
Architecture design in global and model-centric software development
Heijstek, W.

Citation
Heijstek, W. (2012, December 5). Architecture design in global and model-centric software
development. IPA Dissertation Series. Retrieved from https://hdl.handle.net/1887/20225

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/20225

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/20225

Cover Page

The handle http://hdl.handle.net/1887/20225 holds various files of this Leiden University
dissertation.

Author: Heijstek, Werner
Title: Architecture design in global and model-centric software development
Date: 2012-12-05

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20225
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter7
Contrasting Model-Driven
Development with Code-Centric
Development

MDD is seen as the natural continuation of the trend of raising the level of
abstraction at which software is developed. Consequently, in the past decade, there
has been increasing interest in MDD in both industry and academia. In addition,
MDD is emergent in GSD projects. Nevertheless its impact on the development
process in large-scale, industrial practice is not yet clear and empirical validations of
adoption of MDD tools and techniques are scarce. This chapter therefore addresses
how the characteristics of a large scale, industrial model-driven development project
in the context of global software development compare to non-MDD projects. We
specifically focus on the quantification of process metrics.

This chapter is based on the following publication:

Werner Heijstek and Michel R. V. Chaudron (2009) Empirical Investiga-
tions of Model Size, Complexity and Effort in Large Scale, Distributed
Model-Driven Development Processes — A Case Study. In Proceedings of the
35th Euromicro Conference on Software Engineering and Advanced Applications (SEAA
2009) pages 113–120, Patras, Greece

136 Contrasting Model-Driven Development with Code-Centric Development

7.1 Introduction

In the past decade, there has been increasing interest in MDD (Selic, 2003) in industry
and academia. MDD is also emergent in GSD projects (Jiménez et al., 2009). The
quality and productivity benefits claimed for the use of MDD triggered many studies
to advance MDD practices. Nonetheless, few empirical studies are available that study
the impact of applying MDD on industrial software development As a result, the
general impact on software development of using MDD is unclear.

The structure of this chapter is as follows: Sections 7.2 and 7.3 elaborate on the
study objective and related work. Section 7.4 explains the case study design. Section 7.5
discusses the results and the conclusions and future work are presented in Section 7.6.

7.2 Objectives

In this chapter, we address RQ3 (Section 1.3). This question aims to explain how
increasing model-centrality impacts the problems associated with GSD. To this end,
the differences between code-centric and model-driven software development are
analyzed.

In this chapter in particular, we aim to add to the limited experience reports in which
the specificities of MDD cases in general and cases of MDD adopted in GSD context
in particular, are reported. As established, it is important to investigate industrial
cases of MDD to add to the scarce literature. Such investigation is also beneficial for
benchmarking purposes and to evaluate the impact of the process and techniques used
in general. To these ends, we pose the following research question:

How do the characteristics of a large scale, industrial model-driven development
project in the context of global software development compare to non-MDD
projects?

This question is divided into sub-questions regarding key characteristics regarding the
software development process in general and models in particular:

1. What types of diagrams are used?

2. How is effort distributed over the “classic” development phases?

3. How big and how complex are these models?

4. How does model size grow over time?

5. Do model size and complexity impact defect count?

Related Work 137

7.3 Related Work

The main hypothesized benefits to be gained from adoption of MDD are

1. increase in productivity,

2. improved code-quality,

3. improved re-usability and

4. improved maintainability.

The main two principles that enable these benefits are (1) provision of better abstraction
techniques and (2) facilitation of automation (Mohagheghi and Dehlen, 2008, Staron,
2006, Kleppe et al., 2003). The software architect fulfills a central role in ensuring that
these potential benefits are actually obtained. The software architect is instrumental
in enabling correct model transformations such as code generation. His objective of
complying to non-functional requirements implies a careful consideration of available
modeling case tools and a leading role in the design and application of a Domain
Specific Language (DSL) (Van Deursen et al., 2000).

We focus on productivity. In this section, an overview is presented of related work.
First, we elaborate on the state of empirical research in MDD tools and technique
application. Second, the impact on productivity is discussed.

7.3.1 State of Empirical Research

Empirical evidence regarding the benefits of application of MDD tools and techniques is
sparse. Literature regarding MDD in large-scale, industrial projects often describes pro-
cesses in which legacy systems are reverse engineered to MDA (e.g. Anda and Hansen,
2006, Reus et al., 2006, Fleurey et al., 2007). Reports are mostly qualitative (Staron, 2006,
Raistrick, 2004, Baker et al., 2005).

An extensive review of literature regarding MDD (published between 2000 and
2007) was executed by Mohagheghi and Dehlen (2008), the results of which have been
summarized by Hutchinson et al. (2011):

• Most studies of the 25 selected papers were experience reports from single
projects;

• MDD was applied in a wide variety of organizations; methods of code generation
varied;

• MDD techniques are very dependent on tooling;

• productivity impact varied widely and more empirical studies that evaluate MDD
are needed.

138 Contrasting Model-Driven Development with Code-Centric Development

Concluding their work, Mohagheghi and Dehlen explicitly recommend that “future
work for evaluation of MDE should focus on performing more empirical studies, improving
data collection and analyzing MDE practices.”

7.3.2 Impact on Productivity

Most empirical studies regarding MDD address questions regarding efficiency (White
et al., 2005). Still, only few studies offer enough data to quantify and baseline pro-
ductivity (and quality) in industrial MDD projects (Shirtz et al., 2007, Weigert et al.,
2007). Anecdotal evidence in literature claims that adoption of MDD has hampered
productivity as much as 27 percent (MODELWARE D5.3-1, 2006) and improved pro-
ductivity as much as 800 percent (Baker et al., 2005). A case study by MacDonald
et al. (2005) of modification of a legacy system using MDD found that development
lead time increased due to “workarounds required to integrate with legacy systems.”
This directly impacts the work of a software architect. Furthermore, they found as
many defects as the authors would have expected with “traditional development.”
Moreover, these defects were more difficult to find and repair in the models because
of difficulties in tracing errors from the compiler directly back to the model without
using the generated code as a reference. Suffice to say that technical support of this
type of development process is demanding. The study did not use a fully functional
executable model. Also, it was hard to maintain platform independence due to work
methods and a lack of generic libraries.

In their recent multi-method study of the state of the practice of MDD, Hutchinson
et al. (2011) specifically addressed the perceived impact of MDD activities on produc-
tivity and maintainability. They found that the largest impact was not code generation
or meta-model reuse but “the use of models for understanding a problem at an abstract level.”
The second greatest impact was thought to be “use of models for team communication.”

7.4 Case Study Design

In this section we describe the case study design.

7.4.1 Context

We examine a project in which a system was defined, designed and built for supporting
the mid-office processes of the mortgage business. The client was a large financial
institution that operates globally and the contractor is the Dutch subsidiary of an
international IT service provider. The department responsible for development of
the system has extensive experience with building tens of software systems for the
financial sector as well as experience with global software development.

Case Study Design 139

A function point analysis that was based on the requirements was executed in
the early stages of the project. It reported a total of 1,973 function points to be built.
During the execution of the project, various change requests have been made. A total
of 32 team members worked on the project of which only a few did not work on this
particular project full-time. This corresponds to 28 full-time equivalents (FTE). Only
four team members had experience with a previous project in which MDD techniques
were applied. Total project duration was 24 months. RUP was used as development
process. The RUP is an adaptable process framework that is architecture-centric and
risk-driven and can be used for iterative software development (Kruchten, 2003b).
The project was carried out distributedly. A team of six developers and six testers
worked in India. Modeling was done in the Netherlands by a team of four designers,
development was done at both locations and testing was done in India. The Dutch
project leader was the main point of contact to the client in the Netherlands.

7.4.2 Specificities of the MDD Approach

In the development process, a DSL with strict modeling guidelines is used. These
guidelines address the dynamic aspects of the system and are based on UML 2. The
guidelines are developed without code generation in mind. The rationale behind using
UML for this reference model was that UML is more widely known than other suitable
candidates such as the Business Process Modeling Notation (BPMN). Model consistency
is enforced in two ways. First, the developers are restricted by the constraints imposed
by the UML meta-model. Second, a model validator is used. This validator checks
syntax and conformance to the UML meta-model. When code is generated, the models
are validated first. However, complete validity of the models is not so much the goal as
a working result. Source code is generated by using a code generator. This generator is
realized through a combination of open source libraries. During the project, developers
work at extending and enhancing the code generator. A general overview of system
components is depicted in Figure 7.1. The system consists of two parts. Part one is
a complex web-based system for user interaction, this system contains a web service
client. Part two is a web service that enables existing systems to request information.
The system domain model is formally modeled in UML and completely generated into
a Java implementation. The model syntax consists of

• classes and properties,

• property types and their names and documentation,

• associations between classes and

• required fields and constraints on classes.

Inside these entities, no other behavior is modeled. The classes contain no operations.
Screens that are deemed suitable to be modeled such as “input screens” and “selection

140 Contrasting Model-Driven Development with Code-Centric Development

Figure 7.1: Overview of case system components

screens”, are described in UML and completely generated to source code. For more
complex, custom screens, the syntax of the DSL does not suffice. These screen are fully
or partly hand-coded. The web service client is completely generated from the UML
model. Some parts of the business logic layer can be fully generated from the UML
model. Other parts are fully hand-coded.

Initially the target implementation language was a high level, business-oriented
programming language that would have been relatively easy to maintain. Due to
limitations imposed by using this language, later in the project it was decided that
Java 2 Enterprise Edition was to be generated from the models. Both The Spring
Framework1 and Hibernate (Bauer and King, 2004) are used for target development
and the tools used are Eclipse2, JBoss3 and MagicDraw4. The final application is to
operate on the IBM WebSphere5 platform and will use a DB26 database. Approximately
90 percent of the code is generated, the remaining 10 percent is written “by hand”.

1http://www.springsource.org/
2http://www.eclipse.org/
3http://www.jboss.org/
4https://www.magicdraw.com/
5http://www-01.ibm.com/software/websphere/
6http://www-01.ibm.com/software/data/db2/

http://www.springsource.org/
http://www.eclipse.org/
http://www.jboss.org/
https://www.magicdraw.com/
http://www-01.ibm.com/software/websphere/
http://www-01.ibm.com/software/data/db2/

Results 141

7.4.3 Data collection

We collected quantitative data regarding process and models from various sources.
The models were collected from a Subversion repository. Effort and defect data was
collected from SourceForge Enterprise Edition. For this study, we use the notion of
“diagram groups.” Each screen in the application that was created consisted of a set
of diagrams. After collecting all diagrams from Subversion, metrics were extracted
using SDMetrics (Wüst, 2009). This process was automated using a set of Bash and
Perl scripts. Metric data is available on a per diagram basis whereas effort and defect
data was only available on a per-diagram group basis. Therefore, the resulting metric
files were aggregated per diagram group so that effort and defect data per model could
be combined. In this project each diagram group was contained in a separate file.

7.5 Results

UML diagrams were created using MagicDraw 14.57. The DSL specification required
diagrams to be grouped together. A total of 119 diagram groups contain a total of
386 diagrams. A bar chart of the UML diagram types (Figure 7.2) shows that activity
diagrams are most abundantly used, followed by class and use case diagrams. The
reason for the plenitude of activity diagrams is that the development of the models is
user interface centric. This means that the process flow of the process that the system
will support is captured in the activity diagrams as a set of screens. The process flow
of modeling is chosen so that during maintenance changes in the business process can
easily be translated into changes to the models. In total, 104 diagram groups contain
one or more activity diagrams, 32 diagrams groups together contain 150 class diagrams
and all use case diagrams are spread over just two diagram groups. The average model
consists of one or two activity diagrams and zero or one class diagrams. Because
activity and class diagrams are the most important (and most prevalent) diagram types,
we will focus on these during the remainder of the study. In the next sections, we will
address model size, model complexity, development effort from various perspectives,
defects and changes and defect discovery over time.

7.5.1 Model Size

Model size metrics have been proposed in many studies (e.g. Marchesi, 1998, Genero
et al., 2002, Kim and Boldyreff, 2002). Empirical findings regarding model size metrics
have been reported fairly scarcely. Most often, class diagram size metrics are reported
(e.g. Marchesi, 1998, Lange and Chaudron, 2005, Lange, 2006, Egyed, 2007, Costagliola
et al., 2005, Nugroho and Lange, 2007). To establish the size of a model, we summed
all the size elements of all diagrams that were used in a model. Definitions of both

7http://www.magicdraw.com/

http://www.magicdraw.com/

142 Contrasting Model-Driven Development with Code-Centric Development

Figure 7.2: Frequency of UML diagram type use

activity and class diagram size metrics are presented in Table 7.1. Code size, measured
in source lines of code, is an often-used metric to track progress in non-MDD projects.
The organization that builds this software, usually estimates and tracks the lines of
code as a means of tracking progress. In this case, model size metrics were used. A
visualization of size metrics over time is depicted in Figure 7.3(a). As MDD was not
formerly employed, the actual progress could not yet be benchmarked to other projects
within the same organization for these specific model metrics. The average curve of the
growth of metrics over time is plotted in Figure 7.3(b). As is the case with cumulative
SLOC visualizations, a fairly gradual sigmoid curve can be discerned. However, the
majority of model elements (approximately 72 percent) seems to have been created
around development week 20, at approximately a third of the development process.
In the same figure, a cumulative plot of revisions over time (as obtained from the
repository log) is plotted over the same time period. From this plot, it can be deduced
that the amount of revisions per week does not taper off after week 20. In fact, a slight
increase can be observed. This implies that most model elements were already in place
early in the development process and that model elements are mostly altered. This is
consistent with the idea that MDD enables early prototyping and that the majority of
development time can then be used for fine-tuning the implementation.

7.5.2 Model Complexity

Model complexity is defined by the sum of the complexity of the activity diagrams
and the coupling of the class diagrams as they appear together in a single diagram
group. Some complexity diagram metrics for class diagrams, such as number of methods,

Results 143

Table 7.1: Model Size Metrics

ACTIVITY DIAGRAMS1

Actions The number of actions of the activity. Includes actions in all activity
groups (partitions, interruptible regions, expansion regions, struc-
tured activities including conditional, loop, and sequence nodes),
and their subgroups and sub-subgroups.

ObjectNodes The number of object nodes of the activity. Counts data store, central
buffer, and activity parameter nodes in all activity groups and their
subgroups.

Pins The number of pins on nodes of the activity. Counts all input, output,
and value pins on all nodes and groups of the activity.

ControlNodes The number of control nodes of the activity. Control nodes are
initial, activity final, flow final, join, fork, decision, and merge nodes.
The metric also counts control nodes in all activity groups and their
subgroups.

Partitions The number of activity partitions in the activity.

Groups The number of activity groups or regions of the activity. Counts in-
terruptible and expansion regions, structured activities, conditional,
loop, and sequence nodes, at all levels of nesting.

CLASS DIAGRAMS1

Classes The number of classes on the diagram.

NumAttr The number of attributes in the class. Also known as the Number of
Variables per class (Lorenz and Kidd, 1994).

1 source: SDMetrics 2.2 User Manual (Wüst, 2011)

were not applicable to the class diagrams designed by this project due to modeling
conventions (no methods were used). Instead, we used coupling measures to denote
class diagram complexity. Descriptions of both activity and class diagram complexity
and coupling metrics are presented in Table 7.2. Diagram group complexity is defined
as the average complexity per diagram type:

complexitymodel =
complexityactivity diagram

∑diagramsactivty

+
couplingclass diagram

∑diagramsclass

(7.1)

144 Contrasting Model-Driven Development with Code-Centric Development

Table 7.2: Model Complexity Metrics

ACTIVITY DIAGRAMS (COMPLEXITY)1

ControlFlows The number of control flows of the activity.
ObjectFlows The number of object flows of the activity.
Guards The number of guards defined on object and control flows of the

activity.

CLASS DIAGRAMS (COUPLING)1

Dep_Out The number of elements on which this class depends.
Dep_In The number of elements that depend on this class.
NumAssEl_ssc The number of associated elements in the same namespace as

the class.
NumAssEl_sb The number of associated elements in the same scope branch as

the class.
NumAssEl_nsb The number of associated elements not in the same scope branch

as the class.
EC_Attr The number of times the class is externally used as attribute type.

This is a version of OAEC+AAEC (Briand et al., 1999).
IC_Attr The number of attributes in the class having another class or

interface as their type. This is a version of OAIC+AAIC (Briand
et al., 1999) and also known as Data Abstraction Coupling) (Li
and Henry, 1993).

EC_Par The number of times the class is externally used as parameter
type. This is a version of OMEC+AMEC (Briand et al., 1999).

1 source: SDMetrics 2.2 User Manual (Wüst, 2011)

As expected, there exists a positive correlation between diagram group size and average
diagram size (Table 7.5.3). This implies that diagram groups that contain more diagrams
also contain bigger diagrams. In addition, as diagram group size increases, the average
complexity per diagram also increases. This means that certain diagram groups receive
more attention than others and might imply that some diagram groups are more
important than other models. Not surprisingly, the greater the average diagram size
in a diagram group is, the greater the complexity of the diagrams becomes. This
underlines our finding that larger diagram groups contain more complex diagrams.

7.5.3 Development Effort

In this section we elaborate on the effort data recorded for the case. The following
sections contain an analysis of model development effort, development phase effort

Results 145

and model change effort.

Model Effort

The elaboration phase was executed in three large iterations. The construction phase is
executed in many iterations that last one week each. The amount of effort spent per
project phase is depicted in Figure 7.4(a). In the construction phase, about 40 percent
of effort is spent on development of the models. The remaining effort is spent on
the generator and coding. Of the 10,000 hours spent in the construction phase, 500
hours were spent on changes. The amount of effort spent on the models, and the
effort types we could distinguish from the data are shown in Figure 7.4(b). As can
be seen, a substantial amount of time is spent on adding functionality to the code
generator. This effort is disregarded for the analysis of the effort spent on each diagram
group. Interesting is that about 9 percent of the time is spent on issue resolution, and
2 percent is spent on changes. This is a relatively low amount of effort. Of all effort,
59 percent could be traced back to a specific diagram. The amount of effort spent on
development or modeling does not correlate with model size. Only the effort spent on
testing correlates with the amount of defects found. Analyzing the relation between
model complexity and effort, we found that, the longer a diagram group is worked on,
the more complex the activity diagrams are. Contrastingly, development time does not
seem to be related to class diagram complexity.

Phase Effort

We compared the effort spent per phase and the length of the phase to the averages
of 17 RUP projects that were executed by the same organization (Figure 7.5). Some
observations can be made regarding this visualization. First, the inception phase of
MDD is quite similar to the other projects. This is most likely because the inception
phase of an MDD project is not necessarily different from any other type of project.
Second, during the elaboration phase, significantly more effort is spent. This is likely
to be caused by a team size increase. Because MDD requires much modeling, more
developers are needed at an earlier stage in the project. The team size increase that
traditionally takes place at the start of the construction in this MDD project took place
in the elaboration phase. Third, the elaboration phase lasted significantly longer. In the
interviews, we found three explanations for this phenomenon:

1. the initial design of many of the models is seen as a design activity rather than
an implementation activity

2. the switch from the higher level target language to Java, which caused a delay

3. general learning effects of introducing MDD on a large scale

146 Contrasting Model-Driven Development with Code-Centric Development

0 10 20 30 40 50 60

development week
0

400

800

1,200

1,600

m
o
d
e
l
si

ze

ControlFlows
ObjectFlows
Pins
Actions
Guards
ControlNodes
ObjectNodes
Groups

(a) Cumulative model size metrics over time

10 20 30 40 50 60

development week
0

100

200

300

400

500

600

700

800

a
v
e
ra

g
e
 m

o
d
e
l
si

ze

0

3,000

6,000

9,000

12,000

15,000

18,000

21,000

re
v
is

io
n
 c

o
u
n
t

Average for Model Metrics
Revision Count

(b) Cumulative average model size metrics over time versus revisions over time

Figure 7.3: Model metrics and revision count over time

Results 147

(a) Hours per development phase

(b) Effort related to model types

Figure 7.4: Project effort distribution on phase and model level

148 Contrasting Model-Driven Development with Code-Centric Development

0

10

20

30

40

50

60

0 20 40 60 80 100

ef
fo

rt
 (

%
)

time (%)

constr

construction

elaboration

elaboration

tran

incep.

transition

Figure 7.5: Effort and duration per phase (normalized at 100 percent). The black line represents
the case. The dotted gray line in the background represents the average for a set of
17 projects similar in size and complexity

R
esults

149

Table 7.3: Bi-Variate Correlation Matrix for Common Process Metrics in MDD Context

SPEARMAN’S RANK CORRELATION COEFFICIENT (ρ)

defect
count

defect
priority

model
size

diagram
size

model
com-
plexity

class di-
agram
size

activity
dia-
gram
size

defect
closing
time

activity
dia-
gram
com-
plexity

number
of dia-
grams

class
cou-
pling

defect count ρ 1 0.176 0.258 0.188 0.103 0.189 0.227 0.294(*) 0.348(**) 0.226 0.093

p . 0.191 0.052 0.166 0.452 0.518 0.095 0.026 0.009 0.090 0.753

N 57 57 57 56 56 14 55 57 55 57 14

defect priority ρ 0.176 1 0.118 −0.019 0.012 −0.336 −0.020 0.289(*) −0.032 0.169 −0.440

p 0.191 . 0.382 0.891 0.928 0.240 0.885 0.029 0.817 0.209 0.115

N 57 57 57 56 56 14 55 57 55 57 14

model size ρ 0.258 0.118 1 0.364(**) 0.398(**) 0.428(*) 0.918(**) −0.075 0.850(**) 0.738(**) 0.613(**)
p 0.052 0.382 . 0 0 0.023 0 0.577 0 0 0.001

N 57 57 119 103 103 28 103 57 103 119 28

diagram size ρ 0.188 −0.019 0.364(**) 1 0.947(**) −0.175 0.518(**) −0.021 0.599(**) −0.451(**) 0.181
p 0.166 0.891 0 . 0 0.374 0 0.876 0 0 0.356

N 56 56 103 103 103 28 102 56 102 103 28

model complexity ρ 0.103 0.012 0.398(**) 0.947(**) 1 −0.190 0.553(**) −0.064 0.545(**) −0.456(**) 0.142
p 0.452 0.928 0 0 . 0.334 0 0.639 0 0 0.470

N 56 56 103 103 103 28 102 56 102 103 28

class diagram size ρ 0.189 −0.336 0.428(*) −0.175 −0.190 1 0.082 0.164 0.158 0.670(**) 0.641(**)
p 0.518 0.240 0.023 0.374 0.334 . 0.680 0.575 0.421 0 0

N 14 14 28 28 28 28 28 14 28 28 28

* Correlation is significant at α = 0.05 / ** Correlation is significant at α = 0.01

(continued on next page. . .)

150
C

ontrasting
M

odel-D
riven

D
evelopm

entw
ith

C
ode-C

entric
D

evelopm
ent

SPEARMAN’S RANK CORRELATION COEFFICIENT (ρ) (continued)

defect
count

defect
priority

model
size

diagram
size

model
com-
plexity

class di-
agram
size

activity
dia-
gram
size

defect
closing
time

activity
dia-
gram
com-
plexity

number
of dia-
grams

class
cou-
pling

activity diagram size ρ 0.227 −0.020 0.918(**) 0.518(**) 0.553(**) 0.082 1 −0.117 0.940(**) 0.391(**) 0.332

p 0.095 0.885 0 0 0 0.680 . 0.395 0 0 0.085

N 55 55 103 102 102 28 103 55 103 103 28

defect closing time ρ 0.294(*) 0.289(*) −0.075 −0.021 −0.064 0.164 −0.117 1 −0.009 0.010 −0.065

p 0.026 0.029 0.577 0.876 0.639 0.575 0.395 . 0.945 0.939 0.826

N 57 57 57 56 56 14 55 57 55 57 14

act. diag. complex. ρ 0.348(**) −0.032 0.850(**) 0.599(**) 0.545(**) 0.158 0.940(**) −0.009 1 0.347(**) 0.273

p 0.009 0.817 0 0 0 0.421 0 0.945 . 0 0.159

N 55 55 103 102 102 28 103 55 103 103 28

number of diag.s ρ 0.226 0.169 0.738(**) -
0.451(**)

-
0.456(**)

0.670(**) 0.391(**) 0.010 0.347(**) 1 0.405(*)

p 0.090 0.209 0 0 0 0 0 0.939 0 . 0.032

N 57 57 119 103 103 28 103 57 103 119 28

class coupling ρ 0.093 −0.440 0.613(**) 0.181 0.142 0.641(**) 0.332 −0.065 0.273 0.405(*) 1

p 0.753 0.115 0.001 0.356 0.470 0 0.085 0.826 0.159 0.032 .
N 14 14 28 28 28 28 28 14 28 28 28

* Correlation is significant at α = 0.05 / ** Correlation is significant at α = 0.01

R
esults

151

Table 7.4: Bi-Variate Correlation Matrix for Defect Priority and Changes

SPEARMAN’S RANK CORRELATION COEFFICIENT (ρ)

devel.
time

changes number
of dia-
grams

model
size

diagram
size

model
com-
plex-
ity

defect
clos-
ing
time

defect
count

defect
prior-
ity

activity
dia-
gram
size

activity
dia-
gram
com-
plex-
ity

class
dia-
gram
size

class
cou-
pling

devel. ρ 1 0.769(**) 0.378(**) 0.473(**) 0.215(*) 0.142 0.189 0.653(**) 0.162 0.366(**) 0.440(**) 0.101 0.308

time p . 0 0 0 0.034 0.164 0.158 0 0.229 0 0 0.648 0.152

N 107 107 107 107 98 98 57 57 57 97 97 23 23

changes ρ 0.769(**) 1 0.614(**) 0.634(**) 0.078 0.013 0.138 0.493(**) 0.132 0.451(**) 0.489(**) 0.121 0.544(**)
p 0 . 0 0 0.445 0.899 0.306 0 0.328 0 0 0.581 0.007

N 107 107 107 107 98 98 57 57 57 97 97 23 23

* Correlation is significant at α = 0.05 / ** Correlation is significant at α = 0.01

152 Contrasting Model-Driven Development with Code-Centric Development

(a) Revision length (days) (b) Changes per model

Figure 7.6: Software configuration and change management system usage

Change Effort

The amount of changes per diagram were measured by the amount of version updates
found in Subversion that were directly related to that diagram. On average, a model
had 12.6 versions associated with it. A total of 1,308 change commits to the Subversion
repository were associated with a model out of a grand total of 9,035 commits (14.5
percent). The reason for the substantial difference between model-related and non-
model-related commits is that the repository contains all documentation regarding the
project including status reports and other kinds of management specific files. The files
are altered, and subsequently checked-in, frequently. Also, the amount of development
time per model was measured as the difference between the dates of the first and
the last model related change, measured in days. A summary of the measurements
for revision length is depicted in Figure 7.6(a). The average amount of calendar days
during which a model was revised was 111. The total amount of days during which all
models were altered is 230 days.

7.5.4 Defects and Changes

Defects were stored in a centralized defect tracking system. All team members were
able to add defects to the database. Per defect, a unique id, title and description were
recorded as well as a priority. Furthermore, defect submission time, closing time and
the last modified time were recorded. Lastly, defect status (Assigned, Closed, . . .)
and defect type were recorded. Six different defect types were used, namely: defects
related to deployment, development, generation, modeling, requirements and testing.

Results 153

A total of 631 defects was registered. Of these defects, 81 percent was directly related
to a model. A total of 80 models (or 68.4 percent) had one or more defects associated
with them. In this subset, on average, 6.4 defects were found per model. These are
pre-release defects. At defect submission time, a defect priority is assigned to the defect
report on a scale of 1 (high priority) to 5 (low priority). The mean priority of the defects
related to a model is 1.9 whereas the mean priority for a defect that is not directly
related to a model is 2.35. This indicates that it is generally seen as more important to
solve defects related to a model than to resolve defects that are not related to a model –
underlining model centrality. The defects that are not related to a model mainly have
to do with the code generator.

We find that the defect count per model positively correlates with defect closing
time (Table 7.4). This implies that models with a relatively larger amount of defects,
have a higher average defect repair time. This is an intuitive finding as an increase in
the number of defects in a single model or diagram can increase the complexity of the
repair process and thereby delay a fix.

The finding that models with a relatively larger amount of defects, have a higher
average defect repair time is in line with maintenance for source code. A counter-
intuitive finding is that while both development time and the amount of changes
correlate positively with model size but that model size did not correlate with defect
count. This leads us to conclude that larger models are changed more often and
worked on longer but do not necessarily contain more defects. However, models
that are changed often do contain more defects. The reason for this relation could be
that fixing a defect induces extra changes. However, the reverse could also be true,
namely that models changed more often contain more defects as a result of an increased
amount of changes.

The earlier finding that certain diagram groups receive more attention than others
and might imply that some diagram groups are more important than other models
is not confirmed by the average defect priority of the diagram because it does not
correlate with model size. Bigger models do not contain defects that, on average, are
seen as more pressing to resolve. Also, model size does not correlate with defect closing
time. We expected a negative correlation between these two variables because larger
models are more complex and this could adversely impact the time needed to repair a
defect.

Furthermore, bigger models do not contain more defects. While appearing counter-
intuitive, this is in line with the Theory of Relative Defect Proneness (Koru et al., 2009)
(recently confirmed for closed-source software; Koru et al., 2010).

7.5.5 Defect Discovery

We plotted the cumulative defects found over normalized time for the case (labeled
“Project Alpha”) and 10 projects that were executed by the same IT organization (Fig-
ure 7.7) to enable visual comparison. The lines were smoothed using a Bezier algorithm

154 Contrasting Model-Driven Development with Code-Centric Development

for readability purposes. In the image, we see a clear difference between the case

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

de
fe

ct
s

fo
un

d
 (

%
 o

f t
ot

al
)

project phase progression
 (% of total)

project B
project C
project D
project E
project F
project G
project H
project I
project J
project K

fitted sigmoid curve
Project Alpha

Figure 7.7: Cumulative defect discovery over time (case is labeled “Project Alpha”)

(Project Alpha in the graph) and the other projects. For example, when 40 percent of
the project time has passed only around 10 percent of the defects are reported whereas,
on average for conventional projects, 35 percent of defects were found. We found three
reasons for this relative slow defect discovery rate. First, ineffectivity in finding defects
due to a learning curve that interviewees associate with introducing MDD. Second,
because MDD was applied, much effort was spent in creating the models and the
generator at first, only later, when the hand coded part of the system was developed,
were real defects reported. Initial defects mostly involved the code generator. Third,
the standard quality assurance process was not yet tailored for MDD. Finding defects
in later stages in a project is commonly regarded as undesirable.

However, the amount of defects found per function point is equal to or less than8

0.32. The amount of function points has increased since the initial function point
analysis that was executed before the project started development, due to change
requests. The average of defects found per function point for 22 similar sized, non-
MDD development projects that were executed at the same organization is 0.52. This
implies that for projects on average approximately 396 less defects are reported for
MDD. This is a drastic decrease in the amount of defects found. A possible explanation

8We use the initial functional point count for this calculation. The amount of function points that is
implemented is expected to be higher than the initial functional point count.

Conclusions and Future Work 155

is the (much) larger proportion of the development effort that is spent on model
improvement compared to model build-up.

7.6 Conclusions and Future Work

The main objective for this study was to report on the specific characteristics of a large
scale, industrial MDD project and to asses what the impact was of using MDD tools
and techniques compared to non-MDD development.

Adopting MDD tools and techniques fundamentally impacts the software devel-
opment process in general and the analysis and design phases in particular. Because
almost all code was directly generated from diagrams, models were first-class citizens
(France and Rumpe, 2007, Balasubramanian et al., 2006) in the software development
process followed in this case.

Three striking differences in the development process were found. First, 59 percent
of all effort was spent on developing the model. That is significantly more than the
time spent on code development in classical software development. Second, most
model elements were already implemented at one third of the development process.
The remaining development time was spent on altering the models. Third, 40 percent
fewer defects were found when compared to projects of similar size.

Diagrams and code are fundamentally different and therefore not easily compared
as we found absent, for example, a positive relation between model size and complexity
on the one hand and defects on the other — relations that have often been observed in
source code. Also, larger diagrams were changed more often and worked on longer
but did not necessarily contain more defects.

