
Architecture design in global and model-centric software development
Heijstek, W.

Citation
Heijstek, W. (2012, December 5). Architecture design in global and model-centric software
development. IPA Dissertation Series. Retrieved from https://hdl.handle.net/1887/20225

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/20225

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/20225

Cover Page

The handle http://hdl.handle.net/1887/20225 holds various files of this Leiden University
dissertation.

Author: Heijstek, Werner
Title: Architecture design in global and model-centric software development
Date: 2012-12-05

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20225
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter1
Introduction

In this chapter the concepts central to this dissertation as well as the study motiva-
tion and objectives are discussed. In addition, the research approach and associated
research methods are outlined.

1.1 Central Concepts

At the first NATO Software Engineering Conference in 1968 in Garmisch, Germany,
it was established that a more structured approach to software development was
required to battle the “software crisis” – software of poor quality resulting from late
and canceled projects in which large software systems were built:

“The general admission of the existence of the software failure in this group of
responsible people is the most refreshing experience I have had in a number of years,
because the admission of shortcomings is the primary condition for improvement.”
— E.W. Dijkstra (Naur and Randell, 1968)

Software development was thenceforth regarded as a profession (“software engineer-
ing”). While not completely new, this neologism reflected a desire to approach the
design and implementation of software as systematically and rigorous as civil engineers
go about constructing a bridge or a skyscraper.

The concepts central to this dissertation are all aimed at contributing to this strive to-
wards more structured development of software systems: Software architecture (clearly
an analogy derived from the civil engineering discipline) strives to the structured de-
sign of software systems — much like its namesake counterpart. The Rational Unified
Process (RUP) is a collection of best practices in an integrated process framework.
The closely related Unified Modeling Language (UML) aims to standardize software
modeling to better align stakeholder requirements. In line with UML, Model-Driven

2 Introduction

Development (MDD) introduces the notion of abstraction from implementation details
by means of modeling with high-level development languages.

Global Software Development (GSD), software development taking place at ge-
ographically separated locations, is driven by considerations such as development
speed, software quality and a sheer lack of educated software engineers (notably the
case for the Netherlands). GSD is very common. Salger (2009) even refers to GSD as

“the new standard mode of software development.” In the following sections GSD, software
architecture, RUP, UML and MDD will be elaborated on in more detail.

1.1.1 Global Software Development

Global software development (GSD)1 can be defined as:

“Software work undertaken at geographically separated locations across national
boundaries in a coordinated fashion involving real time (synchronous) and asyn-
chronous interaction” (Sahay et al., 2003)

Many motivations exist for geographically distributing software development activities.
A popular and commonly mentioned argument is development cost reduction (cf.
Šmite et al., 2010): Developer wages in emerging economies are much lower than
they are in Western Europe and the United States (the main sources of GSD work).
Other motivations, often mentioned in combination with or even secondary to cost
reductions, include (mostly derived from Conchúir et al., 2009):

• Improved software design modularization
Various distributed software development teams can work on different compo-
nents of a single software system. This enhances component cohesion and (by
definition) decreases coupling (Ebert and De Neve, 2001, Grinter et al., 1999) —
both seen as desirable traits from the perspective of software quality (Eder et al.,
1994).

• Leveraging time zone shifts
By adopting the so-called “follow-the-sun” development model, more hours
can be worked on a working day. In theory, this enables schedule compres-
sion (Carmel and Agarwal, 2001, Herbsleb and Grinter, 1999b, Herbsleb et al.,
2000).

1GSD is synonymous to distributed software development and global software engineering (GSE) —
both often encountered in scientific literature. Outside scientific literature, sourcing and (the more specific
term) outsourcing are often incorrectly used to denote GSD. Where outsourcing may refer to any work
done by external entities, GSD particularly pertains to the outsourcing of software development work.
Another commonly encountered hyponym of outsourcing is offshoring. Offshoring specifically defines the
distance to the outsourcing destination to be significant (overseas). The neologisms farshoring and (antonym)
nearshoring both aim to clarify the relative degree of this distance.

Central Concepts 3

• Access to larger skilled labor pool
Many organizations are confronted with limited software engineer availability
and are forced to look beyond their regional or national borders. GSD provides
the opportunity to utilize the vast amounts of software engineering graduates in
countries such as India and Brazil (Carmel and Agarwal, 2001, Herbsleb et al.,
2000).

• Closer proximity to market and client
GSD can be employed to gain proximity to a market or client which may be
beneficial for several reasons: A software firm may seek to create a more “intimate
relationship” with a client (Porter, 1985). The objective might be to be better able
to localize software for local markets (Grinter et al., 1999, Herbsleb et al., 2000).
Another reason might be that an organization maneuvers into a (local) position
for merger or acquisition.

• Innovation and shared best practice
Software engineers from diverse backgrounds could share their approaches and
bring diverse and novel solutions to problems.

Not all these potential benefits materialize: Due to significant overhead in commu-
nication, travel cost, additional resources required for governance and e.g. turnover
at the offshore site (Carmel and Tjia, 2005), potential cost reductions are often not
realized (Conchúir et al., 2009). Instead of increasing software development speed,
time zone differences introduce a set of problems due to limited windows for collab-
oration (Carmel and Agarwal, 2001, Holmström et al., 2006, Conchúir et al., 2009).
And according to Conchúir et al. (2009), “[e]mployees who feel threatened by low-wage
colleagues are unlikely to share more than necessary to get the job done,” thereby mitigating
any potential benefits related to shared best practice. Nevertheless, GSD is increasingly
the rule rather than the exception.

While Sahay et al. explicitly include the crossing of national boundaries in their
definition, some of the problems associated with GSD arise when software engineering
project team members are separated as little as 30 meters (Allen, 1977). The “global”
scale of GSD is regarded as adding additional complexity as it is found to introduce
three different notions of distance (Carmel and Agarwal, 2001, Ågerfalk et al., 2005,
Holmström et al., 2006):

• Geographical distance
refers to the physical distance between the development locations. As this dis-
tance increases, the opportunity for co-located teamwork reduces and also be-
comes progressively harder to organize.

• Temporal distance
refers to time zone differences between development sites. Team working hour
overlap (in terms of potential for synchronous collaboration) decreases as this

4 Introduction

distance increases. Note that geographical and temporal distance are only related
if the geographical distance has a longitudinal component.

• Socio-cultural distance
refers to differences in beliefs, norms, values and customs. As this distance
increases it becomes increasingly difficult to communicate effectively due to
misunderstandings resulting from misinterpretations of language and behavior.
Distances between different national and organizational cultures can be measured
by plotting them on a set of dimensions including individualism (the degree to
which a culture is individualistic or more group-oriented) and “power distance”
(the degree to which a culture is hierarchical or more egalitarian) (Hofstede, 1984,
Trompenaars and Prud’homme van Reine, 2004).

Solutions for the problems associated with distance so far include (Herbsleb and
Grinter, 1999a, Carmel and Agarwal, 2001, Herbsleb et al., 2005):

• Strategic selection of the offshore location
To overcome one or more distances the offshore location can be selected based
on limited geographical distance (e.g. Amsterdam — Warsaw), limited temporal
distance (e.g. Amsterdam — Capetown) or limited socio-cultural distance (e.g.
Amsterdam — Tel Aviv). In some instances, all three distances can be overcome
to some extent (e.g. Seattle — Vancouver).

• Limit the need for intense collaboration
To limit the impact of the three distances, one can divide the system development
work in such a way that different development sites are not required to collaborate
much.

• Assign a liaison
To reduce the socio-cultural divide between development teams, a liaison can be
appointed who regularly physically visits the locations.

• Plan so that synchronous communication takes place frequently
Asynchronous communication methods such as e-mail and fora introduce delays
and offer limited opportunity to ensure messages have been properly under-
stood. Increasing temporal distance makes for a more challenging process to
plan meetings by means of telephone or a video-link. Not all synchronous com-
munication means are equally useful. Socio-cultural distance hampers direct
communicated to a lesser extent when richer communication media such as video
are used (Isaacs and Tang, 1994).

1.1.2 Software Architecture

Much in line with the ambition to mimic the professional approach of the engineering
disciplines, the subdiscipline of software architecture specifically focuses on the design

Central Concepts 5

logical view development view

process view physical view

use-case view
(scenarios)

Figure 1.1: The 4 + 1-view model

of the main structure of a software system using tried and tested principles. While the
term software architecture has been around as long as the term software engineering,
only in the past two decades or so has it received much attention as an academic
field of study. The many definitions that have been proposed since the early stages of
this “software architecture renaissance” (Kogut and Clements, 1994) have in common
the notion of components and their interconnections derived from Perry and Wolf
(1992). For example, a commonly accepted definition of software architecture is given
in ISO/IEC/IEEE standard 42010 (ISO/IEC/IEEE, 2011) (a standard that has recently
superseded IEEE 1471 (IEEE, 2000)): Software architecture is

“[t]he fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles guiding its
design and evolution.”(ISO/IEC/IEEE, 2011)

Because it concerns design at the software component level (as opposed to the de-
sign of those components themselves), software architecture is a pivotal vehicle to
address and guarantee non-functional requirements such as security, maintainability,
extendability and portability. Since the interest in software architecture research has
increased, several important concepts were introduced. First, the influential 4 + 1-view
model (Figure 1.1, Kruchten, 1995) expounded that, for representational clarity and
the purpose of completeness, a software architecture is to be described according to
predefined views. These views are defined so that they each accommodate the different
issues that stakeholders have. The feedback that these stakeholders are then able to
give is thought to benefit the fitness and other general design aspects of the software
architecture.

6 Introduction

Class1

-attribute1:int

+operation1(p1:int):float[]

Class2

~attribute2:int1..*=42

#operation_2(p2:short[]p3:int):void

Class3

Interface1

+operation3():void

Association1

1..*

theEnd 0..1

theOtherEnd

« realize »

Figure 1.2: Example of a UML class diagram

Second, software architecture representation is thought to benefit from the inclusion
of a clear rationale for its design (e.g. Bratthall et al., 2000). As a result, software
architecture is seen as a collection of “design decisions”. If the rationale for these
design decisions changes (because of requirement changes or changes in the system’s
environment), so might the eventual software architecture design.

Third, software architecture is no longer only thought of as a representation of
the prescription of the organization of the system components to be (an artifact). Soft-
ware architecture also comprises activities related to the process of designing and
communicating that architecture as well as ensuring eventual compliance (a process).

1.1.3 The Unified Modeling Language

The Unified Modeling Language (UML) is a graphical modeling language geared
towards modeling object-oriented software systems (Rumbaugh et al., 1990). The
first version (1.0) of the UML was the result of combining the object modeling tech-
nique (OMT, Rumbaugh et al., 1990), object-oriented software engineering (OOSE,
Jacobson et al., 1992) and the modeling language Booch (Booch, 1995a). In 1997, it was
proposed as a standard to the Object Media Group (OMG) which it became several
years later (ISO/IEC, 2005). The most recent version of the UML (Object Management
Group, 2011) was released in August 2011 and consists of 14 diagram types which are

Central Concepts 7

divided into structural and behavioral diagrams. The most commonly used diagram
types are (Dobing and Parsons, 2006):

• The class diagram
A structure diagram that outlines the relations between the classes (entities) in a
system. An example of a class diagram is depicted in Figure 1.2.

• The use case diagram
A structure diagram that depicts an overview of a system in terms of the relation
between various required usages of a system.

• The sequence diagram
A behavior diagram in which a sequence of messages between instantiations of
objects are modeled.

UML is widely used throughout industry and has abundant tool support. In addition,
UML is prescribed to be used in RUP (see Section 1.1.4). In practice, UML is used
for a variety of purposes. Ordered from informal to formal in the sense of diagram
completeness and adherence to the UML standard, these are:

• As a sketch
Developers can use the notational elements of UML to quickly draw part of a
system for comprehension and communication purposes. For sketches, UML
elements such as classes and actors might be used in combination with informal
or domain-specific constructs (Cherubini et al., 2007).

• For communication of system design
By modeling parts of a system one can explain e.g. how a system component
is supposed to function. Depending on how much of a system is modeled, this
approach can be a form of model-centric development.

• As a blueprint
In this case, most system analysis and design has been done and the resulting set
of UML diagrams then is to be used for implementation. This type of develop-
ment approach is referred to as model-centric development. UML is likely to be
used as a blueprint in the context of GSD where design and coding activities take
place at different geographical locations.

• As a programming language
UML diagrams can be used to generate code. The UML diagrams must strictly
adhere to a predefined syntax. This type of development approach is referred to
as Model-Driven Development (MDD, see Section 1.1.5).

8 Introduction

1.1.4 The Rational Unified Process

The Rational Unified Process (RUP) is an adaptable, architecture-centric, risk-driven
process framework that is commonly used in software engineering practice. It provides
a disciplined and iterative approach to the assignment of tasks and responsibilities in
software development projects. RUP is offered as a set of tools of which the most impor-
tant is a hyperlinked knowledge base with sample artifacts and detailed descriptions
for many types of activities of the software engineering process.

RUP is the product of a development process at Rational Software in the 1980s and
the 1990s, based on Boehm’s spiral model (Boehm, 1986, 1988) and a development pro-
cess at the Swedish company Objectory AB, based on the Objectory Process developed
by Jacobson (Jacobson, 1987, Jacobson et al., 1992). The merged process — initially
called the Rational Objectory Process — was described in detail by Kruchten (2003b).
Currently, the framework is owned by IBM2 and is offered as a part of the IBM Rational
Method Composer3 that allows customization of the process.

In RUP, software engineering processes are organized into phases and iterations. A
project consists of four phases which correspond with the first four main stages of the
waterfall model: requirements definition, system and software design, implementation
and unit testing, and integration and system testing (Ghezzi et al., 2002):

• During the inception phase the business case and the financial forecast are created
as well as a use-case model, a risk assessment and project description.

• The elaboration phase is used to perform problem domain analysis and to shape
the architecture.

• During the construction phase the development and integration of components
are the central activities.

• Finally, the transition phase the software system that is developed will be imple-
mented at the client’s organization.

In RUP, the effort that is spent on activities is categorized into nine “disciplines”. These
disciplines are depicted in the iconic “RUP Hump” diagram (Figure 1.3):

1. The business modeling discipline is concerned with activities that bridge business
and software engineering in order to understand business needs and to translate
them to software solutions.

2. The requirements discipline is concerned with elicitation and organization of
functionality and non-functional demands and aims to create a description for
what the system should do.

2https://www-01.ibm.com/software/awdtools/rup/
3https://www-01.ibm.com/software/awdtools/rmc/

https://www-01.ibm.com/software/awdtools/rup/
https://www-01.ibm.com/software/awdtools/rmc/

Central Concepts 9

Figure 1.3: A recent version of the RUP “hump” diagram

3. The analysis and design discipline is concerned with the mapping of requirements
to a formal design. The resulting design model acts as a input to the implemen-
tation. A modeling language such as UML can be used to design classes and
structure them into packages with well-defined interfaces.

4. By means of activities that are part of the implementation discipline, the actual
implementation of the components is made, either by reuse or by creation of new
components.

5. The test discipline serves to verify the completeness and correctness of the im-
plementation of the requirements. This discipline is also responsible for the
elicitation of defects and their respective fixes.

6. The deployment discipline is concerned with product releases and end-user deliv-
ery of these releases.

7. Activities that fall in the configuration and change management discipline deal with
change requests regarding project artifacts and models and version control of
these changes.

8. The project management discipline focuses on progress monitoring of iterations
through collection and analysis of metrics, planning iterations and management
of risk.

10 Introduction

9. The environment discipline aims at activities that facilitate the configuration of a
project and project support in general by means of tools and supporting processes.

1.1.5 Model-Driven Development

Model-Driven Development (MDD, Selic, 2003) is a development paradigm in which
models (instead of code) are the central development artifacts. By working with
abstractions (models), the complexities of lower-level implementations are handled by
a separate component (often a model-interpreter or code-generator). The fundamental
idea behind MDD is not new but rather the natural continuation of the trend of raising
the level of abstraction at which software is developed (Atkinson and Kühne, 2003).
The core concepts behind MDD are:

Table 1.1: MDD provides a common language that augments the individual representations
each software engineering stakeholder uses

commonly
used new
representation representation

stakeholder method method

Client natural language
Domain-
Specific
Modeling
Language

Business Analyst BPMN

Requirements Engineer use cases

Designer UML

Software Architect ADL

Programmer source code

1. Model-centrism
In MDD models, rather than code, are to be treated as first-class entities. This
entails that software is designed and implemented using (often domain-specific)
models as a primary vehicle.

2. Code generation
To enable model-centrality over code, (significant) portions of code of the software
implementation are generated from models.

3. Model reuse
The use of models that are domain-specific implies that models can be reused for
other software systems within the same domain.

Problem Statement 11

An important (hypothesized) benefit of MDD is that the use of models as a central
language increases the involvement of stakeholders as they all understand the models.
This presumably is particularly so when the applied modeling language is tailored
to describe a certain domain. Such a modeling language is called a Domain-Specific
Language (DSL, Van Deursen et al., 2000). In practice, such a modeling language is
often a subset of UML that is extended with domain-specific stereotypes. Such a DSL
essentially replaces the “native language” of team members of different disciplines
(Table 1.1). Each stakeholder is expected to understand and to express himself using
the DSL. A programmer and the client — whose “native languages” are very different
in code-centric development — both use the same constructs and can therefore directly
communicate with one another.

1.2 Problem Statement

GSD projects are associated with increases in risk and complexity which aggravate their
difficulty and failure rate (Sharma and Seshagiri, 2006). A common approach to GSD is
a type of “transfer by development stage” (Mockus and Weiss, 2001) where require-
ments gathering and architecture design activities take place at a different geographical
location than the implementation-related activities. To ensure compliance to software
requirements, the software implementation must adhere to the software design. Much
software design is thought to be disseminated informally. The possibilities for informal
interaction between team members in GSD settings, however, is limited. In addition,
offshore developers are often not able to directly contact a member of the design team
due to geographical distance. Synchronous communication is often difficult due to
time zone differences. Even if an architect can be contacted, communication can be
hampered by socio-cultural differences such as language barriers.

Nevertheless, developer understanding of software design and its rationale is not
only believed to benefit software quality (Soloway et al., 1988, Tilley and Huang,
2003, Hayes, 2003, Kotlarsky et al., 2008) but is imperative to ensure that a software
implementation satisfies its requirements.

In summation: While software design is more challenging to communicate in a GSD
context we are unsure how software design is developed, represented, communicated
and coordinated in the context of GSD. In addition, we are unsure what the effects are
on GSD of increasingly popular MDD approaches. In these approaches, design plays
an even more central role.

1.3 Research Objectives

The objective of this dissertation is to investigate the role of software architecture
design in global software development so to improve the success rate of GSD projects

12 Introduction

in terms of delivery on-time and within budget. The main research question is:

How can software architecture design be effectively represented, disseminated
and coordinated in the context of model-centric and model-driven global software
development ?

This question is addressed in the context of custom software development as explicitly
opposed to product software development. An important characteristic of custom
software development is that the majority of its software architecture is project-specific
and that team members mainly collaborate in the context of a single project.

To address the main research question, software architecture design is explored
both as a process and as an artifact in the context of global, model-centric software
development. In addition, as a case of (very) model-centric development, the effects of
application of model-driven software development tools and techniques in the context
of GSD are studied. We regard MDD as a special case of model-centric software
development in which models are more centric — to the extent that they surpass source
code as the primary development artifact. To this end, three sub-questions have been
defined:

RQ1 How is software architecture represented, disseminated and coordinated in the
context of global software development? (software architecture as a process)

RQ2 How can we design software architecture documentation so that it is understood
well by developers in the context of global software development? (software
architecture as an artifact)

RQ3 How does the application of model-driven development tools and techniques
affect the problems associated with global software development? (model-driven
development)

1.4 Research Methodology

Empiricism (from Ancient Greek — ὲμπειρία) is a philosophical doctrine that holds that
knowledge is derived from experience (Locke, Berkeley, Hume; see e.g. Russell, 1945).
Contrastingly, the doctrine of rationalism (Descartes, Leibniz, Spinoza; see e.g. Russell,
1945) maintains that knowledge is gained independently of experience. The empirical
research paradigm aims to corroborate the presence of a causal relation between a cause
and its hypothesized effect. Analysis of empirical observations relies on inductive
reasoning — the practice of inferring principles or rules from observed facts.

In this section and the next, a distinction is made between empirical research
methodologies, which offer a comprehensive and structured approach to address
research objectives, and data collection techniques, which are used in the context of a
particular research method. The empirical research methodologies in this thesis include
case studies, grounded theory and a controlled experiment.

Data Collection Techniques 13

1.4.1 Case Studies

According to Runeson et al. (2012), a case study is ‘‘an empirical enquiry that draws on
multiple sources of evidence to investigate one instance (or a small number o instances) of a
contemporary software engineering phenomenon within its real-life context, especially when
the boundary between phenomenon and context cannot be clearly specified”. The majority of
studies reported on in this dissertation, apply the case study approach. Yin defines
three types of case studies of which the explanatory case study (understanding the
relation between a phenomenon and its causes) and exploratory case study (analyzing
patterns in collected data) are used in this dissertation. The case study method is used
in chapters 2, 3, 4 and 7. In designing, analyzing and reporting the findings of these
case studies, the guidelines as prescribed by Stake (1995), Yin (2002) and Runeson and
Höst (2009) were applied.

1.4.2 Controlled Experiments

An experiment is a formal, rigorous and controlled investigation in which the relation
between an effect and a cause is addressed (Wohlin et al., 2000). In a controlled
experiment the effect of a treatment on an experimental group is tested and compared
to a control group for which the treatment was absent. If the experiment design is in
line with the study objective and executed in line with methodological guidelines (such
as described in Wohlin et al., 2000), obtained results are regarded as strong evidence. A
disadvantage of using experiments is that because of the required exclusion of other
variables (alternative explanations) the experimental setup has little semblance of
industrial reality. This potentially limits the generalizability of results. A controlled
experiment was used in Chapter 6.

1.4.3 Grounded Theory

Grounded theory is an analysis method that is geared towards theory development.
Grounded theory (Strauss and Corbin, 1990) is rooted in the data that has been collected
while observing a phenomenon by means of induction. An example of the associated
method of data collection and analysis for a software project is schematically outlined
in Figure 1.4. Grounded theory can be used to analyze data collected as part of a case
study. The principles of grounded theory were followed in chapters 5 and 8.

1.5 Data Collection Techniques

The empirical paradigm requires observation of the subject – preferably in its natural
habitat. Therefore, industrial software development projects were used as a source for
most studies reported on in this dissertation. Obtaining valid industrial data requires
the application of a set of procedures that include (but is by no means limited to)

14 Introduction

development
project

team members

observations

observations

observations

statements

intv. 1 transcr. 1

intv. 2 transcr. 2

intv. 3 transcr. 3

intv. 4 transcr. 4

intv. n transcr. n

factor 1
factor 2
factor 3
factor 4
factor 5
factor 6
factor 7
factor n

interview
team members

transcribe
audio recordings

codify statements identify factors

validation

Figure 1.4: The grounded theory data collection and analysis method – applied to a software
project

diligent inter- and intra-organization networking to obtain access to team members
and to gain permission to collect data, developing intelligent searching heuristics to
mine software repositories, adopting to the myriad of digital platforms that exists and
careful examination and obtaining means for triangulation (Basili and Weiss, 1984).
While this work can be rather labor-intensive, analysis of valid software engineering
data from industrial practice is necessary to support hypotheses and theories in the
academic field. Conversely, conclusions based on analysis of careful observations lead
to insights that are also valuable to industry. The data collection techniques employed
in this dissertation include interviews, document analysis and software repository
mining.

1.5.1 Software Repository Mining

Software repository mining is a technique that involves obtaining information from
software repositories such as software configuration and change management systems
(SCCMSs), defect tracking systems or time registration systems. All sorts of data are
stored in repositories and all can be mined. Data typically mined includes source
lines of code, software models, defect data, requirements, change requests, particu-
lar documents such as the software architecture description and system and project
characteristics such as functional size estimation, cost structure, project planning and
information pertaining to team member time registration.

Depending on the system and the nature of the information needed, various dif-
ferent approaches might be required to mine a software repository. More structured
data requirements such as the build-up of the code of a particular component over all
revisions requires a different strategy. The commonly used SCCMS Subversion (SVN)
provides multiple interfaces and therefore lends itself well to access via a scripting

Data Collection Techniques 15

language such as Perl4 or GNU Bash5. However, depending on particular (often client-
specific) technology requirements, a software development organization might use
various different SCCMSs from which a researcher might need similar data. IBM’s
ClearCase6 also permits the use of Perl but requires different handling from SVN. For
Microsoft .Net7 projects, the designated SCCMS often is Team Foundation Server8,
which only permits very limited requests. Each repository mining situation therefore
requires a specific approach dependent on the data needed and the type of system
being mined. Specific data collection methods have been elaborated on in each separate
chapter.

1.5.2 Document Analysis

In the context of this dissertation, document analysis pertains to the structured dissec-
tion of software engineering documentation including process descriptions, software
architecture design documentation, project management reports and post-mortem
project reviews. For comparative analysis, abstractions of concepts are created on the
basis of which documents can be compared. In the case of project management reports
and post-mortem project reviews, documents are essentially treated as a software
repository from which data is gathered.

1.5.3 Interviews

The interview is a qualitative data collection technique that, “seeks to cover both a factual
and a meaning level” (Kvale, 1996). Interviews are used when data needs to be collected
about phenomena that cannot be obtained using quantitative measures. The type of
interview used for data collection in the context of this dissertation is the “qualitative
interview” which is “a sort of guided conversation” (McNamara, 1999). The interviews
are standardized in the sense that similar questions are asked of each interviewee
(depending on that person’s role) and open-ended in the sense that there is ample room
for interviewees to elaborate. This type of interview is also referred to as semi-structured
or focused.

1.5.4 Data Sources

For this dissertation, data (artifacts, other project-specific data and narratives and
opinions from employees) were obtained from nine large, international software devel-
opment organizations.

4http://www.perl.org/
5https://www.gnu.org/software/bash/
6https://www-01.ibm.com/software/awdtools/clearcase/
7https://www.microsoft.com/net
8http://msdn.microsoft.com/en-us/vstudio/ff637362.aspx

http://www.perl.org/
https://www.gnu.org/software/bash/
https://www-01.ibm.com/software/awdtools/clearcase/
https://www.microsoft.com/net
http://msdn.microsoft.com/en-us/vstudio/ff637362.aspx

16 Introduction

Projects A and B (studied in chapter 3) were executed by the same organization
(which is one of the three organizations from Chapter 2). Projects C and D (studied
in Chapter 3) and cases A, B and C (studied in Chapter 4) are all GSD projects and
were all executed by the same two organizations. Furthermore, project C (Chapter 3) is
used for different analyses in Chapters 7 and 8. Data sources are elaborated on in more
detail, in each chapter.

1.6 Contributions and Outline

The contribution of this dissertation is threefold. First, this dissertation provides
sound empirical evidence about the necessity of careful and structured dissemination
and coordination of software architecture design in the context of global software
development.

Second, this dissertation provides recommendations regarding representation of
software architecture design in the context of global software development.

Third, this dissertation provides sound empirical evidence that suggests that ap-
plication of MDD tools and techniques significantly changes the traditional software
architecture process and that this might be beneficial in the context of global software
development. Additionally, recommendations for the application of MDD tools and
techniques are provided.

This dissertation is structured as follows:

Chapter 2 — Comparison of Industrial Process Descriptions for GSD: In this chap-
ter, the main objective is to explore how software development process descrip-
tions used by three software development organizations are tailored to accommo-
date for GSD (RQ1). Parts of this chapter were published earlier (Heijstek et al.,
2010).

Chapter 3 — Architecture and Design Process Evaluation Through Effort Visual-
ization: In this chapter, the main objective is to assess visually how resource
allocation for global software development differs from co-located software de-
velopment (RQ1). Parts of this chapter were published earlier (Heijstek and
Chaudron, 2007, 2008a,b).

Chapter 4 — A Multiple Case Study of Coordination of Software Architecture De-
sign in GSD: In this chapter, the main objective is to chart how software architec-
ture is coordinated and disseminated in three large cases of industrial, custom,
global software development (RQ1).

Chapter 5 — A Theory of Coordination of Software Architecture Design in GSD:
In this chapter, the main objective is to relate and reflect on the factors that shape
how software architecture is disseminated and coordinated in large, industrial,
custom, global software development projects (RQ1).

Publications 17

Figure 1.5: Organization of the four chapters that address RQ1

Chapter 6 — Experimental Analysis of Representation of Software Architecture
Design: In this chapter a controlled experiment is discussed that addresses how
software developers comprehend software architecture representations (RQ2).
Parts of this chapter were published earlier (Heijstek et al., 2011).

Chapter 7 — Contrasting Model-Driven Development with Code-Centric Develop-
ment: The aim of this chapter is to explore how the characteristics of a large scale,
industrial model-driven development project in the context of global software
development compare to non-MDD projects (RQ3). Parts of this chapter were
published earlier (Heijstek and Chaudron, 2009).

Chapter 8 — Analysis of the Consequences of Model-Driven Development for GSD:
In this chapter, the main objective is to assess how the application of MDD tools
and techniques impact the problems associated with Global Software Develop-
ment (RQ3). Parts of this chapter were published earlier (Heijstek and Chaudron,
2010)

Chapter 9 contains a summary of the findings, the conclusions, an outline of future
work and a reflection on the research process. The relation between in the four chapters
that address RQ1 is visualized in Figure 1.5.

1.7 Publications

This is a chronological list of publications that were (co-)authored during this doctoral
research:

1. Werner Heijstek and Michel R. V. Chaudron (2007) Effort distribution in model-
based development. In Proceedings of the 2nd Workshop on Model Size Metrics
(MSM 2007) pages 26–38, Nashville, Tennessee, USA

18 Introduction

2. Werner Heijstek and Michel R. V. Chaudron (2008) Exploring Effort Distribution
in RUP Projects. In Proceedings of the 2nd International Symposium on Software
Engineering and Measurement (ESEM 2008) page 359, Kaiserslautern, Germany

3. Werner Heijstek and Michel R. V. Chaudron (2008) Evaluating RUP Software
Development Processes Through Visualization of Effort Distribution. In Pro-
ceedings of the 34th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA 2008) pages 266–273, Parma, Italy

4. Werner Heijstek and Michel R. V. Chaudron (2009) Empirical Investigations of
Model Size, Complexity and Effort in Large Scale, Distributed Model-Driven
Development Processes — A Case Study. In Proceedings of the 35th Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA 2009)
pages 113–120, Patras, Greece

5. Werner Heijstek, Michel R. V. Chaudron, Libing Qiu and Christian C. Schouten
(2010) A Comparison of Industrial Process Descriptions for Global Custom
Software Development. In Proceedings of the 5th International Conference on Global
Software Engineering (ICGSE 2010) pages 277–284, Princeton, New Jersey, USA

6. Werner Heijstek and Michel R. V. Chaudron (2010) The Impact of Model-Driven
Development on the Software Architecture Process. In Proceedings of the 36th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA
2010) pages 333–341, Lille, France

7. Christoph J. Stettina and Werner Heijstek (2011) Five Agile Factors: Helping
Self-Management to Self-Reflect. In Proceedings of the 18th European System &
Software Process Improvement and Innovation Conference (EUROSPI 2011) pages 84–96,
Roskilde, Denmark

8. Jorge A. Osorio, Michel R. V. Chaudron and Werner Heijstek (2011) An Empirical
Study into the Benefits of Using an Iterative Development Process Versus a
Waterfall Process. In Proceedings of the 37th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA 2011) pages 453–460, Helsinki, Finland

9. Werner Heijstek, Thomas Kühne and Michel R.V. Chaudron Experimental Anal-
ysis of Textual and Graphical Representations for Software Architecture De-
sign. In Proceedings of the 5th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2011) pages 167–176, Banff, Alberta,
Canada

10. Hugo H. Schoonewille, Werner Heijstek, Michel R.V. Chaudron and Thomas
Kühne (2011) A Cognitive Perspective on Developer Comprehension of Soft-
ware Design Documentation. In proceedings of the 29th ACM International Confer-
ence on Design of Communication (SIGDOC 2011) pages 211–218, Pisa, Italy

Publications 19

11. Christoph J. Stettina and Werner Heijstek (2011) Necessary and Neglected? An
Empirical Study of Internal Documentation in Agile Software Development
Teams. In Proceedings of the 29th ACM International Conference on Design of Com-
munication (SIGDOC 2011) pages 159–166, Pisa, Italy

12. Christoph J. Stettina, Werner Heijstek and Tor Erlend Fægri (2012) Documenta-
tion Work in Agile Teams: The Role of Documentation Formalism in Achiev-
ing a Sustainable Practice. In Proceedings of the AGILE Conference 2012 Dallas,
Texas

13. Michel R. V. Chaudron and Werner Heijstek (2012) Quality Assurance for UML
Modeling In Proceedings of the Fifth International Conference on Frontiers of Informa-
tion Technology, Applications and Tools (FITAT 2012), Ulaanbaatar, Mongolia

14. Michel R. V. Chaudron, Werner Heijstek and Ariadi Nugroho (2012) How Ef-
fective is UML Modeling? — An Empirical Perspective on Costs and Benefits
Journal of Software and Systems Modeling vol. 11, issue 4, pages 571–580

The following manuscripts were under review at the time of writing this dissertation:

15. Ana M. Fernández-Sáez, Peter Hendriks, Werner Heijstek and Michel R. V. Chau-
dron (2012) The Role of Domain-Knowledge in Understanding Activity Dia-
grams — An Experiment

16. Rut Torres Vargas, Seher Altinay Soyer, Werner Heijstek and Michel R. V. Chau-
dron (2012) A Developer Perspective on the Role of Software Architecture
Documentation in Global Software Development

17. Erik Jan Philippo, Werner Heijstek, Bas Kruiswijk and Michel R. V. Chaudron
(2012) Requirement Ambiguity Not as Important as Expected — Results of an
Empirical Evaluation

