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Chapter 7

Predicting reading and
mathematics from neural

activity for feedback learning

This chapter is based on:
Peters, S., Van der Meulen, M., Zanolie, CK.K. & Crone, E.A. Predicting reading and mathematics

from neural activity for feedback learning: A longitudinal study (in revision, 2015).
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Abstract

Although many studies use feedback learning paradigms to study the process of learning in
laboratory settings, little is known about their relevance for real-world learning settings such as
school. In a large developmental sample (N = 228, 8-27 years), we investigated whether perfor-
mance and neural activity during a feedback learning task predicted reading and mathematics
performance two years later. The results indicated that feedback learning performance predicted
both reading and mathematics performance. Activity during feedback learning in left superior
dorsolateral prefrontal cortex (DLPFC) and left superior parietal cortex (SPC) predicted reading
performance, whereas activity in pre-supplementary motor area/anterior cingulate cortex (pre-
SMA/ACC) predicted mathematical performance. Moreover, left superior DLPFC and pre-
SMA/ACC activity predicted unique variance in reading and mathematics ability over behavioral
testing of feedback learning performance alone. These results provide valuable insights into the
relationship between laboratory-based learning tasks and learning in school settings, and the

value of neural assessments for prediction of school performance over behavioral testing alone.
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Introduction

Learning from performance feedback is an important skill allowing us to rapidly adjust behavior
based on changes in environmental demands (Holroyd & Coles, 2002). Thus, it is an adaptive
form of learning which allows individuals to flexibly and creatively adapt to a changing envi-
ronment in a successful way. Feedback learning is often investigated in controlled laboratory
settings to study the process of learning. However, it is unclear how feedback learning in these
controlled experimental paradigms relates to real-world learning in settings such as school. In this
study, we investigated this question in a large developmental sample of participants between 8-27
years, focusing on both neural and behavioral indices of feedback learning as predictors for
school performance two years later.

School performance can be measured in different ways. The most important school per-
formance skills taught in schools across the world are reading and mathematics, given that many
courses in school rely on children’s ability to read proficiently and perform mathematical calcula-
tions. Many children who are poor readers in school keep having difficulties with reading later in
life (O’Shaughnessy, Lane, Gresham, & Beebe-Frankenberger, 2003) and research has demonstrat-
ed that performance on mathematical tests predicts employability, productivity and salaries in
adulthood (Geary, 2000; Rivera-Batiz, 1992).

Although the link between laboratory-based feedback learning tasks and school perfor-
mance (e.g., mathematics and reading performance) is not yet clear, several studies have provid-
ed evidence that both feedback learning and reading and mathematics are linked to executive
functions. Executive functions are defined as the ability to behave in goal-directed actions in new
situations and to overcome automatic thoughts and behaviors (Garon et al., 2008). Executive
functions are thought to consist of three subprocesses, or basic executive functions: (1) working
memory, (2) inhibition and (3) switching (Huizinga et al., 2006; Miyake et al., 2000). Prior research
using structural equation modeling showed that complex executive function tasks, such as per-
formance on the classic Wisconsin Card Sorting Task (WCST), requires several basic executive
functions, such as working memory and task switching (Huizinga et al., 2006; Miyake et al., 2000).
It has been argued that complex cognitive tasks which rely on multiple subprocesses of executive
functions are the most reliable correlates of cognitive performance in daily life (Barcelo & Knight,
2002), possibly because these tasks are more similar to everyday challenges. Feedback learning
can also be interpreted as a complex executive control process, which most likely relies on multi-
ple subprocesses of executive functions (Peters & Crone, 2014), and may rely partly on working
memory capacity, given that feedback learning shares commonalities with the classic WCST
(Huizinga et al., 2006).

Evidence for the relationship between school performance and executive functioning
comes from numerous studies that demonstrated a link between working memory, inhibition and

switching on the one hand, and reading and mathematics performance on the other (Blair &
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Razza, 2007; Bull & Scerif, 2001; Raghubar, Barnes, & Hecht, 2010; Van der Sluis, De Jong, & Van
der Leij, 2004). The link between executive functioning and school performance is not surprising,
given that to develop reading and mathematics understanding, children probably need additional
cognitive skills. For example, children have to be able to understand grammatical and numerical
structure, keep track of the sentences read or mathematical steps taken before, and integrate in-
formation from long-term memory with current information to form a coherent view (Cain,
Oakhill, & Bryant, 2004; Landi, Frost, Mencl, Sandak, & Pugh, 2013), which are all processes inti-
mately related to executive functioning. This led us to hypothesize that feedback learning in con-
trolled laboratory settings is a valid predictor of real-world learning performance in schools.

A second reason why feedback learning and reading and mathematical ability are ex-
pected to be related, is because they rely on similar brain mechanisms. The main neural areas
involved during feedback processing are the dorsolateral prefrontal cortex (DLPFC), superior
parietal cortex (SPC) and pre-supplementary motor area/anterior cingulate cortex (pre-
SMA/ACC) (Peters, Braams, et al., 2014; Zanolie et al., 2008). Meta-analyses of fMRI-activity dur-
ing reading also show recruitment of the DLPFC (Ferstl, Neumann, Bogler, & Von Cramon, 2008)
and pre-SMA/ACC (Ferstl et al., 2008; Houdé, Rossi, Lubin, & Joliot, 2010) amongst other areas
(mostly lateralized to the left hemisphere). Meta-analyses on mathematics-related neural activity
also showed involvement of the DLPFC (Arsalidou & Taylor, 2011; Houdé et al., 2010), parietal
cortex and pre-SMA/ACC (Arsalidou & Taylor, 2011). Thus, it is to be expected that activity pat-
terns in DLPFC and pre-SMA/ACC are linked to reading and mathematics.

Recently, an increasing body of research has directed attention to predicting school per-
formance from brain measures. A possible advantage of collecting neural measures in addition to
behavioral measures is the hypothesis that brain measures can provide unique predictive infor-
mation over behavioral measures alone (Dumontheil & Klingberg, 2012; Hoeft et al., 2007). In the
current study, we investigated the link between learning in a controlled laboratory setting, and
reading and mathematical ability as indices for real-world learning. We focused on fluency at
reading single words, because this is one of the most crucial aspects of reading determining read-
ing ability at a later stage (Jenkins, Fuchs, Van Den Broek, Espin, & Deno, 2003; Juel, 1988). To
assess mathematics proficiency, we used a standardized arithmetic test that is part of the
Wechsler Adult Intelligence Scale and the Wechsler Intelligence Scale for Children, which
measures numerical reasoning and mathematical problem solving. In addition, we investigated
whether individual differences in working memory capacity could explain a possible link be-
tween feedback learning and reading and mathematics performance. For instance, Huizinga et al.
(2006) found that from the factors working memory, inhibition and switching, only working
memory predicted WCST performance, a task that also relies on learning from feedback. We
hypothesized that feedback learning performance would predict reading and mathematics per-
formance two years later, and that neural measures would provide additional information over

behavioral testing (feedback learning and working memory performance) alone.
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Methods

Participants
The initial sample consisted of 299 participants (see also Peters, Braams, et al.,, 2014; Peters,
Koolschijn, Crone, Van Duijvenvoorde, & Raijmakers, 2014), for whom data was collected on two
time points (T1 and T2) which were approximately 2 years apart (M =1.99, SD = 0.10, range: 1.66-
2.47 years). The included sample with complete data at T1 for feedback learning and fMRI data
consisted of 268 participants. At T1 participants were excluded from analyses for a variety of
reasons, such as reported history of neurological or psychiatric disorders or use of psychotropic
medication, movement in the MRI scanner exceeding 3.0 mm (N = 19), technical issues (N = 3) or
because they were outliers at the lower end (more than three times the interquartile range) on
feedback learning performance (N = 3).

At T2, there was complete data on reading and math performance for 228 participants
(119 females) who were also included at T1 (aged 8.01 — 24.55 years at T1 (M = 14.35, SD = 3.57)
and aged 9.92 — 26.62 at T2 (M = 16.34, SD = 3.58). All analyses were performed on these 228 par-
ticipants. IQ scores at T1 were estimated using two subtests (Similarities and Block Design) of the
WISC-III (participants 8-15 years old) or WAIS-III (participants 16-25 years old). Estimated IQ
scores ranged from 85 to 143 (M = 110.78, SD = 9.80). The study was approved by the Institutional
Review Board at the University Medical Center and all participants older than 12 (and partici-
pants’ parents for children under 18) signed an informed consent form. Adults received payment
(€60) for participation and children and their parents received brain-related presents and a pay-

ment for travel reimbursement (€30 for children 12-17 years, €25 for children 8-11 years).

Materials

Reading Fluency

Technical reading skills were measured with a reading fluency task at T2. We used one of the
tests in the Dutch “Three-Minute-Test” (Krom, Jongen, Verhelst, Kamphuis, & Kleintjes, 2010). In
this task, participants received a list of words and were instructed to read aloud as many words
as possible in one minute. The total score is defined as the number of correct words minus the
number of incorrect words. The Three-Minute-Test has good validity and reliability (Cronbach’s

alpha, dependent on age group > 0.92) (Krom et al., 2010).

Mathematics

Mathematical ability was measured with the subscale “Arithmetic” of the Wechsler Intelligence
Scales (WISC-III for participants under 16, WAIS-III for participants of 16 years and older). A set
of arithmetical problems of increasing difficulty was administered verbally. All arithmetic prob-

lems had a time limit of 30 to 75 seconds, depending on the difficulty of the problem. If the partic-
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ipants failed to correctly answer three consecutive problems the test was aborted. Both the WISC
and the WAIS resulted in raw scores that were converted to norm scores relative to same-aged
peers. We used norm scores in further analyses (see also Barnea-Goraly, Eliez, Menon, Bammer, &
Reiss, 2005; Li, Hu, Wang, Weng, & Chen, 2013) to ensure comparability between the different
ages (reflected in WISC and WALIS scores). In addition, we performed our main analyses with the

mathematics subtest with raw scores for the WISC and WAIS group separately.

Working memory

We measured working memory performance at T1 to assess whether feedback learning and read-
ing and mathematics performance were explained by individual differences in working memory.
Working memory capacity was measured with the Mental Counters task (Huizinga et al., 2006),
in which participants need to keep numerical information active. For this task, two independent
counters were presented on a computer screen. The counters were horizontal bars for which the
values changed depending on the position of a square. If a square was presented above a counter
the participant was instructed to add 1 to the current value, if a square was presented below the
counter the participant was instructed to subtract 1 from the current value of the counter. The
squares appeared randomly above or below one of the two counters. Participant were instructed
to keep track of both counters and to press a button as soon as one of the counters reached a given
criterion value (e.g., when one of the counters reached the value 3). The squares were randomly
presented in series (the number of trials before criterion was reached) of 5 or 7 trials with inter-
trial intervals of 1000 to 1300 ms, with a total of 16 trials. The proportion of correct trials was used

as a measure of performance.

Feedback Learning Task

Participants performed a feedback learning task in the MRI scanner (Peters, Braams, et al., 2014;
Peters, Koolschijn, et al., 2014). On every trial, three empty boxes were presented in the top half of
the screen in the stimulus and feedback display. During presentation of the stimulus display one
of three different stimuli was presented in the centre of the bottom half of the screen (see Figure
1). Participants were instructed that each stimulus belonged in one of three boxes for an entire
sequence and they had to find the correct location for all three stimuli by using performance
feedback. Each trial started with a 500 ms fixation cross, presented in the center of the screen.
After fixation the stimulus display was presented for 2500 ms, during which participants were
required to sort the stimulus in one of three squares. Participants responded by pressing one of
three buttons strapped to their right leg. If participants failed to respond within 2500 ms “Too
Late” was presented in the centre of the screen, after which the sequence continued. After the
response, performance feedback was presented for 1000 ms. When a participant sorted a stimulus
in the correct square a plus-sign (positive feedback) was shown, when a participant sorted a

stimulus in the incorrect square a minus-sign (negative feedback) was shown. Inter-trial interval
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(blank screen) was jittered to optimize the timing for fMRI based on OptSeq (Dale, 1999) with
intervals between 0 and 6 seconds. A sequence was aborted when the participant sorted each
stimulus twice in the correct location, or after 12 trials in total. When a sequence ended a new
sequence with three new unique stimuli was presented. There were 15 sequences in total, result-
ing in a maximum of 180 trials. Stimuli were presented in a pseudorandom order, with a maxi-
mum of two identical stimuli in a row. Before the MRI session, all participants practiced three
sequences. During the MRI session the task was divided into two runs of eight and seven se-
quences, respectively.

To calculate a performance measure for feedback learning we calculated the percentage
of trials in the learning phase where feedback was successfully used on the next trial. For this
purpose we divided the number of trials during the learning phase which were succesfully ap-

plied in the next trial, by the total number of trials during the learning phase.

+
+ 7 /‘
m; V(A
Stimulus + Response Feedback Interval Stimulus + Response
2500 ms 1000 ms 500-6500 ms 2500 ms

Figure 1: Display of task sequence for the feedback learning task. A trial started with a 2500 ms stimulus
display during which the participant responded by sorting the stimulus in one of the three boxes. In this
example, the participant (correctly) chose the left box. Next, feedback was presented for 1000 ms by either a
“+ for correct feedback or a “~’ for incorrect feedback. After an inter-trial interval (varying from 0-6 s) and a

500 ms fixation cross, the next stimulus was presented.

FMRI data acquisition

MRI scans were obtained with a Philips 3.0 Tesla MRI scanner. Functional scans for the feedback
learning tasks were acquired during two runs with T2*-weighted echo-planar imaging (EPI). The
first two volumes were discarded to allow for equilibration of T1 saturation effects. The following
settings were used: TR = 2.20 s, TE = 30 ms, sequential acquisition, 38 slices, slice thickness = 2.75
mm, Field of View (FOV) = 220 x 220 x 114.68 mm. For the structural scan, a high-resolution 3D
T1-FFE was obtained after the experimental tasks (TR = 9.76 ms, TE = 4.59 ms, 140 slices, voxel

size = 0.875 mm, FOV = 224 x 177 x 168 mm). The experimental task was projected on a screen,
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which was visible to participants through a mirror. Participants were accustomed to the MRI

environment and sounds with a mock scanner before the actual MRI scan.

FMRI data Analysis

We used SPM8 (Wellcome Department of Cognitive Neurology, London) to analyze fMRI. The
following pre-processing steps were used: correction for slice timing acquisition and rigid body
motion, spatial normalization to T1 templates (MNI305 stereotaxic space (Cocosco et al., 1997))
using a 12-parameter affine transform together with a nonlinear transformation involving cosine
basis functions and resampling of the volumes to 3 mm voxels. Functional scans were smoothed
with an 8mm FWHM isotropic Gaussian kernel. For further fMRI analyses, we used a contrast
that reveals brain areas with sensitivity to informative feedback for learning (Eliassen et al., 2012;
van den Bos et al., 2009), that is, areas responding more to feedback providing new information
(i.e., more informative) compared to feedback providing known information. To compare neural
activity for ‘informative’ and “uninformative’ feedback, we distinguished between a learning
phase and an application phase for each stimulus. For the learning phase, we included trials
where participants had not correctly sorted this particular stimulus yet, and were thus still using
feedback to determine the correct location. Only trials for which feedback was used appropriately
on the next trial for that stimulus were included. Thus, feedback was categorized as learning,
when positive feedback resulted in choosing the same location on a next trial and when negative
feedback resulted in sorting in a different location. These trials during the learning phase were
compared to the application phase: trials in which a stimulus was sorted correctly on a preceding
trial, and continued to be sorted correctly. All further analyses were based on a comparison be-
tween the learning phase and the application phase, i.e. the contrast Learning > Application. In
order to calculate this contrast for all participants, we first modeled the fMRI time series with
events corresponding to the events “Positive Learning”, “Negative Learning”, and “Application”,
time-locked with 0-duration to the moment of feedback, which were convolved with a canonical
hemodynamic response function. Other trials (e.g., trials during the learning phase that did not
result in learning or trials where participants responded too late) were modeled as events of no
interest. The events were used in a general linear model; along with a set of cosine functions
which high-pass filtered the data. The least-squares parameter estimates of height of the best-
fitting canonical HRF for each condition were used for the calculation of the contrast Learning
(Positive Learning + Negative Learning) > Application for each subject. The resulting contrast

images were submitted to higher-level analyses.

FMRI Region-of-interest analysis
In order to examine neural effects of feedback learning and its relation to reading and mathemat-
ics performance, region-of-interest (ROI) analyses were performed with the Marsbar toolbox in

SPMS8 (Brett et al., 2002). The contrast used to generate functional ROIs was Learning > Applica-
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tion (FWE corrected, p < .05, > 10 contiguous voxels). The resulting ROIs spanned several brain
regions. Therefore, the ROIs were subdivided by masking the functional ROI with the following
anatomical Marsbar ROIs (based on Automated Anatomical Labeling (AAL)): left and right
DLPFC (Middle Frontal Gyrus in AAL), pre-SMA/ACC (Supplementary Motor Area in AAL; left
and right combined), left and right SPC (Superior Parietal Lobule in AAL). These ROIs were
selected based on earlier studies demonstrating that these areas show developmental changes for
feedback learning (Crone et al., 2008; Peters, Braams, et al., 2014; van Duijvenvoorde et al., 2008)
and were also used in a prior study with the same experimental task (Peters, Braams, et al., 2014).

The DLPFC ROIs, even after masking, were still very large (right: 28488 mm; left: 28240
mm), therefore, we created 6 mm radius spheres based on four local maxima within the DLPFC
regions (two per hemisphere). These areas are referred to as ‘superior DLPFC (sup-DLPFC)" and
‘mid-DLPFC’. Centre-of-mass MNI (x y z) coordinates for the ROIs were: pre-SMA/ACC: 0 9 58;
right sup-DLPFC: 21 9 57; left sup-DLPFC: -24 3 57, right mid-DLPFC: 42 18 39; left mid-DLPFC: -
42 24 39; right SPC: 27 -62 55; left SPC: -23 -64 50 (See Figure 2).

Learning > Application

SPCL SPCR

B

Sup-DLPFCL Sup-DLPFCR Mid-DLPFCL Mid DLPFCR

anienl]

Figure 2: Wholebrain results for the contrast Learning > Application (FWE-corrected at p < .05, > 10

contiguous voxels) and the regions-of-interest based on this contrast.
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Results

Data checks

We performed several data quality checks by investigating relationships between the main varia-
bles of interest (neural activity and behavioral performance for feedback learning, and reading
and mathematics) and age, IQ, working memory and sex (See Table 1 for an overview of the

values for age, IQ, working memory, feedback learning, reading and mathematics).

Table 1: Descriptive values for age, 1Q, working memory, feedback learning, reading and mathematics
scores for male and female participants separately. In the right-most column, we indicated the p-value for

sex differences.

Female Male

Mean SD Min Max Mean SD Min Max psex

AgeT1 1410 339 801 2279 1463 375 801 2455 .27
Age T2 16.10 340 10.02 24.83 16.60 3.77 992 2662 .30
IQT1 109.83 10.09 85.00 143.00 111.81 9.40 93.00 138.00 .13

Working Memory T1 079 017 013 100 086 012 038 1.00 p<001
Feedback Learning T1 93.62 5.36 7129 100.00 93.78 4.40 81.11 100.00 .81
Reading Fluency T2~ 98.02 14.51 64.00 120.00 97.72 1546 58.00 120.00 .88
Mathematics T2 11.75 2.88 6.00 19.00 1244 269 4.00 18.00 .06

Age at T1 correlated positively with reading fluency (r = .31, p <.001), working memory (r = .34, p
<.001), and feedback learning performance (r = .47, p < .001). Age was also positively related to
neural activity for the difference score Learning > Application in all 7 ROIs. Therefore, we correct-
ed for age in further analyses. Even though mathematics scores were norm scores, i.e., scores
relative to same-aged peers, there was still a small but significant correlation with age (r = .16, p =
.018). We therefore also corrected for age in all further analyses with mathematics scores. Figure 3
shows the relations with age separated in categories for illustrative purposes.

Working memory at T1 correlated positively (corrected for age) with feedback learning
performance (r = .33, p <.001), reading fluency (r = .15, p = .026) and mathematics (r = .25, p <.001)
but not with neural activity at T1. IQ estimates correlated with mathematics norm scores (r =.32, p
<.001, age-corrected) but not with the other measures. Note that the mathematics test (measured
at T2) was part of the WISC/WAIS IQ test, although the estimated IQ scores (measured at T1)

were measured two years earlier and based on only the subtests Similarities and Picture Comple-
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tion. Finally, there was an age-corrected correlation between reading and mathematics scores (r =
20, p =.003).
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Figure 3: Display of age effects for feedback learning, working memory, reading and mathematics. Note that
for T2 one participant was 9.92 years old, therefore the youngest age group at T2 was 9 and 10 years com-
bined.

Predicting reading and mathematics performance at T2 from T1 feedback learning

We first investigated whether reading and mathematics performance at T2 could be predicted
from behavioral performance on the feedback learning task at T1. A hierarchical regression with
age at T1 entered as a first step and feedback learning performance at T1 as a second step, showed
that in addition to age, feedback learning performance significantly predicted reading fluency
and mathematics performance two years later (positive relation), see Table 2.
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Table 2: Hierarchical linear regression models with age and feedback learning performance as significant

predictors for reading and mathematics performance.

Steps Predictor B SEB B p F R?

Dependent: Reading Fluency T2

1 Overall model 23.10%* .09
AgeT1 128 .27 30 <.001%**

2 Overall model 16.96** .13
AgeT1 84 .30 .20 .005**

Feedback Learning T1 .67 .21 .22 .002**
Dependent: Mathematics T2

1 Overall model 5.47* .02
AgeT1 12 .05 .15 .020*

2 Opverall model 10.53*** .09
AgeT1 02 .06 .02 .760

Feedback Learning T1 .16 .04 .28 <.001**
*p<.05% p<.01**p<.001

Predicting reading and mathematics performance at T2 from T1 neural activity during feed-
back learning

Next, we assessed whether brain activity during feedback learning in 7 ROIs at T1 predicted
reading and mathematics performance at T2. We performed hierarchical regressions with age at
T1 as first step and neural activity in one of the 7 ROIs as second step. These analyses showed that
in addition to age, reading fluency was predicted by left SPC and left sup-DLPFC (see Table 3).
For mathematics performance at T2, activity in pre-SMA/ACC and right sup-DLPFC were signifi-
cant predictors above age (see Table 4). For a visual representation of the relationship between
right sup-DLPFC activity and mathematics performance, and left sup-DLPFC and reading fluen-
cy, see Figure 4.

We also tested whether neural activity for feedback learning explained additional vari-
ance in reading and mathematics above age and behavioral performance for feedback learning.
We analyzed this with hierarchical regressions with age at T1 as first step, feedback learning
performance at T1 as second step, and neural activity (per ROI) as third step. Neural activity
explained additional variance for reading fluency (left sup-DLPFC remained significant (8 = .20, p
=.004), left SPC did not remain significant (8 = .12, p = .096) and mathematics (pre-SMA/ACC
remained significant (8 = .15, p = .029), right sup-DLPFC did not remain significant (8 = .11, p =
.113)). This indicates that neural activity in left sup-DLPFC and pre-SMA/ACC explained unique
variance in reading and mathematics over and beyond age and behavioral feedback learning

performance.
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Table 3: Hierarchical linear regression models for neural activity in left SPC and left sup-DLPFC as signif-

icant predictors above age for reading fluency.

Steps Predictor B SEB B p F R?

Dependent: Reading Fluency T2

1 Overall model 23.10%** .09
AgeT1 1.28 .27 31 <001

2 Opverall model 13.96** 11
AgeT1 97 .30 23 .002**
SPCL 1.897 .90 .15 .036*

1 Opverall model 23.10*** .09
AgeT1 1.28 .27 31 <001

2 Opverall model 17.56*** 14
AgeT1 90 .28 21 .002**
Sup-DLPFC L 2.78 .84 23 .001**

*p <05 p<.01** p<.001

Table 4: Hierarchical linear regression models for neural activity in pre-SMA/ACC and right sup-DLPFC

as significant predictors above age for mathematics performance.

Steps  Predictor B SEB B p F R?

Dependent: Mathematics

1 Overall model 547% .02
AgeT1 12 .05 15 .020*

2 Overall model 6.31** .05
AgeT1 .08 .05 10 159
Pre-SMA/ACC 54 21 18 .009**

1 Overall model 547% .02
AgeT1 12 .05 15 .020*

2 Opverall model 4.73* .03
AgeT1 .09 .05 A1 120
Sup-DLPFC R 38 .19 14 .049*

*p<.05% p< .01 ** p<.001

Adding working memory and IQ as control variables

To assess whether the relationship between feedback learning and reading and mathematics

performance could be explained by individual differences in working memory, we tested wheth-

er the above effects remained significant when analyzing a hierarchical regression with age as a

first step, working memory and IQ at T1 as a second step, and feedback learning performance or

neural activity as a third step. Most analyses remained significant: For reading fluency, feedback

learning performance was still a significant predictor (8 = .20, p = .011) over age (8 = .31, p <.001),

working memory (f = .16, p = .025) and IQ (8 =-.19, p = .763). Reading fluency was also still pre-
dicted by left sup-DLPFC (8 = .21, p = .002), over age, IQ and working memory. Left SPC, howev-
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er, was not a significant predictor anymore (8 = .13, p = .065) after adding working memory and
IQ. In this model, working memory was a significant predictor (8 = .16, p = .025) but IQ was not (8
=-.19, p = .763), indicating the lack of significance for left SPC is due to the addition of working
memory to the model. For mathematics, feedback learning performance remained a significant
predictor (8 = .18, p =.015) over age ( = .16, p = .018), working memory (= .22, p =.001) and IQ (8
= .30, p <.001). Pre-SMA/ACC (8 = .15, p = .023) was also still significant over age, IQ and working
memory, but right sup-DLPFC (8 = .12, p = .065) was only marginally significant after adding age,
IQ and working memory. Both working memory (8 = .22, p =.001) and IQ (f = .30, p <.001) were
significant predictors in this model. Together, these results indicate that some of the effects of
feedback learning activity are explained by working memory and IQ, but for others feedback
learning performance and neural activity explained unique variance that was not explained by

working memory or IQ.
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Figure 4: Scatterplot of the significant relationships between reading and mathematics performance at T2

and neural activity at T1 for the contrast Learning > Application.
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Mathematics raw scores

All prior analyses used mathematics norm scores. To investigate whether results were also pre-
sent when using raw scores, we also performed the analyses with feedback learning performance
and neural activity as predictors for raw mathematics scores. Because the younger age group (10-
15, n=116) performed the mathematics test from the WISC-III and the older group (16-27, n =112)
the WAIS-III, these age groups were analyzed separately. The results showed that effects were
only present in the younger adolescents but not the in the older adolescent/adult group. That is,
for the youngest group, mathematics performance was predicted above age by feedback learning
performance (8 = .14, p = .027) and by pre-SMA/ACC activity (8 = .20, p =.033) and there was only
a trend for right sup-DLPFC activity (8 = .15, p = .094). None of the effects were significant for the

participants who were 16 years and older.

Discussion

In this study we investigated whether performance and neural activity during a feedback learn-
ing paradigm, used to study learning processes in a controlled laboratory setting, could predict
indices of real-world learning performance in school two years later (reading and mathematics
performance). The results of this study showed that 1) Feedback learning performance predicted
both reading and mathematics performance two years later, 2) Neural activity during feedback
learning in left sup-DLPFC and left SPC predicted reading fluency, and neural activity in right
sup-DLPFC and pre-SMA/ACC predicted mathematics performance two years later, 3) Left sup-
DLPFC and pre-SMA/ACC predicted unique variation in school performance over behavioral
testing alone, and 4) Relations between feedback learning performance and neural activity and
school performance remained significant when controlling for individual differences in working

memory capacity and IQ.

Relation between feedback learning performance and school performance

For both reading and mathematical ability, we found that performance could be predicted by
feedback learning performance two years earlier. Possibly, this relation can be explained by un-
derlying individual differences in executive functions. It is well conceptualized that both feedback
learning and school performance are related to executive functions (Diamond, 2013). Especially
working memory was expected to be an important underlying factor, given that WCST perfor-
mance (a complex feedback learning task) in a previous study was predicted by working memory
in children (Huizinga et al., 2006) and adults (Miyake et al., 2000). Miyake et al. (2000) additional-
ly found that switching was predictive for WCST performance, but this was not replicated in the
child-aged sample of Huizinga et al. (2006). Consistent with these prior findings, we found a
positive correlation with working memory performance and feedback learning, as well as with

reading and mathematics performance, also when controlling for age differences. However, even
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when adding working memory as a predictor to the model, feedback learning performance pre-
dicted unique variance for both reading and mathematics, suggesting that working memory may
explain a part of, but not all variance. We investigated whether differences in general intelligence
might explain the relation between feedback learning and school performance, but there was still
a significant prediction of reading and mathematics scores by feedback learning when controlling
for IQ.

Relation between neural activity for feedback learning and school performance

An important question tested in this study was whether neural activity could predict reading and
mathematics performance two years later, and whether neural activity could provide additional
information over behavioral testing alone. This was based on prior studies showing that neural
measures can predict reading (Hoeft et al., 2007; Maurer et al., 2009) and mathematics perfor-
mance (Dumontheil & Klingberg, 2012). Consistent with these studies, we found evidence for a
relation between neural activity for feedback learning and reading and mathematics ability. First,
we found that left sup-DLPFC and left SPC activity predicted reading ability. These findings fit
with earlier research showing that a mostly left-lateralized network including DLPFC is involved
during reading tasks (Ferstl et al., 2008). Second, right sup-DLPFC and pre-SMA/ACC predicted
mathematics ability two years later. This fits with meta-analyses showing involvement of pre-
SMA/ACC and DLPFC during arithmetical tasks (Arsalidou & Taylor, 2011; Houdé et al., 2010).
Notably, for all areas we found a positive relation, indicating that increased activity predicts
better performance on reading or mathematics tests. With the current design, it is not possible to
determine whether higher activity might indicate better functioning or perhaps earlier maturation
of these regions. Future research could build on this study by analyzing longitudinal fMRI
measures and data on structural brain development.

In addition, we performed analyses to assess whether neural measures provided unique
information that cannot be captured by behavioral testing alone. The regions that remained sig-
nificant predictors when controlling for behavioral feedback learning were left sup-DLPFC for
reading and right sup-DLPFC and pre-SMA/ACC for mathematics. This indicated that assessing
feedback learning ability is useful for predicting reading and mathematics, but adding neural
measures in addition to behavioral assessment further enhanced predictive ability. The finding
that neural activity measures have added value over behavioral testing alone fits with earlier
studies for the prediction of reading (Hoeft et al., 2007) and mathematics (Dumontheil &
Klingberg, 2012; Hoeft et al., 2007).

Prior research suggested that working memory is an important component of both
feedback learning (Miyake et al., 2000) and reading and mathematics (Alloway & Alloway, 2010),
therefore it was possible that working memory is the underlying factor explaining these relations.
Indeed, the prediction of reading performance from left SPC activity was no longer significant

when controlling for working memory, indicating that working memory might underlie this
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relation. However, even when we controlled for working memory and IQ, there was still a signif-
icant prediction of reading fluency from feedback learning performance and activity in left sup-
DLPFC, and for prediction of mathematics from feedback learning performance and activity in
pre-SMA/ACC. This indicates that although working memory plays a role in the relation between
feedback learning and reading and mathematics, there is still unique variation in reading and
mathematics that is explained by neural activity during feedback learning. Other aspects of feed-
back learning performance that might be relevant for learning in school settings, are for instance
the capacity to monitor one’s actions and keep track of performance feedback, ignoring irrelevant
aspects of the task, perceived competence and motivation (Fortier, Vallerand, & Guay, 1995; St
Clair-Thompson & Gathercole, 2006). Future research is needed to examine this in more detail.

An interesting laterality difference was observed for predicting reading and mathemat-
ics in superior DLPFC. That is to say, we found that activity in left superior DLPFC during feed-
back learning predicted reading ability, whereas activity in right superior DLPFC predicted
mathematical ability. The left-right distinction fits nicely with the well-established finding that the
neural network for learning is left-lateralized (Frost et al., 1999). There is no conclusive evidence
for a possible right-lateralized network for mathematics. The current findings suggest that left-
right hemispheric differences may be an important factor explaining differences between reading

and mathematics related school processes.

Limitations and future directions

There are several limitations to this study. First, school performance can be measured in many
ways. In this study, we measured only two short, well-validated measures for reading and math-
ematics. Future research could build on this study by relying on a more extensive assessment of
school performance involving multiple measures. Second, we only collected reading fluency and
mathematics data at the second time point but not at the first time point. An interesting question
would be to investigate whether feedback learning and brain measures can predict reading and
mathematics even better than tests for reading and mathematics themselves. On the other hand,
an advantage of measuring feedback learning or other executive functioning tasks is that it cap-
tures abilities that are essential to both reading and mathematics. Third, IQ was assessed with
only two subtests of the WISC/WAIS. A more comprehensive assessment of IQ might give a more
definite answer to the question whether the relation between feedback learning and school per-
formance is driven by underlying differences in general intelligence. Fourth, mathematics was
assessed with the WISC for younger participants (10-15 years at T2) and with the WAIS for older
participants (16-27 years at T2). When we performed the analyses with mathematics raw scores
rather than norm scores (scores relative to same-aged peers), we needed to perform the analyses
in separate age groups. These analyses showed that the prediction of mathematics scores from
behavioral performance and neural activity for feedback learning was only present in the young-

est age group (10-15 years). One tentative interpretation is that prediction is stronger in the
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younger age groups, when brain maturation is still undergoing major changes (Giedd &
Rapoport, 2010). Alternatively, it is possible that the WISC scores are more sensitive for picking
up change than the WAIS scores. Future studies should use a wider battery of tests to test these

competing hypotheses in more detail.

Conclusion

In conclusion, this study found contributions of feedback learning performance and neural activi-
ty in predicting school outcomes two years later. This provides evidence that studying learning
processes through simplified laboratory tasks provides at least some relevance for real-world
learning. In addition, we showed that neural measures explain unique variance in school out-

comes two years later that is not captured by behavioral testing of executive functions alone.









