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Chapter 5

Influence of strategy use and age on

neural activity for feedback learning

This chapter is based on:
Peters, S., Koolschijn, P.C.M.P., Crone, E.A., van Duijvenvoorde, A.C.K. & Raijmakers, M.E.].
(2014). Strategies influence neural activity for feedback learning across child and adolescent de-

velopment. Neuropsychologia, 62, 365-374.
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Abstract

Learning from feedback is an important aspect of executive functioning that shows profound
improvements during childhood and adolescence. This is accompanied by neural changes in the
feedback learning network, which includes pre-supplementary motor area (pre- SMA)/anterior
cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC),
and the basal ganglia. However, there can be considerable differences within age ranges in per-
formance that are ascribed to differences in strategy use. This is problematic for traditional ap-
proaches of analyzing developmental data, in which age groups are assumed to be homogenous
in strategy use. In this study, we used latent variable models to investigate if underlying strategy
groups could be detected for a feedback learning task and whether there were differences in
neural activation patterns between strategies. In a sample of 268 participants between ages 8 to 25
years, we observed four underlying strategy groups, which cut across age groups and varied in
the optimality of executive functioning. These strategy groups also differed in neural activity
during learning; especially the most optimal performing group showed more activity in DLPFC,
SPC and pre-SMA/ACC compared to the other groups. However, age differences remained an
important contributor to neural activation, even when correcting for strategy. These findings
contribute to the debate of age versus performance predictors of neural development, and high-
light the importance of studying individual differences in strategy use when studying develop-

ment.
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Introduction

An important component of cognitive development is the ability to control and adapt behavior in
response to changing environmental demands, also referred to as executive functions (Diamond,
2013; Zelazo, 2006). Executive functions are thought to consist of three core functions: inhibition,
working memory and cognitive flexibility (Diamond, 2013). Higher-order executive functions
such as reasoning, planning and learning from prior experiences rely upon combinations of these
three core functions. The ability to adapt behavior based on prior experiences (i.e. adaptive con-
trol) shows a marked improvement during childhood and adolescence (Tamnes, Walhovd,
Torstveit, Sells, & Fjell, 2013). For example, in the classic Wisconsin Card Sorting Task (WCST),
there is a developmental improvement in flexibly adapting behavior based on positive and nega-
tive feedback (Huizinga et al., 2006) and in probabilistic feedback learning tasks there is a devel-
opmental improvement in adapting behavior successfully based on informative versus non-
informative feedback (Eppinger et al., 2009; Jansen, van Duijvenvoorde, & Huizenga, 2014; van
den Bos et al., 2009; Van Duijvenvoorde, Jansen, Griffioen, Van der Molen, & Huizenga, 2013).
Despite these convincing developmental patterns, there are large individual differences in adap-
tive control within age ranges, i.e., not all children and adolescents are equally proficient at learn-
ing from positive and negative feedback. Why is it that some children are better at learning com-
pared to their peers? Studying the behavioral and neural mechanisms underlying successful
learning is important to advance our understanding of executive control processes and their
development.

Most prior studies on the development of feedback learning have focused on perfor-
mance improvements with age and the accompanying changes in brain activity. Research in
adults indicated that during feedback learning, a large brain network is activated, including pre-
supplementary motor area (pre-SMA)/anterior cingulate cortex (ACC) (Holroyd et al., 2004; Mars
et al., 2005; Monchi et al., 2001; Ullsperger & von Cramon, 2003), (dorso)lateral prefrontal cortex
(DLPEC) (Dove et al., 2000; Lie et al., 2006; van Veen et al., 2004; Zanolie et al., 2008), basal ganglia
(Monchi et al., 2001; Tricomi et al., 2006), and superior parietal cortex (SPC) (Zanolie et al., 2008).
It is thought that a dopamine-initiated alarm signal in pre-SMA/ACC signals that outcomes are
worse than expected. Subsequently, the DLPFC is a primary site for implementation of adaptive
control (Kerns et al., 2004; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004).

Prior developmental studies have shown that this feedback learning network becomes
increasingly activated with age (Crone et al., 2008; Peters, Braams, Raijmakers, Koolschijn, &
Crone, 2014; van den Bos et al., 2009; van Duijvenvoorde et al.,, 2008). However, it is unclear
whether these neural changes reflect age differences (i.e., a maturational viewpoint), or whether
they are related more to performance differences rather than age (Andersen et al., 2014; Jolles &
Crone, 2012; Koolschijn et al., 2011).
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Effects of performance versus age are only scarcely investigated in developmental feed-
back learning studies. Moreover, most studies have assumed that performance differences are
continuous, implying that all participants within an age group perform the task using the same
strategy. However, performance is not constant within age groups: Some children perform at
levels similar to adults, whereas others never seem to reach the highest performing levels. It is
possible that these individual differences in performance can be described by differences in strat-
egy use. Such differences in performance and strategy use within age groups pose a considerable
problem for traditional ways of analyzing developmental data, because these are based on the
assumption of homogenous strategy use within age groups.

A robust approach for analyzing individual differences are categorical latent variable
models, which allow for detection of different strategies based on individuals’ responses across
trials. Such techniques have been applied by a number of studies that distinguished distinct learn-
ing strategies within age groups (Andersen et al., 2014; Raijmakers, Dolan, & Molenaar, 2001;
Schmittmann et al., 2012, 2006; Speekenbrink, Lagnado, Wilkinson, Jahanshahi, & Shanks, 2010).
For instance, Schmittmann et al. (2006) showed that two distinct learning strategies (resulting in
relatively fast or slow learning) could be distinguished in a category-learning task. The fast and
slow strategy groups both employed a learning strategy based on hypothesis-testing (as opposed
to incremental, associative learning), but participants in the slow group were less efficient in their
hypothesis testing compared to the fast group. This difference in efficiency was categorical. That
is, with age, children were increasingly likely to belong to the faster strategy group; they were not
simply less efficient in employing the same strategy. In the current study, we applied these meth-
ods to a feedback learning task and investigated whether distinct learning strategies were also
observable at the neural level.

In the current paradigm, we built on prior studies on the development of feedback
learning, such as a rule switch task used in Crone et al. (2008) and a rule search and application
task used by Van Duijvenvoorde et al. (2008), and constructed a paradigm in which correct re-
sponses could be inferred through a process of hypothesis-testing. Additionally, different deduc-
tive reasoning steps could be applied to use a more efficient hypothesis testing strategy. This
made the task suitable for differentiating between categorically different strategies, rather than
simply assessing performance differences within one strategy. We asked 268 participants ranging
from 8 to 25 years to sort stimuli in one of three locations by using positive and negative feed-
back. An efficient way of solving this task was to not only focus on feedback for the current stim-
ulus but also to remember the locations for the other two stimuli. We recorded trial-by-trial data
on learning efficiency and analyzed this with latent variable modeling approaches (Markov mod-
els and finite mixture models), to investigate if latent strategy groups could be detected (van der
Maas & Straatemeier, 2008). As a further addition to prior research, we investigated if underlying
strategy groups could be distinguished at the neural level (see also Andersen et al., 2014). We

hypothesized that age differences in neural activity for feedback learning are largely attributable
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to differences in strategy use. Thus, we tested whether age differences in neural activity were
influenced by strategy use, or if there was also neural activity related to maturational processes
per se, independent of strategy use. The main developmental effects have previously been report-
ed in Peters et al., 2014. This dataset presents a unique opportunity for analyzing strategy-related
versus age-related neural changes in feedback learning given the large-sample size across a broad

developmental range.

Methods

Participants
The sample included 268 participants (138 female) between 8.01 and 25.95 years old (M = 14.22,
SD = 3.63), who were recruited through local schools and advertisements. See Table 1 for the

number of participants per age and per sex.

Table 1: Number of participants per age and sex.

Age N Female N Male N Total
8 years 6 4 10
9 years 14 5 19
10 years 11 12 23
11 years 13 14 27
12 years 19 11 30
13 years 16 20 36
14 years 10 17 27
15 years 10 11 21
16 years 11 9 20
17 years 12 11 23
18-25 years 16 16 32
N Total 138 130 268

Adult participants (18-25 years) were grouped together. A chi square test indicated that the pro-
portion of males to females was similar across age groups (x? (10) = 9.20, p = .514). IQ scores were
estimated with two subtests of the WAIS-III or WISC-III (Similarities and Block Design). Estimat-
ed IQ scores ranged from 80 to 143 (M = 110.25, SD = 10.62) and showed no correlation with age (r
=-.09, p = .155). None of the participants reported a history of neurological or psychiatric disor-
ders or current use of psychotropic medication. All anatomical MRI scans were reviewed and
cleared by a radiologist. The study was approved by the Institutional Review Board at the Leiden

University Medical Center and all participants (or participant’s parents for minors) provided
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written informed consent. Adults received payment for participation, and children and their

parents received presents and a fixed payment for travel reimbursement.

Exclusion criteria

Twenty-five participants were excluded (not included in Table 1) from further analyses after
participation for the following reasons: Nineteen participants were excluded because movement
in the MRI scanner exceeded 3.0 mm in any direction, three participants were excluded because of
technical problems and three participants were excluded because they were outliers (more than
three times the interquartile range) on the total percentage of positive feedback, indicating they

did not perform the feedback learning task adequately.

Feedback Learning Task

Participants performed a feedback learning task in the MRI scanner (see also Peters et al., 2014).
On each trial, they saw three empty squares, under which one of three different stimuli was
presented (see Figure 1). We explained to the participants that each stimulus belonged in one of
the three squares and they had to find the correct location for all stimuli by using performance
feedback. Performance feedback was a plus-sign for positive feedback and a minus-sign for
negative feedback. After either 12 trials, or when the participant correctly applied the correct
location twice in total for each stimulus, the sequence ended and a new sequence was presented
with three new stimuli. There were 15 sequences in total, resulting in a maximum of 180 trials.
Stimuli were presented in a pseudorandom order, with a maximum of two identical stimuli in a
row. Before the MRI session, all participants practiced three sequences. During the MRI session
the task was divided into two runs of eight and seven sequences. Each trial started with a 500 ms
fixation cross. Consecutively, stimuli were presented for 2500 ms, during which time window the
response had to be given. Participants saw the words “Too Late” if they did not respond within
this time window, after which the sequence continued. After the response, performance feedback
was presented for 1000 ms. Inter-trial intervals were jittered to optimize the timing for fMRI

based on OptSeq (Dale, 1999) with intervals between 0 and 6 seconds.

+
+
Stimulus + Response Feedback Interval Stimulus + Response
2500 ms 1000 ms 500-6500 ms 2500 ms

Figure 1: Display of task sequence.
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Modeling strategies

To model latent behavioral strategies for the task we first recoded the trial-by-trial accuracy data
into new trial-by-trial data, which categorizes different response types that revealed reasoning
level. Each trial was scored as one of these four response types, in ascending order of the com-
plexity of reasoning involved:

(a) Mistake: repeating a previously made error or making an error after an earlier correct response
for the same stimulus. This can be seen as a short-term memory (STM) error (Diamond, 2013),
where the subject has forgotten the correct answer it has seen before; no active working memory
(WM) calculations were necessary to avoid a mistake. (b) Inefficient: when the location of one
picture was known, the participant failed to deduce that this location could not be the correct
location for another picture. This could be described as a working memory error. In this trial the
subject could have avoided an error by means of simple WM calculations. (c) Suboptimal: when
participants received negative feedback for a stimulus in one location, the optimal decision is to
place another stimulus in that location, to ensure a 50 percent chance of being correct (instead of
33 percent). Failing to use this strategy is suboptimal in reasoning, i.e., the subject did not opti-
mize the probabilities of a correct choice. The avoidance of suboptimal trials involves complex
executive functions, such as planning and reasoning (Diamond, 2013). (d) Optimal: all other cases,
i.e. choosing the best possible option given the information that is acquired from previous trials.

The resulting trial-by-trial data on response types was used to distinguish individuals
with distinct learning strategies. To detect latent strategies in trial-by-trial data, we used two
types of categorical latent variables models. The first type is a static, finite mixture distribution
model. Finite mixture distribution models group individuals per learning strategy (based on their
response pattern), which is assumed to be constant across the task. The second type is a dynamic
Markov model that defines changes in learning strategies across trials (Rabiner, 1989; Visser,
2011). Simulation studies show that such latent variable models are robust statistical techniques,
which are necessary to make a reliable decision about the number of strategies and about the
nature of the strategies, compared to more ad hoc methods for distinguishing between different
learning strategies (van der Maas & Straatemeier, 2008). For fitting models to the data, we calcu-
lated maximum likelihood estimates of the parameters in the model by using the statistical R-
package depmixS4 (Visser & Speekenbrink, 2010). To determine the most parsimonious, best
fitting model to the data, i.e, the optimal model, the Bayesian Information Criterion (BIC)
(Schwarz, 1978) was used.

First, we used static, finite mixture distribution models to determine whether perfor-
mance differences could best be described by either a continuous variation in performance (with
age as a covariate) or by a number of categorically different strategies. The former is modeled by
including age as a covariate on the response probabilities. According to this model, each individ-
ual responds with specific probabilities for the four response types (optimal, inefficient, mistake,

suboptimal) and this response pattern depends on age, but without the presence of any latent
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strategies. Next, we fitted finite mixture distribution models to the data with a varying number of
groups. Comparing these models by means of BIC will show if a model with a certain number of
categorically different strategies is better than one with continuous performance differences.
Second, we applied a dynamic Markov model to the data. Markov models define changes in
learning strategies across trials (Rabiner, 1989; Visser, 2011). We thus extended the mixture of
static models (first class of models) to a mixture of (dynamic) Markov models to allow for chang-
es during the learning process. The first Markov models include different states within a learning
event. These models could describe, for example, subgroups of participants switching between an
inefficient towards an efficient state within a sequence (i.e., different phases during one learning
event). The second type of Markov models we tested included a continuous change of strategies
across trials within a sequence (i.e., for one or more latent strategies, response probabilities con-
tinuously vary with trial number).

Model-comparisons by means of BIC indicated that models with the most parsimonious
strategies, corresponding to the firstly described static finite mixture distribution models were
optimal for this data compared to the dynamic Markov models. In the results section, we will
therefore focus on the static finite mixture distribution models and discuss the number of latent
strategies (one to five) that is optimal to describe the data. When the results indicated that the
optimal model for the data consisted of multiple strategies, we assigned individuals to the strate-
gy that they were most likely applying based on the posterior probabilities of the data given the

model (Visser, 2011). Subsequently, this assignment of individuals was used in the fMRI analysis.

FMRI analyses: Learning and Application

For the fMRI analysis, we used a contrast that reveals brain areas with sensitivity to feedback
with learning value. That is, we aimed to find areas that respond more to feedback that provides
new information, compared to feedback that provides information that is already known. In our
opinion, distinguishing between ‘useful’ and ‘less useful’ feedback is one of the key aspects of
feedback learning, which is why we expected that this contrast is related to individual differences
in performance and strategy use. To identify ‘useful’ and ‘less useful’ feedback, we distinguished
between a learning phase and an application phase for each stimulus. The learning phase was
defined as those trials in which participants had not yet responded with the correct location for
the stimulus, and were thus still trying to find the correct solution. We only included trials that
actually resulted in learning (M = 96.35 %, SD = 3.03 % of all trials). For learning from positive
feedback (Positive Learning), this meant choosing the same location on a next trial for that same
stimulus, and for learning from negative feedback (Negative Learning), that meant not choosing
the same location on a next trial. The application phase was defined as those trials in which a
stimulus was sorted correctly on a preceding trial, and which continued to be sorted correctly. All
analyses were based on the contrast Learning (Positive Learning & Negative Learning) > Applica-

tion, in which Positive Learning and Negative Learning were combined and compared to Appli-
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cation. In doing this we followed a similar approach to a prior study focusing on feedback differ-
ing in informative value for learning (Eliassen et al., 2012). One potential confound is that effects
are due to negative feedback rather than feedback which signals learning. However, whole-brain
results were highly similar when the Learning (Positive Learning & Negative Learning) > Appli-
cation and the contrast Positive Learning > Application are compared (see Figure 2). We addition-
ally tested if including negative feedback in the contrast did not lead to additional activation
when compared to Positive Learning > Application. Thus we tested with an exclusive mask if
Learning (Positive Learning & Negative Learning) > Application showed any significant activa-
tion that was not in the contrast Positive Learning > Application. This analysis did not result in
significant remaining activations. From now on, the contrast Learning (Positive Learning & Nega-

tive Learning) > Application will be abbreviated to Learning > Application.

z=12

Figure 2: Overlay showing activity for Positive Learning > Application (yellow), Learning (Positive Learn-
ing & Negative Learning) > Application (red) and their overlap (orange) (N = 268). Both contrasts were
FWE-corrected, p <.05, > 10 contiguous voxels.

Data Acquisition

MRI scans were acquired with a standard whole-head coil on a Philips 3.0 Tesla MRI scanner.
Functional scans were acquired during two runs with T2*-weighted echo-planar imaging (EPI).
The first two volumes were discarded to allow for equilibration of T1 saturation effects. Volumes
covered the whole brain (TR =2.2 s, TE = 30 ms, sequential acquisition, 38 slices, slice thickness =
2.75 mm, Field of View (FOV) = 220 x 220 x 114.68 mm). A high-resolution 3D T1-FFE scan for
anatomical reference was obtained after the experimental tasks (TR = 9.76 ms, TE = 4.59 ms, 140
slices, voxel size = 0.875 mm, FOV =224 x 177 x 168 mm). The experimental task was projected on
a screen that was viewed through a mirror. Before the MRI scan, participants were accustomed to

the MRI environment and sounds with a mock scanner.
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FMRI Data Analysis

All data were analyzed with SPM8 (Wellcome Department of Cognitive Neurology, London).
Images were corrected for slice timing acquisition and rigid body motion. Structural and func-
tional volumes were spatially normalized to T1 templates. The normalization algorithm used a
12-parameter affine transform together with a nonlinear transformation involving cosine basis
functions and resampled the volumes to 3 mm cubic voxels. Templates were based on the
MNI305 stereotaxic space (Cocosco et al., 1997), an approximation of Talairach space (Talairach &
Tourneaux, 1988). Functional volumes were spatially smoothed with an 8mm FWHM isotropic
Gaussian kernel. The fMRI time series data were modeled by a series of events convolved with a
canonical hemodynamic response function. The modeled events were “Positive Learning”, “Neg-
ative Learning”, and “Application”, which were time-locked with 0-duration to the moment of
feedback. All other trials (e.g., trials that did not result in learning or too-late trials) were modeled
as events of no interest. The trials were used as covariates in a general linear model; along with a
basic set of cosine functions that high-pass filtered the data. The least-squares parameter esti-
mates of height of the best-fitting canonical HRF for each condition were used in pair-wise con-
trasts. The resulting contrast images, computed on a subject-by-subject basis, were submitted to
group analyses. All fMRI analyses were initially calculated with a stringent FWE-corrected
threshold at p < .05, with at least 10 contiguous voxels. In order to examine whole brain effects in
more detail, region-of-interest (ROI) analyses were performed with the Marsbar toolbox in SPM8
(Brett et al. 2002).

Results

Modeling results
We fitted finite mixture distribution models to the trial-by-trial data on response types (see Meth-
ods section) with a different number of groups (one to five subgroups). In addition, we fitted a 1-
state model (i.e., no underlying strategy groups) to the data that assumes continuous individual
variation in behavior related to age. By comparing the BIC between models we selected the opti-
mal model to describe the data. Table 2 shows the fit statistics of the different models. First, it
appeared that a continuous variation of response probabilities with age was not the optimal way
to describe the data. That is, the 1-state age model does not have the lowest BIC. The optimal
model assumed the presence of four latent groups (4-states model). We did not test more than
five groups because the BIC increased with five groups compared to four groups. Table 3 shows
the number of participants per group and how the four groups are defined by percentages of
response types.

As can be seen in Table 3, the four strategy groups differed in the number of trials per
trial type. We described these four groups as follows: 1) Low strategy group: Relatively many

mistakes (no reasoning required, errors in STM or motor response), inefficient responses (not



Chapter 5 — Strategy Use and Feedback Learning | 87

taking into account feedback for other stimuli: WM errors) and suboptimal responses (not maxim-
izing chance of correctness). 2) Medium-Suboptimal group: Fewer mistakes and inefficient deci-
sions than the Low group, but still relatively many suboptimal decisions. 3) Medium group:
Comparable to the Medium-suboptimal group, but fewer suboptimal decisions. 4) High strategy

group: Almost all trials are optimal in terms of strategy use.

Table 2: Fit statistics of the static latent variable models with different number of latent strategies.

Model Loglike  df BIC

1 state -15106.51 3 30244.56
1stateage -14898.26 6  29859.60
2 states -14605.19 7 29283.97
3 states -14496.1 11 29107.84
4 states* -14461.58 15  29080.87
5 states -14461.32 19 29122.39

Note: The models are explained in the methods section. A 1-state model assumes one strategy; a 2-state model two strate-
gies, etc. The 1-state age model assumes continuous variation between individuals that is related to age. Loglike is the
loglikelihood of the fitted model; df = degrees of freedom, which is in this case the number of freely estimated parameters;
BIC = Bayesian Information Criterion.

* The model with the lowest BIC is the optimal model.

Table 3: The number of participants per group and percentage of trials per response type.

Strategy group N Mistake Inefficient Suboptimal Optimal
Low 33 7.04% 8.14 % 7.52 % 77.30 %
Medium-Suboptimal 46  2.12 % 3.58 % 6.77 % 87.53 %
Medium 76 291 % 4.51 % 222 % 90.36 %
High 113 0.74 % 1.45 % 1.04 % 96.77 %

A repeated-measures analyses with the frequencies of the four response types as the within-
subjects variables, and strategy group as between-subjects variable yielded a significant interac-
tion between response-type and strategy group (F (9, 792) = 109.94, p < .001), which is to be ex-
pected beforehand from the mixture distribution analysis. Further follow-up one-way ANOVA
tests indicated that there were significant between-group differences in the frequency of optimal
trials (F (3, 264) = 50.84, p < .001, with Bonferroni post-hoc tests indicating that all groups differed
from each other (all ps < .002); except the Medium group and the High group); the frequency of
mistakes (F (3,264) = 194.15, p <.001, post-hoc tests showed all groups differed from each other (all
ps < .017)); the frequency of inefficient responses (F (3,264) = 189.44, p < .001, post-hoc tests indi-
cated that all groups differed (all ps <.015)); and finally, the frequency of suboptimal responses (F
(3,264) = 276.56, p < .001, with post-hoc tests showing that all groups differed from each other (all
ps < .005)). These results provide evidence that the High strategy group is most efficient in the
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hypothesis-testing process because almost no reasoning mistakes were made. In the next para-
graphs, we will describe how the four strategy groups are divided over age groups, and subse-

quently how the groups differed in brain activity during the feedback learning task.

Division of age and performance over the different strategy groups

In Figure 3, the division of strategy groups over discrete age groups is displayed. A chi-square
test indicated that age groups differed across the strategy groups (x? (30) = 82.80, p < .001). This
indicates that age is an important factor contributing to strategy use. However, even in the two
extreme groups (Low and High strategy), children and adults of different ages were distributed
over these strategy groups, such that, for instance, some young children (from 9 years onwards)
were present in the High strategy group and one adult was present in the Low strategy group.
Note that IQ did not differ across strategy group as indicated by a one-way ANOVA (F (3, 262) =
1.82, p = .145). The division across strategy groups was similar for males and females (x? (3) = 0.25,
p=.969).

100%
90%
80%
70%
60%
509% W High
40% OMedium
23;‘: % m Medium-Suboptimal
% A Low
10% %
0% L
R R R
Agein years >

Figure 3: Division of strategy groups (in percentages) over age groups.

FMRI analysis
The percentage of trials for Learning and Application out of the total number of trials per strategy
group are displayed in Table 4. Note that the total number of trials could differ per participant

due to the nature of the task. ‘Other trials’ are trials which did not result in learning, incorrect



Chapter 5 - Strategy Use and Feedback Learning | 89

applications or trials where the participant responded too late. These trials were not used for
further fMRI analyses.

Table 4: Percentage of trials for Learning and Application (Mean (SD))

Strategy Group Positive Learning Negative Learning Application Other trials
Low 24.86 (2.66) 25.36 (3.93) 35.65 (3.77) 14.13 (4.81)
Medium-SO 29.98 (2.18) 21.33 (2.63) 42.82 (2.35) 5.87 (2.37)
Medium 29.23 (2.47) 19.92 (2.06) 42.93 (2.39) 7.91 (3.01)
High 32.87 (2.02) 17.46 (2.02) 46.85 (1.68) 2.82 (1.91)

To assess potential neural differences between strategy groups, we focused on the contrast Learn-
ing > Application. General age and main effects of feedback learning were also described in Peters
et al. (2014). Here, we focused on the strategy versus age related differences in neural activation.
Our hypothesis was that age effects for the contrast Learning > Application can partly be ex-
plained by strategy differences. To investigate this, we first calculated the contrast Learning >
Application with age as a positive regressor, to see which areas were more active with increasing
age (see Figure 4, Table 5).

Learning > Application
Positive correlation with age

11

0 ® o LantDlPEC » ° | RDLPFC o 3 LSPC o
E: E 3 = 3 3
$2 g £2 2 £2 <
g1 g g1- g1 B1- g
s 5 5 Eo g £
S0 zoeg © UOA‘;TOE:U zoEg O o0 © zoEc€
oW s 2 B Y 52 5932 59 35 A=
“Ex T “Ex T eg T “Ex T “E£s T
S @ =] =R S @ ER]
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Figure 4: Areas showing activation for the contrast Learning > Application, with age as a positive regres-
sor, FWE corrected at p < .05, > 10 contiguous voxels. Differential activity for Learning > Application in

ROISs based on this contrast is shown per strategy group (SO = Suboptimal).
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Table 5: Areas showing activation for the contrast Learning > Application, with age as a positive regressor,

FWE corrected at p < .05, > 10 contiguous voxels.

Area of activation X y voxels T

R inferior parietal lobule 42 -39 48 2127 10.15
R superior parietal lobule 21 -69 54 9.36
L superior parietal lobule 27 -63 54 9.07
R middle frontal gyrus 30 9 60 521 9.29
Rinferior gyrus 48 12 33 6.57
R inferior gyrus 45 33 24 6.29
L inferior occipital gyrus -48  -66 -15 407 8.54
L fusiform gyrus -33 51 -18 5.54
L middle occipital gyrus -36 -84 6 5.24
L precentral gyrus 36 0 60 732 8.24
L precentral gyrus -48 3 51 7.68
L superior frontal gyrus 21 12 63 7.37
R inferior temporal gyrus 51  -60 -15 292 8.06
R cerebellum 33 -69 -21 5.75
R inferior occipital gyrus 27 93 -12 4.96
R caudate nucleus 6 21 0 260 7.00
L caudate nucleus -9 9 0 6.79
R caudate nucleus 9 9 0 6.53
L cerebellum -3 81 -18 52 6.13
L lingual gyrus 1293 -15 4.89
L inferior frontal gyrus -30 30 0 65 5.58
L inferior frontal gyrus -45 21 -3 5.42
L middle frontal gyrus -36 54 15 30 5.50

Note: Abbreviations: L = Left; R = Right

From these functional activations we created ROIs. The resulting ROIs spanned several brain

regions, therefore we applied anatomical masks (based on Marsbar Automated Anatomical Label-

ing) for the key regions implicated in the development of feedback learning (Peters et al., 2014;
Crone et al, 2008; Van Duijvenvoorde et al., 2008)): left and right DLPFC (AAL mask: Middle
Frontal Gyrus), pre-SMA/ACC (Supplementary Motor Area, left and right combined), and left

and right SPC (Superior Parietal Gyrus). Centre-of-mass MNI (x y z) coordinates were: right
DLPFC: x =39, y =22, z = 41; left DLPFC: x = -35, y = 12, z= 49; left anterior DLPFC: x =-35, y =
52,z=14; pre-SMA/ACC: x = -4, y = 12, z = 58; right SPC: x =27, y =-62, z = 55; left SPC: x =-24, y
=-64, z = 50 (see Figure 4). (Note that the anatomical masking process resulted in two left DLPFC

regions, one of which we called: ‘left anterior DLPFC’).
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ROI analyses

To test if strategy groups differed in neural activity within these areas, we created ROIs based on
this contrast (see Figure 4). For these ROIs, we first tested whether the four groups differed in
neural response; then we tested if strategy group explained variance above age, and finally we
tested with mediation analyses whether age effects were mediated by strategy group. Thus we
computed difference scores for Learning > Application, which were different for the four strategy
groups in all ROIs (all ps < .005; see Figure 4). The patterns for each region showed lowest activity
for the Low strategy group, higher activity for the Medium and Medium-Suboptimal group, and
highest activity for the High strategy group. LSD post-hoc tests for each region separately indi-
cated that for pre-SMA/ACC, all groups showed lower activity than the High group, but there
were no other differences (all ps <.005). For right SPC, we found that all groups except Medium
and Medium-Suboptimal differed from each other (all ps < .024), and for left SPC, all groups ex-
cept Medium and Medium-Suboptimal and Low and Medium-Suboptimal differed from each
other (all ps < .014). We found that for right DLPFC, the Low and Medium-Suboptimal, Low and
High, and Medium and High showed significant differences (all ps < .017); for left DLPFC that all
groups except Medium and Medium-Suboptimal were different (all ps < .025).; and for left anteri-
or DLPFC that the Low and Medium group showed less activity than the High group (all ps
<.007). Note that the general pattern (see Figure 4) is that the Low group shows the least activity
and the High group shows the most activity, which for the High group is consistently different
from the other groups except in right DLPFC and left anterior DLPFC.

To investigate whether age differences in neural activity can be attributed to differences
in strategy use (over and above age), we used hierarchical linear regression analyses with neural
activity for Learning > Application (difference score) as dependent variable, age entered as first
predictor and strategy group entered as second predictor. We found significant effects of strategy
group above age for four of the seven ROIs: pre-SMA/ACC (step 1: R? = .15; age: B = .39, p <.001;
step 2: R? = .18; age: B = .33, p <.001, strategy group: B = .16, p = .007), left DLPFC (step 1: R?= .22;
age: B = .47, p <.001; step 2: R?=.24; age: B = .43, p <.001, strategy group: B = .13, p = .030), left SPC
(step 1: R?=.23; age: B = .48, p <.001; step 2: R?=.25; age: B = .43, p <.001, strategy group: B=.14, p
=.012) and right SPC (step 1: R?= .25; age: B = .50, p < .001; step 2: R?= .26; age: B = .45, p < .001,
strategy group: B = .12, p = .033). To summarize, these results indicate that strategy explained
additional variance in neural activity above age in pre-SMA/ACC, bilateral SPC and left DLPFC.

Mediation analyses

For the four ROIs that showed a significant contribution of strategy group above age, we per-
formed mediation analyses with the R package for causal mediation analysis (Imai, Keele, &
Tingley, 2010) to investigate the relation between age and strategy use in explaining variance in
brain activity. We applied the analysis on ROI activity with age (continuous) as direct predictor

and strategy group (nominal variable) as mediator variable (see Figure 5).
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Figure 5: Mediation analysis paths for strategy group as a mediator between age and ROI activity.

With causal mediation analysis, a mediation effect is present if 1) age predicts strategy group
(path a), 2) strategy group predicts ROI activity if age is simultaneously entered as a predictor
(path b), 3) if age predicts ROI activity (path c), and 4) if strategy group is entered simultaneously
as a predictor, the effect of age on ROI activity decreases (path ¢’) (Preacher & Hayes, 2008). We
first tested for collinearity problems between age and strategy group, which are indicated by a
Variance Inflation Factor greater than 10 (Myers, 1990), a tolerance value less than 0.1 (Menard,
1995) and condition indices greater than 10 (Belsley, David, Kuh & Welsch 1980). For this data, we
found no indication for collinearity problems (VIF = 1.14, tolerance = 0.86, condition indices < 10).
For the mediation analysis, we report unstandardized regression coefficients. Path a (effect of age
on strategy group) was the same for all four mediation analysis and resulted in a significant ef-
fect: B =.10, p <.001).

For pre-SMA/ACC, the effect of age on ROI activity (path c: B =0.13, p <.001) was partly
mediated by strategy group (path b: B =0.19, p = .007; path ¢’: B = .11, p <.001; mediation effect
(ab) =.02, p = .01 (95 % confidence interval (CI) = .004 - .036); proportion mediated (ab/c) = .15). In
left DLPFC, the effect of age on ROI activity (path c: B=0.13, p <.001) was also partly mediated by
strategy group (path b: B=0.12, p =.031; path ¢": B=.11, p <.001; mediation effect (ab) =.01, p = .04
(95 % confidence interval (CI) = .0005 - .023); proportion mediated (ab/c) = .09). For right SPC, the
effect of age on ROI activity (path c: B = 0.21, p < .001) was partly mediated by strategy group
(path b: B=0.18, p = .033; path ¢’: B =.19, p <.001; mediation effect (ab) = .02, p = .04 (95 % confi-
dence interval (CI) = .001 - .037); proportion mediated (ab/c) = .09). A similar effect was found for
left SPC, where the effect of age on ROI activity (path c: B=0.17, p <.001) was partly mediated by
strategy group (path b: B =0.18, p = .012; path ¢": B = .15, p <.001; mediation effect = 0.018, p = .02
(95 % CI..004 —.034); proportion mediated = .11). In summary, we found that a significant portion
of the variance in ROI activity in pre-SMA/ACC, left DLPFC and bilateral SPC was explained by

strategy group, because strategy group partly mediated the relation between age and brain activi-

ty.
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Whole brain analysis

In addition, we also tested if there were differences on a whole-brain basis between strategy
groups, to investigate whether the ROI results were also observable on a whole-brain level, and to
test whether there were effects of strategy group (above age) in areas outside of the ROIs. We
used an ANOVA model with the four strategy groups as between-subjects variable and age as an
additional regressor. We added age as a regressor because the strategy groups were not equally
divided over age groups. First, we calculated the contrast Learning > Application for the four
strategy groups separately, corrected for age (see Figure 6, Table 6). These analyses showed wide-
spread activity (FWE-corrected at p < .05, > 10 contiguous voxels) for all strategy groups in the
bilateral frontoparietal network, as well as in the pre-SMA/ACC, basal ganglia and occipi-
tal/temporal cortex. An F-test (with age-correction) was performed to see whether there was a

main effect of strategy group. There were no significant clusters which survived FWE-correction.

Learning > Application

Low strategy

Medium-Suboptimal
strategy

Medium strategy

High strategy

Figure 6: Areas showing activation for the contrast Learning > Application, separately for each strategy

group (corrected for age), FWE corrected at p < .05, > contiguous 10 voxels.
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Table 6: MNI coordinates local maxima activated for the contrast Learning > Application per strategy

group, FWE corrected at p <.05, > contiguous 10 voxels

Strategy Group Area of activation X y z voxels T
Low R inferior parietal lobule 45 42 48 1778 10.39
L inferior parietal lobule 35 45 42 7.54
L inferior parietal lobule -48 -39 45 7.39
L superior medial gyrus 3 24 45 2588 9.99
R superior frontal gyrus 24 9 57 9.50
R middle frontal gyrus 42 30 33 9.14
R putamen 30 21 0 1018 3.06
L insula lobe -30 21 -3 8.43
L caudate nucleus -15 6 12 7.13
L middle frontal gyrus -30 51 18 277 6.93
L middle frontal gyrus -36 48 6 6.62
L superior orbital gyrus -30 54 -3 6.59
R middle temporal gyrus 57 30 -9 53 6.42
L calcarine gyrus 3 -9 9 71 5.59
R inferior occipital gyrus 42 78 -12 36 5.16
R fusiform gyrus 36 75 -18 5.05
R cerebellar vermis 6 <75  -18 21 5.11
L cerebellum -6 -78 -18 491
R cerebellar vermis 3 -54  -15 27 5.04
Medium-SO R inferior parietal lobule 45 42 48 3087 17.34
R angular gyrus 36 57 45 16.69
L inferior parietal lobule -48 42 48 12.67
Superior medial gyrus 0 24 45 6258 16.17
R putamen 30 21 0 14.77
R middle frontal gyrus 45 27 36 14.67
L superior occipital gyrus 9 -9 6 972 9.09
R cuneus 12 9% 12 8.21
L fusiform gyrus -39 -69 -18 7.78
R middle temporal gyrus 57 30 -9 18 6.45
Medium R superior frontal gyrus 24 9 60 7784 18.16
Superior medial gyrus 0 24 42 17.18
R putamen 30 21 0 15.17

R inferior parietal lobule 45 42 48 5104 17.92
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L inferior parietal lobule -48  -45 48 15.11
R precuneus 6 -66 51 14.13
L middle temporal gyrus 57 30 -9 16 6.28
High R supplementary motor area 3 21 45 9890 22.07
L supplementary motor area -3 15 48 21.40
L supplementary motor area -6 9 54 20.57
R supramarginal gyrus 39 42 42 7336 21.61
L inferior parietal lobule 36 48 45 18.52
L inferior parietal lobule -45 42 45 18.52
L middle temporal gyrus 57 33 9 78 9.55

Note: Abbreviations: L = Left; R = Right

Age effects

Additionally, we investigated effects of age within our ANOVA model, to see which brain activa-
tion is related to age while controlling for strategy group. As can be seen in Figure 7, a positive
relation with age (FWE-corrected, p < .05, > 10 contiguous voxels) was found in the frontoparietal
network, pre-SMA/ACC, basal ganglia and occipital cortex (see also Supplementary Table 1),

when controlling for strategy.

Learning > Application
Positive correlation with age
Controlled for strategy group

Figure 7: Areas showing activity for the contrast Learning > Application that correlated positively with
age, while controlling for strategy group. Displayed at an FWE-corrected threshold at p < .05, > 10 contig-
uous voxels.
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Discussion

An important question in research on executive functioning is whether developmental differences
in behavior and neural activation can be explained by strategy differences. This study tested this
hypothesis in a large sample of participants between ages 8-25 years in which statistical modeling
approaches were combined with neuroimaging. The results showed that 1) learning from feed-
back in a sorting task resulted in variance in performance, which could be distinguished into four
latent strategy groups, 2) even though age was strongly linked to strategy use, such that older
participants were more often present in high performing strategy groups and young participants
in low strategy groups, there was still considerable variance in strategy groups within age groups,
3) strategy explained additional variance in neural activity above age in pre-SMA/ACC, left
DLPFC and bilateral SPC, and 4) there was still unique variance related to age differences in

neural activity during feedback learning.

Underlying strategy groups in the feedback learning task

Consistent with prior developmental studies (Andersen et al, 2014; Raijmakers et al.,, 2001;
Schmittmann et al., 2012, 2006), we found latent strategy groups that differed in performance on
the feedback learning task. In the current feedback learning paradigm, participants were instruct-
ed to sort stimuli in one of three locations by using positive and negative feedback. Several strate-
gies could be used to ensure optimal learning, such as focusing not only on feedback for the cur-
rent stimulus, but also on feedback for the other two stimuli. In our sample, four different strate-
gy groups could be distinguished. The highest performing strategy group responded almost
perfectly in terms of the efficiency of strategy use. This strategy required optimal use of short-
term memory, working memory and more complex executive functions (Diamond, 2013). The
lowest performing strategy group, however, made more mistakes and did not adequately take
into account the information from the other stimuli, thereby missing opportunities for learning.
The lowest strategy seemed to involve regular flaws in STM, WM and more complex executive
functions. The other two groups represented intermediate variants.

The division over strategy groups was related to age: Results indicated that younger
children were more likely to be in a lower performing group, and older children and adults were
more likely to be in a higher performing group. Still, there was considerable variation in strategy
group within age groups: Some young children (8/9 years) belonged to the same strategy group
as some of the adults, but there were also adults who were outperformed by young children. This
supports the notion that it is important to study performance and strategy differences as opposed
to age differences alone in learning tasks. The presence of different underlying strategies within
age groups could make the interpretation of prior developmental studies that compared age

groups difficult.
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Neural differences between strategy groups

After discovering that different strategy groups could be distinguished in our sample, we investi-
gated if these strategy groups explained developmental differences in neural activity. We used an
fMRI contrast that revealed areas that are sensitive to feedback with learning value, i.e., areas that
respond more to feedback that provides new information compared to feedback that provides
information that is already known. We tested which areas showed a positive relation with age,
and created ROIs based on this contrast for pre-SMA/ACC, DLPFC and SPC (see also Peters et al.,
2014). We found that strategy group explained additional variance above age in pre-SMA/ACC,
left DLPFC and bilateral SPC. In these areas, the highest performing group consistently showed
more activation for these regions compared to the other groups. Moreover, with mediation anal-
yses, we found that the proportion of the age effect on brain activity mediated by strategy was
between 0.09 and .15. These mediated proportions were relatively low, especially compared to the
study by Andersen et al. (2014) which used a similar approach but found stronger effects of strat-
egy despite a much smaller sample size. This could be due to the fact that the task used in Ander-
sen et al. was relatively more difficult, e.g., a majority of even the adult participants did not use
the most optimal strategy. The relative contribution of age might be larger compared to strategy
in a task such as in the current study where there is a clear developmental ‘end point’, i.e. most
adults demonstrate optimal performance.

The finding that especially the highest performing group differed from the other groups
in frontoparietal areas and the pre-SMA/ACC relates to prior studies which indicated that these
areas are important for executive functioning. The pre-SMA/ACC is thought to be important to
detect conflict between competing representations (Carter & van Veen, 2007) and for top-down
control of response selection and preparation (Schulz, Bedard, Czarnecki, & Fan, 2011). The
DLPFC and SPC are important for executive functions such as working memory (Klingberg et al.,
2002), and the DLPFC is also associated with inhibition (Nyffeler et al., 2007) and cognitive flexi-
bility (Ravizza & Carter, 2008). These executive processes are important to achieve the highest
level of performance in the current feedback learning paradigm. Possibly, these fMRI results
indicate that high performing learners are better at distinguishing feedback that is important for
learning compared to relatively uninformative feedback (i.e., feedback during the application
phase, which does not provide new information).

In addition, a whole-brain approach showed that the feedback learning network (pre-
SMA/ACC, DLPFC, SPC and basal ganglia) was activated in all strategy groups (after age correc-
tion) while participants received feedback during learning compared to applying known rules.
These findings are consistent with prior studies that showed that this network is implicated in
feedback learning across development (Crone et al, 2008; van den Bos et al, 2009; van
Duijvenvoorde et al., 2008). However, when testing for differences between the groups while
correcting for age, there were no neural differences which survived correction for multiple com-
parisons. Together these results showed that age effects in pre-SMA/ACC, SPC and left DLPFC
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during a feedback learning task are partly explained by strategy differences, although the effects

of strategy may be relatively small compared to the effects of age.

Age versus strategy effects

Because of the relatively weak mediation effects of strategy on brain activity, we also investigated
which brain areas show a positive correlation with age, while correcting for strategy group, to
find unique activation related to age. We found widespread activation in the frontoparietal net-
work, pre-SMA/ACC and basal ganglia, which survived correction for multiple-comparisons.
Together with the ROI findings, these results suggest that age is the most significant contributor
to neural activation patterns compared to strategy use in this study. This is consistent with the
previously mentioned maturational viewpoint which suggests that age is a vital contributor to the
development of patterns of neural activation (Dosenbach et al., 2010).

Therefore, our results only partly correspond to prior studies which found that age-
related differences in neural activation can be explained by performance differences (Booth et al.,
2004; Bunge et al., 2002; Koolschijn et al., 2011). For instance, in a longitudinal study, when per-
formance and age were used as predictors for neural activation change in regions such as the
DLPFC, SPC and pre-SMA/ACC, performance was a better predictor for changes in neural activi-
ty than age (Koolschijn et al., 2011). This highlights the need for longitudinal studies to investigate
the development of learning and the underlying neural processes. Future research should investi-
gate if participants progress to faster strategy groups with development, and if this is accompa-
nied by more robust changes in neural activity than in this cross-sectional design. We propose
that latent variable models provide a valuable method to detect performance-related versus age-

related influences on neural activity.

Limitations

There are several limitations to this study. First, as is often the case in developmental studies,
children received relatively more negative feedback compared to adults (e.g., Koolschijn et al.,
2011). It is possible that our results were influenced by these differences in the amount of trials
per feedback type, although these differences between age groups were relatively small. Second,
even though the wide age range in this sample has many benefits, it was not possible to investi-
gate effects of strategy in smaller age ranges, due to the unbalanced division of participants across
strategy groups. A study with a similarly large sample but with less variation in age would be
better suited to investigate effects of strategy within smaller age ranges. In addition, the study
was cross-sectional and future studies should test changes in strategy use and neural activation
patterns within the same individuals, to examine whether switching to a different strategy is
accompanied by neural change within individuals. Finally, since we did not fit confirmative pro-
cess models to the behavioral data, we cannot exclude the possibility that performance was not

only organized in qualitatively different performance groups, but that there was also some con-
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tinuous performance variation. However, there are good reasons to believe that qualitatively
different strategy groups played an important role in performance differences of individuals.
First, model comparisons indicated that the fit of a model that presumes continuous variation was
relatively worse. Second, in the selected model the posterior probabilities to belong to a specific
strategy group was for most participants either high (around 1.0) or low (around 0.0). Finally,
strategy differences (as opposed to continuous performance variation) were found by studies that
did fit confirmative models for feedback learning processes in other learning tasks (Raijmakers et
al., 2001; Schmittmann et al., 2012, 2006).

Conclusion

In this study, we showed that in a feedback learning task, different underlying strategies could be
detected within age groups, which were distinguishable at the neural level. These findings have
important implications for traditional ways of analyzing developmental data. In future studies, it
will be important to take into account individual differences in performance and strategy use,
rather than comparing age groups alone. This research is informative in the context of unraveling
the mechanisms underlying learning and learning difficulties and may contribute to interventions

teaching children to adapt more efficient strategies to enable faster learning.






