
Architecture design in global and model-centric software development
Heijstek, W.

Citation
Heijstek, W. (2012, December 5). Architecture design in global and model-centric software
development. IPA Dissertation Series. Retrieved from https://hdl.handle.net/1887/20225

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/20225

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/20225

Cover Page

The handle http://hdl.handle.net/1887/20225 holds various files of this Leiden University
dissertation.

Author: Heijstek, Werner
Title: Architecture design in global and model-centric software development
Date: 2012-12-05

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20225
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter6
Experimental Analysis of Textual
and Graphical Representations for
Software Architecture Design

In this chapter the results of a study on the use of software architecture documenta-
tion is described. First, the effectiveness of text-dominant versus diagram-dominant
architecture descriptions are explored by means of an experiment. Second, devel-
oper characteristics that benefit architecture representation understanding are
investigated.

This chapter is based on the following publication:

Werner Heijstek, Thomas Kühne and Michel R.V. Chaudron Experimental
Analysis of Textual and Graphical Representations for Software Architecture
Design. In Proceedings of the 5th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2011) pages 167–176, Banff, Alberta,
Canada

6.1 Introduction

Software architecture documentation facilitates stakeholder communication and is
instrumental in ensuring that essential design principles are adhered to by the source
code. Software architecture documentation “captures and preserves designer intentions
about system structure, thereby providing a defense against design decay as a system ages, and

104 Experimental Analysis of Representation of Software Architecture Design

it is the key to achieving intellectual control over the enormous complexity of a sophisticated
system” (Hofmeister, 2000). However, software architecture and design knowledge
management is challenging in the context of GSD (Ali et al., 2010). In such a sce-
nario, complete and unambiguous architecture design documentation constitutes an
indispensable complement to informal communication (Curtis et al., 1988, Lee et al.,
2006).

However also in co-located development, using an iterative development process,
reliable and effective documentation is highly desirable. While co-located teams better
support spontaneous and informal communication, there is a danger that code is not
implemented according to the principles as laid out in documentation artifacts. If the
design documentation is not treated as the ultimate reference and does not succeed
in allowing answers to common questions to be derived, there is a danger that the
resulting system will be based on inconsistent interpretations and assumptions: “The
best architecture is worthless if the code doesn’t follow it” (Clements and Shaw, 2009). In their
landmark study on the state of the practice in software architecture research, Shaw and
Clements (2006) formulate some promising areas in which significant opportunities
exist for new contributions in software architecture research. Among others, they
discuss the need to find the right language to represent architectures and finding
ways to assure conformance between architecture and code. Documentation of the
architecture is also essential for maintenance activities which typically involve different
engineers from the ones who originally developed the system.

In this chapter we report on an experiment we conducted on media type effec-
tiveness for documenting software architecture designs. The outline of this chapter
is as follows. Section 7.3 contains an overview of related work. The study objective
is outlined in Section 6.3. In Section 6.4, the experimental design is explained and
Section 6.5 contains an overview and discussion of the results. The threats to validity
are discussed in Section 6.6. Finally, recommendations are given in Section 6.7 and
Section 6.8 describes our conclusions and future work.

6.2 Related Work

The related work for this study spans different sub-fields of software engineering.
In the following paragraphs we will discuss related work on software architecture
representation in practice, quality of documentation, the use of UML for architectural
representations, the use of design documentation, multimedia learning and related
experimental analysis of software design representations.

6.2.1 Software Architecture Representation in Practice

In their survey of 11 industrial systems Soni et al. (1995) found that a combination
of informal and semi-formal techniques was used to describe software architectures.

Related Work 105

They found that informal diagrams, tables and natural language text with naming
conventions are used to describe many of the software structures not described in
functional decomposition diagrams. They note that, “even when a formal notation
is used, it is often supplemented with informal and incomplete diagrams, in order
to enhance the understanding of the formal model.” Soni et al. did not find this
surprising as rigorous architecture description techniques were not yet available at the
time. However, it is common that the software architecture description of systems is
informal and based on “boxes and lines” types of notation (Abowd et al., 1995, Soni
et al., 1995). A recent study of 57 industrial software architecture documents (Heijstek
and Chaudron, 2011) confirms that software architecture is still described using a
variety of media without an apparent systematic approach to media usage. The
limitations of this style of representation led to the taxonomic separation between
software design and software architecture (Eden and Kazman, 2003). It also led to
the development of several methods and frameworks for defining and representing
architectures (e.g. Bachmann et al., 2000, IEEE, 2000, Bachmann et al., 2000, Clements
et al., 2002, Jansen and Bosch, 2005, Taylor et al., 2009). It is, however, unknown
which of these styles are more effective to allow developers to correctly understand
the intended architecture. As a result, little is known about how to produce more
effective documentation. Bengtsson and Bosch (1999) describe an industrial case in
which they were involved in designing the architecture. They note that they, “found
it hard to capture the essence of the architecture.” They also note that only because of the
co-located nature of the project, they were able to “overcome the problems with the written
documentation.”

Agile methods (Highsmith and Fowler, 2001) recommend to make “lean” doc-
umentation, suggesting that documentation should only include information that
is used. But even such code-centric, light-weight methodologies employ a form of
architectural documentation (Smith, 2001). Agile methods have been introduced in
more rigorous methodologies such as RUP (Hirsch, 2002, Pollice, 2001), partly in an
attempt to incorporate increased formality regarding documentation. Developers do
seem to prefer less documentation. This is supported by the findings of Forward and
Lethbridge (2002) and Lethbridge et al. (2003) who studied the use and usefulness of
documentation. The authors find a preference for simple and powerful documentation
and conclude that documentation is an important tool for communication, even if it is
not up to date. A recent survey by Stettina and Heijstek (2011b) of 79 agile software
development professionals in 8 teams in 13 different countries, found that the majority
of agile developers find documentation important or even very important, but also
that too little documentation is available in their projects.

6.2.2 Use of UML for Architectural Representations

Many current architecture description methods recommend the use of UML diagrams
for representing a software architecture. Hofmeister et al. (1999) present results of

106 Experimental Analysis of Representation of Software Architecture Design

their action research study into using UML for representation of a system’s architec-
ture. They found that UML worked well for describing important aspects typically
described in software architecture documentation (such as the static structure of the
architecture) and not so well for constructs (such as protocols and a general sequence
of activities). A more recent study of the suitability of using UML to model software
architectures (Medvidovic et al., 2002) reports that, “UML lacks direct support for mod-
eling and exploiting architectural styles, explicit software connectors, and local and global
architectural constraints.”

There is certainly no standard way of creating architectural diagrams with the
UML. UML allows its users a large degree of freedom (Nugroho and Chaudron,
2008). Systems are generally modeled incompletely and varying levels of detail are
applied (Lange, 2006). UML standards are often applied loosely (Lange et al., 2003). All
these aspects have been found to negatively contribute to the quality of software (Nu-
groho and Chaudron, 2009).

Results from an experiment by Tilley and Huang (2003) suggest that the UML’s
efficacy in support of program understanding is limited by factors such as ill-defined
syntax and semantics, spatial layout, and domain knowledge. This chapter contributes
to the understanding whether UML diagrams fulfill the expectation to represent precise
and effective architecture documentation.

6.2.3 Use of Design Documentation

An observational study by Dekel and Herbsleb (2007) found that software teams im-
provised representations, incurring orientation difficulties and leading to an increased
reliance on memory. Documented designs were therefore not useful without additional
contextual information. We have to assume that this might be true to some extent
for documented design decisions in practice. Design decisions are often the result of
one-on-one meetings (LaToza et al., 2006). A study involving interviews and a survey
by Cherubini et al. (2007) found that many modeled design decisions are lost. Studies
that find that developers avoid using design documents when possible (Herbsleb and
Moitra, 2001, LaToza et al., 2006, Kraut and Streeter, 1995, Müller and Tichy, 2001)
may be construed as an indication that we know little about how to produce the best
possible software architecture design documentation. In their study of how software
developers use diagrams in software documentation Hungerford et al. (2004) found
that search patterns that rapidly switched between two different diagrammatic repre-
sentations are most effective. They note that, “these findings support the cognitive theory
thesis that how an individual processes information impacts processing success.” Empirical
studies show that developers mostly understand only “their” specific components of
the application (Curtis et al., 1988). Holt (2002) even advocates a “law of maximal
ignorance” which he summarizes as follows: “Don’t learn more [about an architecture]
than you need to get the job done.” Due to time pressure, Holt notes, developers barely
have enough time to get acquainted with a system. Scanniello et al. (2010) experi-

Related Work 107

mentally evaluated the use of design documentation that outlines design patterns
on maintenance activities performed on source code. They found that the effort and
efficiency significantly improved when design pattern were properly documented
and provided to the subjects. In their mixed-method study of software engineers in
practice, Lethbridge et al. (2003) found that software documentation is frequently out
of date, too voluminous, poorly written and unfathomable and that documentation
processes (“much mandated documentation”) can be inefficient and ineffective. They
find that, “[a] considerable fraction of documentation is untrustworthy” but also that

“[A]rchitecture and other abstract documentation information is often valid or at least provides
historical guidance that can be useful for maintainers.” More than 40 percent of respondents
note that they find that software architecture documentation is rarely, if at all, updated
after changes have been made to a software system. Most respondents agreed with the
statement: “Documentation is always outdated relative to the current state of a soft-
ware system.” Lethbridge et al. conclude that we need to better understand the various
roles of software documentation and more closely match our prescribed processes to fit
those roles. We specifically focus on the role of architecture documentation to support
implementation work. Observational studies show that developers use documentation
as little as 3 percent of their time (Lethbridge et al., 2003). More recently, Stettina and
Heijstek (2011b) studied the use of documentation in Agile teams and found that the
majority of developers found documentation important to very important and that
they also found that too little documentation was available. In addition, they found it
difficult to locate this (internal) documentation.

6.2.4 Experimental Analysis of Software Design Representations

Various experiments have been conducted to investigate the efficacy of software design
representations. These experiments concentrated on measurement of the strength of a
particular representation type to convey certain design properties under certain circum-
stances. For example, Lange and Chaudron (2006) used an experiment to investigate
how developers deal with inconsistencies in UML diagrams. They found that defects
often remain undetected and cause misinterpretations. Gemino and Wand (2003) ad-
vocate the use of evaluating modeling techniques based on models of learning based
on Mayer’s cognitive theory of multimedia learning (Mayer, 2009). In a later study,
Gemino and Wand (2005) compared two different visualizations of Entity-Relation
Diagram (ERD) types (Chen, 1976). They found that, “clarity within [a] model may
be more important than the apparent complexity of [that] model when a model is used for
developing domain understanding.” In this study, we compare textual and diagrammatic
models as this combination is found to be most commonly used in industrial prac-
tice. Another relevant related experiment is the comparison of comprehensibility of
UML class diagrams versus ERD in the context of comprehension, maintenance and
verification by De Lucia et al. (2010). They found that using UML class diagrams,
subjects scored higher on comprehension. In this experiment, we use UML diagrams.

108 Experimental Analysis of Representation of Software Architecture Design

Knodel et al. (2008) conducted an experiment to study the role of graphical elements in
architecture representations. They found that specific visualizations, such as neighbor
highlighting, and an information overlay panel had a significant impact on devel-
oper comprehension. In our experiment, we did not use an interactive architecture
visualization tool and could therefore not incorporate their findings to increase the
efficacy of our experimental material. Formal notations (such as the Object Constraint
Language (OCL, Warmer and Kleppe, 1998)) can also be used to make software archi-
tecture documentation more unequivocal. In fact, Briand et al. (2005) found evidence
that if developers are well trained OCL might be a more effective annotation for UML
models than text. OCL is sparsely used in industrial practice.

6.3 Objectives

In this chapter, we address RQ2 (Section 1.3). This question aims to find representation
methods for software architecture design that are understood by developers in the
context of GSD. Tilley (2009) concludes an overview of “findings and lessons learned
related to documenting software systems with views from numerous projects spanning
15 years of research and practice” by noting: “The question of when graphical documenta-
tion is more effective than other forms of documentation (e.g. textual), and for which types of
users, remains open.” We describe our main objective according to the goal definition
template provided in the GQM paradigm (Basili et al., 1994):

We ANALYZE the effectiveness of diagrams and text for representing soft-
ware architecture designs FOR THE PURPOSE OF improving the quality of
architecture documentation FROM THE PERSPECTIVE OF communication
between software architects and developers IN THE CONTEXT OF project-
based custom software development.

We therefore pose the following research questions:

1. Are diagrams using a visual notation better suited to communicate software architecture
design than textual representations?

2. How do software developers comprehend software architecture representations?

3. How do developers deal with missing and conflicting information in software architecture
representations?

4. To what extent do developers make assumptions or fill in gaps in software architecture
representations?

Diagrams are widely used during designing and it appears plausible that their visual
representation is an effective medium to communicate software design. Diagrams con-
tain the essential information in an easy to overview, easy to process, two-dimensional

Experimental Design 109

arrangement. Albers (2004) asserts that diagrams should allow developers to find
answers quickly because diagrams contain less noise. In particular architectural prin-
ciples pertaining to the topology of an architecture should be obvious in a diagram
whereas they will have to be inferred from text. Moreover, diagrams should tran-
scendent socio-cultural and language idioms because they are largely independent
from natural language. For all the aforementioned reasons it can be expected that
developers may have a preference for diagrammatic as opposed to textual documents.
Yet, to the best of our knowledge no empirical study has ever attempted to confirm or
refute these assumptions. In this study, we focus on natural language text because it is
most commonly used in industrial practice. The experiment was designed to test the
following hypotheses:

H11 Diagrams are better than text at conveying software design to software developers.

H21 Diagrams are better than text at conveying topology-related design information to soft-
ware developers.

6.4 Experimental Design

Potential methods for testing our hypotheses include user surveys and controlled
experiments. We dismissed the first because it generally only applies when more is
known with regard to the variables that need to be controlled. Moreover, there is an
element of uncertainty as to whether users correctly evaluate which media type is
more effective (e.g. due to subjectivity). An “in the field” study, observing software
architects while they are performing actual work might yield reliable data. However, it
is difficult to get access to companies for such an in-depth analysis.

Hence, we designed an experiment in which we measure media effectiveness by
varying the media dominance during a series of design document presentations. We
define media effectiveness as the extent to which a medium can convey the modeled
design information it contains in such a way that a developer understands it correctly.
Therefore, we measured media effectiveness on the basis of how well participants were
able to extract the intended design information from two documents that described
one architecture design. One document contained text and the other diagrams. The
variables under study are summarized in Table 6.1.

During the experiment, we used three methods to collect data:

1. We used two questionnaires to obtain participant-specific information.

2. We filmed participants during a set of tasks to understand when and from which
medium they obtained answers to our questions.

110 Experimental Analysis of Representation of Software Architecture Design
Table

6.1:Experim
entV

ariables

Q
uestion

C
haracteristics

variable
type

values
source

1.
Q

U
E

ST
IO

N
N

A
T

U
R

E
nom

inal(binary)
∈

{topological,non-topological}
experim

entaldesign
2.

M
E

D
IA

D
O

M
IN

A
N

C
E

nom
inal(binary)

∈
{diagram

,text}
experim

entaldesign
3.

A
N

SW
E

R
L

O
C

A
T

IO
N

nom
inal(quaternary)

∈
{diagram

,text,both,neither}
experim

entaldesign

D
eveloper

C
haracteristics

4.
L

IN
G

U
IST

IC
D

ISTA
N

C
E

ratio
(continuous)

1

language
score

(see
Table

6.6)
prelim

inary
questionnaire

5.
E

X
P

E
R

IE
N

C
E

ordinal(quaternary)
∈{
1
,2
,3
,4}

(see
Par.6.5.7)

prelim
inary

questionnaire
6.

M
O

D
E

L
IN

G
SK

IL
L

interval(discrete)
∈{
1
,...,7}

prelim
inary

questionnaire

D
eveloper

Perform
ance

7.
M

E
D

IA
P

R
E

F
E

R
E

N
C

E
nom

inal(binary)
1n

n∑i=
1

q
i _percentage_diagram

analysis
ofvideo

(q
for

question)

8.
M

E
D

IA
SW

IT
C

H
E

S
ratio

(continuous)
1n

n∑i=
1

q
i _sw

itches
analysis

ofvideo

9.
T

IM
E

P
E

R
Q

U
E

ST
IO

N
ratio

(continuous)
1n

n∑i=
1

q
i _total_tim

e
analysis

ofvideo

10.
U

SE
D

O
N

E
M

E
D

IU
M

ratio
(discrete)

n∑i=
1

q
i _only_used_one_m

edium
analysis

ofvideo

(true
if
q

i _perc_diagram
=
0∨
1
0
0)

11.
A

N
SW

E
R

S
C

O
R

R
E

C
T

ratio
(discrete)

∈
{0,...,1

3}
analysis

ofvideo
12.

F
E

L
L

F
O

R
FA

L
SE

F
R

IE
N

D
S

ratio
(discrete)

∈
{0
,1
,2}

analysis
ofvideo

D
eveloper

O
pinion

13.
P

E
R

C
E

IV
E

D
interval(discrete)

∈
{−
6,...,6}

post-experim
ental

E
FF

E
C

T
IV

E
N

E
SS

p
e
rc_eff_

d
ia
g
ra
m
−
p
e
rc_eff_

te
x
t

questionnaire
O

F
M

E
D

IA
(both

interval∈
{1,...,7})

Experimental Design 111

3. We requested the participants to think out loud while answering questions about
the system.

Filming the participants had several benefits. First, we obtained a wealth of infor-
mation regarding participant behavior during the experiment. We could, for instance,
determine which media type was consulted first, last, with what frequency and how
often participants switched between media types. The recordings are likely to prove
useful in the future for extracting new data from the data set according to different
research questions or the measurement of other, newly identified variables.

We documented our experiment design with an experiment protocol in which the
experiment environment, process and measurement methods are outlined in detail.
This documentation enabled consistency for running the experiment at different loca-
tions and will likewise facilitate future replication. For the diagrammatic representation
of architectures we chose to use UML, which is the de facto standard for representing
software designs.

6.4.1 Experiment Planning

The study was executed between February and August 2010. After an initial literature
study, a general study design was created. We then initiated the human ethics approval
process and started with the design of materials, questions and the experiment protocol.
We ran several test sessions and subsequently refined the protocol, material and
questions. The first 15 instances of the experiment were conducted in Wellington.
While coding the first videos, we organized the second run in Leiden. Lastly, we
focused mainly on the professional developers in the Dutch organizations. After 47
participant sessions (approx. 1.5 hour per session, including preparation), two weeks
were spent on video coding and data entry (approximately three hours per participant).

6.4.2 Data Collection Process

We applied quota sampling (Wohlin et al., 2000) to obtain at least one professional
developer for every three students who participated in the experiment. For both groups
we applied convenience sampling. In Wellington, students participated voluntarily and
went into a draw for a prize of NZ$50. In Leiden students participated both voluntarily
and through a mandatory part of a course. Subjects from industrial organizations in
Wellington participated voluntarily. All students but not all professionals had used
UML during their studies. All participants had previous experience with UML. The
study (which we referred to as “design study” towards the students) was mentioned
during various software engineering lectures in Wellington. In Leiden, M.Sc. students
who were enrolled in a research methodology course were required to participate.
Student performance on the experiment did not influence their grade. In Leiden,
absence from the experiment would be reflected in the course grade, though. Each

112 Experimental Analysis of Representation of Software Architecture Design

(a) Participant Station

camera

(b) Recording Environment

Figure 6.1: Experiment environment

participant was surveyed in the same way: the participant was welcomed and seated
behind a table on which two blank pieces of paper were taped at 35 cm apart (see
Figure 6.1(a)). A camera was placed so that it was able to accurately record movements
of the participant’s head. However, the environment was set up in a way so that
the camera non-intrusively appeared as part of general audio and video equipment.
This was done in order to prevent participants from getting overly nervous or self-
conscious. The experimenter sat behind the participant so that the participant could
concentrate on the task. This set-up also discouraged the participant from interacting
with the experimenter. The set-up of the experimental environment was described
in detail in the experiment protocol to minimize potential differences between the
various locations at which the experiment took place. Generally, various participants
were planned after one another. After a participant entered the room, he or she1

was asked to sign a consent form and to fill out a preliminary questionnaire. This
questionnaire consisted of 10 questions covering academic and industrial software
modeling experience, a self-assessment of modeling skills, recent software architecture
experience and demographics such as age, gender, (highest attained) level of education
and native language. When designing the questionnaires, we followed standard
guidelines (such as those described in Oppenheim, 1966). Next, it was explained that
the objective of the study was to understand the use of software architecture design
documentation and that a series of questions regarding such documentation would
be asked. The participant was told that he could use the presented information in
any way he deemed fit and that the experimenter did not know the correct answer
to the question. In addition, the participant was requested to verbalize his thought
process while using the architecture documentation. The first architecture design

1Most participants were male, we will continue referring to participants as males.

Experimental Design 113

document presented was meant to serve as an example question only. The main
purpose of this example question was to put the participant at ease and to acquaint
him with the experiment protocol. The procedure of the experiment was carried out as
follows: Architectural design documents would be placed on the participant’s desk.
Each architectural design was split up into two documents, one page contained a
textual description and a another page contained a diagram. Both papers contained
information about the same architecture. After placing the documents at their precisely
defined positions, the context of the design would be briefly introduced. For instance,
“This architecture describes the architecture for a booking system for flights.” This
introduction was made because in real software development scenarios, developers
are aware of the domain or the high-level objectives of a system. Participants were
then verbally asked questions about the design — such as “Can component X directly
authenticate users?.” Participants could then ask for a question to be repeated but
no other requests such as clarifications would be accepted. After a participant had
answered, the answer was repeated by the experimenter for verification purposes and
the next question was asked.

Participants were given no feedback as to the correctness of their answer. The
experiment was double-blind as neither participant nor experimenter was aware of
the correct answer or in which of the documents the answer had to be found. As a
result, the participant would not change his behavior according to his record of correct
or incorrect answers during the experiment. Four architectures were used and three
questions were asked per architecture — not counting the introductory example.

6.4.3 Material and Question design

Each set of architecture documentation consisted of a pair of sheets of which one
contained text and one contained a diagram. After the last question, the participant
was handed a second questionnaire, asking him to rate the extent to which he perceived
the two media types used as being effective and the degree to which he understood
all notational elements. All five text-diagram pairs (four pairs and one example pair)
were inspired by industrial software architecture diagrams (SADs) documents in our
possession. The documents were altered in such way as to:

• enable a uniform notation across cases,

• enable separation from larger design documents and

• enable translation to English where needed.

We focused on the ability of participants to extract design information from both
grammatically and syntactically correct diagrams and texts. We corrected ambiguous
constructs in original documentation and attempted to attain an overall coherent visual
style plus lucid textual descriptions. All diagrams represented structural views of the
system. We used UML 2 component and deployment diagrams. An example of one of

114 Experimental Analysis of Representation of Software Architecture Design

the (verbose) diagrams is depicted in Figure 6.2(a). The text consisted of a description
of the architectural component in natural language text. An example can be found
in Figure 6.2(b). This text was assembled to be in concordance with industrial SADs.
The non-verbose version of the text contained fewer details regarding the model and
was about half as long as the verbose version. Questions and design documents were
carefully tuned to each other in order to allow a multitude of subsequent analyses.
Examples of questions are: “Is system x the only component that may modify attribute y?”
and “Through what node does system x connect to system y?.” The questions can be found
in Table 6.4.

We define a set T that holds all design information described in the text sheet and
a set D that holds all design information described in the diagram sheet. All design
information is then described by T ∪D. We designed the questions so that the answer to
some questions can be found in the intersection T ∩D, some answers can only be found
in the complement T ∖D and some answers can only be found in the complementD∖T .
Finally, some questions are not to be found in either set (∼ (T ∪D)). The distribution of
the answers for our questions is described in Table 6.4.

When designing questions, we limited ourselves to questions which could be
answered with information available either in text or via diagrams. We designed the
architecture representations and the questions so not to rely on detailed knowledge of
UML semantics. The experiment design process involved determining and listing the
most important design information conveyed in the design, creating a set of questions
relating to this information and validating the questions by means of trials. Overly
complicated or ambiguous questions were disregarded or rephrased. We created a total
of nine architecture pairs before selecting the final four, which were selected based on
ease of understanding. Half the question set consisted of open questions. Answering
open questions is comparatively more difficult because a) more information has to be
gathered and b) it is not as clear as to whether further consultation of another medium
is required once a partial answer has been formulated. Open questions provide more
insight into how easily a participant is satisfied with partial information.

With a view to our hypothesis H21, five questions were designed to address design
information of a topological nature. Per architecture, we only asked three questions.
We left more difficult questions for last as they required increased use of the media and
might create a learning effect for subsequent easier questions.

Each architecture was described using one page of text and one page with diagrams.
We created two versions of each architecture description. One version contained
a verbose diagram and non-verbose (content reduced) text and the second version
contained verbose text and a non-verbose (content reduced) diagram. We refer to
the former as a diagram-dominant representation and the latter as a text-dominant
representation. We created non-verbose versions of diagrams and text by removing
elements or sentences from the complete ones. Each participant was presented two
diagram-dominant representations and two text-dominant representations making
sure that the two verbose diagrams were not placed on the same side of the desk each

Experimental Design 115

(a) verbose diagram

The system described in this diagram provides support for
creating new mortgages and alteration of existing mortgages.

The design aims to separate the complexities of the business
logic from the Financial Application Frontend by bundling all
mortgage-related services on a central Mid Office System. This
system provides services for the setup of all `mortgage actions'.

The Front Office Component hosts a Financial Application
Frontend which contains a Mortgage-specific Application
Component. Due to concerns regarding decreased Back Office
availability, mortgage action requests may have a maximum size
of 300 kilobytes.

The Mortgage Webservice provides an additional method to
update mortgage attributes. This service only connects to an
interface provided by the Mortgage Attribute Update
specialization.

(b) non-verbose text

Figure 6.2: Example design

116 Experimental Analysis of Representation of Software Architecture Design

Table 6.2: Media Dominance

architecture α β γ δ

medium t d t d t d t d

experiment version A V n V n n V n V
B n V n V V n V n

t = text / d = diagram
V = Verbose / n = non-verbose

time. Ergo, out of every four participants, every first participant received the ordering
pair α (non-verbose diagram on his left side), pair β (non-verbose diagram, right), pair
γ (verbose diagram, left), pair δ (verbose diagram, right). The questions were the same
for diagram- and text-dominant representations of the architecture. The distribution of
media dominance is summarized in Table 6.2.

6.4.4 Ordering Process

We eliminated a potential bias caused by a possible tendency of participants to start
reading the information on a particular side (e.g. the left hand side for Western partici-
pants) by changing the position of the diagram for every pair presented. In order to
prevent participant preferences for a media type, based on the verbosity of the medium,
medium-verbosity was also balanced. Furthermore, the ordering of the architecture
pairs used was changed for every participant so that results for any particular architec-
ture pair (particularly the first and last pairs particularly pairs α and δ) would not be
influenced by effects due to the participant learning, getting tired or getting bored.

6.4.5 Data Coding

We obtained information regarding the amount of time subjects looked at media by
manual coding of the video recording. We counted switches between media, which
media the participants looks at first and last. An excerpt of the manner in which the
videos were coded is depicted in Table 6.3.

To ensure consistency of extraction of data from the video recordings, we used a
set of guidelines for coding. For example, the first timing measurement started at the
moment the question was spoken and timing stops when the participant mentions the
core element of his answer. To ensure data-entry consistency, we used scripts to transfer
timing information from spreadsheets to the database. We then performed consistency
checks on the final data employed by means of a set of semi-formal consistency checks
such as

∀switches [mod(switches) = 0⇒mediumstart =mediumend]

Results and Discussion 117

Table 6.3: Example of video coding log for a single question

question diagram video relative looked looked
number or text timing timing at diagr. at text

(or answer) (mark1) (seconds) (seconds) (seconds)

γ2 d 594.9

t 610.5 15.6 15.6

d 615.2 4.7 4.7

answer 619.1 3.9 3.9

answer given: “no”

1 from beginning of video file
Derived metrics:

• total time looked at diagram: 19.5 seconds
(80.58% of total time)

• total time looked at text: 4.7 seconds
(19.42% of total time)

• switches between media: 2

• started at: diagram

• ended at: diagram

which were executed by means of a set of SQL queries. In addition, we recalculated all
derived values (e.g. percentages) in the database.

6.5 Results and Discussion

In this section, we discuss the results of the experiment. A total of 47 subjects par-
ticipated of which 35 were male and 12 female. The average age was 27, ranging
between 21 and 41. The participants came from two universities and four different
organizations:

• 12 BSc. and BSc-hons. students, 1 MSc. student and 1 Ph.D. student at the School
of Engineering and Computer Science (ECS) at Victoria University Wellington;

• 1 BSc. student, 20 MSc. students and 1 Ph.D. candidate at the Leiden Institute of
Advanced Computer Science (LIACS) at Leiden University;

• 12 developers from the field of custom software development at various different
organizations in New Zealand and the Netherlands, including Capgemini the
Netherlands, Infoprofs and ASR Insurances.

118 Experimental Analysis of Representation of Software Architecture Design

Because of non-normal distributions, we use the non-parametric Mann-Whitney U
test for comparison between groups and Kendall’s τ for bi-variate correlation analysis.
As expected, professionals are significantly older and reported significantly more
academic (U = 105, z = −2.9, p < 0.01) and industrial experience (U = 107, z = −2.6,
p < 0.01) than the students.

In the following sections we will evaluate the data obtained with respect to our
hypotheses.

6.5.1 Media Effectiveness

We evaluated media effectiveness in terms of how well participants were able to
extract information from the documents i.e. in terms of the amount of correct answers
given. The distribution of the correctness of the answers to the 13 questions we posed
is leptokurtic and left-skewed. A Shapiro-Wilk (S-W) normality test confirms that
the distribution of correct answers (slightly) deviates from normality (p = 0.04). We
therefore resort to non-parametric tests for statistical analysis.

24 Participants worked with version A of the experiment materials and 23 parti-
cipants worked with version B. Media dominance was distributed equally over both
versions of the experiment (see Table 6.2) to be able to examine the effect of media
dominance. We used a Mann-Whitney U test to check if there were no significant
differences between the measurements obtained for both versions of the experiment
for all variables under study.

We tested for any potential advantage of diagram-dominant versus text-dominant
document pairs. Descriptive statistics for the amount of given answers that were correct
for text-dominant versus diagram-dominant architecture descriptions are depicted in
Table 6.5. Histograms for the number of correct answers given for each treatment are
depicted in Figures 6.3(a) and 6.3(b).

A visualization of the differences of the distribution of answers is depicted in
Figure 6.4. Surprisingly, we found that neither diagram- nor text-dominance had a
significant effect on correct answers given nor on the time spent on answering questions.
We therefore reject H11. Diagrams were not more effective, despite a substantial number
of participants whose first language was not English (77 percent of participants). We
will further discuss the role of language in Subsection 6.5.7.

We could not observe significant amounts of initial media preference or average
media preference either. These findings do not change if we look at a subset of the
questions: For the four questions to which the answer could be found only in either
medium, no medium type proved to be more effective in terms of causing more correct
answers. The findings did not change either when we looked at professionals and
students separately. This contradicted the first hypothesis: diagrams were not preferred
over text.

The treatment showed no clear pattern. We therefore looked for patterns in the data.
Analysis of the respondent behavior led to the identification of two groups: One group

Results and Discussion 119

Ta
bl

e
6.

4:
Ex

pe
ri

m
en

tQ
ue

st
io

ns

pa
ir

qu
es

ti
on

ty
pe

na
tu

re
an

sw
er

lo
ca

ti
on

(f
or

ex
pe

ri
m

en
tv

er
si

on
)

A
B

ex
W

he
re

is
in

fo
rm

at
io

n
x

st
or

ed
?1

op
en

no
n-

to
po

lo
gi

ca
l

T
∩
D

T
∩
D

α
1.

W
hi

ch
ex

te
rn

al
sy

st
em

is
a

so
ur

ce
of

in
fo

rm
at

io
n

re
ga

rd
in

g
x?

op
en

to
po

lo
gi

ca
l

T
∩
D

T
∩
D

2.
W

ha
tt

yp
e

of
se

rv
ic

e
is

se
rv

ic
e

x?
op

en
no

n-
to

po
lo

gi
ca

l
T
∖
D

D
∖
T

3.
H

ow
do

es
sy

st
em

x
se

ar
ch

in
sy

st
em

y?
op

en
to

po
lo

gi
ca

l
T
∩
D

T
∩
D

β
1.

Is
in

pu
tx

ac
ce

pt
ed

by
sy

st
em

y?
cl

os
ed

no
n-

to
po

lo
gi

ca
l

T
∖
D

D
∖
T

2.
C

an
sy

st
em

x
di

re
ct

ly
pr

ov
id

e
fu

nc
tio

na
lit

y
y?

cl
os

ed
to

po
lo

gi
ca

l
T
∩
D

T
∩
D

3.
C

an
m

es
sa

ge
ty

pe
x

be
ig

no
re

d
by

sy
st

em
y?

cl
os

ed
no

n-
to

po
lo

gi
ca

l
∼
(T

∪
D
)

∼
(T

∪
D
)

γ
1.

N
am

e
on

e
of

th
e

re
sp

on
si

bi
lit

ie
s

of
sy

st
em

x
op

en
no

n-
to

po
lo

gi
ca

l
D
∖
T

T
∖
D

2.
Is

sy
st

em
x

th
e

on
ly

co
m

po
ne

nt
th

at
m

ay
m

od
ify

at
tr

ib
ut

e
y?

cl
os

ed
to

po
lo

gi
ca

l
T
∩
D

T
∩
D

3.
Is

th
er

e
a

lim
it

at
io

n
on

fu
nc

ti
on

al
it

y
x

w
he

n
re

qu
es

te
d

fr
om

sy
st

em
y?

cl
os

ed
no

n-
to

po
lo

gi
ca

l
∼
(T

∪
D
)

∼
(T

∪
D
)

δ
1.

W
ha

tt
yp

e
of

m
es

sa
ge

s
ar

e
se

nt
fr

om
sy

st
em

x
to

sy
st

em
y?

op
en

no
n-

to
po

lo
gi

ca
l

D
∖
T

T
∖
D

2.
Th

ro
ug

h
w

ha
tn

od
e

do
es

sy
st

em
x

co
nn

ec
tt

o
sy

st
em

y?
op

en
to

po
lo

gi
ca

l
T
∩
D

T
∩
D

3.
Is

th
e

co
m

m
un

ic
at

io
n

be
tw

ee
n

sy
st

em
x

an
d

sy
st

em
y

se
cu

re
?

cl
os

ed
no

n-
to

po
lo

gi
ca

l
∼
(T

∪
D
)

∼
(T

∪
D
)

1
sy

st
em

an
d

co
m

po
ne

nt
na

m
es

ar
e

an
on

ym
iz

ed
to

en
ab

le
re

us
e

of
th

e
ex

pe
ri

m
en

tm
at

er
ia

l

120 Experimental Analysis of Representation of Software Architecture Design

Table 6.5: Descriptive statistics for the amount of given
answers that were correct for text-dominant
versus diagram-dominant architecture de-
scriptions

Treatment Answers Correct
(out of 12)

median mean std. dev.
x̃ x̄ σ

text–dominant1 8 7.70 1.54

diagram–dominant2 7 7.35 1.52

1
version A of (α +β) + version B of (γ + δ)

2
version B of (α +β) + version A of (γ + δ)

(for dominance distribution, also see Table 6.2)

number of answers correct

co
un

t

0

2

4

6

8

10

4 5 6 7 8 9 10

(a) Diagram-dominant treatment

number of answers correct

co
un

t

0

2

4

6

8

10

4 6 8 10

(b) Text-dominant treatment

Figure 6.3: Histograms for the amount of correct answers per treatment

Results and Discussion 121

0 2 4 6 8 10 12

0.00

0.05

0.10

0.15

0.20

0.25

0.30

answers correct

D
en

si
ty

diagram−dominant treatment
text−dominant treatment

number of

Figure 6.4: Density plot for amount of correct answers per treatment

(62 percent of the participants) predominantly used diagrams to answer questions, the
other (the remaining 38 percent of the participants) used text more intensively. The
group that uses diagrams more often, thinks that diagrams are more effective, answers
faster and switches media more often and more frequently only resorted to diagrams
to answer a question. The other group used text more often, was more experienced and
scored better. Note that while the latter group suggests that participants who preferred
text scored better, this does not imply a general advantage in effectiveness for text:
participants who used the text-dominant architecture descriptions did not score better,
as we mentioned earlier.

Using the post-experimental questionnaire, participants were asked to rate the
effectiveness of both media on a 7-point Likert scale. Participants who prefer diagrams
are significantly more likely to perceive the effectiveness of diagrams to be higher than
participants who attribute a comparable score to their perception of the effectiveness
of text. As mentioned, the diagram-preferring group of participants, who was faster
(τ = −0.265, p ≤ 0.05) and rated their media type of preference as the most effective
(τ = −0.265, p ≤ 0.05), did not score better in terms of correct answers, i.e. where not,
in fact, more effective. In fact, we found that those participants who predominantly
use text, score significantly better (τ = 0.281, p ≤ 0.05). So, participants who prefer
text make a realistic judgment about the effectiveness of text. Participants who prefer

122 Experimental Analysis of Representation of Software Architecture Design

diagrams, on the other hand, significantly overrate the effectiveness of diagrams. As
a result, the group that preferred diagrams not only scored lower, but thought they
had used the more effective media type. Diagrams seem to offer a specific group of
developers a false sense of confidence. This group was more willing to provide an
answer based on inferencing from the diagram than to carefully examine the text. In
addition, we found that those with more experience more often resort to text to answer
a question (τ = 0.273, p ≤ 0.05).

In the following section we investigate whether questions relating to topological
architecture properties are better catered for by either media type (H21).

6.5.2 Media Effectiveness for Topological Properties

In this section we explore whether diagrams are more effective at conveying topo-
logical design information to software developers. We define topological properties
as the design information that is related to the static and structural dependencies
between subsystems. Given that these topological properties lend themselves well
to visualization, we expect that diagrams are the favored source for answering such
questions. However, we could not observe that participants used diagrams more often
to answer questions addressing properties of a topological nature (see Table 6.4). We
therefore reject H21. Contrastingly, we found that in comparison to non-topological
questions, participants significantly more often used the diagram when they provided
their answer (U = 6.5, z = −1.797, p ≤ 0.05).

Media dominance had no influence on participant behavior for most of the five
topology-related questions, with the exception of two questions: We found significant
differences in the amount of correct answers given for questions α3 (U = 191.5, z =
−2.64, p < 0.01) and δ2 (U = 230, z = −2.03, p < 0.05) (of the type “How does X search in
Y” and “Through what node does X connect to the Y?” respectively). The answer to either
question could be found in the diagram and the text in both document versions.

6.5.3 Media Preference

Media preference denotes the characteristic of an inherent preference of a person to
prefer to work with either textual or graphical representations. Analyzing the data
from this perspective, we found that participants prefer the diagram as their first
source of information: in 10 out of 13 questions, participants first started examining
the diagram. This count includes participants who only briefly gaze over the diagram
before examining the text. Media dominance does not significantly influence this
behavior. A possible explanation is that diagrams are used to get an initial global
overview of a system. This is in line with the “Visual Information-Seeking Mantra” that
Shneiderman (1996) describes. In his work, Shneiderman outlines the steps followed
in visual information retrieval. He summarizes his principle in a mantra: “Overview
first, zoom and filter, then details-on-demand.”

Results and Discussion 123

When aggregating the usage pattern of media for all questions, 98 percent of
all participants used both media types to arrive at answers. Only one participant
relied exclusively on diagrams for answering all questions. When analyzing answers
to individual questions, 27 percent of the 611 answers given (47 participants × 13
questions), were based on the use of only one medium. In contrast, five participants
(10 percent) always used both media to answer a question. The latter group might
be classified as a “thorough” group, not only because of their comprehensive media
usage but because this group scored higher (τ = −0.312, p ≤ 0.01). The latter fact is not
a result of the group consisting mainly of experts. Participants of this group were not
more experienced nor was it composed mainly of professional developers. Also, these
participants had slower response times (τ = −0.464, p ≤ 0.001) further corroborating the
notion of “thoroughness.” Note that “non-thorough” participants had no particular
reason to work quickly as no time limit was imposed.

Interestingly, we found that “thorough” participants were more likely to start and
end with looking at a diagram. In contrast, another group that scored better than
average, predominantly used text. This latter group was composed of experienced
participants. So, “thoroughness” does not correlate with media preference but “ex-
perience” does. A potential explanation for that latter observation is that industrial
practice could have made experienced developers diagram-averse in the sense that
they prefer understanding all text accompanying a diagram. Perhaps the low quality
of diagrams they had do deal with in the past created low expectations as to the utility
of diagrams in general. By using an eye tracker, Yusuf et al. (2007) also found that more
experienced developers read diagrams differently.

6.5.4 Guesses and Suppositions

For four questions, the answer could be found in either the text or in the diagram,
depending on the version of the experiment a participant obtained. For each of these
four questions (α2,β1,γ1 and δ1), we looked at the amount of participants that used
only the medium that did not provide enough information to answer the question.
These participants did not switch to the medium from which the answer could be
derived. Note that nothing inhibited these participants from spending as much time as
they needed to answer the questions. These participants therefore seemed to prefer
guessing over continued consideration of the presented material. For all participants,
10 out of a 188 (4 questions × 47 participants) or 5.3 percent of all questions, were given
based on a single medium from which the answer could not be derived. Only in one
of these 10 cases did a participant guess the correct answer. This was for question
β 1 which was the only closed question of this type. This participant therefore had
a “fifty-fifty” chance of guessing the right answer. These 10 answers were given by
9 different participants. So, 19 percent of participants demonstrably and needlessly
guessed the answer to at least one question. Two of these participants were experienced
software developers who are active in industry. Note that “switching between media”

124 Experimental Analysis of Representation of Software Architecture Design

in the context of this experiment refers to the act of slightly moving one’s head from left
to right or vice versa. As architecture representations are often vast and dispersed over
various sources, in practice (much) more effort is likely to be needed to understand a
given aspect of a software architecture.

To be able to find a measure of the extent to which developers are satisfied with
incorrect information, we inserted two “false friends” into the experiment design.
These “false friends” constitute information that resembles a correct answer but would
be easy to distinguish as incorrect information, if given sufficient attention would
be given to detail. In the experiment design, the answers to three questions could
not be derived from either medium (for both versions of the experiment). In two of
these cases, we inserted these “false friends.” For question β 3 (“Can message type x be
ignored by system y?”), one of the classes contained the method “+ignoreMessage().”
That particular class had no relation to external systems. For question γ 3 (“Is there a
limitation on functionality x when requested from system y?”), the text contained the phrase
“requests may have a maximum size of 300 kilobytes.” Request volume and constraints
on individual requests are unrelated, most participants correctly observed. For these
questions, we took into consideration why a participant gave a specific answer (by
means of the think aloud protocol) to be able to tell whether a “false friend” was the
cause for the specific answer given. In univariate analysis, we found that those with
more industrial experience, are less likely to fall for a false friend (τ = −0.333, p ≤ 0.01).
These participants are less quickly satisfied with information that only resembles a
correct answer. We found that the participants who demonstrably and needlessly
guessed the answer to at least one question, were not more likely to fall for a false
friend (Mann-Whitney p = 0.88).

6.5.5 A Case Against Overlap

While it is commonly accepted that images are far better remembered than text (e.g.
McDaniel and Pressley, 1987), there are various restrictions to their use. For example,
the third of the “ten commandments of picture facilitation”, of Levin et al. (1987) (which
were more recently validated by Carney and Levin (2002)) reads:

“Pictures shalt not be used in the presence of “heavenly” bodies of prose. If the
text is highly memorable to begin with, there is no need to add pictures.”

For software design representations, this would imply that a diagram should only be
used when a textual description is insufficient. Moreover, if a textual description is
very clear (“heavenly”), diagrams should be avoided to prevent confusion. We reported
that we found that neither text nor diagram-dominant descriptions are more efficient
in communicating software architecture design. However, for five questions, we repre-
sented similar information in both media (T ∩D - also see Table 6.4). Indeed, we found
in industrial reality often an overlap of the information presented in diagrammatic
and textual models (Heijstek and Chaudron, 2011). Given Levin’s commandment, due

Results and Discussion 125

to confusion, participants could have scored lower for questions to which the answer
could be derived from both media (the example question and questions α1, α3, β2, γ2
and δ2), compared to the other questions. The score per question varies too much to be
able to compare whether this was the case. When we consider whether participants
who predominantly used the text or the diagram, we found that this is not related to
whether they answered these questions correctly.

6.5.6 Conflicting Information

In industrial reality, developers are confronted with design documentation that is
mostly incomplete and often inconsistent. Both incompleteness and inconsistency in
UML diagrams have been addressed by empirical research. For example, Lange and
Chaudron (2006) studied the effect of defects in UML models on developer compre-
hension. In their controlled experiments with a group of 159 students and industrial
practitioners, they found that defects in UML models often remain undetected and
cause misinterpretations. In addition, they found no implicit consensus about the inter-
pretation of undetected defects and conclude that defects in UML models are potential
risks that can cause misinterpretation and miscommunication. Another interesting
finding of this study is that the presence of domain knowledge strongly decreased
the detection rate for a defect type. Domain knowledge might therefore lead people
to more quickly fill in omissions based on assumed domain knowledge. Nugroho
(2009) found that a higher level of detail in a UML model significantly improves cor-
rectness and efficiency of subjects in comprehending UML models. He also found that
models with a lower level of detail were more often misunderstood or misinterpreted.
Balzer (1991) reported that harsh consistency constraints on design in practice are often
removed in favor of flexibility. The architecture used to support the first question,
the example question, contained conflicting information between the diagrammatic
and textual representations. By analyzing the answer and participant behavior, we
could determine which medium type was more dominant for participants. Out of all
participants, 85 percent examined both media. The other 15 percent used only the
diagram (all of these participants on average preferred diagrams for all subsequent
questions). Out of those who used both media for the first question, we found that
only 35 percent preferred the answer that could be deduced from the text. We should
note that the example architecture was text-dominant for all participants. Many parti-
cipants noted that they found the inconsistency and deliberately choose the diagram.
When confronted with conflicting information, developers seem to decide that the
information presented in a diagram is more authoritative than the textual information.

6.5.7 Participant Characteristics as Performance Predictors

Gemino and Wand (2003) recommend examining three antecedents of knowledge
construction in empirical evaluation of model representations, based on Oei et al.

126 Experimental Analysis of Representation of Software Architecture Design

(1992): (a) content, (b) presentation and (c) model viewer characteristics. Now that we
have established that no media type was more effective in communicating architecture
information, we set out to investigate: To what extent can developer (or: model viewer)
characteristics explain the variance in the amount of correct answers given? In this
section we investigate which participant characteristics can be used as predictors
of performance. We employed a multiple regression analysis using the backward
elimination method (Hocking, 1976). We considered the following variables:

1. Experience (Explained in Section 6.5.7)

2. Media Preference (Coded as diagram = 0, text = 1; Explained in Table 6.1)

3. Media Exclusion (i.e. how often a participant only used one medium)

4. Diagram Working History (i.e. how long it has been since the participant last
worked with software design models)

5. Media Inclusion (i.e. average switches between media) (Also explained in Ta-
ble 6.1)

6. Self-Rated Modeling Skill (Explained in Table 6.1)

7. Average Time per Question (Explained in Table 6.1)

8. Linguistic Distance (Explained in Section 6.5.7)

The first and last participant characteristics are explained next in more detail.

Linguistic Distance

For linguistic distance we adopted a measure reported by Chiswick and Miller (2004)
based on a study by Hart-Gonzalez and Lindemann (1993). Chiswick and Miller pose
the question: How difficult is it for individuals who know language A to learn languages B1
through Bi, where there are i other languages? They go on to state that “if it is more difficult
to learn language B1, than it is to learn language B2, it can be said that language B1 is more

“distant” from A than language B2.” A list of the languages encountered in the experiment
and their associated linguistic distances to English can be found in Table 6.6.

We found that univariately, this measure significantly correlates with the amount
of correct answers given (τ = −0.289, P ≤ 0.05). This implies that the further a partici-
pant’s native language is removed from English, the fewer correct answers are given.
Language distance, therefore, is important and should be minimized. This implies
that diagrams were unable to bridge language barriers. In addition we found that
participants whose language has a certain minimum distance away from English were
significantly more likely to switch between media.

Results and Discussion 127

Table 6.6: Language Grouping & Distance

language1 n score2 family distance3

English 13 - Indo-European 0

Romanian 1 3.00 Indo-European 0.33

Dutch 20 2.75 Indo-European 0.36

German 1 2.25 Indo-European 0.44

Spanish 1 2.25 Indo-European 0.44

Farsi 1 2.00 Indo-European 0.50

Bulgarian 1 2.00 Indo-European 0.50

Tagalog 1 2.00 Austroeasian 0.50

Bengali 1 1.75 Indo-European 0.57

Mandarin 4 1.50 Sino-Tibetan 0.67

Arabic 1 1.50 Afroasiatic 0.67

Chaouia 1 - Afroasiatic -
Nyanja 1 - Niger-Congo -

1
self-reported by participant (“Native Language”)

2
reported in (Hart-Gonzalez and Lindemann, 1993)

3
inverse of score (

1

score
) (Chiswick and Miller, 2004)

Participant Experience

In this paragraph, we explain the metrics we used to quantify participant experience.
We used the proposed ordinal classes of participant experience by Höst et al. (2005):

• E1: undergraduate student with less than 3 months recent industrial experience

• E2: graduate student with less than 3 months recent industrial experience

• E3: academic with less than 3 months recent industrial experience

• E4: any person with recent industrial experience, between 3 months and 2 years

This metric is a compound, composed of the values we collected for academic and
industrial experience (see Table 6.1). A comparison of the distribution of these three
variables is depicted in Figure 6.5. In this figure, one can observe that the metric
proposed by Höst et al. (the middle line) is a proper compound of academic and
industrial experience for our participant.

The values for experience we obtained are not normally distributed (leptokurtic,
right skewed, S-W p ≤ 0.001). We use Kendall’s τ (Noether, 1981) for bivariate statistical
analysis. We found that the Höst et al. index of experience individually correlates
with the amount of correct answers a participant gave (τ = 0.31, p = 0.1). Experience,

128 Experimental Analysis of Representation of Software Architecture Design

experience class

D
en

si
ty

1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

academic experience
Höst2005 experience class
industrial experience

Figure 6.5: Density plot for academic experience, industrial experience and Höst experience
class of participants

however, does not relate to the speed with which a participant was able to answer or
the amount of times he switched between media.

Multivariate Analysis Results

The results of our multivariate analysis are summarized in Table 6.7. The multivariate
analysis results in a model that features four significant variables, namely media prefer-
ence, linguistic distance, experience and self-rated modeling skill. The model is highly
significant (p ≤ 0.001) and explains 50 percent of the variability of correct answers
given. We were able to rule out multicolliniarity among the resulting predictors; the
variance inflation factors (VIF) are not substantially higher than 1 (Bowerman and
Richard, 1990). No individual subject seemed to influence the model as e.g. no case
has a standardized residual larger than 2. We found that the coefficient for language
distance is negative, implying that the further a participant’s language is from English,
the fewer correct answers the participant will give. Remember that media preference is
coded as diagram = 0, text = 1. Therefore, this confirms the earlier result that a textual
media preference was beneficial for correctly answering the questions. As expected,
experience was also beneficial for providing correct answers.

Results and Discussion 129

Ta
bl

e
6.

7:
M

ul
tiv

ar
ia

te
re

gr
es

si
on

fo
r

“A
m

ou
nt

of
C

or
re

ct
A

ns
w

er
s”

M
od

el
*

U
ns

td
iz

ed
.C

oe
ff

.
St

d.
C

oe
ff

.
t

Si
g.

C
or

re
la

ti
on

s
C

ol
li

ne
ar

it
y

B
St

d.
Er

ro
r

β
Z

er
o-

or
de

r
Pa

rt
ia

l
Pa

rt
To

le
ra

nc
e

V
IF

(C
on

st
an

t)
5
.9
5
9

0
.7
6
0

7
.8
4
2

0

la
ng

ua
ge

di
st

an
ce

−3
.2
8
8

0
.9
2
7

−0
.4
1
1

−3
.5
4
8

0
.0
0
1

−0
.3
7
0

−0
.4
9
9

−0
.4
0
6

0
.9
7
2

1
.0
2
8

m
ed

ia
pr

ef
er

en
ce

1
.2
3
6

0
.4
1
8

0
.3
4
3

2
.9
6
0

0
.0
0
5

−0
.3
6
2

0
.4
4
3

0
.3
3
8

0
.9
7
1

1
.0
2
9

m
od

el
in

g
sk

ill
0
.4
4
2

0
.1
5
0

0
.3
4
2

2
.9
4
9

0
.0
0
5

0
.2
9
4

0
.4
3
2

0
.3
3
7

0
.9
7
4

1
.0
2
7

ex
pe

ri
en

ce
0
.4
9
9

0
.1
8
8

0
.3
0
9

2
.6
5
3

0
.0
1
2

0
.4
0
9

0
.3
9
5

0
.3
0
3

0
.9
6
5

1
.0
3
6

*
M

od
el

Su
m

m
ar

y:
R
2
=
0
.5
0
3
;p

≤
0
.0
0
1

130 Experimental Analysis of Representation of Software Architecture Design

The fact that self-reported assessment of modeling skill turned out to be a predictor
is consistent with similar findings that show that self-reported ability correlates with
e.g. actual mechanical and spatial ability (Hegarty and Just, 1993). In order to be
able to see which predictor was the strongest, we standardized coefficients (which
are measured in standard deviation units). We found that language distance had
the greatest contribution to the model that predicts the performance of participants.
Those participants whose native language was further away from English had greater
difficulty understanding the software architecture designs.

6.6 Threats to validity

In the following, we discuss a number of factors that may have influenced the results
obtained from the experiment in a way that prevents them from being indicative for
other contexts as well. We categorized our potential threats to validity based on Wohlin
et al. (2000).

6.6.1 Internal Validity

We addressed problems relating to maturation i.e. increasing familiarity with a problem,
in several ways: We interacted with participants by means of a strict interaction protocol
so to be able to react to questions or remarks in a uniform way. We thus prevented
participants to use the experimenter as an additional source of information. We also
changed the order in which participants received the architectural descriptions (which
also prevented effects due to fatigue).

We minimized the threat of “diffusion of treatment” by asking participants not to
discuss the experiment with their colleagues or fellow students. No materials could be
taken by participants from the experiment environment.

Threats related to instrumentation were addressed by using a protocol for the use
of the camera. On the different locations where we conducted the experiment, we
“camouflaged” the camera by placing it inconspicuously among other equipment in its
surroundings (as in Figure 6.1(b)). Whenever the camera needed to be handled, it was
done while no participant was in the room.

A related potential threat is that participants behave differently because they are
aware of the experiment situation. Either stress or the “Hawthorne effect” could in-
troduce a negative or positive bias respectively. In order to address such factors, we
introduced an example question to allow participants to get used to the environment.
We believe that participants found the questions challenging enough to fully concen-
trate on the design documentation, i.e. practically became oblivious to the experiment
situation. This is supported by our analysis of the video material. The experiment
protocol prescribed interaction while documentation was switched in order to keep

Threats to validity 131

participants occupied. We equivocated the use of a camera and by only mentioning the
session would be “recorded” without providing further detail how this would be done.

Another possible threat is that various studies of the process of solving problems
reported that verbalization of this process improves problem-solving performance (e.g.
Johnson and Shih-Ping, 1999, Flaherty, 1975). Therefore, this might have influenced
the extent to which participants were able to provide a correct answer. In addition, the
intensity and contents of the verbalization varied strongly among participants. Not
all participants will have benefited from the performance increases that verbalization
yields. Measures taken to diminish the described threats to validity are (1) not facing
the participant, (2) not answering participant questions, (3) making use of an interaction
protocol to limit the amount of possible responses that can be given to a participant.
The interaction protocol contains a process for stimulating thinking out loud.

The phrasing of the questions might have been suggestive in terms of which
medium is likely to provide the answer. This might have introduced a bias for media
preference and effectiveness, which may or may not become directly apparent. Our
findings do not suggest any such bias at all but due to the complexity of the subject we
cannot rule it out for every question.

Finally, one might argue that the separation of diagrams and text into two pieces of
paper might have invited participants to always use both. We had to create a sufficient
amount of physical separation between the sheets in order to be able to distinguish their
use in the video material. However, it is not clear as to whether less physical separation
would have made a difference and certainly some participants almost exclusively used
diagrams, demonstrating the potential to ignore one of the documents if that was felt
to be appropriate.

6.6.2 External Validity

The extent to which graduate, undergraduate and doctoral students are representative
of professional software developers and the threat of interaction of selection and
treatment respectively, have been addressed in various other studies (e.g. Arisholm
and Sjøberg, 2004, Briand et al., 2005, Höst et al., 2000). The students who participated
in this experiment were all exposed to software modeling in general and the notation
used for the diagrams (UML) in particular during various courses at the bachelor or
master level. In addition, more than a quarter of participants were actual professional
software developers (more than one for every three students). We maintain that for
understanding the software architecture designs we used, expert knowledge of the
UML is not a prerequisite for extracting information from the diagrams needed for
answering our questions.

In other words, we do not know whether these participants would not have done
equally well, if they had used the diagrams more often. If experience with low-quality
diagrams really played a role in our experiment then this particular finding would
imply “media adversity of good participants” rather than on “media effectiveness for

132 Experimental Analysis of Representation of Software Architecture Design

text-centric developers.” Note, however, that overall we detected no better effectiveness
for text, so the potential bias did not affect our overall results.

The findings were based on fragments of architectural descriptions that were closely
based on samples of such descriptions taken from industrial SADs. Hence, these are
considered to be representative for the class of project that use a mix of text and
diagrams.

The threat of apprehension was mitigated by assuring anonymity and by explaining
the recordings could only be accessed by the involved researchers (whose names
were mentioned) and would be destroyed after data collection. Also, no time limit
was imposed upon participants. We avoided hypothesis guessing by keeping the
participants uninformed about the study objective.

6.6.3 Conclusion Validity

Reliability of measures was ensured by means of testing the used cameras and deter-
mining proper positioning to be able to clearly obtain head and eye gaze movement.
This information was documented in the experiment protocol. A coding protocol was
established for coding the videos and a second researcher re-coded videos to randomly
assess accurateness. Database entry was semi-automated and subject to rigorous con-
sistency checks. Threats regarding random irrelevancies were addressed by choosing
quiet locations to conduct experiments. The experiment materials and environment
were tested before real sessions commenced. The validity of the applied statistical tests
(e.g. the assumptions and correct application), subject selection and the data collection
process were discussed in previous sections.

6.7 Recommendations

This section contains an overview of the recommendation that follow from the findings
of this study.

• The use of both text and diagrams is needed. The use of only one medium
is not recommended, not even when the nature of the design decision to be
communicated is topological. Also for topological information, for which dia-
grams intuitively seems to be the preferred communication medium, a textual
description of the topology should be added.

• Another important reason for not defaulting to the use of only diagrams are
that diagrams do not seem to bridge linguistic distance. In addition, they also
potentially induce a false sense of confidence in developers in the sense that they
make assumptions.

• When using diagrams, make clear how these should be read. In an earlier study,
Holsanova et al. (2009) found that an “integrated format with spatial contiguity

Conclusions and Future Work 133

between text and illustrations facilitates integration.” Employing this method
would imply annotating a diagram with a description of how to read it, either in
natural text or using a more formal notation such as OCL.

• Consider your audience when engaged in GSD: Make sure that documentation
is unambiguous.

• Do not use ambiguous constructs. Use similar terminology in both diagrams and
text.

• Developers who are better at modeling, read diagrams better. UML training
or training regarding conceptual modeling might be beneficial for developer
understanding of architecture representation.

6.8 Conclusions and Future Work

Architectural design documentation is essential for communicating an architect’s
intentions. In current practice such documentation consists of a mix of diagrams and
textual descriptions but their creation is not informed by solid knowledge about how
the documentation is perceived by developers. We therefore conducted a controlled
experiment in order to evaluate the merits of different mixes of diagrammatic and
textual descriptions in which we tried to approximate industrial reality. One of the
results is that neither diagrams nor textual descriptions proved to be significantly more
efficient in terms of communicating software architecture design decisions. Another
unexpected result is that diagrams are not more suited to convey design decisions of
a topological nature. Remarkably, participants who predominantly used text, scored
significantly better; not just overall but with respect to topology-related questions as
well. Also, diagrams were not able to alleviate the difficulties participants with a native
language other than English had in extracting information from the documentation.
In combination, these findings question the role of diagrams in software architecture
documentation.

However, while diagrams were not superior regarding media effectiveness they still
seem to perform a special role. Participants were more likely to use diagrams as their
first source. They were more likely to look at the diagram at the very moment when
they provided answers to questions of a topological nature. Interestingly, thorough
developers tend to start and end with diagrams. More research is required to fully
understand how text and diagrams could complement each other, in particular with
respect to topological system properties.

Our analysis discovered two emerging group characterizations. One group pre-
dominantly utilized diagrams, was faster and overrated the effectiveness of diagrams;
the other group was more experienced and preferred text. Further analysis needs to be

134 Experimental Analysis of Representation of Software Architecture Design

performed in order to understand these groups, so to be able to specifically cater for
them in the creation of software architecture documentation.

Finally, by conducting a multivariate regression analysis we identified developer
characteristics that can be used as developer performance predictors: linguistic dis-
tance, media preference, experience and self-rated modeling skill. The participants who
performed best had a native language close to English, used more text than diagrams,
were more experienced and rated their modeling skill to be relatively high.

Summarizing, while our experiment and subsequent analyses produced some very
interesting concrete findings, we feel that their ultimate value lies in the impetus they
provide to perform further research to better understand the effectiveness and roles of
media types in software architecture descriptions.

