
Architecture design in global and model-centric software development
Heijstek, W.

Citation
Heijstek, W. (2012, December 5). Architecture design in global and model-centric software
development. IPA Dissertation Series. Retrieved from https://hdl.handle.net/1887/20225

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/20225

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/20225

Cover Page

The handle http://hdl.handle.net/1887/20225 holds various files of this Leiden University
dissertation.

Author: Heijstek, Werner
Title: Architecture design in global and model-centric software development
Date: 2012-12-05

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20225
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter5
A Theory of Dissemination and
Coordination of Software
Architecture Design in Global
Software Development

In this chapter an analysis is presented of software architecture coordination and
dissemination practices in the context of large scale, global software development.
To this end, the case findings discussed in Chapter 4 are contrasted by means
of a synthesis of the results of interviews with a group of experts. In addition,
recommendations for software architecture documentation and dissemination are
outlined.

5.1 Introduction and Objectives

In the previous chapter, we analyzed three specific industrial cases for dissemination
of software architecture design in the context of offshore software development. In this
chapter we outline and discuss the best practices distilled from these cases. In addition,
this chapter presents a synthesis of the factors that underlie the phenomena that were
observed in the previous chapter. In other words: we set out to explain why these best
practices seem to work. The resulting grounded theory provides an answer to research
question RQ1 (Section 1.3).

We aim to improve the process of software architecture dissemination in the context
of global software development and therefore pose the following research question:

92 A Theory of Coordination of Software Architecture Design in GSD

How do the factors that shape how software architecture is disseminated and
coordinated in large, industrial, custom, global software development projects
relate?

To this end we use the results of the three case studies of large, industrial custom GSD
projects presented in Chapter 4. In this chapter, we compare these case findings to
a synthesis of a series of interviews with industrial experts in the fields of software
architecture and GSD from various organizations. These were not the same people as
those interviewed for the case studies presented in Chapter 4.

The outline of this chapter is as follows. Section 5.2 describes data collection and
sections 5.3 and 5.4 outline the main factors and their main implications. Finally,
sections 5.5 and 5.6 discuss best practices and conclusions and future work.

5.2 Data Collection

In addition to the case-related interviews that were reported on in Chapter 4, a group
of 19 software architecture experts were interviewed at various organizations involved
in offshore software development (GSD). These semi-structured interviews were all
conducted on-site and face-to-face (in India). All participants were drawn from three
major, international IT organizations. They were either senior developers, software
architects or project managers. An overview of their function titles and experience is
presented in Table 5.1. This particular group of respondents was not associated with the
cases described in Chapter 4. The topics discussed during the interviews were similar
to those discussed in the case-specific interviews. However, instead of concentrating
on a particular case, the interviewees were specifically encouraged to reflect on their
entire body of practical software development experience. The transcriptions of these
interviews were used to reflect on the themes that were uncovered in the case analyses
in Chapter 4. During the interview and the interview analysis, the concepts relating to
case-specific phenomena (such as shared mental model measurements) were omitted
as the focus of this chapter is relating concepts to factors beyond the case-level. We
obtained our respondent population by means of introductions through Chain-Referral
Sampling (CRS — also known as “snowball sampling”) (Heckathorn, 1997, 2002). CRS
is normally used to obtain access to hard-to-find subjects in hidden populations (such as
in studies regarding substance dependence as in e.g. Wang et al., 2005). While software
professionals are not necessarily imperceivable in hidden populations, CRS helps to
deal with some of the problems common to research in industrial software engineering
practice. As software professionals, especially architects, tend to be expensive resources,
their time for non-productive hours is limited. This problem is compounded by the
fact that cost reductions are often part of the motivation to employ global software
development practices and people are expected to deliver at short notice. The resulting
work pressure at the offshore development location can therefore be relatively high.
Being introduced by a potential interviewee’s peer increases the chances of getting a

Theory Building 93

Table 5.1: Overview of expert interview respondent characteristics

total
function experience years
type function title (years) in role

developers senior developer 7

senior developer 6 4

senior developer 6 1

architects solution architect 7 5

enterprise architect 8 8

enterprise architect 8 5

senior technical architect 16 9

solution architect 7

technical architect 13 3

senior technical architect 11 8

senior technical architect 9

lead architect 10 3

project project manager 8 4

managers project manager 11 2

project manager 9 4

project manager 12 8

project manager 11 1

project manager 9 4

project manager 12 8

average experience 11

meeting accepted. In addition, in relationship-oriented cultures, it is easier to obtain
interviews by means of a personal introduction. An excerpt of the relation between the
respondents involved in this study is depicted in Figure 5.1.

5.3 Theory Building

In this section, we discuss the factors that play a role in the process of software
architecture design, coordination and dissemination. Based on the concepts that were
identified from the labels and their respective narrative as discussed in the three cases,
we arrived at the grounded theory depicted in Figure 5.2. Three main drivers were
discerned that (eventually) negatively influence project success in terms of schedule
and budget overrun:

94 A Theory of Coordination of Software Architecture Design in GSD

A

D E F

10

14

25

N

OP

Q12

RS

Z

1 23 457T

U

V

W X Y

20

21 22

13 1516 17 18 23

24

Figure 5.1: Excerpt of (anonymized) chain-referral sampling graph of interview respondents

1. The strong implementation focus of software development project management
prematurely forces projects into the construction phase.

2. A knowledge gap exists between the onshore and offshore location regarding
software architecture and its role during the software development life cycle.

3. Cost reduction forces a move of responsibilities towards the offshore software
development location. This compounds the “knowledge gap” problems as less
resources are available for knowledge improvement (training) and more work
is required of less experienced team members. In addition, the added value of
activities related to implementation is more tangible than that of design-related
activities. As a result, the “’implementation focus” problem is aggravated.

In the following sections, each of these main drivers will be discussed.

5.3.1 Cost Reduction

Cost reduction is the most important driver for offshoring software development
work (e.g. Šmite et al., 2010, Carmel and Agarwal, 2001, Ebert and De Neve, 2001).
However, it remains to be seen whether cost reduction benefits materialize. Ample
evidence suggests that GSD increases development cost (e.g. Conchúir et al., 2006,
Herbsleb et al., 2001, Ebert et al., 2001, Espinosa and Carmel, 2003). Nevertheless,

Theory Building 95

cost reductionknowledge gap implementation focus

e
ff

e
c
ts

c
a
u

s
e
s

is codified

Figure 5.2: Concept relation graph (Ð→ denotes cause and effect)

96 A Theory of Coordination of Software Architecture Design in GSD

we find that the development organization from which cases A, B and C were de-
rived, strives towards minimizing onshore project involvement. As software architects
generally are experienced software developers, they tend to be expensive resources.
Offshoring software architecture activities is therefore thought to potentially yield
sizable cost reductions. The result of this insight is that more architecture work is
required of the offshore location.

5.3.2 Knowledge Gap

In earlier projects, before the year 2005, only coding and unit testing work was entrusted
to offshore development teams. The onshore location was responsible for requirements
engineering, high and low-level design, integration testing and deployment. A recent
development is that organizations require projects to offshore more of these “onshore
activities” because of perceived potential development cost reductions. Gradually, unit
testing, low-level component design and regression testing were added to the portfolio
of activities that is commonly offshored.

Consequently, software architecture is a young discipline at this organization’s
offshore location in particular and at offshore development locations in general. There
are therefore relatively few experienced architects available at offshore locations. To
be able to meet demand, less experienced software developers are promoted to the
role of software architect. An onshore architect typically has over ten years of software
development experience. Offshore developers with just two years of experience have
been promoted to the software architect role. As a result, offshore architects are aware
of architecture design standards to a lesser extent.

5.3.3 Implementation Focus

Software development projects are limited by resources. Allocation of these limited re-
sources over the various software development life cycle phases and activities is a well
studied topic. Simulations are used to study the dynamics of resource allocation (e.g.
Kellner et al., 1999) and theoretical models have been proposed to optimize resource
allocation (e.g. Yiftachel et al., 2011).

Data from industry shows that resources are preferably spent on implementation re-
lated activities. Significantly more effort is spent in the construction phase of industrial
projects than prescribed in theoretical models (Heijstek and Chaudron, 2007, Yang et al.,
2008). Literature does not elaborate on the reasons for this phenomenon. We found a
similar tendency towards coding-related activities at the expense of design activities
in cases A, B and C. For example, the management tendency to push to move to the
implementation phases as soon as possible (and limiting time spent on architecture
design and dissemination) is referred to by various team members from cases A and B,
as WHISCY or “WHy IS no-one Coding Yet?”.

Implications 97

Cost reductions often limit an architect’s association with a project to the architec-
ture design (elaboration) phase. The focus on implementation shortens that design
phase and thereby shortens even more the time an architect is involved with a software
project. As a result, architects spend not only less time designing an architecture but
also less time on disseminating that architecture design. The direct implications are
that less architecture is defined and less architecture is codified. In addition, architects
get less opportunity to travel to the offshore location.

5.4 Implications

We found the main problems caused by the drivers discussed in Section 5.3 to be:

• an unclear and incomplete software architecture document (knowledge transfer
problem),

• that software architects are available less time per project (both a knowledge
transfer and a control problem),

• that less direct interaction with the software architect is possible (both a knowledge
transfer and a control problem),

• that more architectural freedom exists for developers and (control problem),

• that less code is reviewed (control problem).

These problems lead to incorrect and incomplete knowledge of the software archi-
tecture. Consequently, developers make assumptions and are mostly knowledgeable
about their “own” components. Therefore, software architecture compliance violations
are more likely to take place. This, finally, leads to software rework which in turn
causes project delays in terms of schedule and budget overrun.

5.5 Recommendations and Best Practices

This section outlines a set of recommendations for coordination and dissemination
of software architecture design in the context of GSD. The recommendations are
structured as follows: First, the general recommendation are derived from the three
main drivers that were discussed in Section 5.3. Second, a set of best practices is
discussed that is distilled from the three cases analyzed in Chapter 4.

5.5.1 General Recommendations

First, architecture should be recognized to be a first-class development concept. All participants
agree that architecture adherence is important. However, often developer knowledge of

98 A Theory of Coordination of Software Architecture Design in GSD

architecture is incorrect and incomplete and limited resources are allocated to checking
architecture compliance during development. The added value of activities related
to implementation is more tangible than that of design-related activities. This is an
illusion. To adhere to non-functional requirements, extensive rework is often needed
towards the end of a project. Therefore, making architecture a central concept (as is at
the core of RUP) this type of rework can be largely prevented.

Second, offshore software developers need to be trained to increase their understanding
of software architecture. The offshore shortage of software architects leads to limited
understanding of the importance of software architecture.

Third, a process needs to be in place for both initial dissemination of architecture design
as well as the feedback process that follows it. In the next section, we will describe some
best practices regarding dissemination of architecture design as well as architecture
implementation-related feedback. Such best practices should be institutionalized in a
process so that common pitfalls may be avoided.

Fourth, increased allocation of resources in (1) architecture design and representation
and (2) guidance during the implementation phases from the onshore architect, is likely to
lower budget overrun. Conversely, we found, limiting onshore design time and architect
availability results in budget overruns. Determining how many additional resources
should be spent on software architecture design, representation and dissemination is
not straightforward. As a guideline, in traditional (non-agile) development projects,
between 70 and 80 percent of the architecture should be designed and represented
when implementation commences. All architecturally significant use cases must be
addressed in that initial architecture design.

5.5.2 Best Practices

Best practices are categorized in architecture design development, architecture design
dissemination, the SAD, the architecture feedback process and architecture compliance.

Architecture Design Development

One strategy to ensure that the offshore team is more knowledgeable regarding soft-
ware architecture design is to write the SAD together with the offshore technical team
lead. For both cases A and B, in hindsight, the architects found that the SAD was not
mature enough to be transferred to the offshore team. For a typical custom software
development project, the majority of the architecture should therefore be stable before
the construction phase. To this end, the “biggest mistakes” have to be removed in the
elaboration phase. At the very least a POC of the architecture should be made during
the inception phase. Investing some extra time into maturing the architecture and
creating a more detailed SAD pays off during the construction phase in terms of fewer
comments required during code reviews. This also amounts to fewer defects and less
required rework.

Recommendations and Best Practices 99

SAD contents

Software
Architecture

client

developer

in
te

re
st

vision
problem

statement

needs
features

use cases
analysis
design

implementation
deployment

Figure 5.3: Contents of an SAD and associated stakeholder interest

Various parts of the same SAD address different audiences (Figure 5.3). A more tech-
nical stakeholder is generally interested in the bottom levels of the pyramid whereas
a client would be more interested in the top layers. Apart from merely mentioning
the information related to each layer, the key to a high quality SAD is the traceability
between the layers.

Architecture Design Dissemination

The majority of respondents from all three cases agreed that every onshore architect
should visit the offshore team at least once, to transfer in person the SAD and the
explain its contents to the offshore development team. One developer explained that
it is important for the architect to explain in person the SAD to a development team
so that all developers, “understand the dept or importance of specific requirements — this
is something you cannot do from a document alone and it prevents that the solution moves
slightly in a different way.” A slightly cheaper solution is to have at least one senior
developer of the offshore team to travel to the onshore location during the initial
software architecture development phase.

Successful dissemination of architecture requires that multiple communication

100 A Theory of Coordination of Software Architecture Design in GSD

channels are used to disseminate a single message. In addition to the SAD, the use of
personal video conferencing sessions, telephone, e-mail and synchronous messaging
should be used to repeat that same message. The frequency of use of these tools should
be high. The objective for an architect is to give a lot of guidance after the SAD has
been introduced so that all principles are properly understood.

Case C (Chapter 4) used a method which they called “continuous verification.” The
essence of the method is that short bursts of design information are sent offshore —
mostly by means of video conferencing. The offshore team is then asked to summarize
the design information sent and to report back to the onshore team. This way, a
verification can take place if the design information was sent and received as intended.
A by-effect is that the onshore team members need to carefully phrase their design
information and that the offshore team members need to listen well and ask critical
questions about what is unclear to them.

The iteration approach used in Case C requires a lot of interaction between team
members in general and the onshore and offshore locations in particular. However,
this strategy requires a client that is able and willing to have (very) frequent meetings
throughout the project.

The SAD

As elaborated on earlier, SADs needs to both be clearer and more detailed than they
were, found in e.g. cases A and B, because less contact between the development team
and the architect takes place in a GSD context. However, an SAD that is too thick is
less likely to be read in its entirety. The use of a common template for architecture
representation is seen a beneficial. It requires architects to codify information they
might otherwise have omitted. The use of UML is not seen by architects as essential
for clear architecture representation. Architects argue that one, “should use what gives
most clarity.” However, that architects seem to take intended audience(s) into limited
account and that offshore developers do seem to share a preference for UML. It might
therefore be beneficial to take the use of UML for architecture representation into
consideration. At least a legend should be used to avoid unclarity about the meaning
of specific elements used in box-and-line diagrams.

Architecture information should be codified before and during the construction
phase. For project-based software development, organizations, budget quickly “dis-
appears” after a system is delivered. In addition, significant architectural drift (Rosik
et al., 2010) takes place during the construction phase. Moreover, as employee turnover
is relatively high (particularly in Indian development organizations), team members
and their knowledge regularly disappear from a project. Therefore documentation in
general and the SAD in particular should be kept up-to-date during the project.

Conclusions and Future Work 101

Architecture Feedback Process

Almost all developers in cases A an B complained about delays due to the unavail-
ability of software architecture information. Somebody with intimate knowledge of
the software architecture should therefore always be available albeit not necessarily
physically. This is difficult to explain to project leaders, given that cost reductions are a
strong driver for GSD and that software architects are expensive resources due to their
seniority. In addition to the trip that an architect should make to explain the SAD, the
architect is recommended by some respondents to again travel to the offshore location
during the first code reviews session. About this trip, the offshore project leader from
Case A explained that, “this provides a motivation for the developers — it tells them that
somebody cares for them, sits besides them and helps them resolve issues.” To create a feeling
of working in a single team, a method was used in Case C to make video conferencing
sessions more like actual conversations — such as the ones at a “local coffee machine.”
Team members made it a habit to not get directly to business at the start of such a
session: “Each video conference we spend about ten minutes talking about private things.” In
addition he notes that it is important to enrich the conversation with information that
is contextual such as “funny clothing that someone was wearing or [perhaps] spend some time
talking about a mistake you made.” The goal of these habits is to build up a relationship
like you would with local team members.

Architecture Compliance

Less complex architectures are less difficult to disseminate and are more easily adhered
to. For architectures implemented in a GSD setting it is therefore even more pertinent
to limit component coupling and increase component cohesion. For very complex
architectures, the cost reductions that GSD potentially offers are likely to be offset by the
time it costs to represent and disseminate architecture design and attain architectural
compliance.

5.6 Conclusions and Future Work

Knowledge codification has the potential to mitigate some of the problems that are
the result of the distances that GSD introduces. The opportunity to develop quality
documentation, however, is limited. Cost reductions, a focus on implementation-
related activities and a general lack of knowledge about software architecture lead
to poor architecture design, coordination and dissemination. The lack of knowledge
regarding software architecture is a genuine problem in the sense that it is a hurdle
to be overcome if GSD projects are to make architecture a central concern. However,
cost reductions at the expense of architecture design, coordination and dissemination
as well as the tendency to give priority to implementation-related activities, provide

102 A Theory of Coordination of Software Architecture Design in GSD

a stark contrast with the claim made by all respondents that software architecture is
such an important aspect of software development.

