to one or
two designers, the majority of models were worked on by a variety of team members.
Various team members explained that they enjoyed working on various different
models. They were also convinced that model quality improved because of this
practice. Having more team members working at the same model increased the chance
of spotting defects. Developers explained that they were not used to work with each
others code and that they needed to get used to having other people work with “their”
models and code.

An additional benefit of collective code ownership is that it facilitates increased
contact between the programmer and the designer. However, the diagrams were
never branched so enable that designers could work in parallel. In this case, no tool
support existed for model version control. Although some tools are available (e.g. EMF



166 Analysis of the Consequences of Model-Driven Development for GSD

Compare (Brun and Pierantonio, 2008) and DSMDiff (Lin et al., 2007)), these are not
easily integrated with existing MDD tools.

8.4.2 Code Generation

In this case, a source code generator was developed to generate code. Using this gener-
ator, a significant portions of source code (90 percent) of source code was generated.
We found this to have four direct consequences:

First, at least all the “easy” code is generated. All of the “hand-written” code,
therefore, is more difficult to write. This requires more skilled developers. Second,
standardization on mature software components as well as integrating generated code
and hand-written code, requires the use of a variety of frameworks. Increasing the
amount of frameworks involved in the software architecture requires an increasing
understanding of the complexity of the interaction between these frameworks. This
requires even more skilled programmers. Third, modeling can no longer be done
haphazardly (Lange et al., 2006). On the contrary, adherence to modeling guidelines
must be enforced if models are to serve as the basis for code generation. Fourth, if code
is generated then a code generator needs to be developed and maintained in parallel
with the original project. The generator is a separate project with its own stakeholders.

These four consequences lead to a variety of implications. The first and second con-
sequence directly require more skilled developers. The use of a variety of frameworks
and a code generator require more structured models, a more formal development
process, documentation and an increase in tooling. The use of these frameworks also
limits the flexibility regarding the type of functionality that can be generated. In addi-
tion, developer compliance to architectural rules is no longer optional. Furthermore,
the increase in development rules require software maintainers to be involved in the
implementation process at an earlier stage than would have been the case in a tradi-
tional development process. The fourth implication, the generator being a separate
project, greatly increases project complexity. These implications are discussed in the
following sections.

More Skilled Developers are Required

During the project, several junior developers were not able to cope with the complexity
of the code that had to be developed. These developers had to be replaced by more
capable or experienced developers.

Aspects of a system that lend themselves particularly well for code generation are
data related constructs such as CRUD1-functionality. Much of the more straightforward
code has therefore already been generated. In addition, to enable code generation
and to attain this level of abstraction, a substantial set of frameworks is used. Un-
derstanding how these framework interact can be a difficult process. As a result, not

1Create, Read, Update and Delete



Results 167

all developers that would normally work on implementation of a system of similar
complexity are able to cope with the more complex use cases or exceptions. In short,
highly skilled developers are needed to implement the more complex parts — which
form the majority of the “hand-work.”

An architect is responsible for communicating the more complex build-up of frame-
works that is chosen for MDD development and therefore has spend more time to train
new developers and to evaluate whether they are up to the task.

Strict Quality Assurance for Modeling

Developers explained they had less freedom to interpret designs and architectural
constraints due to the central role of the models and the strict guidelines that needed
to be adhered to in order to guarantee the system could be generated correctly.

Tools that enforce adherence to architectural rules are not commonly used in indus-
trial practice. For an architect it is therefore important to check architecture adherence
throughout the development process. In MDD, adherence to architectural rules takes
less effort because (1) modeling is done more formally, (2) architecture is more formally
defined and thus easier adhered to and (3) less steps of translation take place as models
are directly translated to code by a code generator. In addition, the code generator
used in this project was equipped with a model validator, the model equivalent of a
code parser. This validator checks syntactical adherence and provides some level of
quality check. In the case, model verification was done by the architect.

More Extensive and Structured Architectural Descriptions are Required

The set of architectural artifacts used in the project is larger and more detailed than
found in similar (non-MDD) projects of equal size. The sources of architectural know-
ledge available during the project are detailed in Table 8.1.

Next to the sources in Table 8.1, architectural knowledge exists which is not captured
in any artifact but the system itself. In interviews, project members refer to design
decisions which are visible in the models but which are not explicitly documented.
Project management did not allow for the time to explicitly document all design
decisions due to time constraints.

Since more detailed descriptions of use cases are required in early stages of the
project, documentation is reviewed more often. The central role of a document such as
the modeling guidelines implies that more team members use and comment on con-
tents. This requires more formal and complete descriptions which is better structured.
Architectural documentation in the project was updated more frequently and up until
later stages in the process in comparison to non-MDD projects.



168 Analysis of the Consequences of Model-Driven Development for GSD

Table 8.1: Architectural Artifacts Available in the Case Project

artifact description contents

Software Archi-
tecture Document
(SAD)

The most important architec-
tural knowledge is described
in this document. The SAD is
used by all team members ex-
cept the testers. The author is
the software architect.

Description of actors and development tools; List of architec-
turally significant use cases and their realizations (use case
view); Overview of logical layers (logical view); Definition of
communication and process principles that are relevant for the
software architecture (process view); Description of the distribu-
tion of the system over various nodes and its interaction with a
selection of surrounding systems (deployment view); Architec-
ture of the source code — layering, frameworks and best prac-
tices (implementation view); Description of transformation of
the UML design model to various data aspects of the software
architecture (data view)

Supplementary
Specification (SS)

Requirements outside of the
requirements described in the
use cases.

Quality requirements of interfaces; Additional system require-
ments

Interface Docu-
mentation

Per interface documentation.
The author is the system ana-
lyst.

Request message specification; Reply message specification;
Web Services Description Language (WSDL) specifications; List
of related Use Cases

Modeling Guide-
lines

A tool-independent descrip-
tion of how to describe func-
tional requirements of an IT
system using UML. The au-
thor is the software architect.

Naming and ordering of model elements; Data modeling guide-
lines; User interaction modeling guidelines (flows, sub flows,
authorization, use of data, use of services, decisions, constraints,
composite operations); UML Profile Reference

Wiki The Wiki of SourceForge En-
terprise Edition 4.4 is used.
Authors include most project
members.

Tips and tricks to set-up your code environment correctly and
how to solve problems; An overview of the release cycles of
all parallel working teams is managed; An overview of how to
work with the release process

Separate Model
Documentation

A set of documents which
elaborate on some of the el-
ements from the meta-model
that are only used in specific
models. The authors are the
maintainers of the respective
models.

Style guide for the screens associated with this use case; Data
sources overview for use case

Design Decisions Elaboration of certain design
decisions. This document is
based on the modeling guide-
lines and was created before
the system was built. The au-
thor is the System analyst.

How deep packages are nested; How certain functionality is
split up

More Tooling Is Needed to Support the MDD Process

From their literature review of MDD, Mohagheghi and Dehlen (2008) conclude that
suitable tools are of fundamental importance for MDD to succeed. These tools must be
selected carefully for fitness to meet requirements and must fit into an organization’s
existing chain of tools. Factors in deciding on tooling for software development
include a trade-off between the standard tooling used by the development organization,
specific project requirements and the wishes of the client and possibly the maintenance
organization. Primarily responsible for this process is the software architect. The



Results 169

use of MDA requires more tooling than a non-MDD development process. As in
most development processes, an MDD project requires a configuration and change
management system, requirement-, defect-, time- and change tracking systems and
modeling-, development- and testing environments. However, a set of requirements
are added to the tool selection process for supporting the DSL or reference model and
extra environment for supporting the generator.

In addition to selecting candidate case tools and evaluation, team members must
be trained to work with new tools. Traditionally, an architect will prescribe the use of
only a subset of the functionality offered by the tooling, limit the use of the tool. Team
member’s use of the tooling must therefore be monitored. As described earlier, the
project must deal with team members resisting to use particular tooling and perhaps
needs to convince the client that a lesser known tool is indeed a proper solution. Finally,
one of the lessons learned from the case is that adopting the use of an existing code
generator for large-scale application of MDD is not feasible for large scale, specific
applications. As meta-model functionality changes, the generator and validator need
to be altered.

The extra tooling employed in an MDD process make that an architect spends
more time investigating, testing and explaining development tools. A rapid pace of
development and the fragmented offering of state of the art MDD case tools requires
an extensive evaluation process as a part of the inception of any MDD project.

Designers Have to Build More Unequivocal Models

The architect found that he continuously needed to support and correct the model
designers to learn to work with the DSL, the modeling tool and the validator. Designers
struggled to understand the implications of their design choices and found it difficult
to create models fit for code generation. The architect played a central role in the
continuous training that designers required. Being located onshore, providing this
training to the offshore development team was quite a challenge. Daily intensive
(video) training sessions were held.

In traditional software development, designers build a set of diagrams to convey
certain key aspects of a system. Requirements are translated to a technical solution
according to architectural rules. It is often up to developers how to precisely implement
an aspect described by a design. The UML offers a great degree of freedom. In practice,
this freedom leads to inconsistent, incomplete and otherwise ambivalent diagrams
(Lange et al., 2003). The work of a modeler in MDD is different in the sense that it is
not only to communicate functionality but also to directly implement that functionality
by modeling. This implies that traditional trade-offs regarding design effort and detail
and completeness of diagrams are no longer made. There are far fewer solutions that
are correct.



170 Analysis of the Consequences of Model-Driven Development for GSD

Generator is a Parallel Software Development Project

The architect found that parallel development of a code generator quickly grew into a
separate project with its own architecture, stakeholders and e.g. defect management
system.

The applicability of code generation as a development method is limited to how
specific the system requirements are. An “off-the-shelf” set of model transformations is
rarely capable of generating exactly what a specific client wants. A specific methodol-
ogy bundled with a code generator only allows for very specific applications to be built,
in which case the client has little to say about the software architecture. Therefore, to
facilitate the specific requirements of a large corporate client for a sizable system, model
transformations must evolve with both models and the code. Consequently, in addition
to the development of the software system that is central in the project, a software
architect is responsible for development and maintenance of a code generator. As the
main system, the code generator has its own requirements, architecture, design and
code. In the project, a separate team of developers was responsible for development
and maintenance of the code generator. The main influence of this practice was found
to be that requirement changes have a larger impact on the development process. The
impact of changes has to be checked in great detail so the impact analysis of a change
requests is more detailed. However, according to the architect, a side effect of needing
to more carefully examine changes was that the impact of changes was very clear and
potential problems and defects are spotted much earlier. This prevented rework and
thereby saved time.

Late Changes Can Have a More Fundamental Impact

The use of code generation comes at the cost of greater standardization. If certain
functionality is not supported by a meta-model, it can only be generated by extending
the meta-model, the model transformations and possibly the DSL. This is potentially
more time-intensive than adding the functionality by hand. Late changes to the meta-
model may therefore require a disproportional amount of effort in modifying existing
models or generated code. To prevent major rework, any requirement that impacts
the meta-model must be clear upfront. The architect should make sure that before
commencing modeling, the meta-model is as mature as needed.

In this case, at a late stage in the project, a specific requirement regarding navigation
through the graphical user interface was discovered. In an earlier version of the
architecture it was prescribed that to navigate from one screen to another, that those
two screens had to be explicitly connected to each other in the model. Marking every
navigation step with an arrow implies that an increase in the amount of screens that can
reach each other exponentially increases the amount of arrows that needed to be drawn
in the models. Because it was not made clear that most of the screens would require the
possibility to navigate to one another, that particular aspect of the architecture would



Results 171

model model

code code

transform
manually

transform
automatically

maintenance

maintenance

Figure 8.2: MDD versus non-MDD maintenance (adapted from Van Vliet, 2008)

probably have been redesigned at an early stage in the project. In a traditional project,
this problem would probably be solved at the code level. In the case of this project, the
screen navigation had to be altered at the model level and even required changes to the
architecture, reference model and model transformations. The considerable amount of
effort that had to be spent to rework all models after the late revision of fundamental
aspects of the meta-model, indicates that it is imperative to find all requirements that
significantly impact the meta-model before taking up modeling. Cabot and Yu (2008)
argue for extending of MDD methods with improved requirements techniques.

Maintainers Need to be Involved During Development

Maintenance of software constructed using MDD tools and techniques is different in
that not the code, but the models need to be altered 8.2. To ensure that models and
system stay in-sync, it is imperative that maintainers are trained to understand the
DSL, the models, the model transformations, the generation process employed and the
integration between the generated code and the hand-written code.

It is essential that post-release changes are applied consistent with the MDD process
used during development. Therefore, intimate knowledge of the meta-model buildup
and the code generator as well as the frameworks involved is required from the
maintenance staff. This knowledge is best obtained by close involvement of the
development process.

8.4.3 Model Reuse

Domain-specific models can be reused for new software systems within the same
domain. For this case, a meta-model was created before the project started. We found



172 Analysis of the Consequences of Model-Driven Development for GSD

three consequences of the use of that meta-model:

First, the objective was to have that meta-model expanded and kept separate
from this project so that it could be used in future projects. This requires external
stakeholders that ensure that the meta-model stays generalizable. No resources were
allocated for such a role. Second, this existing meta-model, which was created by
domain experts, did not represent the client’s perception on that same domain. Third,
if a client initially only requires a subset of functionality that an existing meta-model
offers, it might seem tempting to expand a system’s scope to include “things the meta-
model already can do.” The second and third consequences are discussed in more
detail in the next sections.

Increased Likelihood of Scope Creep

In this case, project management regularly budgeted client requests for specific meta-
model functionality at zero hours of person effort. In this case, severe project time and
budget overruns could in great part be ascribed to this practice.

Scope creep occurs when system functionality expands beyond the initial project
objectives. Any software development project will meet changing requirements and
generally, project management evaluates whether a change is in scope before accepting
it as part of the original system or whether it should be treated as a additional func-
tionality. The use of MDD can make scope creep more likely for two reasons: First,
extending functionality can be easier than in non-MDD development. This specifically
pertain changes already supported by the meta-model. Second, an existing meta-model
may contain more functionality than specified in the requirements, making it even
easier to generate new functionality. This impacts the discussion between software
supplier and client whether added or changed functionality is part of the original sys-
tem requirements or if it should be treated as a change request. It might be easy from a
technical perspective to generate functionality that is beyond project scope. However,
the impact of added functionality extends beyond the technical implementation. Extra
functionality requires increased test and documentation effort. Working beyond project
scope furthermore requires a supplementary iteration of the analysis of the business
modeling as added functionality might impact existing business processes of systems
in the environment and could imply the inclusion of additional interfaces. In addition,
not all code in an MDD project is generated and a part of the newly generated code
might need to be amended by hand. This is costly, time consuming and it might well
add to the complexity of the system.

The organizational impact of introduced features beyond initial project scope could
also include additional training of future users or an extension of the pool of future
users which in turn might impact other requirements.



Impact of MDD on GSD 173

An Existing Meta-Model Might Conflict with Client Reality

A benefit of MDD is that an existing meta-model can be used to quickly deploy appli-
cations within a certain domain. In the case of the project, a pre-existing meta-model of
a specific aspect of the Dutch mortgage domain was the main motivation of applying
MDD. This model was created in concordance with business analysts with extensive
experience in the Dutch mortgage domain. However, an existing domain model might
not correctly represent a domain in the way the client perceives it. Many assumptions
made by experts in this domain regarding business processes and product-composition
were not completely consistent with the business approach of the client. This either
stemmed from incorrect assumptions or from domain evolution. Redevelopment of
the meta-model lengthened development time and hampered potential productivity
improvements from the use of an existing meta-model. In deciding between a detailed
and a more generic meta-model describing a certain domain, the latter approach could
be more feasible. The biggest gains of MDD can therefore be expected in stable domains
(with limited domain evolution) or in domains in which much commonality exists.
This same problem can occur at the DSL-level. The strong link between the DSL and
the domain benefits development by domain experts, but backfires when that domain
evolves. Various studies propose methods for addressing domain model evolution
(Deng et al., 2006, Sprinkle and Karsai, 2004).

8.5 Impact of MDD on GSD

In this section, we discuss the advantages and the disadvantages that the identified
impacts of use of MDD have on GSD. In their recent structured literature review of
empirical studies in GSD, Šmite et al. (2010) give an overview of GSD challenges and
the best practices that are so far known. In Table 8.2, these are linked to the MDD
impacts that were discussed in the previous sections. The first two columns in this
table have been taken from Šmite et al.

Most of the best-practices associated with GSD are directly affected by process
changes that are found with use of MDD tools and techniques. As discussed earlier,
many studies hypothesized that the communication benefits that a DSL entails would
benefit the GSD process. The increased communication efficiency that was found in
the case enforces — or at least positively impacts — many of the best practices in
the overview of Šmite et al.. A DSL provided for a common language and therefore
mitigated some of the problems associated with what is commonly regarded as the
toughest of the three distances (Herbsleb et al., 2000): socio-cultural distance. However,
models also made for the richer communication that GSD needs. In addition, the close
interaction with the client through use of a DSL, enabled the incremental short-cycle
development that is beneficial for GSD.

However beneficial all these communication-related benefits are, the evidence that



174 Analysis of the Consequences of Model-Driven Development for GSD

MDD mitigates some of the problems of GSD reaches further. The requirement of
shared model ownership implies that a centralized project repository — essential in
GSD — had to be employed. Furthermore, use of MDD required a more extensive
and more explicitly defined architecture. This enabled easier task distribution based
on architectural decoupling, which is one of the most concrete best practices for GSD
(Herbsleb et al., 2000). Also, an increased reliance on tools that accompanies the use of
MDD enabled a more reliable infrastructure through a more formal method of working.
Still, integrating these tools in the existing chain of tools was a challenge and so was
training people to use them. MDD was not found to have any direct impact on the
“synchronous interaction” best practice that Šmite et al. listed. While MDD does not
require this type of interaction it does not inhibit it either. A potential drawback of
MDD when used in GSD is the training. Programmers, designers but also management
needs to be educated so to understand the MDD paradigm. When assembling an
offshore team it proved be difficult to assess the extent to which candidates had the
required skills. Furthermore, the short iteration cycles mentioned in Table 8.2 are
needed to address the problem of process unclarity or the lack of awareness of either
the process followed or current process status (Espinosa et al., 2001, Levesque et al.,
2001, Carmel, 1999, Mockus and Herbsleb, 2001). Some organizations tailor their
process prescriptions to cater for GSD (Heijstek et al., 2010) but this does not solve the
awareness problem. MDD requires that a strict process is followed. This process was
defined early in the elaboration phase in concordance with the entire team. As the
model transformations would evolve with the diagrams, offshore team members were
aware of the status of their work, the work of the onshore team and the status of the
project as a whole.

8.6 Conclusions and Future Work

Using MDD tools and techniques fundamentally impacts the software development
process in general and the analysis and design phases in particular.

All team members in this case elaborated on how the use of models as a common
language eased communication between team members in general and between on-
and offshore teams in particular. In addition, models enabled a larger group of stake-
holders to participate in implementation-related discussions. This translated to fewer
traveling back and forth between the offshore and onshore locations than is normally
the case in projects of similar size and complexity.

We found that the use of a common language mitigated some of the problems
associated with what is commonly regarded as the toughest of the three distances
(Herbsleb et al., 2000): socio-cultural distance. In addition, MDD techniques in general
and shared model ownership in particular forces more frequent interaction between
more team members.

While MDD enforces most GSD best practices that are currently known in literature,



Conclusions and Future Work 175

some drawbacks exist. Staffing requirements include team members that are willing
to work with models and model CASE tools and highly skilled developers. However,
in GSD contexts, it is not always possible for an architect to influence development
team composition. In addition, the application of MDD requires more formal working
procedures in terms of e.g. more extensive and detailed design documentation and
models that strictly adhere to modeling guidelines. The architect played a central
role in the continuous training that team members required. Being located onshore,
providing this training to the offshore development team was quite challenge.



176 Analysis of the Consequences of Model-Driven Development for GSD

Table 8.2: Relating GSD best practices (Šmite et al., 2010) to MDD-related practices

Practices Advantages Impacted
by MDD

GSD Impact

• F2F meetings

• temporal collo-
cation

• exchange visits

• Trust

• cohesiveness

• effective team-
work

4 • Intra team communication was said to be more efficient
with MDD because of DSL

• Less travel was required since communication was
clearer

• Centralized
project reposi-
tory

• common config-
uration manage-
ment tool sup-
port

• Awareness

• process trans-
parency

4 • Central repository was required for collective model own-
ership

• More tools were used

• Effective and
frequent syn-
chronous com-
munication

• Trust

• cohesiveness

4 • Communication was said to be more efficient with MDD
because of DSL

• Reliable infras-
tructure

• rich communica-
tion media

• Effective com-
munication

4 • Models made for richer communication as they were in-
cluded in meetings.

• More tools were needed. These allow stricter work pro-
cedures. The introduction of new tools also introduces
some uncertainty.

• The development process was more formal.

• Synchronous in-
teraction

• Effective team-
work

2

• Task distribu-
tion based on
architectural
decoupling
and low depen-
dencies across
remote locations

• Effective team-
work

4 • A greater proportion of the architecture was explicitly de-
fined

• Any architectural decoupling was more straightforward
to enforce as the implementation was closer to the archi-
tecture

• Requirements were clearer

• Incremental
short-cycle
development

• Early feedback,
capability evalu-
ation

4 • Code generation enables faster development

• Earlier feedback is obtained because of closer client inter-
action through the DSL


