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Cancer, the leading cause of death in many developed countries, is responsible for almost 

one third of all deaths worldwide. Every year almost 0.5% of the world population is 

diagnosed with cancer.1 It is expected that cancer is set to become a major cause of morbidity 

and mortality in the next few decades in every region of the world, irrespective of level of 

resource. Recently Bray et al. predicted an increase in the incidence of all cancer cases from 

12.7 million new cases in 2008 to 22.2 million by 2030.2

Nowadays many different treatment options for cancer are known: local therapies including 

surgery and radiotherapy and systemic therapy including chemotherapy, hormonal 

therapy, immunotherapy and targeted therapy. Unfortunately, many current anticancer 

drugs have non-ideal pharmaceutical and pharmacological properties, which can lead to 

adverse consequences, including suboptimal therapeutic activity, dose-limiting side effects 

and poor patient quality of life. Novel formulations of anticancer drugs are necessary to 

overcome these problems. The general aim and scope of this thesis is to explore several 

novel formulations and new classes of anticancer drugs in solid tumors.

Novel formulations

The first part of this thesis focuses on two novel formulations, namely liposomal drug 

formulations and camptothecin glycoconjugate BAY 56-3722 (formerly BAY 38-3441).

Liposomal drug formulations

In Chapter 2, as a prelude to the next chapters, the liposomal anticancer drugs that are  

available in the clinic are reviewed. Liposomes are simple, self-assembling systems that 

consist of a bilayer membrane surrounding an aqueous interior compartment. They are 

generally formed from naturally occurring phospholipids and cholesterol.3 Considerable 

flexibility is possible in the design of liposomes with regard to, for example, their 

composition, size and drug release characteristics. Liposomal nanoparticles are designed 

to be multifunctional, with different components providing control over such properties 

as elimination half lives, permeability, biodistribution and targeting specificity.4 At 

present, several liposomal anticancer drugs are available in the clinic or are in advanced 

stages of clinical development. Approved drugs include pegylated liposomal doxorubicin 

(Doxil®/Caelyx®), nonpegylated liposomal doxorubicin (Myocet®), liposomal daunorubicin 

(DaunoXome®) and liposomal cytarabine (DepoCyte®). Although almost all studies show 

that liposomal formulations of anticancer drugs are less toxic than the non-encapsulated 
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formulations, some liposome-specific adverse effects such as various skin reactions, and 

also hypersensitivity reactions, were reported.

In Chapter 3, a dose-escalating phase I study of LiPlaCis, a liposomal formulated platinum 

compound, in patients with advanced solid tumors is reported. In Chapter 4 we describe 

a randomized two-period crossover, clinical bioequivalence study comparing the 

pharmacokinetics and safety of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) 

formulation versus paclitaxel in Cremophor® EL (Taxol®) in patients with advanced cancer.

BAY 56-3722

In Chapter 5, we report the fate of BAY 56-3722 (formerly BAY 38-3441), a camptothecin 

glycoconjugate and the unique situation of a clinical hold after enrollment of 25 patients 

during a phase II study. This phase II study evaluates the antitumor activity of BAY 56-3722 in 

patients with recurrent or metastatic inoperable colorectal cancer (CRC) resistant to irinotecan. 

New classes of anticancer drugs

Besides novel formulations, also new classes of anticancer drugs for solid tumors such 

as histone deacetylase (HDAC) inhibitors and cardiac glycosides could be useful in the 

treatment of cancer. The second part of this thesis focuses on HDAC inhibitors and cardiac 

glycosides. 

HDAC inhibitors

The histone deacetylase inhibitors are a group of targeted agents which are characterized 

as class I-specific or as pan-deacetylase (pan-DAC) inhibitors, which show activity against 

both classes I and II HDACs. A lot of research was focused on the treatment of hematological 

malignancies, but in the last decade also clinical trials with HDAC inhibitors in solid tumors 

were conducted. In Chapter 6, as a prelude to the next chapter, the clinical trials in solid 

tumors of HDAC inhibitors are reviewed. We demonstrate that despite promising results 

in the treatment of hematological malignancies, HDAC inhibitors have generally not been 

effective in clinical trials involving solid tumors.

Chapter 7 describes a phase I, open-label, multicenter study to evaluate the pharmacoki-

netics and safety of oral panobinostat in patients with advanced solid tumors and various 

degrees of hepatic function.
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Cardiac glycosides

Cardiac glycosides have a long history in the treatment of cardiac disease. However, several 

preclinical studies and also two phase I studies have shown that cardenolides may also have 

anticancer effects. The mechanisms of the anticancer effects of cardenolides may include 

intracellular decrease of K+ and increase of Na+ and Ca2+; intracellular acidification; inhibition 

of IL-8 production and the TNF-α/NF-κB pathway; inhibition of DNA topoisomerase II and 

activation of the Src kinase pathway. In Chapter 8 we give an overview of these possible 

mechanisms and discuss their early development in cancer therapeutics. In Chapter 9 

we summarize the preclinical data and the preliminary results of a prematurely stopped 

clinical phase I trial with UNBS1450, a semisynthetic cardenolide glycoside derivative. This 

drug is considered a promising anticancer agent targeting overexpressed sodium pump 

α subunits in malignant tumors. 

An English and Dutch summary of this thesis, including future perspectives, is presented 

in Chapter 10.
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Summary

Liposomes as pharmaceutical drug carriers were developed to increase antitumor efficacy and 

decrease drug toxicity. Doxorubicin HCl liposomal injection was the first liposomal encapsulated 

anticancer drug to receive clinical approval. To date, virtually all traditional anticancer drugs have 

been encapsulated in liposomes.

The majority of clinical studies only support the concept of a decreased toxicity and better 

tolerability of the liposomal anticancer drug. Although liposomal anticancer drugs have grown 

to maturity in several indications and are now in widespread further development programmes 

using their theoretical advantages to fulfill the high expectations, further studies are warranted 

– including the development of novel liposomal formulations.
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INTRODUCTION

Many current anticancer drugs have non-ideal pharmaceutical and pharmacological 

properties such as low aqueous solubility, irritant properties, lack of stability, rapid 

metabolism, unfavorable pharmacokinetics and non-selective drug distribution, which can 

lead to a number of adverse consequences, including lack of or suboptimal therapeutic 

activity, dose-limiting side effects and poor patient quality of life.1 From the drug delivery 

perspective, this might not only result in low bioavailability of the anticancer drug at the site 

of action (i.e. inside the cancer cells) but also in high organ toxicity that limits the maximal 

tolerable dose. Nanoscale drug delivery systems, defined as drug delivery systems having 

particle diameters of approximately 100 nm or less, are attracting considerable attention 

as a means of overcoming some of the limitations of conventional anticancer drug therapy. 

Liposomes and other lipid-based drug delivery systems are the archetypal nanoscale 

drug delivery systems. The first product, liposomal amphotericin B (Ambisome®), which is 

indicated for fungal infections, received clinical approval in 1990. Liposomes are simple, 

self-assembling systems that consist of a bilayer membrane surrounding an aqueous interior 

compartment. They are generally formed from naturally occurring phospholipids and 

cholesterol, rendering them readily biodegradable (Figure 2.1).2 Considerable flexibility is 

possible in the design of liposomes with regard to, for example, their composition, size and 

drug release characteristics. Liposomal nanoparticles are designed to be multifunctional, 

with different components providing control over such properties as elimination half lives, 

permeability, biodistribution and targeting specificity.1

 
Figure 2.1  Liposome.
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Doxorubicin HCl liposomal injection (Caelyx® in Europe, Doxil® in the USA), which received 

marketing approval in 1995, was the first nanoscale delivery system to receive clinical 

approval in cancer therapy for acquired immune deficiency syndrome (AIDS)-related Kaposi’s 

sarcoma.3 Currently, virtually all traditional anticancer drugs have been encapsulated in 

liposomes using different technologies and many of them have entered clinical trials as 

cancer-imaging agents and/or anticancer therapeutics, indicating that this is a rapidly 

developing field that justifies review.

Here, we focus on the liposomal anticancer drugs that are available in the clinic, including 

discussion on the specific adverse effects of liposomes. We start with a short description 

of the principles of liposomal delivery.

Principles of liposomal drug delivery

Theoretically, liposomes have a couple of advantages over non-capsulated drugs,4 first of 

which is their improved pharmacokinetics and drug release. In 2010, in a meta-analysis, 

Sidone et al. demonstrated that the pharmacokinetic (PK) variability of liposomal agents 

is 2.7 fold or 16.7 fold greater than non-liposomal agents, measured by ratio of the 

coefficient of variation (CV) to AUC, AUC CV%, and ratio of AUCmax to AUCmin, respectively.5 

A second advantage of liposomal drugs is their enhanced cellular penetration, for which 

exist different mechanisms, such as fusion of the liposomal membrane with the cellular 

plasma membrane.4

A third advantage is the possibility of selectively targeting anticancer drugs to the tumor, 

preventing the side effects of drugs related to effects in healthy tissues and enhancing the 

uptake of the drug by the targeted cells.4 The fourth theoretical advantage of liposomal 

drugs is the ability to include several active ingredients in one complex liposomal drug 

delivery system. Clinical evidence supports the hypothesis of Goldie and Coldman: that 

treating cancers with all the available effective agents simultaneously provides the greatest 

chance of eliciting a cure.6 Combination chemotherapy carried out with synergistic drugs 

is considered as a basis for improving its effectiveness. The ultimate goal of research is to 

prepare a product that encompasses traditional cytotoxic agents and new molecularly 

targeted modalities with optimum therapeutic effects and acceptable toxicity for healthy 

tissues, although this is difficult to achieve.6
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Clinical use of liposomal drugs

At present, several liposomal anticancer drugs are available in the clinic (Table 2.1) or are 

in advanced stages of clinical development (Table 2.2). Approved drugs include pegylated 

liposomal doxorubicin (Doxil®/Caelyx®), nonpegylated liposomal doxorubicin (Myocet®), 

liposomal daunorubicin (DaunoXome®) and liposomal cytarabine (DepoCyte®).

We searched the literature (Pubmed) on this topic using a combination of the medical 

subject heading (MeSH) terms ‘antineoplastic agents’, ‘daunorubicin’, ‘cytarabine’, ‘cisplatin’ 

and ‘clinical trials phase III’, as well as search terms ‘pegylated liposomal doxorubicin’, 

‘chemotherapy’, ‘anticancer’, ‘antineoplastic’, ‘liposomal’, ‘liposomic’, ‘liposomes’ and 

‘liposome’, on 3 September 2011.

Liposomal formulations of anthracyclines are being used today for the treatment of AIDS-

associated Kaposi’s sarcoma, ovarian cancer and breast cancer.

AIDS-associated Kaposi’s sarcoma

In the 1990s there were already positive reports of liposomal formulations of anthracyclines 

with high response rates in the treatment of AIDS-related Kaposi’s sarcoma. In 1996, Gill 

et al. convincingly showed that a nonpegylated liposomal formulation of daunorubicin 

40  mg/m2 given every two weeks had considerably less toxicity than the doxorubicin, 

bleomycin and vincristine regimen without compromising efficacy. The overall response 

rate was 25% versus 28%.7 In 1998 Stewart et al. reported on a multicentre phase III study 

that compared pegylated liposomal doxorubicin with the combination of bleomycin 

and vincristine and showed that the liposomal product is an effective treatment for 

AIDS-related Kaposi’s sarcoma with a higher overall response rate (58.7% versus 23.3%, 

P < 0.001) than the bleomycin and vincristine combination. They reported that it was well 

tolerated but more myelosuppressive.8 In 1998 Northfelt et al. reported on a phase III study 

that compared pegylated liposomal doxorubicin 20 mg/m2 given every two weeks with 

doxorubicin, bleomycin and vincristine, during which patients that received pegylated 

liposomal doxorubicin experienced less toxicity and a higher overall response rate (45.9% 

versus 24.8%, P < 0.001).9 In 2010 Cianfrocca et al. demonstrated in a phase III study that 

treatment with either paclitaxel or pegylated liposomal doxorubicin appears to produce 

significant improvements in pain and swelling in patients with advanced, symptomatic, 

AIDS-associated Kaposi’s sarcoma treated in the highly active antiretroviral therapy (HAART) 

era. Comparing the paclitaxel and pegylated liposomal doxorubicin results revealed similar 

overall response rates (56% versus 46%, P = 0.49).10
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Table 2.1  Overview of approved liposomal anticancer drugs

Available liposomal 
anticancer drug

Indication (for exact indication 
see text)

Phase III study Refs

Nonpegylated liposomal 
doxorubicin

AIDS-related Kaposi's sarcoma Stewart et al. 1998 8
Northfelt et al. 1998 9
Cianfrocca et al. 2010 10

Metastatic ovarian cancer Gordon et al. 2001 11
Pignata et al. 2009 15
Markman et al. 2010 16
Pujade-Lauraine et al. 2010 17

Metastatic breast cancer Keller et al. 2004 18
Chan et al. 2004 20
Sparano et al. 2009 21
Alba et al. 2010 22

Multiple myeloma Rifkin et al. 2006 24
Orlowski et al. 2007 26
Sonneveld et al. 2008 25

Liposomal daunorubicin AIDS-related Kaposi's sarcoma Gill et al. 1996 7
Acute myeloid leukemia Latagliata et al. 2008 27

Liposomal cytarabine Lymphomas or leukemia with 
meningeal spread

Glantz et al. 1999 28

Ovarian carcinoma

In 2001, a phase III study in patients with epithelial ovarian carcinoma that had recurred 

after, or was not responsive to, first-line platinum-based chemotherapy was published by 

Gordon et al. to compare the efficacy and safety of pegylated liposomal doxorubicin and 

topotecan. They concluded that the comparable efficacy (overall response rates: 19.7% 

versus 17.0%, P = 0.390), favorable safety profile and convenient dosing support the role of 

pegylated liposomal doxorubicin as a valuable treatment option in this patient population.11 

Based on phase II results12-14 and efficacy data from this phase III study, Caelyx® received 

FDA approval in June 1999 for the treatment of metastatic carcinoma of the ovary in 

patients with disease that is refractory to paclitaxel- and platinum-based chemotherapy 

regimens. Since the approval, much research has been done on liposomal doxorubicin. In 

2009, based on the efficacy of pegylated liposomal doxorubicin in relapsed ovarian cancer, 

Pignata et al. demonstrated in a phase III study that pegylated liposomal doxorubicin plus 

carboplatin also has activity as a first-line treatment for advanced ovarian cancer (overall 

response rate of 68%, which exceeded the minimum required for study continuation).15 In 

2010 Markman et al. demonstrated in their phase III study that carboplatin plus pegylated 
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liposomal doxorubicin in recurrent ovarian cancer had a favorable impact on progression-

free survival (12 versus 8 months, P = 0.02), although the effect on overall survival was not 

statistically significant (median: 31 versus 18 months, P = 0.2).16 In 2010 Pujade-Lauraine 

et al. published a randomized, multicentre, phase III noninferiority trial that demonstrated 

superiority in progression-free survival (11.3 versus 9.4 months, P = 0.005), and a better 

therapeutic index of pegylated liposomal doxorubicin with carboplatin over standard 

carboplatin and paclitaxel.17

Breast cancer

Also, in patients with metastatic breast cancer liposomal doxorubicin seemed to be effective. 

In 2004, Keller et al. published a randomized phase III trial to compare the efficacy of 

Table 2.2  Some liposomal chemotherapeutic anticancer drugs at various stages of development

Drug Encapsulated 
chemotherapeutic agent

Development 
stage

Refs

ThermoDox® Doxorubicin Phase II 45
JNS002 Doxorubicin Phase II 41
Liposomal annamycin Annamycin Phase II 46
LEM Mitoxantrone Preclinical 47
SPI-77 Cisplatin Phase II 48-51
Lipoplatin Cisplatin Phase III 52
LiPlaCis Cisplatin Phase I 53
L-NDDP/aroplatin Cisplatin analogue Phase II 54, 55
MBP426 Oxaliplatin Phase I 56
NL CPT-11 Nanoliposomal camptothecin Trial http://www.clinicaltrials.gov/
L9NC 9-nitro-20(S)-camptothecin Trial http://www.clinicaltrials.gov/
IHL-305 Irinotecan Phase I 57
LE-SN38 SN38 (active metabolite of 

irinotecan)
Trial http://www.clinicaltrials.gov/

PEP02 Irinotecan Phase I 58
OSI211 Lurtotecan Phase II 59, 60
TLI Topotecan Trial http://www.clinicaltrials.gov/
PNU-93914 Paclitaxel Trial http://www.clinicaltrials.gov/
LEP-ETU Paclitaxel Trial http://www.clinicaltrials.gov/
Marqibo® Vincristine Phase II 61
VLI Vinorelbine Trial http://www.clinicaltrials.gov/
CPX-1 Fixed combination of 

irinotecan and floxuridine
Phase I 62

CPX-351 Fixed combination of 
cytarabine and daunorubicin

Phase I 63
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pegylated liposomal doxorubicin with that of a common salvage regimen in patients with 

taxane-refractory advanced breast cancer. Patients in the control group received either 

vinorelbine or mitomycin C plus vinblastine, regimens previously shown to have moderate 

efficacy (median overall survival: 10.4 months versus 9.0 months, P = 0.57). They concluded 

that pegylated liposomal doxorubicin has efficacy comparable to that of common salvage 

regimens in patients with taxane-refractory metastatic breast cancer, thereby representing 

a useful therapeutic option.18 The same year, O’Brien et al. published a phase III trial to 

demonstrate that efficacy of pegylated liposomal doxorubicin is comparable to doxorubicin 

(progression-free survival 6.9 versus 7.8 months, hazard ratio (HR) = 1.00), with significantly 

reduced cardiotoxicity (HR = 3.16, P < 0.001), myelosuppression, vomiting and alopecia 

in first-line treatment of women with metastatic breast cancer.19 Also in 2004 Chan et al. 

showed that liposomal doxorubicin is an acceptable alternative to epirubicin as a first-line 

treatment for patients with metastatic breast cancer (overall response rates: 46% and 39%, 

P  =  0.42).20 In 2009 Sparano et al. demonstrated that pegylated liposomal doxorubicin 

was more effective than docetaxel alone in women with metastatic breast cancer who 

experienced relapse at least 1 year after prior adjuvant anthracycline therapy (median time 

to progression: 7.0-9.8 months, P = 0.000001; and the overall response rate from 26% to 

35%, P = 0.0085), although overall survival was similar among the two groups (HR = 1.02, 

95% CI, 0.86-1.22). This was without an increase in cardiac toxicity, although mucocutaneous 

toxicity was more common.21 In 2010 Alba et al. demonstrated in their phase III study that 

maintenance chemotherapy with pegylated liposomal doxorubicin is well tolerated and 

offers improved time to progression of 3.3 months (8.4 versus 5.1 months, P = 0.0002) in 

patients with metastatic breast cancer following first-line chemotherapy.22

Hematological malignancies

For a few years liposomal anthracyclines have also been tested in the treatment of hema-

tological malignancies.

In 2003 Dimopoulos et al. reported a multicentre trial that indicated that vincristine, 

doxorubicin and dexamethasone bolus and vincristine, liposomal doxorubicin and 

dexamethasone can be administered to outpatients and can provide an equal opportunity 

of rapid response in many patients with multiple myeloma (overall response of 61.4% and 

61.3%).23 In 2006 Rifkin et al. published a phase III trial to show that pegylated liposomal 

doxorubicin, vincristine and dexamethasone provide similar efficacy (objective response 

rates: 44% versus 41% progression-free survival, P = 0.69; and overall survival, P = 0.67) 
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with significant reduction in toxicity with doxorubicin, vincristine and dexamethasone 

in patients with newly diagnosed multiple myeloma. Notwithstanding these promising 

results, the authors concluded that the optimal management of patients with newly 

diagnosed myeloma still requires further study.24 Sonneveld et al. showed in 2008 that 

pegylated liposomal doxorubicin plus bortezomib significantly prolonged time to 

progression compared with bortezomib alone (270 days versus 205 days) in patients with 

recurrent or refractory multiple myeloma who received prior thalidomide/lenalidomide 

therapy.25 A year earlier, in the same phase III study, Orlowski et al. showed that pegylated 

liposomal doxorubicin plus bortezomib compared with bortezomib alone improved time 

to progression (6.5 months versus 9.3 months) in relapsed or refractory multiple myeloma.26

Recently, Latagliata et al. explored the efficacy of liposomal daunorubicin versus dauno-

rubicin in acute myeloid leukemia patients aged older than sixty years. Liposomal dau-

norubicin seemed to improve overall survival and disease-free survival in the long-term 

follow-up, because of a reduction on late relapses (59% versus 78% at 24 months, P = 0.064). 

The authors concluded that liposomal daunorubicin could have a possible beneficial role 

in acute myeloid leukemia treatment although further testing would be useful.27

Liposomal cytarabine is approved for the treatment of lymphomas with meningeal spread 

and is the only liposomal drug administered for intrathecal administration. Although 

liposomal cytarabine is increasingly used for the treatment (and prophylaxis) of central 

nervous system involvement in patients with leukemia or lymphoma, many of the 

recently presented clinical trials on liposomal cytarabine were retrospective in nature or 

used this drug on a compassionate use basis. So far, one randomized phase III study has 

shown significantly better response rates in patients with lymphomatous meningitis who 

received liposomal cytarabine compared with cytarabine. The authors of this randomized 

trial concluded that liposomal cytarabine injected once every two weeks produced a 

high response rate (71% versus 15%, P = 0.006) and a better quality of life as measured by 

Karnofsky score (P = 0.041) relative to that upon treatment with free cytarabine injected 

twice a week.28

Epithelial malignancies

Liposomal cisplatin was developed for the treatment of epithelial malignancies. Initial 

safety and response results of a randomized phase III study with liposomal cisplatin in 

the treatment of advanced squamous cell carcinoma of the head and neck showed that 

liposomal cisplatin seems to reduce the renal and hematological toxicity, as compared 
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with conventional cisplatin, to a clinically relevant extent. This reduction of side effects 

will influence the chance to preserve the dose-density of chemotherapy and, thereby, the 

efficacy of treatment. The efficacy results showed 38.8% objective partial remission in the 

cisplatin arm of the trial versus 19% in the lipoplatin arm. However, 64% of the patients 

achieved stable disease while being treated with lipoplatin/5-fluorouracil (5-FU), versus 

50% in the cisplatin/5-FU arm.29 In 2010, Stathopoulos et al. showed in a phase III study that 

liposomal cisplatin in combination with paclitaxel was much less toxic than the cisplatin in 

combination with paclitaxel, whereas time to tumor progression (6.5 versus 6 months) and 

survival (9 versus 10 months) were similar in chemotherapy-naive patients with inoperable 

non-small cell lung cancer.30

The majority of clinical studies we have described are only supporting the concept of a 

decreased toxicity and better tolerability of the liposomal anticancer drug, there is a lack of 

available information regarding the greater clinical antitumor activity. None of the studies 

showed a better overall survival for the liposomal drug when directly compared to the non-

liposomal variant. One of the reasons for this could be the inefficient drug release from the 

liposomes, as described by Seynhaeve et al. in 2007, showing that intact Doxil® liposomes 

could be visualized within living tumor cells.31

Because no direct comparative data are available on the efficacy of the drugs further studies 

with novel liposome encapsulated anticancer drugs are warranted to provide conclusive 

evidence for increased efficacy.

Also, no direct comparative data are available on the tumor distribution of drugs by ad-

ministering the same doses given as a free drug or incapsulated in liposomes. As far as the 

distribution is concerned, one should perform studies giving the free drug and the liposomal 

formulation at the same time – labeling the drug in different ways and thus having interpret-

able results on the difference of distribution according to the method of administration.

Liposome-specific adverse effects

Although almost all studies show that liposomal formulations of anticancer drugs are less 

toxic than the non-encapsulated formulations, some liposome-specific adverse effects such 

as various skin reactions, and also hypersensitivity reactions, were reported.
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Skin reactions

In 2000, Lotem et al. reported a study to show skin toxic effects of polyethylene-glycol-

coated liposomal doxorubicin. In 60 patients four patterns of skin eruptions were seen: (i) 

hand-foot syndrome; (ii) diffuse follicular rash; (iii) intertrigo-like eruptions; and (iv) new 

formation of melanotic macules. The most common effect was the hand-foot syndrome, 

which was more pronounced, frequent and disabling with short dose intervals. This side 

effect is not a side effect of doxorubicin itself. Compared with doxorubicin, liposomal 

doxorubicin has a long elimination half-life and is highly stable, thus providing a slow release 

pool of drug to tumor and other tissues. It preferably localizes in the skin and deposits a 

substantial fraction of the administered drug locally. Inflamed skin is especially susceptible 

to liposome localization. The palms, soles and areas of repeated friction or trauma apparently 

achieve increased concentrations of liposomal doxorubicin as a result of the rich capillary 

network at their thickened papillary dermis and increased blood flow.32

Hypersensitivity reactions

Chan et al. described an episode of hypersensitivity reaction associated with the infusion of 

liposomal doxorubicin in an ovarian cancer patient during her first cycle of chemotherapy.33 

Hypersensitivity or infusion reactions with (pegylated) liposomes are well known and yet 

poorly understood. This type of hypersensitivity reaction is an acute transient malaise 

that develops in patients within minutes of vesicle infusion and is typically observed only 

during the first cycle of exposure. The hemodynamic, respiratory, cutaneous and subjective 

manifestations include hypotension or hypertension, dyspnea, flushing, rash and feeling of 

choking. Up to 30.8% of the patients experienced any type of hypersensitivity reaction.30, 34-42  

Although in practice severe hypersensitivity reactions to liposomal formulations are 

very uncommon. Unlike most chemotherapy, induced hypersensitivity reactions are IgE-

mediated and the mechanism of liposomal reaction is described as a type I hypersensitivity 

reaction related to complement activation.43 Slowing of the rate, or stopping the infusion, 

along with standard measures of anaphylaxis prevention and treatment (e.g. antihistamines, 

corticosteroids, epinephrine, bronchodilators or supportive therapy with fluids) usually 

seem to be sufficiently effective. However, considering that cardiopulmonary distress is a 

major physiological consequence that can lead to cardiac anaphylaxis, the prediction and 

prevention of this reaction seems to be crucial in patients with cardiovascular abnormalities. 

Liposome reactions in such patients can be life threatening, despite all treatment and 

preventive measures.44
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Concluding remarks

In recent years, liposomes as pharmaceutical drug carriers have received considerable and 

increasing attention. Several phase II and III studies have shown increased antitumor efficacy 

and decreased toxicity and also several liposomal anticancer drugs are already available 

in the clinic for Kaposi’s sarcoma, ovarian cancer and breast cancer. Further studies with 

liposome-encapsulated anticancer drugs, including the development of novel liposomal 

formulations, are warranted to provide evidence for increased efficacy and tolerability as 

compared with their non-liposomal counterparts. Fifteen years down the road we can 

conclude that liposomal anticancer drugs have grown to maturity in several indications 

and are in broad further development using their theoretical advantages to fulfill the high 

expectations.
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Abstract

Purpose

To evaluate the safety and tolerability of LiPlaCis, a liposomal formulated platinum compound, in 

patients with solid tumors and to determine the maximum tolerated dose (MTD) of intravenous 

(i.v.) LiPlaCis and to assess plasma and urine pharmacokinetics and plasma biomarkers.

Patients and methods

Patients with solid tumors without standard therapeutic options were enrolled to receive LiPlaCis 

administered as a 1 h infusion without additional hydration every 3 weeks until RECIST progression 

or unacceptable toxicity. Cohorts of 3-6 patients were treated at each dose level until MTD was 

reached.

Results

Eighteen patients were enrolled and 64 cycles were delivered. At the first dose level 3 patients 

experienced an infusion reaction. Despite prophylactic premedication and prolongation of the 

infusion to 2 h in further patients, three other patients had mild acute infusion reactions. Toxicity 

at the fifth dose level of 120 mg consisted of grade 2 renal toxicity, reversible after hydration in 

2 patients and grade 4 thrombocytopenia in one of these patients. Peak plasma concentrations 

and AUC were dose proportional. The interpatient variability in the clearance of total LiPlaCis-

derived platinum was 41%. Platinum was excreted via the urine mainly during the first 24  h 

after administration. Investigated plasma biomarkers sPLA2 and SC5b-9 were related to, but not 

predictive for, acute infusion reactions.

Conclusion

The observed safety profile suggests no benefit over standard cisplatin formulations and LiPlaCis 

will require reformulation to enable further development.



Chapter 3LiPlaCis

35

INTRODUCTION

Cisplatin-based anticancer therapies are widely used in the treatment of solid tumors. 

Dose-limiting toxicities include renal-tubular dysfunction, peripheral-neuropathy and 

ototoxicity, the first of which is due to rapid renal clearance of cisplatin and can be largely 

prevented by extensive pre- and post-hydration surrounding cisplatin administration.1-3 

Widening cisplatin’s therapeutic window by making the drug more tumor selective seems 

attractive. Liposomal drug delivery could serve this purpose, but was previously limited by 

the fast clearance from the blood. Addition of polyethylene glycol to the surface of liposomes 

resolved this problem and leads to preferential trapping and accumulation of liposomes 

in the leaky tumor vasculature resulting in enhanced drug exposure at the tumor site.4 

However, in particular true for hydrophilic drugs like cisplatin, which cannot readily pass the 

liposomal lipid membrane, liposomal degradation and subsequent drug release into the 

tumor is an essential prerequisite for effect. The absence of drug release from the liposomes 

and the resulting absence of DNA-adduct formation, explained the lack of activity of SPI-

077, a liposomal cisplatin formulation.5,6 

LiPlaCis is a novel liposomal formulation of cisplatin. The LiPlaCis liposomes (i.e. LiPlasomes) 

are designed to be degraded by secretory phospholipase A2 (PLA2), a relatively tumor 

selective enzyme and thereby release the encapsulated cisplatin.7,8 The use of enzymes, 

such as PLA2, for triggered-drug release provides a novel tumor selective drug delivery 

approach. Preclinical proof of principle has been demonstrated in vitro and in vivo.9,10 

The aim of this study was to define the maximum tolerated dose (MTD), the recommended 

phase II dose, pharmacokinetics and pharmacodynamics, as well as the preliminarily 

antitumor effects of a three-weekly schedule of LiPlaCis in patients with solid tumors.

Patients and methods

Drug formulation

This study was an open-label, dose-escalating phase I study of LiPlaCis in patients with 

advanced solid tumors. LiPlaCis was supplied by LiPlasome Pharma A/S as a concentrate 

for infusion in vials containing 2 mL (1 mg/mL) each as a white opalescent dispersion. The 

product must be stored at T = -80°C in order to ensure stabilization of the liposomes. The 

liposomes of LiPlaCis are composed of 1,2-disteaeoyl-sn-glycero-3-phosphocholine,1,2-
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distearoyl-sn-glycero-3-[phosphor-rac-(1-glycerol)] (sodium salt) and 1,2-disteaeoyl-sn-

glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium 

salt). In addition, sodium chloride, sucrose and disodium hydrogen phosphate are added 

to stabilize the liposomes. After thawing in a water bath at room temperature the content 

of the vials was added to a polyvinylchloride bag with saline to a total volume of 500 mL. 

The solution was kept at room temperature protected from light until administration which 

had to take place within 8 h after preparation.

Study design

LiPlaCis was administered intravenously in 1 h once every 3 weeks as long as there was 

no evidence of progressive disease (PD) or unacceptable toxicity. Escalation followed in a 

3 + 3 design with increase of 20-100% from the previous dose level based on toxicity and 

pharmacokinetics. The MTD was defined as the dose with two or more patients with dose-

limiting toxicity (DLT) in a cohort of 3 or 6 patients. Toxicity was evaluated using the CTC 

version 3.0.11 DLT was defined as CTC grade 4 neutropenia, grade 4 thrombocytopenia, or 

grade 3 thrombocytopenia complicated with bleeding, persistent grade 2 neurotoxicity, 

persistent serum creatinine > 2  ×  upper limit of normal (ULN), drug-related non-

hematological grade 3-4 toxicity or a delay in re-treatment with LiPlaCis of more than 

2 weeks. The recommended dose for phase II (RD) was defined as the immediate-dose 

level below MTD.

If 2 patients at any dose level experienced an infusion reaction of at least grade 2, reduction 

in infusion rate and premedication would be introduced. No prophylactic anti-emetics 

were administered. Once 2 patients experienced nausea or vomiting grade 2 or more, 

prophylactic use of anti-emetics would be introduced for both the patients in question and 

the remaining patients. Hydration was not used routinely, however if nephrotoxicity was 

observed in a patient, both pre- and post-hydration would be introduced for the remaining 

cycles of this patient. In case of nephrotoxicity in multiple patients, a routine pre- and 

post-hydration schedule was to be implemented. Patients with measurable disease were 

assessed for antitumor activity by RECIST every 3 cycles and patients without measurable 

disease were assessed clinically.12 Each subject, receiving at least 1 cycle was assigned a best 

response. The analysis of safety was based on the subjects who received at least one dose  

of LiPlaCis.
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Eligibility criteria

Eligibility included a histological- or cytological-documented locally advanced or metastatic 

solid tumor refractory to standard therapy or for which no effective therapy existed and 

ECOG performance status 0-2. Required laboratory values included: absolute neutrophil 

count > 1.5 × 109/L, platelet count > 100 × 109/L, hemoglobin > 9 g/dL, total bilirubin < 

1.5 × ULN, alkaline phosphatase < 2.5 × ULN, creatinine and blood urea within normal 

limits, unless creatinine clearance was < 60 mL/min calculated according to Cockcroft–Gault 

formula, aspartate aminotransferase and alanine aminotransferase < 2.5 × ULN, or < 5 × ULN 

in case of liver metastases. The study was approved by the institutional ethical committee 

and patients gave written informed consent prior to treatment.

Pharmacokinetics and pharmacodynamics

Serial blood samples for plasma total LiPlaCis-derived platinum (i.e. cisplatin-derived lipo-

somal- associated plus non-liposomal associated platinum) concentration measurements 

as well as for secretory phospholipase A2 (sPLA2) and the complement activation marker 

SC5b-9 were collected over a 5-d period following the start of the infusion in cycle 1. Blood-

samples were collected in standard blood collection lithium-heparin tubes prior to LiPlaCis 

infusion, halfway the infusion, 5 min before the end of infusion and 30 min, 1, 3, 6, 8, 24, 

47, 71 and 95 h after the end of infusion. In case the infusion was stopped due to an acute 

infusion reaction, additional blood samples were collected at the point of interruption and 

restart of the infusion. Samples were centrifuged within 10 min after collection at 2800-

3000 g for 10 min at 4°C. The plasma supernatant was stored at T < -70°C upon analysis.

Urine samples for the analysis of LiPlaCis-derived platinum concentrations were collected 

as voided in standard polypropylene containers prior to start of the infusion and during the 

following period after start of infusion: 0-6, 6-12, 12-24, 24-48, 48-72 and 72-96 h. The total 

volume was recorded and 3-mL aliquot of each portion stored at T < -70°C upon analysis.

Total LiPlaCis-derived platinum was determined by a validated, atomic absorption 

spectrophotometer method for cisplatin-derived platinum, with a lower limit of quantitation 

established at 0.200 μg/mL, essentially reported previously.13 Pharmacokinetic parameter 

estimates of platinum were derived from weighted (1/y) two-compartmental model 

analysis using WinNonlin version 5.2.1 (Pharsight Corp., Mountain View, CA; model 10). 

Urine concentrations of total LiPlaCis-derived platinum were determined likewise. The 

lower limit of quantitation was validated at 1.00 μg/mL platinum in urine.
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Plasma concentrations of sPLA2 were determined by an enzyme immunoassay (EIA) based 

on the double-antibody ‘sandwich’ technique specific for type IIa sPLA2 (sPLA2 human Type 

IIA EIA Kit, Cayman, Ann Arbor, Michigan, United States of America (USA)). Plasma samples 

were also analyzed for SC5b-9, the terminal complement complex (TCC, SC5b-9) generated 

by the assembly of C5 through C9 as a consequence of activation of the complement 

system, using a SC5b-9 Plus EIA Kit (Quidel, San Diego CA, USA). ELISA measurements were 

performed according to the manufacturer’s protocols.

Statistical analysis

Statistical analysis was performed using SPSS version 15.0. Potential differences in PK 

parameters between subgroups of patients were evaluated with ANOVA and T-test, whilst 

correlations were tested with linear regression analysis.

Results

Patients, doses and toxicity

From May 2008 to November 2009 18 patients were enrolled into this study. Baseline patient 

demographics and disease characteristics are outlined in Table 3.1.

Overall, a total of 64 cycles of LiPlaCis were administered with a median of 3 cycles per 

patient (range 1-15). Three patients were treated at the first dose level of 10 mg with one 

infusion reaction grade 2. Therefore three additional patients were enrolled at dose level 

1. In one of them a grade 2 infusion reaction occurred within a few minutes of starting the 

first infusion, but without significant systemic reactions. After administration of clemastine 

and dexamethasone, the patients received the remainder of the infusion successfully. Due 

to the fact that 2 patients experienced a > grade 2 reaction requiring treatment, reduction 

of infusion rate to 50% and routine premedication with a combination of clemastine 2 mg 

i.v. and dexamethasone 10 mg i.v., were introduced. Three patients were treated at dose 

levels 2-5 (20, 40, 80 and 120 mg), without first cycle DLTs. At each dose level 2, 4 and 5, 1 

patient had a grade 2 infusion reaction. The patient at dose level 4 experienced a recurrent-

infusion reaction (grade 3) in the second cycle despite additional premedication and was 

taken off study. Grade 1-2 nephrotoxicity, reversible after hydration, was observed in 1 

patient at the second dose level and 2 patients at the fifth dose level. At dose level 5, 1 

patient had a DLT in the second cycle consisting of grade 4 thrombocytopenia, grade 2  
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renal toxicity and schistocytes based on hemolytic uremic syndrome/thrombotic 

thrombocytopenic purpura (HUS/TTP) (Table 3.2). A second patient treated at this dose also 

developed a grade 2 renal toxicity in the first treatment cycle. Given the frequent infusion 

reactions and the high incidence of renal toxicity implicating no apparent practical benefit 

over standard formulated cisplatin it was concluded that without reformulation further 

development was precluded.

Response per RECIST was assessed in 12 patients, because 6 patients stopped treatment 

before their first planned disease evaluation after cycle 3 (2 patients on their own request, 2 

because of recurrent infusion reactions and 2 because of DLT). Three from the 12 evaluable 

patients had stable disease (SD) at 9 weeks whereas the remaining 9 patients showed PD.

Pharmacokinetics

All 18 patients were evaluable for plasma-pharmacokinetic analysis. The observed plasma 

concentration, time data could be best fitted by a two-compartmental model in 17 patients, 

Table 3.1  Baseline demographics and patient characteristics

Baseline characteristics                                  Patients (n (%))

Gender
Male					     10 (55)
Female					     8 (45)

Age, years
Median (range)				    58 (39-75)

ECOG performance status
0 4 (22)
1					     14 (78)

Tumor type
Breast					     2 (11)
Melanoma				    2 (11)
Esophagus				    2 (11)
Prostate					    2 (11)
Parotic carcinoma				    2 (11)
Oro-/hypopharyngeal cancer			   2 (11)
Urothelial carcinoma			   2 (11)
Other*					     4 (22)

* = Adenoid cystic carcinoma, cancer of unknown primary, non-small cell lung cancer, sarcoma
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whilst a one-compartmental model best fitted the data of 1 patient treated at the first dose-

level of 10 mg, for which platinum could be quantitated only up to 8 h after end of infusion 

(i.e. platinum concentrations below 0.200  μg/mL). A summary of the pharmacokinetic 

parameters is presented in Table 3.3. Peak plasma concentrations were observed at or shortly 

after the end of infusion, irrespective of infuse duration. Peak plasma concentrations and 

Table 3.2  Number of patients with treatment-related adverse events in all cycles

Adverse event 10 mg 
(n = 6)

20 mg 
(n = 3)

40 mg 
(n = 3)

80 mg 
(n = 3)

120 mg 
(n = 3)

Grade 1-2 3-4 1-2 3-4 1-2 3-4 1-2 3-4 1-2 3-4

Leucopenia 1 1 1 1 –
Neutropenia – – – – –
Thrombocytopenia 2 – – – – 1
Anemia 3 3 1 2 2
Nausea 3 2 1 2 2
Vomiting 2 – – – 1
Diarrhea – 1 – – –
Mucositis – – – 1 –
Nephrotoxicity 1 3 – – 2
Neurotoxicity 2 2 1 1 2
Fatigue 4 3 2 1 2
AST/ALT 4 1 1 1 2
Infusion reaction 3 1 – 1a 1a 1

a Same patient

Table 3.3  Mean ± SD plasma pharmacokineticsa of total LiPlaCis-derived platinum during course 1

Dose 
(mg)

Number 
of 

patients

Cmax
b 

(μg/mL)
T1/2α 
(h)

T1/2β 
(h)

AUC 
(μg·h/mL)

CL 
(mL/h)

Vss 
(L)

10 6 1.62 ± 0.46 3.26 ± 0.56c 80 ± 21c 93.1 ± 31.8c 77.5 ± 29.6c 7.85 ± 0.81c

20 3 2.95 ± 0.32 3.44 ± 0.35 113 ± 46 258 ± 110 56.2 ± 21.1 7.91 ± 0.12
40 3 5.50 ± 1.18 5.50 ± 1.36 141 ± 59 559 ± 259 52.9 ± 20.7 9.21 ± 0.46
80 3 11.3 ± 0.23 3.98 ± 0.42 116 ± 35 888 ± 248 61.9 ± 18.5 9.31 ± 1.15
120 3 18.8 ± 7.50 5.04 ± 1.81 132 ± 90 2711 ± 2643 49.9 ± 34.1 6.43 ± 1.73
All 18 - 4.13 ± 1.26d 112 ± 51d - 61.8 ± 25.3d 8.11 ± 1.34d

a Two-compartmental, except for 1 patient in 10 mg cohort which could be best fitted to a one-compartmental 
model
b Visually observed, in most cases (12 of 18) 0.5 or 1 h after end of infusion
c n = 5 (excluding patient fitted to one-compartmental model)
d n = 17 (excluding patient fitted to one-compartmental model)
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AUC were dose-proportional. The interpatient variability in the clearance of total LiPlaCis-

derived platinum was 41% and increased to 46% after correction for patient’s individual 

body surface area. In addition, clearance was independent of gender (P = 0.95; T-test) and 

dose (P = 0.59; ANOVA) and was not related to age (P = 0.94; linear regression analysis). In 

Figure 3.1, the average total platinum concentration corrected for dose versus time curve 

is presented.

Platinum was below the lower limit of quantitation in most urine samples, especially at the 

lower dose-levels and after 24 h. Urinary excretion, however, seemed independent of the 

dose and if quantifiable, during the first 24 h after administration on average approximately 

20% of the dose was excreted via the urine.

Pharmacodynamics

sPLA2 levels could be analyzed in 17 patients and SC5b-9 levels in 14 patients. Plasma levels 

of sPLA2 and SC5b-9 were readily detected in both baseline (pre-treatment) samples as 

well as on-therapy samples. Although the absolute sPLA2 baseline plasma concentrations 

showed a high variability ranging from 1.5 to 13.7 ng/mL with a median of 6.3 ng/mL, relative 

sPLA2 plasma levels were not affected upon administration of the liposomal- encapsulated 

cisplatin (LiPlaCis). The spectrum of SC5b-9 baseline levels displayed an even higher variation 

(range: 18-723 ng/mL; median: 233 ng/mL). All patients with a clinically-manifested acute 

infusion reaction showed an immediate increase in SC5b-9 levels after start of treatment 

Figure 3.1  Average dose normalized concentration-time curve of LiPlaCis-derived platinum in 
plasma fitted to a two-compartmental model. The patients with the relative fast clearance (fitted 
to a one-compartmental model), treated at the first dose-level of 10 mg and the patient with the 
relative slow clearance, treated at the dose-level of 120 mg, are presented with the closed symbols.
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that returned to (pre-treatment) baseline within 24 h (Figure 3.2). However, the baseline 

sPLA2 plasma levels in the patients with an acute infusion reaction (n = 5) did not differ from 

those observed in the other 12 patients (mean ± SD: 5.9 ± 1.5 ng/mL versus 7.5 ± 4.3 ng/mL;  

P  =  0.42; T-test). Furthermore, no correlation was found between the baseline sPLA2 

levels and the plasma PK parameter T1/2α (Pearson’s coefficient correlation: r  =  0.044; 

P = 0.87), indicating secretory PLA2 levels are not associated with the plasma half-life of the  

LiPlasomes.

Discussion

This study was designed to evaluate the tolerability, pharmacokinetics and pharmacodynamics 

of LiPlaCis, a novel liposomal formulation of cisplatin. LiPlaCis has a different toxicity profile 

compared to cisplatin; it seems to be less emetogenic at the dose levels studied. However, 

many patients experienced an acute infusion reaction related to the liposomal formulation 

requiring premedication with corticosteroids, which provides a disadvantage. Even more 

importantly, just like cisplatin, LiPlaCis induced renal toxicity and did not have the desired 

Figure 3.2  Plasma levels of the terminal complement complex (SC5b-9) in a typical representative 
patient with LiPlaCis infusion reaction. SC5b-9 concentrations were determined by ELISA in 
plasma samples before infusion with LiPlaCis (t = 0), halfway during the infusion (t = 60 min), 
5 min before the end of infusion (t = 115 min) and at regular time points (30 min, 1, 3, 6, 8, 24, 47, 
71 and 95 h) after end of infusion. Evidently, a clear increase in SC5b-9 levels was noted during 
and directly after LiPlaCis administration, indicative of the acute infusion reaction of this patient  
to LiPlaCis.
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kidney-sparing effect. The severity seemed to increase with the dose administered. Already 

at the dose level of 20 mg, grade 1 nephrotoxicity was observed in 3 patients 2 of which had 

confounding factors (pneumonia and nausea). The third patient had pre-existing grade 1 

renal impairment. At the subsequent dose levels another 2 patients developed grade 1-2 

renal toxicity. At the 120 mg dose level 2 patients developed grade 2 nephrotoxicity. In 1 

patient this was due to HUS-TTP, which has been ascribed in the past to cisplatin-based 

chemotherapy, but is a rare side-effect.14

Lipoplatin, another liposomal-cisplatin formulation recently entered phase III studies. 

During the phase I study renal toxicity was not observed. The main toxicities of Lipoplatin 

constituted neutropenia, anemia and nausea and vomiting, all limited to grade 1-2.15 In 

a subsequent phase Ib study combining Lipoplatin with 5-fluorouracil and radiotherapy 

18% (2/11) of the patients developed grade 1 renal toxicity to which dehydration caused 

by gastrointestinal discomfort might have contributed.16 This still contrasts the 33% (6/18) 

of the patients in our present study with LiPlaCis who developed renal toxicity.

Another major drawback of LiPlaCis was the frequent observation of non-dose related 

grade 2 infusion reactions despite premedication. Also after administration of Lipoplatin 

infusion reactions were observed albeit at an incidence of only 8.3%.16 For pegylated-

liposomal formulation of doxorubicin the percentage of acute infusion reaction is up to 

9%.17 This reaction that is typical for liposomal formulations, occurred at a rather (too) high 

incidence (7/18 patients, 39%) in our study. The infusion reactions were accompanied 

with complement activations, illustrated by an immediate increase in plasma SC5b-9 level 

(Figure 3.2).

Pharmacokinetic profiles of total LiPlaCis-derived platinum could be best fitted to a two-

compartmental model. The initial half-life (T1/2α) most likely reflects the half-life of the intact 

circulating liposome, whilst the secondary half-life (T1/2β) is considered to primarily reflect 

the half-life of extra-liposomal plasma-protein bound platinum. Although the LiPlasomes 

were constructed to be specifically degraded by sPLA2 and plasma sPLA2 concentrations 

were highly variable between patients, no correlation between the baseline levels of 

sPLA2 and the initial half-life of LiPlaCis-derived platinum was observed. Potentially, 

other factors contributed to the degradation of the LiPlasomes. Total plasma-platinum 

clearance following LiPlaCis was slower compared to total-platinum clearance following 

the administration of free cisplatin and Lipoplatin, however was slightly faster compared 

to SPI-077 derived platinum.15,18,19 Urinary excretion was slightly lower compared to free 

cisplatin and half of the excretion as observed after the administration of Lipoplatin.15,20



LiPlaCisChapter 3

44

Although the toxicity pattern of LiPlaCis differed from cisplatin toxicity, renal damage was 

not prevented by the formulation. Acute infusion reactions required addition of extensive 

premedication that in turn could not completely prevent a high incidence of acute infusion 

reactions. Reformulation of LiPlaCis seems to be warranted prior to further development.
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Abstract

Background

Preclinical studies comparing paclitaxel formulated with polyethoxylated castor oil with the 

sonicated formulation of liposome-entrapped paclitaxel (LEP) have demonstrated that LEP was 

associated with reduced toxicity while maintaining similar efficacy. Preliminary studies on the 

pharmacokinetics in patients support earlier preclinical data, which suggested that the LEP easy-

to-use (LEP-ETU) formulation and paclitaxel formulated with castor oil may have comparable 

pharmacokinetic properties.

Objectives

Our objectives were: 1) to determine bioequivalence of paclitaxel pharmaceutically formulated as 

LEP-ETU (test) and paclitaxel formulated with castor oil (reference); and 2) to assess the tolerability 

of LEP-ETU following intravenous administration.

Methods

Patients with advanced cancer were studied in a randomized, two-period crossover bioequivalence 

study. Patients received paclitaxel 175 mg/m2 administered as an intravenous infusion over 180 

minutes, either as a single-treatment cycle of the test formulation followed by a single-treatment 

cycle of the reference formulation, or vice versa.

Results

Thirty-two of 58 patients were evaluable and were included in the analysis for bioequivalence. 

Mean total paclitaxel Cmax values for the test and reference formulations were 4955.0 and  

5108.8 ng/mL, respectively. Corresponding AUC0-∞ values were 15853.8 and 18550.8 ng·h/mL, 

respectively. Treatment ratios of the geometric means were 97% (90% CI, 91%-103%) for Cmax and 

84% (90% CI, 80%-90%) for AUC0-∞. These results met the required 80% to 125% bioequivalence 

criteria. The most frequently reported adverse events after LEP-ETU administration were fatigue, 

alopecia, and myalgia.

Conclusion

At the studied dose regimen, LEP-ETU showed bioequivalence with paclitaxel formulated with 

polyethoxylated castor oil.
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INTRODUCTION

Paclitaxel is an antimicrotubule agent that prevents cell division by promoting the assembly 

and stabilization of microtubules and is active in a broad spectrum of malignancies.1 The 

most commonly used 3-weekly regimen is 175 mg/m2 over 3 hours given by intravenous 

infusion.

Because paclitaxel is extremely insoluble in water as well as in other vehicles commonly 

used in parenteral dosage formulations, the current injectable formulation consists of 

paclitaxel solubilized in 50:50 (vol/vol) polyethoxylated castor oil and dehydrated alcohol 

(USP) and must be diluted to a concentration of 0.3 to 1.2 mg/mL before use. Despite 

the dilution, the amount of polyethoxylated castor oil necessary to deliver the required 

doses of paclitaxel is significantly higher than that administered with any other marketed 

pharmaceutical injectable drug and may cause serious or fatal hypersensitivity episodes 

in humans.2 In the initial clinical experience with paclitaxel, the incidence of severe 

infusion-related hypersensitivity reactions was approximately 20%.3,4 Premedication with 

a corticosteroid, diphenhydramine, and H2 antagonist has decreased the frequency of 

severe infusion-related hypersensitivity in 2% to 4% of patients, permitting the manageable 

administration of the drug.5 Nevertheless, infusion-related hypersensitivity reactions remain 

a significant problem. In addition, polyethoxylated castor oil contributes to the nonlinear 

pharmacokinetic behavior of paclitaxel at higher doses.2,6 Other major clinical toxicities 

associated with the use of paclitaxel are myelosuppression, peripheral neuropathy, myalgia/

arthralgia, cardiovascular events, alopecia, and gastrointestinal toxicity.7 Neutropenia is 

dose dependent and has dose-limiting toxicity. The acute toxicities not only limit dose 

intensification but also can necessitate dose reduction in individual patients, potentially 

decreasing the effectiveness of the treatment.

Approaches such as liposomal drug formulation have been pursued to further improve drug 

delivery, to increase the stability of the drug product, and to improve the safety profile.8-15 

One promising approach has been the use of electrically charged lipids to achieve an 

electrostatic attraction between the charged lipid and oppositely charged drug to create a 

stable liposome drug formulation. The use of synthetic electrostatic cardiolipin has enabled 

the liposome encapsulation of a variety of chemotherapeutic agents, including liposome-

encapsulated doxorubicin (LED); liposome-encapsulated mitoxantrone (LEM); liposome-

encapsulated SN-38 (LE-SN38), the active metabolite of irinotecan; liposome-encapsulated 

c-raf antisense oligonucleotide (LErafAON), initially as a sonicated formulation and now as an 

easy-to-use formulation (LErafAON-ETU); and paclitaxel, initially as a sonicated formulation 
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as liposome-encapsulated paclitaxel (LEP) and now as an easy-to-use formulation (LEP-

ETU).16-21 Liposome products LED, LEM, LE-SN38, LErafAON, LErafAON-ETU, and LEP have 

all been evaluated in preclinical studies and in phase I clinical trials.16-21

The LEP-ETU formulation is sterile, stable, and easy to use. The mean particle size of the 

liposomes is about 150 nm before and after lyophilization, and the drug-entrapment 

efficiency is > 90%. Stability data indicated that the lyophilized LEP-ETU was physically and 

stable for at least 12 months at 2°C to 8°C and chemically stable for at least 12 months at 

25°C. Moreover, the formulation can be diluted to ~0.25 mg/mL without drug precipitation 

or change in particle size. In vitro drug-release study in phosphate-buffered saline (PBS; pH 

7.4) showed that < 6% of the entrapped paclitaxel was released after 120 hours, indicating 

that the drug in an entrapped formulation is highly stable at physiologic temperatures.22 

The liposome-entrapped formulation of paclitaxel was developed aiming at an improved 

drug safety profile. This approach enables the elimination of the solvent polyethoxylated 

castor oil and the formulation of paclitaxel with a mixture of well-characterized, negatively 

charged, synthetic phospholipids and cholesterol. The LEP-ETU formulation allows for the 

possible administration of paclitaxel to patients without the need for premedication with 

corticosteroids because the well-characterized, synthetic phospholipids and cholesterol 

appear to be better tolerated than polyethoxylated castor oil. Moreover, an improved safety 

profile may enhance efficacy by facilitating the administration of higher cumulative doses. 

In addition, the entrapment of paclitaxel in liposomes should at least maintain or possibly 

improve the antitumor properties of paclitaxel while offering the advantage of a shorter 

infusion time. Indeed, preclinical studies comparing paclitaxel in castor oil with the previous, 

sonicated formulation, LEP, demonstrated that LEP was associated with reduced toxicity 

while maintaining efficacy compared with injectable paclitaxel.23

Analysis of the pharmacokinetics in patients treated in the extended dosing cohort supports 

earlier preclinical data, which suggested that paclitaxel in LEP-ETU and paclitaxel in castor 

oil have comparable pharmacokinetic properties.24

Determination of the bioequivalence of this new paclitaxel drug formulation with that of 

conventional paclitaxel formulated with polyethoxylated castor oil is warranted and was 

the aim of the current randomized, two-period crossover study.
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Patients and methods

Study design and patients

This multicenter, randomized two-period crossover, clinical bioequivalence study was 

initiated in October 2004 and compared the pharmacokinetics of LEP-ETU and paclitaxel 

in castor oil in patients with advanced cancer. The inclusion criteria were: 1) age ≥18 years; 

2) histologic diagnosis of advanced non-hematologic malignancy for which there is no 

curative therapy and for which treatment with single-agent paclitaxel was appropriate in the 

opinion of the physician; 3) Eastern Cooperative Oncology Group performance status of 0/1; 

4) life expectancy of ≥12 weeks; 5) recovered from acute toxicities of prior treatment; and 

6) adequate hematologic, kidney, and liver function. The study was approved by the ethics 

committees and institutional review boards of the collaborating institutions (Cancer Institute 

of New Jersey; University Clinic, Essen, Germany; General Hospital, St. Georg, Germany; 

Academic Medical Centre, Amsterdam, The Netherlands; Catharina Hospital, Eindhoven, 

The Netherlands; and Leiden University Medical Centre, Leiden, The Netherlands) and all 

patients signed informed consent before any study-related procedure.

Treatment

The injectable formulation of paclitaxel, as solubilized in 50:50 (vol/vol) polyethoxylated 

castor oil (trademark: Cremophor® EL) and dehydrated alcohol, (trademark: Taxol®) was used 

as the reference formulation. The LEP-ETU (developed by NeoPharm) used was developed 

as described by Zhang et al. in 2004 (test formulation).22 The liposomes were prepared 

under Good Manufacturing Practice conditions. LEP-ETU was supplied as a lyophilized 

cake containing 30 mg paclitaxel. It was prepared for administration by reconstitution in 

12.5 mL sterile water for injection to yield 2 mg/mL paclitaxel and diluted in 0.9% normal 

saline. The chemical composition of LEP-ETU is summarized in Table 4.1.

Each patient was randomized to receive a dose of 175 mg/m2 paclitaxel as test formulation in 

study cycle 1, followed by the same dose of the reference formulation in study cycle 2, or vice 

versa. The washout period was 3 weeks. The test and reference formulations of paclitaxel (each 

at a concentration of 0.5 mg/mL) were administered by intravenous infusion over 180 minutes. 

Patients were premedicated with a fixed regimen of antihistamines (H1- and H2-antagonists) 

and dexamethasone prior to each dose of study medication to prevent infusion-related 

hypersensitivity reactions and to facilitate direct comparison of both paclitaxel treatments 

during both cycles. Patients were carefully monitored, particularly during the infusion.
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Safety assessments

National Cancer Institute Common Toxicity Criteria for Adverse Events version 3.0 was used 

to describe and grade all toxicities and adverse events (AEs). The relationship of AEs to study 

drug was documented by the Investigator as unrelated or unlikely, possibly, probably, or 

definitely related.

Pharmacokinetic evaluations

Blood samples (8 mL) for pharmacokinetic evaluation were collected in lithium heparinized 

collection tubes at each cycle, at each of the following time points: 0 (prior to start of 

infusion), 60, 120, and 165 minutes after the start of infusion; 30 seconds prior the end of 

infusion; and 15, 30, 45, 60, 120, 240, 360, 480 minutes and 22 to 26, 44 to 52, and 68 to 76 

hours after infusion end. Plasma samples were stored at -20°C until analysis.

An HPLC-MS/MS method has been validated for the determination of paclitaxel 

concentration in human heparinized plasma. Total levels (free, protein bound, and liposomal 

levels) of the analytes were quantified. The analytes were quantified using 13C6-paclitaxel as 

internal standard. The plasma sample clean-up procedure was performed by liquid-liquid 

extraction using tert-butylmethylether. After mixing and centrifuging, the aqueous layer 

was frozen instantly in a dry ice-ethanol mixture, and the organic solvent was decanted 

Table 4.1  Chemical composition of LEP-ETU

Component LEP-ETU

Paclitaxel 2.0 mg/mL
1,2-dioleoyl-sn-glycero-3-phosphocholine (DPOC) 54 mg/mL
Cholesterol (CH) 1.5 mg/mL
Tertramyristoyl cardiolipin (TMCA) 4.9 mg/mL
D-alpha tocopheryl acid succinate 0.3 mg/mL
Sucrose 200 mg/mL
Sodium chloride 9.0 mg/mL
Dehydrated ethanol Removed during evaporation and 

lyophilization processes
Sterile water for injection 12.5 mL
Total volume of reconstituted product 15.0 mL
Total lipid 60 mg/mL
Lipid-to-drug molar ratio (DPOC: CH: TMCA) 90:5:5
Total lipid-to-drug molar ratio 33:1
Drug entrapment efficiency ≥ 85%
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into a clean tube. After evaporation of the solvent, the residue was reconstituted, and 25-µL  

aliquots were injected onto the analytical column. The analytical column was a Zorbax 

Extend-C18 column (Agilent Technologies, Inc, Santa Clara, California; 150 × 2.1 mm internal 

diameter, 5-µm particle size). A mixture of 10-mM ammonium hydroxide-methanol (30:70 

vol/vol) was used as eluent. With an eluent flow of 0.2 mL/min, the run time was ~9 minutes. 

Positively charged ions were created at atmospheric pressure and were transferred to an 

API 3000 triple quadrupole mass spectrometer (Sciex, Thornhill, Canada). The transitions for 

paclitaxel were selected from m/z 854 → 509 and for the internal standard from m/z 860 → 515.  

The validated concentration ranges were from 0.25 to 1000 ng/mL for paclitaxel.

Pharmacokinetic analysis

The primary analysis was conducted on AUC and Cmax values of paclitaxel in plasma following 

the administration of study drug. The analysis followed the approach for establishing average 

bioequivalence as presented in the US Food and Drug Administration guidance Statistical 

Approaches to Establishing Bioequivalence.25 In this guidance, it is recommended that standard 

in vivo bioequivalence study designs be based on the administration of either single or multiple 

doses of the test drug and reference drug products to subjects on separate occasions, with 

random assignment to the two possible sequences of drug product administration. The 

guidance further recommends that statistical analysis for pharmacokinetic measures, such 

as AUC and Cmax, be based on the two one-sided tests procedure to determine whether the 

average values for the pharmacokinetic measures determined after administration of the test 

and reference products were comparable. This approach is termed “average bioequivalence” 

and involves the calculation of a 90% CI for the ratio of the averages (population geometric 

means) of the measures for the test and reference drug products. To establish bioequivalence, 

the calculated CI should fall within a bioequivalence limit, usually 80% to 125% for the ratio 

of the product averages. In addition to this general approach, the guidance provides specific 

recommendations for: 1) logarithmic transformation of pharmacokinetic data; 2) methods to 

evaluate sequence effects; and 3) methods to evaluate outlier data.

The pharmacokinetic parameters of paclitaxel were determined as follows. AUC0-∞ was 

calculated as AUC0–lqc + lqc/(-β), were lqc is the last quantifiable concentration and β is the 

slope from the linear regression of the natural logarithmic concentration versus time during 

the terminal phase. Cmax was the peak observed plasma concentration. Tmax was the time to 

Cmax. The t½ value was calculated as ln(2)/-β, for paclitaxel. The λz value was the first-order 

rate constant associated with the terminal portion of the curve.
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If the paclitaxel concentration in the sample taken immediately prior to the end of infusion 

was less than that in the sample taken 15 minutes before the end of infusion, then the latter 

value was used in the calculations of AUC.

Actual sampling times, rather than scheduled sampling times, were used in all computations 

involving sampling times, except for predose. However, for ease of presentation, scheduled 

sampling times are presented in data listings and graphic presentations.

Plasma concentration values below quantifiable limits were treated as zero in computation 

of mean concentration values and individual patient-computed parameters.

Statistical analysis

From preliminary data on the pharmacokinetic properties of paclitaxel in plasma after the 

administration of LEP-ETU at 175 mg/m2 over 90 minutes in advanced cancer patients, it 

was determined that the between-subject %CV of AUC0–∞ was ~0.4. It was assumed that 

the within-subject %CV was ~75% of the between-subject coefficient of variation. This 

would lead to a %CV of 0.4 × 0.75/√2 = 0.213 for the 2 × 2 crossover design. Sample size 

calculation indicated that, accounting for early withdrawals, up to 54 patients would need 

to be treated to yield 32 evaluable patients. The sample size was determined using nQuery 

software (Statistical Solutions, Boston Massachusetts). A sample of 16 evaluable patients 

in each sequence, for a total of 32 evaluable patients in this study, should have 80% power 

to reject the null hypothesis that the two treatments are not bioequivalent using the 80% 

to 125% bioequivalence criteria for the ratio of the means in nontransformed scale at a 

0.05 level of significance. Because Cmax has shown a smaller %CV in preliminary data, it was 

determined that this sample size would be sufficient to show bioequivalence of both AUC0–∞  

and Cmax.

Results

Fifty-eight patients were enrolled into this study. The characteristics of the patients are 

summarized in Table 4.2. Thirty-eight patients completed both cycles of treatment per 

protocol. Six patients discontinued due to early disease progression, 9 patients were 

discontinued from the study by the sponsor, 3 patients voluntarily withdrew, 1 patient 

discontinued due to a protocol violation (nonevaluable pharmacokinetic parameters), and 

1 patient died due to disease progression.
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Means of AUC0–∞ for the test and reference formulations were 15853.8 and 18550.8 ng·h/mL, 

respectively, and means of Cmax were 4955.0 and 5108.8 ng/mL. The relative bioavailability 

of the test compared with the reference formulation was 84% with respect to AUC0–∞, while 

the Cmax ratio was 97%–both meeting the 80% to 125% bioequivalence range per the US 

Food and Drug Administration guidance.25

Figure 4.1 shows mean total plasma paclitaxel concentration-time profiles for the test and 

reference formulations at a single dose of 175 mg/m2 over 180 minutes.

Paclitaxel is stable in human plasma for at least 10 months. All study samples were analyzed 

within the time period of 6.5 months.

The nature and incidence of AEs related to the administration of LEP-ETU that were reported 

during the study are presented in Table 4.3. Fifteen patients in the study experienced a total 

of 23 AEs. Nine of these AEs were considered as either possibly, probably, or definitely related 

to administration of the relevant drug (test or reference). All of these events occurred during 

Table 4.2  Baseline characteristics of the patients in this study of the pharmacokinetic properties 
and tolerability of LEP-ETU

Characteristic N %

Age group < 45
45-54
55-64
> 64

12
15
18
13

21
26
31
22

Gender Female
Male

38
20

66
34

Race Asian
Black/African American
White
Other

2
4

51
1

3
7

88
2

Ethnicity Hispanic/Latino
Non-Hispanic or -Latino

2
56

3
97

Primary tumor Breast
Colon
Esophagus
Sarcoma
Bladder 
Lung
Ovarian
Other

10
7
5
5
4
4
4

19

17
12

9
9
7
7
7

33
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Figure 4.1  Mean plasma paclitaxel (= total levels) concentrations over time (N = 32). Test drug, 
liposome-entrapped paclitaxel easy-to-use (LEP-ETU); reference drug, injectable formulation 
consists of paclitaxel solubilized in 50:50 (vol/vol) polyethoxylated castor oil and dehydrated 
alcohol. Both formulations were infused intravenously at a dosage of 175 mg/m2 paclitaxel over 
180 minutes.

Table 4.3  Adverse events considered possibly, probably, or definitely related to study drug, by 
maximum severity, after 1 cycle of treatment*

Category/Adverse Event/Grade Test/Reference
(N = 30)

Reference/Test
(N = 28)

Infection
Febrile neutropenia, grade 3 0 1

Blood/bone marrow
Leukopenia

grade 3 1 1
grade 4 0 1

Neutropenia
grade 3 2 2
grade 4 3 2

Gastrointestinal
Dehydration, grade 3 1 0
Vomiting, grade 3 0 1

Neurology
Dizziness, grade 3 1 0

* Test drug, liposome-entrapped paclitaxel easy-to-use (LEP-ETU); reference drug, injectable formulation 
consists of paclitaxel solubilized in 50:50 (vol/vol) polyethoxylated castor oil and dehydrated alcohol. Both 
formulations were infused intravenously at a dosage of 175 mg/m2 paclitaxel over 180 minutes.
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cycle 1 and thus their causality could be attributed to the study drug administered during 

that cycle. Four of the patients (who experienced a total of 7 AEs: dizziness, bone pain, 

vomiting, fatigue, pyrexia, hypertension, and angina pectoris) received the test formulation 

in cycle 1, and 2 of the patients (who experienced 2 separate AEs: febrile neutropenia and 

pyrexia) received the reference formulation in cycle 1. One patient prematurely discontinued 

from treatment due to a serious AE (a disease-related pulmonary embolism) after receiving 

the test formulation in cycle 1.

In this study, 11 of the 58 patients (19%) experienced neutropenia, all in cycle 1. Five patients 

experienced grade 4 neutropenia (3 patients after receiving the test formulation, and 2 

patients after receiving the reference formulation), and 5 patients experienced grade 3 

neutropenia (3 patients after receiving the test formulation, and 2 patients after receiving 

the reference formulation). One additional patient experienced grade 3 febrile neutropenia 

(after receiving the reference formulation), as well as grade 2 neutropenia (after receiving 

the reference formulation). None of these patients were discontinued from the study due 

to these events. No thrombocytopenia was observed. A single patient (2%) in this study 

had disease-related grade 3 anemia, which occurred during cycle 1 while the patient was 

receiving the reference formulation. Grade 2 anemia was reported as an AE in 5 patients 

(9%) (3 patients after receiving the test formulation, and 2 patients after receiving the 

reference formulation). In addition, 1 case of grade 2 iron-deficiency anemia (after receiving 

the reference formulation) was reported (2%).

Discussion

In this bioequivalence and phase I tolerability study, LEP-ETU was bioequivalent to the 

reference formulation of paclitaxel. The most frequently reported AEs with LEP-ETU were 

fatigue, alopecia, and myalgia.

The rationale for developing a liposomal formulation of paclitaxel was to attempt to 

improve the safety profile of paclitaxel by eliminating the drug-formulation component 

polyethoxylated castor oil, which has been associated with toxicities, while maintaining 

or enhancing efficacy.

The previous sonicated formulation, LEP, was evaluated in a phase I clinical trial in patients 

with advanced malignancies.21

The product utilized in this study was the easy-to-use liposomal formulation of LEP, LEP-ETU. 

Several preclinical studies of this formulation have been conducted. In a mouse model, LEP 
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was shown to have had equal or superior efficacy in inhibiting tumor growth compared 

with paclitaxel in several tumor types.22,26-28 

In 2008, Fetterly et al. reported on a phase I study of LEP-ETU.24 A maximum tolerated dose 

of 325 mg/m2 was established following the occurrence of dose-limiting toxicities in 2 

separate patients (neutropenia and ataxia (sensory to neuropathy) in 1 patient each) at the 

375-mg/m2 dose level. Analysis of the pharmacokinetic data from patients treated in the 

extended-dosing cohort supports earlier preclinical data, which suggested that LEP-ETU 

and paclitaxel formulated with castor oil have comparable pharmacokinetic properties. The 

investigators concluded that LEP-ETU could be administered safely at higher doses than 

conventional paclitaxel. Modeling and simulation studies predict that LEP-ETU 325 mg/

m2 q3w will provide an acceptable rate of neutropenic events relative to those observed 

with conventional paclitaxel 175 mg/m2 q3w.24 A 275-mg/m2 dose may offer an improved 

therapeutic index.24 In addition, another clinical study of this product has been performed.29

In January 2005, the FDA approved albumin-bound paclitaxel for injectable suspension 

(trademark: Abraxane®) for the treatment of breast cancer after failure of combination 

chemotherapy for metastatic disease or relapse within 6 months of adjuvant chemotherapy. 

Our study was initiated in October 2004, just before, so we could not compare LEP-ETU with 

albumin-bound paclitaxel. The difference between LEP-ETU and albumin-bound paclitaxel is 

that LEP-ETU is a conventional (nonstabilized) nanosome, and albumin-bound paclitaxel is 

a nanoparticle.30 It is unclear whether LEP-ETU has pharmacologic or cytotoxic advantages 

over albumin-bound paclitaxel.

To face the clinical problems of paclitaxel, 2 main strategies have been employed: 1) 

improving the properties of paclitaxel by a different and innovative drug formulation; and 

2) adopting the classic route of medical chemistry, to obtain novel molecules with a better 

therapeutic index and the ability to (partly) overcome drug resistance.31 Besides albumin-

bound paclitaxel, quite a lot of different new drug formulations have been developed 

since 2004, with hopeful results. Also solid pharmaceutical formulations of paclitaxel were 

developed. Clinical studies with these novel formulations are currently ongoing.32 However 

LEP-ETU is, together with paclitaxel combined with neutral and positive lipids (trademark: 

EndoTAG®), the only liposomal paclitaxel that has reached phase II clinical trials.33 

Study imitations

We recognize that this study had some shortcomings. First of all, the number of patients who 

dropped out of the study was concerningly high. This high dropout rate was most likely due 



Chapter 4Bioequivalence of LEP-ETU and Taxol®

59

to a poor patient selection. Second, because of some difficulties with the sponsor, it took 

almost 7 years to get to a publication. Nevertheless, we feel obligated to the participants 

in the study and to science in general to have submitted this study for publication.

Conclusions

The current randomized, two-period crossover, clinical bioequivalence study was designed 

to directly compare the pharmacokinetics of paclitaxel following intravenous administration 

of LEP-ETU (test) and paclitaxel solubilized in polyethoxylated castor oil and dehydrated 

alcohol (reference). Analysis of AUC and Cmax pharmacokinetic parameters from this study 

has established that the test and reference formulations are bioequivalent and, based on 

the results of this bioequivalence study, next-phase clinical studies are planned to further 

develop this new liposomal paclitaxel formulation.
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Summary

Introduction

BAY 56-3722 (formerly BAY 38-3441) is a glycoconjugated camptothecin, which was considered 

an attractive drug to assess in colorectal cancer (CRC).

Patients and methods

Phase II study design evaluating the antitumor activity of BAY 56-3722 i.v. 320 mg/m2 daily for 

3 days every 3 weeks in patients with recurrent or metastatic inoperable CRC resistant to irinotecan.

Results

Twenty-four patients received the study treatment. Triggered by adverse events in two other 

studies with this compound the study was put on a clinical hold while the safety data were 

reviewed for the entire program. After the review Bayer decided to withdraw BAY 56-3722 from 

all clinical investigations.

Discussion

We felt it was our obligation to share this interrupted phase II study for two reasons: to report the 

fate of camptothecin glycoconjugate and to report the unique situation of a clinical hold during 

a phase II study.
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INTRODUCTION

Since more than a decade the topoisomerase I inhibitor irinotecan has been one of the 

most important drugs in the treatment of metastatic CRC although its single agent activity 

in second line is only 20% and its toxicity is considerable.1 Especially in the pre-cetuximab/

panitumab and bevacizumab era new camptothecin analogues with improved activity and 

less toxicity were therefore warranted. BAY 56-3722 (formerly BAY 38-3441) is a camptothecin 

glycoconjugate that generates camptothecin upon cleavage. BAY 56-3722 consists of 

a carbohydrate (fucose) moiety attached to the camptothecin toxophore by a peptide 

spacer. The camptothecin delivered from BAY 56-3722 acts by binding to and stabilizing 

the topoisomerase I DNA complex, leading to an accumulation of double-stranded DNA 

breaks upon replication, ultimately causing cell death. The lactone form is associated with 

its antitumor activity, whereas the carboxylate form is inactive.2,3

BAY 56-3722 was considered an attractive drug to assess in CRC. First, there were in vitro 

data suggesting the utility of BAY 56-3722 in a variety of CRC lines. Secondly, the two 

main body tissues with highest levels of radioactivity after administration of BAY 56-3722 

were liver (3.0%) and the large intestine (3.6%). This could provide a potential advantage 

for BAY 56-3722 over other chemotherapy agents in patients with metastatic tumors in 

the liver. BAY 56-3722 was evaluated in vivo in a panel of human tumor xenografts in 

nude mice.4 In most of these experiments, BAY 56-3722 was tested in comparison with 

doses of topotecan and not with irinotecan, which would have been more appropriate. 

BAY 56-3722 was more efficacious at maximum tolerated dose than topotecan and 

exhibited less gastrointestinal toxicity and myelosuppression. In patients BAY 56-3722 

has been studied on three schedules, once every 21 days, daily for 3 days every 21 days 

and daily for 5 days every 21 days.3,5,6 In the phase I study where a daily × 5 schedule is 

explored, there appears to be a fourfold increase in the camptothecin AUC comparing 

day 1 to day 5 suggesting that this schedule might be the most likely schedule to have 

antitumor activity.5

The present phase II study was designed in the beginning of this century to study the 

antitumor activity, safety and tolerability of BAY 56-3722 using a daily schedule for 3 days 

every 3 weeks.
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Patients and methods

The study was conducted at 13 centers in Canada, the USA and the Netherlands. Patients 

received BAY 56-3722 i.v. over 30 min daily for 3 days every 3 weeks until objective evidence 

of tumor progression, unacceptable toxicity, consent withdrawn or until the investigator 

deemed that continuation of treatment adds no more benefit for the patient.

Tumor response measurements were made according to WHO criteria at baseline and every 

6 weeks for the entire duration of treatment.7

The study was planned to enroll a maximum of 140 evaluable patients. A three stage 

enrolment procedure would be used (null hypothesis: underlying response rate is less than 

or equal to 10%; alternative hypothesis: true response rate is more than or equal to 20%; 

one-sided alpha of 0.025; power of 90%). A futility analysis was planned when 20 evaluable 

patients were treated and followed for tumor response for a maximum of six cycles. If 

none of these patients responded (no PR or CR) to therapy termination of the study was 

warranted. If at least one patient responded (5%), an additional 60 patients were planned 

to be enrolled. The second futility analysis would count the number of responders out of 

the 80 patients at the end of maximum six cycles: if the number of responders would be 

less than 10% the likelihood of success would be sufficiently low to warrant discontinuation 

of the study. If the number of responders would be more than 20% the regimen would be 

considered active and the study might be closed in preparation for phase III. Nevertheless, 

if 9-15 responders were obtained, additional 60 patients would be enrolled and response 

rate would be evaluated at the end of cycle 6 to determine if the drug was active enough 

to start phase III.

Adverse events were graded by the National Cancer Institute (NCI) Common Toxicity Criteria 

(CTC) version 2.0.8

Informed consent and protocol were reviewed and approved by the appropriate local ethics 

or review boards before study initiation.

Patients were considered eligible if they had histologically confirmed recurrent or metastatic 

colorectal cancer with documented progression during or within 6 months after treatment 

with irinotecan. Required were adequate bone marrow, renal and liver functions and signed 

informed consent.
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Results

Twenty-five patients were enrolled in this study. Twenty-four patients received at least one 

dose of study treatment and were therefore included in the safety evaluation. One patient 

did not qualify to receive study medication due to a protocol inclusion criteria violation.

Of the 24 patients in the safety population, 18 (75%) discontinued study treatment because 

of disease progression, 4 (17%) because of consent withdrawn, and 2 (8%) because of study 

termination by the sponsor. Of the four patients that withdrew consent, one withdrew it 

after only one dose of study drug, another one after cycle 1, a third patient due to opting 

for treatment with capecitabine, and the last patient due to clinical deterioration.

The futility analysis that was planned for this study after the first 20 eligible patients were 

enrolled could not be completed due to an initial clinical hold as well as later discontinuation 

of the BAY 56-3722 development program.

This study was put on a clinical hold while the safety data were reviewed for the entire  

BAY 56-3722 development program. This review was triggered by events in two other 

studies in the program. Once this review was completed, the clinical hold was removed 

(after 5 weeks). At the time of the clinical hold, only two patients were taken off study 

because of lack of the essential IRB approval to go through. At the time when the clinical 

hold was removed, patients had to undergo a new tumor assessment and show no disease 

progression in order to continue study drug treatment. Only one patient qualified; that 

patient received two additional cycles of treatment.

At least one treatment-emergent event was reported by 23 of the 24 patients (96%). One 

patient with non-insulin dependent diabetes and coagulant use experienced one episode 

each of grade 4 rectal bleeding and hypoglycemia. Grade 3 non-hematological adverse 

events were experienced by eight patients. Three patients experienced a total of four adverse 

events that were considered serious. Two of these events, grade 2 creatinine elevation and 

grade 3 renal/genitourinary-other (bilateral hydronephrosis), were considered possibly 

drug-related. All four serious adverse events resolved. No patients developed grade 4 

hematological or biochemical toxicities. Three patients had grade 3 toxicities.
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Discussion

Development in systemic therapy options for CRC is moving fast. This study was 

conducted in the pre-cetuximab/panitumab and bevacizumab era. BAY 56-3722, selected 

for this phase II study, was a promising drug in diseases that were resistant to other  

topisomerase I inhibitors because of the enhanced stability of the active lactone moiety of 

the drug with enhanced preclinical antitumor activity and a favorable toxicity profile. Based 

on three phase I studies further phase II studies in several tumor types were undertaken 

with the preferred BAY 56-3722 regimen. None of these studies have been published and 

we felt that this was an omission. Therefore we decided to share our results and the fate of 

this drug in the current publication. This study was put on a clinical hold while the safety 

data were reviewed for the entire program, because of excessive toxicity in three patients 

with hepatocellular carcinoma in two studies in the program, this study not being one of 

them. Since, after review, this toxicity appeared to be disease related, patients were allowed 

to continue treatment after 4 weeks provided that there was no disease progression in our 

study. During the clinical hold for toxicity reasons Bayer undertook a voluntary action to 

withdraw camptothecin glycoconjugate (BAY 56-3722, formerly BAY 38-3441) from further 

clinical development due to observed safety issues, lack of therapeutic benefit, and poor 

enrolment in other studies. Due to this decision we were not able to draw conclusions 

whether this drug is active or not in colorectal cancer. Prematurely stopped studies as a 

result of a decision of the sponsor not to further develop a study drug (based on results in 

other studies) are extremely rare and the (temporary) withdrawal of the drug during the 

study puts the patient and the treating physician/local study team in a difficult position. The 

clinical hold was undertaken for safety reasons in the first place which is easier to accept 

than for economic reasons. We felt it was our obligation to share this interrupted phase II 

study for two reasons: to report the fate of camptothecin glycoconjugate and to report the 

unique situation of a clinical hold during a phase II study.
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Abstract

The histone deacetylase inhibitors (HDACi) are a group of small molecules that target histone 

deacetylases (HDACs) by inhibiting their activity. HDACi have a long history of use in neurology and 

psychiatry as anti-epileptics and mood stabilizers. More recently, they have been investigated as 

possible treatments for cancer. HDACi have undergone rapid clinical development in recent years, 

on the basis of their preclinical in vitro and in vivo antitumor activity in hematological malignancies 

and solid tumors. Many HDACi have entered phase I-III clinical trials. Among the HDACi, vorinostat 

and romidepsin are currently the most extensively studied. In 2006 and 2009, respectively, they 

received approval by the United States Food and Drug Administration for treatment of cutaneous 

T-cell lymphoma and romidepsin for the treatment of peripheral T-cell lymphoma. Other HDACi, 

such as panobinostat and valproic acid, also demonstrated activity as therapeutic anticancer 

agents. In this article we give an overview of the clinical studies of HDACi in solid tumors. We start 

with a short description of the working mechanism of HDACi in general.
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Histone deacetylase inhibitors

In addition to genetic mutations, epigenetic changes play an important role in the onset 

and progression of cancer.1 Epigenetic changes are defined as heritable changes in gene 

expression that are not accompanied by changes in DNA sequence. Changes to the 

patterns of epigenetic alterations are common in cancer, and epigenetic dysregulation 

may be a preliminary transforming event often observed in early-stage tumors and 

benign neoplasms.2,3 DNA and histones are the main compounds of nucleosomes, which 

are the structural units of chromatin that are important for wrapping eukaryotic DNA. 

Gene expression is affected by changes in the structural configuration of chromatin to a 

relatively open or more closed form, which alters the accessibility of DNA for transcription.4 

Transcription factor binding to DNA is mainly regulated through changes in chromatin 

conformation. This in turn is governed by chemical modifications such as the acetylation 

and deacetylation of lysine residues in the amino tails of the histones. The opposing 

activities of histone acetyltrans-ferases (HATs) and histone deacetylases (HDACs) tightly 

regulate gene expression through chromatin modification (Figure 6.1). HATs, by acetylating 

histones, produce an open chromatin structure, resulting in greater accessibility of 

regulatory proteins to DNA. HDACs, by contrast, catalyze acyl group removal, leading to a 

closed chromosomal configuration and transcriptional repression. Histone proteins were 

traditionally considered to be the primary focus for HDAC and HAT activities. However, 

Figure 6.1  Histone acetyltransferase (HAT), histone deacetylase (HDAC), and histone deacetylase 
inhibitors (HDACi). The opposing activities of HATs and HDACs: HATs, by acetylating histones, 
produce an open chromatin structure; HDACs catalyze acyl group removal, leading to a closed 
chromosomal configuration.
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acetylation also plays a crucial role in contexts other than histone and DNA-dependent 

processes. A considerable number of nonhistone proteins that play an important role 

in cell cycle proliferation and apoptosis are also being regulated by HAT and HDAC, for 

example transcription factors such as p53, E2F1, and NF-κB, which play important roles 

in tumor onset and antitumor response, as well as proteins that, instead of regulating 

gene expression, regulate the cellular cytoskeleton (α-tubulin), DNA repair (Ku70), and 

protein stabilization (Hsp90).5 Hsp90, a nonhistone HDAC substrate, plays a major role in 

the proper wrapping and stability of several oncoproteins. HDAC activity also controls cell 

protein turnover through the aggresome pathway. Interference of this pathway results in 

the accumulation of misfolded protein aggregates, finally leading to apoptosis in tumor 

cells through autophagy.6 These observations have revealed that the antitumor activity of 

histone deacetylase inhibitor (HDACi) includes effects on nonhistone proteins, implicated 

in many oncogenic pathways, in combination with epigenetic changes.

Already in 2001, Lin et al. stated that deregulation of HDAC activity in association with 

chromosomal translocated proteins is closely implicated in blocking differentiation and 

tumor suppressor genes, resulting in stimulating leukemogenesis.7 The use of HDACi to 

reverse aberrant epigenetic changes in cancer cells, because of this important link, has 

emerged as a potential strategy for the treatment of solid tumors and hematological 

malignancies. The additional activity of deacetylases on nonhistone proteins provides 

HDACi with the opportunity to reverse and prevent the effects of aberrant deacetylation 

through epigenetic modifications and via effects on nonhistone protein targets, which are 

important in oncogenesis.8,9

Clinical studies of histone deacetylase inhibitors in solid 
tumors

Vorinostat

Vorinostat (suberoylanilide hydroxamic acid; Zolinza®) inhibits HDAC by binding to a 

zinc ion in the catalytic domain of the enzyme (Figure 6.2).10 Vorinostat demonstrated 

activity in murine xenograft models and it was additive or synergistic when combined 

with chemotherapy drugs in induction of differentiation and apoptosis of various cancer 

cell lines.11 In 2006, the US Food and Drug Administration (FDA) granted regular approval 

to vorinostat for the treatment of cutaneous T-cell lymphoma (CTCL) in patients with 

progressive, persistent, or recurrent disease on or following two systemic therapies.12 
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Figure 6.2 Structures of histone deacetylase inhibitors.
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The pivotal study supporting approval was a single-arm open-label phase II trial.13 An 

additional single-center study enrolled 33 patients with baseline and demographic 

features similar to the pivotal trial.14 Despite the demonstrated effect in CTCL and other 

hematological tumors, unfortunately no such success has been demonstrated in solid 

tumors, although the phase I trials seemed rather encouraging. In two phase I studies 

with, respectively, intravenously and orally administered vorinostat Kelly et al. concluded 

that daily intravenous vorinostat was well tolerated, inhibited the biological target in vivo, 

and had antitumor activity in solid tumors. Oral vorinostat had linear pharmacokinetics 

(PK) and good bioavailability, inhibited HDAC activity in peripheral-blood mononuclear 

cells, could be safely administered chronically, and had a broad range of antitumor 

activity.15,16 In 2007, Ramalingam et al. demonstrated in a phase I study that both schedules 

of vorinostat (400 mg orally daily 14 days or 300 mg twice daily 7 days) were tolerated 

well in combination with carboplatin (area under the concentration versus time curve =  

6 mg/ml.min) and paclitaxel (200 mg/m2) and that encouraging anticancer activity was 

noted in patients with previously untreated non-small cell lung cancer (NSCLC).17 On the 

basis of these results, Vansteenkiste et al. conducted an early phase II trial of oral vorinostat 

in relapsed or refractory breast cancer, colorectal cancer, and NSCLC.18 Sixteen patients 

(median age, 62 years; median 5.5 prior therapies) were enrolled. Six patients received  

400 mg twice daily, six received 300 mg twice daily, and four received 200 mg twice daily 

(14 days/3 weeks). Dose-limiting toxicities (DLTs) at the 400 or 300 mg twice daily level were 

anorexia, asthenia, nausea, thrombocytopenia, vomiting, and weight loss. No DLTs were 

observed at the 200 mg twice daily level. Disease stabilization was observed in eight (50%) 

patients, but there were no confirmed responses. The median time to progression was only 

33.5 days. Eleven patients (69%) discontinued because of clinical adverse events (AEs). The 

most common drug-related AEs were anorexia (81%), fatigue (62%), nausea (62%), diarrhea 

(56%), vomiting (56%), thrombocytopenia (50%), and weight loss (50%). Drug-related AEs 

of at least grade 3 included thrombocytopenia (50%), anemia (12%), asthenia (12%), and 

nausea (12%). They concluded that vorinostat on a daily oral schedule for 14 days/3 weeks  

was tolerable at 200 mg twice daily only, but that no responses were observed in this 

study because most patients had limited drug exposure, which did not allow a reliable 

efficacy analysis. In 2009, Woyach et al. could also not demonstrate a therapeutic effect of 

vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma.19 Also in 

a phase II trial by Luu et al. in 2008 in metastatic breast cancer patients, vorinostat did not 

show adequate single-agent activity.20 Other phase II trials with vorinostat in patients with 

recurrent head and/or metastatic head and neck cancer, respectively, by Blumenschein et 

al., recurrent platinum-refractory ovarian or primary peritoneal carcinoma by Modesitt et 
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al., relapsed NSCLC by Traynor et al., and recurrent glioblastoma multiforme by Galanis et 

al. all showed limited to no activity.21-24 Study results with vorinostat in combination with, 

respectively, 5-fluorouracil/leucovorin in refractory colorectal cancer and bortezomib 

in recurrent glioblastoma were also disappointing.25,26 However, in 2009 Ramalingam et 

al. published a phase II randomized, double-blind, placebo-controlled study evaluating 

the efficacy of vorinostat in combination with carboplatin and paclitaxel in patients with 

advanced-stage NSCLC.27 Ninety-four patients initiated protocol therapy. The confirmed 

response rate was 34% with vorinostat versus 12.5% with placebo (P = 0.02). There was a 

trend toward improvement in median progression-free survival (PFS) (6.0 versus 4.1 months; 

P = 0.48) and overall survival (OS) (13.0 versus 9.7 months; P = 0.17) in the vorinostat arm. 

Grade 4 platelet toxicity was more common with vorinostat (18 versus 3%; P < 0.05). Nausea, 

emesis, fatigue, dehydration, and hyponatremia were also more frequent with vorinostat. In 

2011, Munster et al. published their phase II trial of vorinostat combined with tamoxifen for 

the treatment of patients with hormone therapy-resistant breast cancer, which showed that 

this combination was well tolerated and exhibits encouraging activity in reversing hormone 

resistance.28 Forty-three patients (median age 56 years (31-71)) were treated. Twenty-five 

patients (58%) received prior adjuvant tamoxifen, 29 (67%) failed one prior chemotherapy 

regimen, 42 (98%) progressed after one, and 23 (54%) after two aromatase inhibitors. The 

objective response rate by Response Evaluation Criteria In Solid Tumors (RECIST) criteria 

was 19% and the clinical benefit rate (response or stable disease (SD) > 24 weeks) was 

40%. The median response duration was 10.3 months (confidence interval (CI): 8.1-12.4).

Romidepsin

Romidepsin (depsipeptide; Istodax®) acts as a prodrug with the disulfide bond undergoing 

reduction within the cell to release a zinc-binding thiol (Figure 6.2).29-31 The thiol reversibly 

interacts with a zinc atom in the binding pocket of zinc-dependent HDAC to lock its 

activity. Romidepsin was licensed by the US FDA in 2009 for CTCL on the basis of two 

phase II trials conducted in a total of 167 patients suffering from relapsed, refractory, or 

advanced CTCL.32,33 In 2011, romidepsin was also approved by the US FDA for peripheral 

T-cell lymphoma (PTCL) on the basis of the results from two studies: a phase II multicenter 

international open-label single-arm study in patients with PTCL who had failed at least one 

prior systemic therapy, which was presented at the 2010 American Society of Hematology 

annual meeting; and a single-arm clinical study in patients with PTCL who had failed 

prior therapy.34,35 A series of phase I and phase II trials of romidepsin were conducted in 

patients with solid tumors, all with disappointing results. In 2002 Sandor et al. conducted a 
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phase I trial in patients with refractory neoplasms.36 DLT was observed, and the maximum 

tolerated dose (MTD) exceeded 24.9 mg/m2. The DLTs included grade 3 fatigue (three 

patients), grade 3 nausea and vomiting (one patient), grade 4 thrombocytopenia (two 

patients), and grade 4 cardiac arrhythmia (one patient, atrial fibrillation). The MTD was 

defined at the seventh dose level (17.8 mg/m2). Reversible ST/T changes and mild reversible 

dysrhythmias were observed on the post-treatment electrocardiogram (ECG). There were 

no clinically significant changes in left ventricular ejection fraction. One patient with renal 

cell carcinoma (RCC) achieved a partial response (PR). Because of the refractory nature 

of metastatic human RCC and to follow up on this anecdotal response observed in the 

phase I studies, a single-arm, phase II, multi-institutional study was conducted to assess 

the antitumor activity of romidepsin in metastatic RCC.37 The 29 evaluable patients, who 

were accrued so that 25 patients who received at least three doses of romidepsin could be 

observed, were heavily pretreated with a median of two previous systemic therapies and 

a 2-year median duration of metastatic disease. Twenty-four patients (83%) had clear-cell 

histology. The most common serious toxicities were fatigue, nausea, vomiting, and anemia. 

Two patients developed a prolonged QTc interval, one patient each developed grade 3 atrial 

fibrillation and tachycardia, and there was one sudden death. Two patients experienced an 

objective response (one complete response (CR)) for an overall response rate (ORR) of 7% 

(95% CI: 0.8-23%). Schrump et al. could also not observe any objective responses in their 

phase II trial of romidepsin in lung cancer patients.38 In this trial 19 patients were evaluable 

for toxicity assessment; 18 were evaluable for treatment response. Myelosuppression was 

dose-limiting in one individual. No significant cardiac toxicities were observed. In colorectal 

cancer patients romidepsin also seemed not to be effective. Whitehead et al. included 28 

patients with previously treated colorectal cancer with advanced disease in a phase II trial 

of romidepsin, two of whom were ineligible.39 One eligible patient refused all treatment and 

was not analyzed. For the 25 remaining patients, performance status was 0 in 16 patients 

and 1 in nine patients. Ten patients had received one prior chemotherapy regimen and 15 

two prior regimens. Out of the 25 eligible and analyzable patients accrued in the first stage 

of the protocol, no objective responses were observed and the study was permanently 

closed. Four patients had SD as the best response. Twenty-five patients were assessed for 

toxicity. No grade 4 or greater toxicities were seen. Fourteen of the 25 patients experienced 

grade 3 toxicities, the most common of which were fatigue and anorexia. Molife et al. 

found minimal antitumor activity in chemotherapy-naive patients with castration-resistant 

prostate cancer in their phase II trial with romidepsin.40 Thirty-five patients were enrolled 

in this study. Two patients achieved a confirmed radiological PR (RECIST) lasting for at least 

6 months, along with a confirmed prostate-specific antigen decline of at least 50%. Eleven 
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patients experienced toxicity necessitating early discontinuation. The commonest AEs were 

nausea (30 patients; 85.7%), fatigue (28 patients; 80.0%), vomiting (23 patients; 65.7%), and 

anorexia (20 patients; 57.1%). There was no significant cardiac toxicity. In 2010 Otterson et 

al. published the results of their phase II trial of romidepsin in chemosensitive recurrent 

small cell lung cancer (SCLC).41 Sixteen patients (10 male, six female) were accrued to the 

first stage of this study. Most (11 patients, 69%) presented with extensive-stage SCLC, 

and all had received prior chemotherapy, with 11 having received prior radiation. Eastern 

Cooperative Oncology Group performance status was excellent with 0 in six patients (38%) 

and 1 in 10 patients. No objective responses were seen, and SD was the best response 

seen in three patients (19%). Toxicity was modest with three patients suffering grade 3 

toxicity (lymphopenia, insomnia, nausea, vomiting, and hyponatremia) and one patient 

suffering grade 4 thrombocytopenia. Median PFS was 1.8 months, and median OS was 

6 months. They concluded that romidepsin given on a weekly schedule in patients with 

chemosensitive, recurrent SCLC was inactive. Iwamoto et al. found in their phase I/II trial 

that romidepsin was also ineffective for patients with recurrent glioblastomas.42 Two dose 

cohorts were studied in the phase I component of the trial (13.3 and 17.7 mg/m2/day). 

Patients in the phase II component were treated with intravenous romidepsin at a dosage of 

13.3 mg/m2/day on days 1, 8, and 15 of each 28-day cycle. Eight patients were treated in the 

phase I component. A similar romidepsin PK profile was demonstrated between patients 

receiving enzyme-inducing anti-epileptic drugs and those not receiving enzyme-inducing 

anti-epileptic drugs. Thirty-five patients with glioblastoma were accrued to the phase II 

component. There was no objective radiographic response. The median PFS was 8 weeks 

and only one patient had a PFS time of at least 6 months (PFS6 = 3%). At publication, 34 

patients (97%) had died, with a median survival duration of 34 weeks. In 2012 Jones et al. 

published the results of their phase I trial that was conducted to determine the MTD for 

two schedules of romidepsin plus gemcitabine in patients with advanced solid tumors 

in which gemcitabine had previously demonstrated clinical activity.43 The recommended 

phase II dose was 12 mg/m2 romidepsin plus 800 mg/m2 gemcitabine on days 1 and 15 

every 28 days. They concluded that the results suggested additive hematologic toxicities 

of romidepsin plus gemcitabine, but the level of antitumor activity observed warranted 

more formal trials of this combination to further assess safety and efficacy. Also in 2012, 

Sherman et al. published their single-institution Simon two-stage phase II clinical study 

to evaluate the clinical activity of romidepsin and radioactive iodine (RAI) re-uptake in 

RAI-refractory thyroid carcinoma.44 They observed preliminary signs of in vivo reversal 

of RAI resistance after treatment with romidepsin. However, no major responses were 

observed and accrual was poor after a grade 5 AE. Haigentz et al. conducted a phase II 
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trial in patients with advanced squamous cell carcinoma of the head and neck.45 Objective 

responses were not observed, although two heavily pretreated patients had brief clinical 

disease stabilization. Observed toxicities were expected, including frequent severe fatigue.

Belinostat

Belinostat (PXD101) is a hydroxamic acid HDACi with anti-proliferative and HDAC inhibitory 

activities in vitro (Figure 6.2).46 Belinostat has growth inhibitory and pro-apoptotic activities 

in a variety of human tumor cell lines at nanomolar concentrations. In vivo, belinostat 

inhibits growth in human tumor xenografts without apparent toxicity to the host mice.46 

Growth inhibition in vitro and in vivo is associated with a marked increase in the level of 

acetylation of histone proteins.46

In 2008, Steele et al. conducted a phase I study to determine the safety, DLT, MTD dose, and 

PK and pharmacodynamic profiles of belinostat in patients with advanced refractory solid 

tumors. Forty-six patients received belinostat at one of six dose levels (150-1200 mg/m2/day).  

DLTs were grade 3 fatigue (one patient at 600 mg/m2; one patient at 1200 mg/m2), grade 3 

diarrhea combined with fatigue (one patient at 1200 g/m2), grade 3 atrial fibrillation (one 

patient at 1200 mg/m2; one patient at 1000 mg/m2), and grade 2 nausea/ vomiting leading to 

inability to complete a full 5-day cycle (two patients at 1000 mg/m2). The MTD was 1000 mg/

m2/day. SD was observed in a total of 18 (39%) patients, including 15 treated for at least four 

cycles. Of the 24 patients treated at the MTD (1000 mg/m2/day), 50% achieved SD.47 Lassen 

et al. showed in their phase I trial that the combination of belinostat and carboplatin and/or 

paclitaxel in patients with solid tumors was well tolerated, with no evidence of PK interaction. 

The MTD of belinostat was 1000 mg/m2/day for days 1-5, with paclitaxel 175 mg/m2  

and carboplatin area under the curve (AUC) 5 administered on day 3. Grade 3/4 AEs were 

(n; %): leucopenia (5; 22%), neutropenia (7; 30%), thrombocytopenia (3; 13%) anemia (1; 

4%), peripheral sensory neuropathy (2; 9%), fatigue (1; 4%), vomiting (1; 4%), and myalgia 

(1; 4%). The PK of belinostat, paclitaxel, and carboplatin were unaltered by the concurrent 

administration. There were two PRs (one rectal cancer and one pancreatic cancer). A third 

patient (mixed mullerian tumor of ovarian origin) showed a complete cancer antigen-125 

response. In addition, six patients showed an SD lasting for at least 6 months.48 In 

2009, Ramalingam et al. concluded in a phase II study that belinostat was not active as 

monotherapy against recurrent malignant pleural mesothelioma.49 Other phase II trials 

could only demonstrate limited activity.50-52 However, in 2012 Dizon et al. demonstrated that 

belinostat, carboplatin, and paclitaxel combined (BelCaP) was reasonably well tolerated and 
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demonstrated clinical benefit in heavily pretreated patients with epithelial ovarian cancer. 

Thirty-five women were treated. The median age was 60 years (range, 39-80 years), and 

patients had received a median of three prior regimens (range, 1-4). Fifty-four percent had 

received more than two prior platinum-based combinations; 16 patients (46%) had primary 

platinum-resistant disease, whereas 19 patients (54%) recurred within 6 months of their 

most recent platinum treatment. The median number of cycles of BelCaP administered 

was 6 (range, 1-23). Three patients had a CR, and 12 had a PR, for an ORR of 43% (95% CI: 

26-61%). When stratified by primary platinum status, the ORR was 44% among resistant 

patients and 63% among sensitive patients. The most common drug-related AEs related 

to BelCaP were nausea (83%), fatigue (74%), vomiting (63%), alopecia (57%), and diarrhea 

(37%). With a median follow-up of 4 months (range, 0-23.3 months), 6-month PFS is 48% 

(95% CI: 31-66%). Median OS was not reached during study follow-up.53

Panobinostat

Panobinostat (LBH589) is a hydroxamic acid and acts as a non-selective HDACi (Figure 6.2). 

In 2010 the first phase I trial was published by Rathkopf et al. In this phase I trial 16 patients 

with castration-resistant prostate cancer were included. In arm I, oral panobinostat (20 mg) 

was administered on days 1, 3, and 5 for 2 consecutive weeks followed by a 1-week break. In 

arm II, oral panobinostat (15 mg) was administered on the same schedule in combination 

with docetaxel 75 mg/m2 every 21 days. DLTs were grade 3 dyspnea (arm I) and grade 3  

neutropenia greater than 7 days (arm II). In arm I, all patients developed progressive 

disease despite accumulation of acetylated histones in peripheral-blood mononuclear 

cells. In arm II, five of eight patients (63%) had at least a 50% decline in prostate-specific 

antigen, including one patient whose disease had previously progressed on docetaxel.54 

In 2011 Jones et al. showed in their phase I trial that the combination of panobinostat and 

gemcitabine was limited by myelosuppression. The recommended doses for further study 

were intermittent oral panobinostat administered at a dose of 10 mg three times weekly 

for 2 weeks in combination with gemcitabine 800 mg/m2 administered intravenously on 

days 1 and 8 every 21 days.55 Fukutomi et al. concluded in 2012, in their phase I trial, that 

panobinostat administered orally once daily on Monday, Wednesday, and Friday of each 

week was well tolerated at doses up to 20 mg in Japanese patients. Dose escalation did not 

proceed after exploration of the 20 mg dose due to emerging global clinical data at that 

time.56 Morita et al. reported a phase I study to evaluate intravenous panobinostat given on 

days 1 and 8 of a 21-day cycle in Japanese patients with solid tumors. They concluded that 

the MTD was 20 mg/m2.57 Drappatz et al. concluded in their phase I study of panobinostat 
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in combination with bevacizumab for recurrent high-grade glioma that the recommended 

doses for further study are oral panobinostat 30 mg three times per week, every other week, 

in combination with bevacizumab 10 mg/kg every other week.58 However, in 2012 Strickler et 

al. concluded in their phase I trial that adding everolimus to panobinostat and bevacizumab 

did not have an acceptable safety and tolerability profile.59 DLTs in cohort 1 included grade 2 

esophagitis and grade 3 oral mucositis; DLTs in cohort 1 were grade 2 ventricular arrhythmia 

and grade 2 intolerable skin rash. Common AEs were diarrhea (50%), headache (33%), 

mucositis/stomatitis (25%), hyperlipidemia (25%), and thrombocytopenia (25%). In a phase 

I trial Jones et al. investigated panobinostat in combination with paclitaxel and carboplatin 

in patients with solid tumors. They concluded that the recommended phase II dose is 

panobinostat 10 mg orally three times weekly in combination with paclitaxel 175 mg/m2  

and carboplatin AUC 5 administered intravenously on day 1 of every 21-day cycle.60 

Unfortunately, the phase II results of panobinostat were very disappointing. Hainsworth et 

al. concluded that panobinostat had no activity in patients with refractory renal carcinoma 

and Wang et al. could not support the treatment of advanced pancreatic cancer with 

bortezomib in combination with panobinostat in their clinical study.61-62

Entinostat

Entinostat (MS-275) is a benzamide derivative with potent HDAC inhibitory and antitumor 

activity in preclinical models (Figure 6.2). Several phase I trials have been performed since 

2005. Ryan et al. conducted a phase I study that demonstrated that the entinostat oral 

formulation on the daily schedule (once daily 28 every 6 weeks (daily), starting dose 2 mg/m2)  

was intolerable at the dose and schedule explored. The q14-day schedule was reasonably 

well tolerated. DLTs were nausea, vomiting, anorexia, and fatigue.63 In 2007, Kummar et al. 

showed that entinostat was well tolerated at a dose of 6 mg/m2 administered weekly with 

food for 4 weeks every 6 weeks. No grade 4 toxicities were observed. Grade 3 toxicities were 

reversible and consisted of hypophosphatemia, hyponatremia, and hypoalbuminemia.64 

Gore et al. showed that entinostat was well tolerated at doses up to 6 mg/m2 every 

other week or 4 mg/m2 weekly for 3 weeks followed by 1 week of rest and resulted in 

biologically relevant plasma concentrations and antitumor activity. Twice-weekly dosing 

was not tolerable due to asthenia, and further evaluation of this schedule was halted. The 

recommended dose for further disease-focused studies is 4 mg/m2 given weekly for 3 weeks 

every 28 days or 2-6 mg/m2 given once every other week.65 Another phase I trial showed that 

the combination of entinostat and 13-cis retinoic acid was reasonably well tolerated. The 

recommended phase II doses are entinostat 4 mg/m2 once weekly and 13-cis retinoic acid 
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1 mg/kg/day. Grade 3 toxicity included hyponatremia, neutropenia, and anemia. Fatigue 

grade 1 and 2 was a common side effect.66 Unfortunately, the limited phase II results were 

rather disappointing: no objective responses in pretreated metastatic melanoma and no 

improvement in the outcomes of patients with advanced NSCLC treated with erlotinib 

combined with entinostat when compared with erlotinib monotherapy.67,68 However, in 

2011 Juergens et al. published their phase I/II trial of combined epigenetic therapy with 

azacitidine, inhibitors of DNA methylation, and entinostat in extensively pretreated patients 

with recurrent metastatic NSCLC. This therapy was well tolerated and objective responses 

were observed, including a CR and a PR in a patient who remains alive and without disease 

progression approximately 2 years after completing protocol therapy. Median survival 

in the entire cohort was 6.4 months (95% CI: 3.8-9.2), comparing favorably with existing 

therapeutic options. Demethylation of a set of four epigenetically silenced genes known 

to be associated with lung cancer was detectable in serial blood samples in these patients 

and was associated with improved PFS (P = 0.034) and OS (P = 0.035). Four of 19 patients 

had major objective responses to subsequent anticancer therapies given immediately after 

epigenetic therapy.69

Valproic acid

Valproic acid (divalproex sodium; Depakote®) relieves repression of transcription factors 

that recruit HDACs and activates transcription from diverse promoters (Figure 6.2). Valproic 

acid causes hyperacetylation of the N-terminal tails of histones H3 and H4 in vitro and  

in vivo and it inhibits HDAC activity, most probably by binding to the catalytic center and 

thereby blocking substrate access.70,71 In 2005, Chavez-Blanco et al. published their phase I 

study titled ‘Histone acetylation and histone deacetylase activity of magnesium valproate 

in tumor and peripheral blood of patients with cervical cancer’. Twelve newly diagnosed 

patients with cervical cancer were treated with magnesium valproate after a baseline tumor 

biopsy and blood sampling at the following dose levels (four patients each): 20, 30, or  

40 mg/kg for 5 days through the oral route. On day 6, tumor and blood sampling were 

repeated and the study protocol ended. Tumor acetylation of H3 and H4 histones and HDAC 

activity were evaluated by western blot and colorimetric HDAC assay, respectively. Plasma 

levels of valproic acid were determined on day 6 once the steady state was reached. Toxicity 

of treatment was evaluated at the end of the study period. All patients completed the study 

medication. Mean daily dose for all patients was 1890 mg. Corresponding means for the 

doses 20, 30, and 40 mg/kg were 1245, 2000, and 2425 mg, respectively. Depressed level 

of consciousness grade 2 was registered in nine patients. Ten patients were evaluated for 
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H3 and H4 acetylation and HDAC activity. After treatment, we observed hyperacetylation 

of H3 and H4 in the tumors of nine and seven patients, respectively, whereas six patients 

demonstrated hyperacetylation of both histones. Plasma levels of valproic acid ranged 

from 73.6 to 170.49 mg/ml. Tumor deacetylase activity decreased in eight patients (80%), 

whereas two had either no change or a mild increase. There was a statistically significant 

difference between pretreatment and post-treatment values of HDAC activity (mean, 

0.36 versus 0.21, two-tailed T-test P < 0.0264). There was no correlation between H3 and 

H4 tumor hyperacetylation with plasma levels of valproic acid. It was concluded that 

magnesium valproate at a dose between 20 and 40 mg/kg inhibits deacetylase activity 

and hyperacetylates histones in tumor tissues.72 Arce et al. demonstrated in their proof-

of-principle study that treatment with hydralazine and magnesium valproate exerts its 

proposed molecular effects of DNA demethylation, HDAC inhibition, and gene reactivation 

in primary tumors of patients with breast cancer. Importantly, this doxorubicin-associated 

and cyclophosphamide-associated treatment was safe and well tolerated, and appeared 

to increase the efficacy of chemotherapy.73 Several phase I studies of valproic acid alone 

or in combination with another agent were performed: valproic acid followed by the 

topoisomerase II inhibitor epirubicin in advanced solid tumors, alone in patients with 

refractory advanced cancer, in combination with 5-azacytidine in patients with advanced 

cancers, in combination with all-trans-retinoic acid intravenously in patients with advanced 

solid tumor malignancies, and in combination with 5-aza-20-deoxycytidine (decitabine) 

in patients with advanced-stage NSCLC.74-78 Some phase II trials were also performed. 

Candelaria et al. conducted a phase II study in 17 patients who were evaluable for toxicity 

and 15 for response. Primary sites included were cervix (three), breast (three), lung (one), 

testis (one), and ovarian (seven) carcinomas. A clinical benefit was observed in 12 (80%) 

patients: four PR and eight SD. The most significant toxicity was hematologic. Reductions 

in global DNA methylation, HDAC activity, and promoter demethylation were observed.79 

The combination of valproic acid and chemoimmunotherapy did not produce results 

overtly superior to standard therapy in patients with advanced melanoma.80 In combination 

with karenitecin, a topoisomerase I inhibitor, valproic acid was associated with disease 

stabilization in 47% of patients with metastatic poor prognosis melanoma.81 Scherpereel 

et al. demonstrated that valproic acid plus doxorubicin appeared to be an effective 

chemotherapy regimen in good performance score (80-100) patients with refractory or 

recurrent mesothelioma, for which no standard therapy was available.82 The pilot phase II 

study by Mohammed et al. showed that valproic acid may have a role in treating low-grade 

neuroendocrine carcinoma.83 However, in 2011 Coronel et al. published their randomized 

phase III, placebo-controlled study of hydralazine and valproate (HV) added to cisplatin-
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topotecan in advanced cervical cancer. This study represents the first randomized clinical 

trial to demonstrate a significant advantage in PFS for epigenetic therapy over one of 

the current standard combination chemotherapies in cervical cancer. Patients received 

hydralazine at 182 mg for rapid or 83 mg for slow acetylators, and valproate at 30 mg/

kg, beginning a week before chemotherapy and continuing until disease progression. 

Response, toxicity, and PFS were evaluated, and 36 patients (17 cisplatin topotecan (CT) 

plus HV and 19 CT plus placebo (PLA)) were included. The median number of cycles was 

6. There were four PRs to CT + HV and one in CT + PLA. There was SD in five (29%) and six 

(32%) patients, respectively, whereas eight (47%) and 12 (63%) showed progression (P = 

0.27). At a median follow-up time of 7 months (1-22), the median PFS is 6 months for CT + 

PLA and 10 months for CT + HV (P = 0.0384, two tailed).84

Mocetinostat, chidamide, SB939, and LAQ824

Some other HDACi were only studied in single phase I studies, for example mocetinostat 

(MGCD0103), chidamide (CS055/HBI-8000), SB939, and LAQ824.85-89 The recommended 

phase II dose of mocetinostat was 45 mg/m2/day. DLTs consisting of fatigue, nausea, 

vomiting, anorexia, and dehydration were observed in three (27%) of 11 and two (67%) of 

three patients treated at the 45 and 56 mg/m2/day dose levels, respectively.85 With chidamide 

no DLTs were identified in the two times per week for 4 consecutive weeks every 6-week 

cohorts up to 50 mg. DLTs were grade 3 diarrhea and vomiting in two patients in the three 

times per week for 4 consecutive weeks every 6-week cohort at 50 mg, respectively.86 

In a phase I study by Yong et al. the MTD of SB939 was 80 mg/day. DLTs were fatigue, 

hypokalemia, troponin T elevation, and QTc prolongation.87 Razak et al. demonstrated that 

the recommended phase II dose of SB939 was 60 mg given for 5 consecutive days every 

2 weeks. The most frequent non-hematologic AEs of at least possible attribution to SB939 

were fatigue, nausea, vomiting, anorexia, and diarrhea.88 DLTs of LAQ824 were transaminitis, 

fatigue, atrial fibrillation, raised serum creatinine, and hyperbilirubinemia. On the basis 

of these data in the phase I trial, De Bono et al. concluded that future efficacy trials with 

LAQ824 should evaluate doses ranging from 24 to 72 mg/m2.89
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Discussion

Despite promising results in the treatment of CTCL, HDACi have generally not been 

effective in clinical trials involving solid tumors. Many clinical trials have assessed the 

efficacy of vorinostat against different solid tumors, including refractory breast, colorectal, 

non-small cell lung, and thyroid cancers. Disappointingly, almost none of the patients in 

these trials showed PR or CR to treatment, but the prevalence of drug-induced side effects 

was very high.18,19 Romidepsin has also been evaluated as a monotherapy against solid 

tumors. Similarly to vorinostat, romidepsin has also been ineffective against solid tumors 

and also induced serious side effects. Before its approval by the FDA, there were six cases 

of unexpected death in patients treated with romidepsin, one attributed to pulmonary 

embolus and the other five cases attributed to sudden cardiac arrest.90,91

The same disappointing results were found with studies of belinostat, panobinostat, 

and entinostat in solid tumors. Valproic acid is the only HDACi that completed a phase III 

trial in solid tumors, which demonstrated a significant advantage in PFS over one of the 

current standard combination chemotherapies in cervical cancer; however, the results 

were preliminary and should be taken as such. Current published studies indicate that 

so far HDACi have serious limitations, including ineffectively low concentrations in solid 

tumors and cardiac toxicity, including T-wave flattening, ST segment depression, and QT 

interval prolongation, which is hindering their progress in the clinic.92 Although it is not 

completely understood why HDACi seem more effective in hematological malignancies 

than in solid tumors, it is suggested that in hematological malignancies, such as CTCL 

and multiple myeloma, the short PK half-life of HDACi compounds may not preclude their 

effectiveness, compared with less permeable solid tumors, in which their instability is a 

problem.57 It is also possible that HDACi are not selective enough for solid tumors, which 

means that they are not target specific and are not delivered selectively. An interesting 

question is whether HDAC expression in a given tumor might predict the therapeutic 

response to HDACi. As in other targeted therapies, it is probable that treatment response 

is greater in those patients who strongly express HDACs in their cancer cells. Translational 

studies including this topic should be attached to clinical trials on HDACi to find adequate 

biomarkers for the future. The hope of up-and-coming cancer treatments of all kinds is to 

deliver high potency at the site of action, while eliminating the toxicities that result from 

off-target effects. Gryder et al. recently suggested that designing and developing HDACi 

with extremely high potency and selectivity for a unique molecular entity and not others 

and directing the medicine to the location of interest would help to overcome the problems 
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Table 6.1  Open clinical trials (with histone deacetylase inhibitors in solid tumors) recruiting 
patients

Title Phase ClinicalTrials.gov Identifier

Safety and tolerability study of RAD001 and LBH589 in all 
solid tumors with enrichment for EBV driven tumors

1 NCT01341834

Belinostat for solid tumors and lymphomas in patients with 
varying degrees of hepatic dysfunction

1 NCT01273155

Azacitidine and MS-275 in treating patients with recurrent 
advanced non-small cell lung cancer

1/2 NCT00387465

High-dose vorinostat and fractionated stereotactic body 
radiation therapy in treating patients with recurrent glioma

1 NCT01378481

A phase I study of belinostat in combination with cisplatin 
and etoposide in adults with small cell lung carcinoma and 
other advanced cancers

1 NCT00926640

Vorinostat in children 1/2 NCT01422499

High-dose or low-dose vorinostat in combination with 
carboplatin or paclitaxel in treating patients with advanced 
solid tumors

1 NCT01281176

Clinical study of vorinostat in combination with etoposide in 
pediatric patients < 21 years at diagnosis with refractory solid 
tumors

1/2 NCT01294670

Vorinostat and lapatinib in advanced solid tumors and 
advanced breast cancer to evaluate response and biomarkers

2 NCT01118975

Adjuvant valproate for high grade sarcomas 1 NCT01010958

Sorafenib and LBH589 in hepatocellular carcinoma (HCC) 1 NCT00823290

Study to evaluate panobinostat (DACi) pharmacokinetics and 
safety in solid tumors and varying renal function

1 NCT00997399

of HDACi in solid tumors.92 While searching for ‘HDAC inhibitor solid tumor’ we found only 

12 open clinical trials on http://www.clinicaltrials.gov recruiting patients (Table 6.1). But 

to fulfill the high expectations in solid tumors and to overcome the existing problems, a 

great deal of research is still necessary.
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Abstract

Purpose

To evaluate the pharmacokinetics and safety of oral panobinostat in patients with advanced solid 

tumors and varying degrees of hepatic function.

Patients and methods

Patients with advanced solid malignancies, acceptable bone marrow and renal function, and 

normal (control group) or impaired hepatic function, per NCI-ODWG criteria, were eligible. All 

patients received a single oral dose of 30 mg panobinostat for pharmacokinetic studies lasting 1 

week (core phase). Subsequently, patients received three times weekly panobinostat for as long 

as the patient had benefit (extension phase safety assessment). Core phase serial blood samples 

were collected predose and over 96 hours postdose and assayed for panobinostat.

Results

Twenty-five patients were enrolled with a median age of 58 years, (range 45-76). Fifteen patients 

had hepatic dysfunction (8 mild, 6 moderate and 1 severe). Approximate reduction in plasma 

panobinostat clearance was 30% and 51%, with concomitant 43% and 105% increase in exposure, 

for patients with mild and moderate hepatic dysfunction respectively. Median peak plasma 

concentrations were 1.4 and 1.8 fold higher in the mild and moderate groups as compared to 

those in the normal group. Hepatic impairment did not alter panobinostat absorption with Tmax 

unchanged at 2 hours. The safety data were consistent with known safety profile of panobinostat 

in patients with advanced cancers and normal liver function.

Conclusion

Despite increased plasma exposure, patients with mild or moderate hepatic dysfunction could 

be safely treated with the same dose of panobinostat as patients with normal hepatic function.
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INTRODUCTION

Panobinostat is a potent pan-deacetylase inhibitor (pan-DACi) with low nanomolar activity 

against all class I, II, and IV histone deacetylase enzymes.1,2 This activity is exerted by direct 

inhibition of histone deacetylases, modulating both histone and nonhistone proteins 

that regulate various cell signaling pathways.3-7 Panobinostat has shown preclinical and 

clinical activity as a single agent and in combination with other chemotherapeutic agents 

in multiple tumor types.8-13 The common toxicities associated with panobinostat include 

fatigue, thrombocytopenia, nausea, vomiting, and diarrhea. The disposition, metabolism, 

and excretion of panobinostat were studied in advanced cancer patients via trace 

radiolabeled 14C material. These studies indicate that both liver and kidney are involved in 

the metabolism and elimination of the parent compound.14 Panobinostat and its numerous 

inactive metabolites are excreted almost equally in bile/feces (44-77% of the dose) and urine 

(29-51% of the dose) of patients. The elimination is primarily in the form of metabolites 

with unchanged panobinostat in urine accounting for less than 2.5% and in feces for less 

than 3.5% of the dose.14 To date, the safety and pharmacokinetics (PK) of panobinostat 

have been characterized in cancer patients with adequate hepatic function and no data 

are available in patients with hepatic dysfunction. Hepatic dysfunction, either as result of 

metastatic invasion, or as a pre-existing medical condition, is frequently observed in cancer 

patients necessitating dose adjustments to avoid toxicity. 

Therefore, we conducted a phase I open-label multicenter study to evaluate the pharma-

cokinetics (PK) and safety of oral panobinostat in cancer patients with varying degrees of 

hepatic impairment.

Patients and methods

Study design 

Eligible patients were stratified by the degree of hepatic dysfunction. The National Cancer 

Institute (NCI), Organ Dysfunction Working Group (ODWG) criteria15 for classifying hepatic 

dysfunction as normal, mild, moderate and severe, based on serum bilirubin and AST 

(aspartate transaminase) levels are given in Table 7.1. The sample size was based on FDA 

guidance for the industry with planned 22-28 evaluable patients dosed in the PK study.16

There were two parts to the study. Part 1 (core phase) evaluated the PK of panobinostat in 

each hepatic function group after a single, 30 mg oral dose with food. Blood sampling was 
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carried out predose and over 96 hours postdose. Part 2 (extension phase) was initiated 7 

days after start of core phase to characterize the safety profile of panobinostat. Panobinostat 

30 mg/day was administered three times a week weekly, or every other week, depending 

on the patient’s degree of hepatic dysfunction. In patients with severe liver dysfunction, a 

lower starting dose of 20 mg panobinostat three times a week every other week was also 

considered. Treatment cycles were repeated every 28 days (Table 7.1). 

Treatment was continued until disease progression, unacceptable toxicity or withdrawal 

of informed consent. Initially, patients with normal hepatic function and mild or moderate 

hepatic dysfunction were enrolled in the study. A decision to enroll patients with severe 

hepatic impairment was made following review of the preliminary safety data of all patients 

who completed the core phase and cycle 1 of the extension phase, of which at least 3 

patients were from the moderate hepatic dysfunction group.

Eligibility criteria 

Patients with normal or abnormal liver function (including those with liver metastases and 

presence of biliary shunts), an Eastern Cooperative Oncology Group (ECOG) performance 

status < 2, and age > 18 years, were considered eligible if they had a documented diagnosis 

of advanced solid tumor for which no standard systemic therapy exists. Exclusion criteria 

were prior DACis, valproic acid treatment, any concomitant anticancer therapy, use of 

medication that affects renal or hepatic function, active central nervous system disease or 

Table 7.1  Definition of hepatic function groups and planned dose levels scheme in the study 
part 2 (extension phase)

NCI-ODWG hepatic function/impairment group

Normal Mild Moderate Severe

Bilirubin level ≤ ULN ≤ ULN  > 1.0-1.5 ULN        > 1.5-3 ULN > 3 ULN

AST level ≤ ULN AST > ULN  Any AST Any AST Any AST

Dose level Panobinostat dosing schedule

Starting dose 30 mg TIW QW 30 mg TIW QW 30 mg TIW QW 30 mg TIW QOW

Dose level -1 30 mg TIW QOW 30 mg TIW QOW 30 mg TIW QOW 20 mg TIW QOW

Dose Level -2 20 mg TIW QOW 20 mg TIWQOW 20 mg TIW QOW

AST: aspartate aminotransferase; ULN: upper limit of normal; TIW: three times a week; QW: weekly; QOW: 
every other week.
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brain metastasis, evidence of another malignancy not in remission or any other concurrent 

severe or uncontrolled medical condition. 

Pharmacokinetic assessments

Serial whole blood samples of 3 mL for PK analysis were collected in the core phase on day 

1 at predose and 0.5 (30 min), 1, 2, 4, 7, and 24 (day 2), 48 (day 3), 72 (day 4), and 96 (day 5) 

hours postdose. In addition, one 6 mL whole blood sample was collected at predose on day 

1 for protein binding analysis. Plasma was assayed for panobinostat concentration using 

a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method.14,17 

Percent protein binding at baseline was assessed ex vivo by radiolabeling each plasma 

sample using 14C panobinostat. Percent protein binding of panobinostat was quantified by 

spiking predose patient plasma samples with panobinostat to achieve 30 and 100 ng/mL 

concentration levels. These concentrations represent the typical and highest Cmax achievable 

in humans after oral administration of panobinostat. 

Statistical assessments

PK parameters were estimated using non-compartmental analysis. PK parameters including 

peak plasma concentration Cmax, time to reach peak plasma concentration Tmax, area under 

curve AUC0-∞ and AUClast, last observable concentration Clast, time to last concentration Tlast, 

elimination half-life T1/2, total body clearance CL/F and apparent volume of distribution Vz/F 

were derived based on analysis of plasma panobinostat concentration data. A linear mixed 

model analysis was performed to account for differences in age and body surface area (BSA).

Adverse events were graded according to NCI-CTCAE, version 3.018 and recorded throughout 

the study until 28 days after the last dose of panobinostat.

Tumor assessments were performed at baseline and followed up during the course of the 

study according to RECIST criteria, version 1.0.19 With efficacy being an exploratory study 

endpoint, the best overall response at the end of treatment was based on the investigator’s 

evaluation. No formal analysis of tumor measurements was conducted for this study. 

Study ethics

The study protocol was approved by the institutional review board at each participating 

institution with all patients providing written informed consent.
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Results

Patient disposition and baseline characteristics

A total of 25 patients were enrolled in the study and received oral panobinostat (10 patients 

with normal hepatic function, 8 and 6 patients with mild and moderate hepatic impairment 

respectively). One patient with severe hepatic impairment was subsequently enrolled and 

received the single PK dose of panobinostat of 30 mg and completed the PK assessments 

during the core phase before withdrawing due to increased bilirubin levels; this patient 

was included in the PK and safety population. One patient in the mild hepatic impairment 

group was excluded from the PK population due to vomiting within 4 hours of the single 

PK dose of panobinostat. Patient disposition and baseline characteristics, overall and by 

hepatic function group, are summarized in Table 7.2. Overall, the median age was 58 years 

(range, 45-76) with 56% of patients being male. 28%, 68%, and 4% of patients had an ECOG 

performance status of 0, 1, and 2, respectively. The most common malignancy was colon 

cancer, which was seen in 24% of patients.

Patient exposure

All patients took the dose of 30 mg panobinostat during the PK core phase. All patients 

started the extension phase with the dose regimen of 30 mg three times a week, weekly. 

None received the lowest dose level of 20 mg/day three times a week, every other week. 

Patients received a median of 1 cycle of treatment (range, 0.1-3.7) including medians (ranges) 

of 1.2 (0.1-3.5), 0.9 (0.1-2.2) and 1.6 (0.5-3.7) in patients with normal hepatic function, mild 

and moderate hepatic impairment, respectively. Three patients received ≥ 2 cycles. In the 

majority of patients, the exposure to study treatment was less than 2 months. The mean 

duration of exposure in the extension phase was 1.35 months in all patients. Overall 76% 

of patients received up to 2 months of treatment. Most patients required dose reduction to 

30 mg three times a week, every other week within the first 2 weeks of treatment. Patients 

received a median of 7.8 mg/day of panobinostat (range, 0.0-12.9), representing 60% of the 

median planned dose of 12.9 mg/day. The mean relative dose intensity (DI) was 0.63 in all 

patients with slightly higher values in patients with mild liver impairment (0.73).

The main reason for treatment discontinuation was disease progression in 18 (72%) patients, 

including 9 (90%), 5 (62.5%), and 4 (66.7%) patients in the normal function, mild and 

moderate hepatic impairment groups, respectively. In addition, 3 (12%) patients refused 

further participation and 4 (16%) discontinued because of adverse events.
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Table 7.2  Patient disposition and baseline characteristics overall and by hepatic function group

Hepatic function/impairment group

Panobinostat dose
Core PK phase, n (%)

All
(N = 25)

Normal
(n = 10)

Mild
(n = 8)

Moderate
(n = 6)

Severe
(n = 1)

30 mg single dose 25 (100) 10 (100) 8 (100) 6 (100) 1 (100)

Extension phase, n (%)
30 mg TIW QW 24 (96) 10 (100) 8 (100) 6 (100)
30 mg TIW QOW 1 (4) 1 (100)

Evaluable for PK, n (%) 24 (96) 10 (100) 7 (87.5) 6 (100) 1 (100)

Evaluable for safety, n (%) 25 (100) 10 (100) 8 (100) 6 (100) 1 (100)

Median age, y (range) 58 (45-76) 52 (45-76) 54 (46-67) 65 (59-74) 58 (58-58)

Male, n (%) 14 (56) 4 (40) 4 (50) 5 (83) 1 (100)

Female, n (%) 11 (44) 6 (60) 4 (50) 1 (16.7)

Caucasian, n (%) 25 (100) 10 (100) 8 (100) 6 (100) 1 (100)

Cancer type, n (%)
Colon 6 (24) 1 (10) 1 (12.5) 3 (50) 1 (100)
Prostate 3 (12) 1 (10) 1 (12.5) 1 (16.7) 0
Rectum 3 (12) 0 2 (25) 1 (16.7) 0
Lung 2 (8) 1 (10) 1 (12.5) 0 0
Uterus 2 (8) 2 (20) 0 0 0
Othera 9 (45) 5 (50) 3 (37.5) 1 (16.7) 0

ECOG PS, n (%)
0 7 (28) 5 (50) 0 2 (33.3) 0
1 17 (68) 5 (50) 7 (87.5) 4 (66.7) 1 (100)
2 1 (4) 0 1 (12.5) 0 0

a Including: 1 mesothelioma, 1 gastric, 1 peritoneum, 1 melanoma, 1 fallopian tubes (normal group); 1 gall 
bladder, 1 ovarian, 1 endometrium (mild group); 1 liver (moderate group).

Pharmacokinetics

PK samples and data were available for 24 patients across the hepatic function groups. PK 

parameters from non-compartmental analysis grouped by hepatic function are listed in 

Table 7.3. Mean plasma concentration profiles for panobinostat are presented in Figure 7.1. 

The absorption of panobinostat was not affected by hepatic function as median Tmax was 

similar across all groups. The median AUC0-∞ in the mild and moderate hepatic function group 

was approximately 35% and 84% higher than the normal group. Individual estimates of the 

AUC0-∞ between mild and normal group largely overlapped. Geometric mean of AUC0-∞ in 

the normal, mild and moderate group were 150.3, 214.8, and 308.0 ng·h/mL, respectively. 

This represents a 43% increase in the mild and 105% increase in the moderate groups as 
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compared with the normal group. The percent coefficient of variance (CV) associated with 

the geometric mean was large, ranging between 44-72%, reflecting the large PK variability 

of panobinostat. After adjusting for baseline age and BSA in a linear mixed model analysis 

the adjusted geometric means AUC0-∞ were similar to the unadjusted geometric means in 

the normal and mild group and slightly lower in the moderate group at 151.6, 214.6 and 

291.8 ng·h/ml, respectively. This represents a 42% increase in the mild and a 92% increase 

in the moderate groups when compared with the normal group. Median peak plasma 

concentration Cmax was 1.4 (mild) and 1.8 (moderate) fold higher as compared to those in 

the normal group. The terminal half-life estimated across normal, mild and moderate groups 

were similar, between 26 to 35 hours. This is consistent with the terminal half-life derived from 

the final parameter estimates of the population PK analysis in patients with normal hepatic 

function. Using Child Pugh’s classification,20 mild and moderate liver impairment patients 

had median AUC0-∞ approximately 60% above the normal group. Percent panobinostat 

bound to plasma protein were similar at panobinostat concentrations of 30 and 100 ng/mL. 

At clinically relevant peak plasma concentration of 30 ng/mL, percent protein binding in the 

mild impairment group was similar to those in the normal group at 83%, and decreased to 

between 77 to 74% in the moderate and severe groups. Protein binding adjusted free AUC0-∞ 

for the normal, mild and moderate groups were 24.7, 36.3 and 70.4 ng·h/mL, respectively. 

PK parameters of the severe patient did not differ from those of the moderate group.

Table 7.3  Summary of panobinostat plasma PK profile by hepatic function group

Hepatic function/impairment group

Panobinostat
PK parameter (unit)

Normal 
(n = 10)

Mild 
(n = 7)

Moderate 
(n = 6)

Severe 
(n = 1)

Tmax (h) 2.0 (0.5-7.0) 2.0 (0.5-4.0) 2.0 (1.0-4.0) 2.0 (2.0-2.0)

Cmax (ng/mL) 18.5 (81.18) 29.1 (57.3) 33.9 (50.9) 31.2 (NE)

AUC0-48 (ng·h/mL) 125.0 (70.3) 183.9 (54.2) 249.9 (43.2) 235.4 (NE)

AUC0-∞ (ng·h/mL) 150.3 (72.3) 214.8 (56.3) 308.0 (44.2) 272.3 (NE)

AUClast (ng·h/mL) 140.5 (73.3) 204.3 (56.2) 284.9 (42.6) 263.9 (NE)

CL/F (mL/h) 199647 (72.3) 139658 (56.3) 97399 (44.2) 110187 (NE)

Vz/F (mL) 8295077 (54.7) 5826678 (48.1) 4863991 (35.1) 3156940 (NE)

T1/2 (h) 28.8 (27.3) 26.3 (27.6) 34.6 (31.5) 19.9 (NE)

Clast (ng/mL) 0.24 (0.13- 0.42) 0.27 (0.11- 0.46) 0.52 (0.17- 0.61) 0.29 (NE)

Tlast (h) 96.0 (47.9- 96.3) 96.0 (72.0- 96.6) 96.0 (95.8- 96.0) 96.0 (96.0- 96.0)

Values are geometric mean (% CV), except for Clast, Tmax, and Tlast (median; range); NE: not evaluable.
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No patient received concomitant CYP3A4 inhibitors or inducers during the study core PK 

phase, thus the data in this study were not affected by such medications. 

Safety

All patients treated with panobinostat experienced at least one adverse event (AE), and 

AEs of grade ≥ 3 were recorded for 92% of patients. The safety profile of panobinostat and 

the most common drug-related AEs (all grades, and grade ≥ 3) are summarized in Table 

7.4 stratified by hepatic function group. Rates of grade ≥ 3 drug-related AEs were 70% in 

patients with normal liver function, 62.5% and 83.3% in patients with mild and moderate 

liver impairment, respectively. Fatigue, nausea, thrombocytopenia and diarrhea were the 

most common drug-related AEs of grade ≥ 3. Serious adverse events (SAEs) were reported 

in 36% of patients, mostly patients with normal liver function. The most common drug-

related SAEs were diarrhea, nausea, vomiting, and fatigue (2 patients each). Overall, 4 

patients (16%) had at least one AE leading to study drug discontinuation, fatigue being 

the most frequent. One unexpected SAE (grade 3 vasculitis) occurred during this study in 

a patient with moderate hepatic impairment. There were no clinically significant changes 

Figure 7.1  Arithmetic mean (SD) panobinostat plasma concentration-time profiles following a 
single 30 mg dose, by hepatic function group.
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in hematology or biochemistry parameters. The safety data from this study was consistent 

with the known safety profile of single agent oral panobinostat in patients with advanced 

cancers and adequate liver function. 

A total of 6 patients died with 5 deaths occurring while on study treatment or within 28 days 

of the last dose of panobinostat, but were not treatment related. Most of the deaths were 

due to progression of underlying malignancy and one death was recorded as pulmonary 

edema in presence of disease progression.

Efficacy

No complete or partial responses were observed for the 24 patients in the extension 

phase. Stable disease was the best overall response in 4 patients (16%), including one in 

the normal group with lung cancer, one in the mild group with endometrial cancer and 

two in the moderate group with prostate and liver cancer. Early progressive disease (PD) 

was noted in 14 patients (56%). 

Table 7.4  Safety profile of panobinostat overall and by hepatic function group, including most 
common drug-related adverse events of any grade (reported in ≥ 30% of patients) and of grade 
≥ 3 severity (reported in ≥ 10% of patients)

Hepatic function/impairment group

Adverse event, n (%) All
N = 25

Normal
n = 10

Mild
n = 8

Moderate
n = 6

Severe
n = 1

Any adverse event 22 (88) 9 (90) 7 (87.5) 6 (100) 0
Nausea 17 (68) 7 (70) 6 (75) 4 (66.7) 0
Fatigue 15 (60) 7 (70) 4 (50) 4 (66.7) 0
Vomiting 14 (56) 7 (70) 4 (50) 3 (50) 0
Decreased appetite 13 (52) 5 (50) 4 (50) 4 (66.7) 0
Thrombocytopenia 12 (48) 5 (50) 1 (12.5) 6 (100) 0
Diarrhea 10 (40) 6 (60) 4 (50) 0 0

Any grade  ≥ 3 adverse event 17 (68) 7 (70) 5 (62.5) 5 (83.3) 0
Fatigue 7 (28) 4 (40) 2 (25) 1 (16.7) 0
Nausea 4 (16) 3 (30) 1 (12.5) 0 0
Thrombocytopenia 4 (16) 3 (30) 0 1 (16.7) 0
Diarrhea 3 (12) 2 (20) 1 (12.5) 0 0

Any serious adverse event 9 (36) 6 (60) 2 (25) 1 (16.7) 0

Discontinuation due to adverse event 4 (16) 1 (10) 1 (12.5) 1 (16.7) 1 (100)

On-study deaths 5 (20) 2 (20) 1 (12.5) 2 (33.3) 0
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Discussion

The primary objective of this study was to assess the effect of various degrees of impairment 

in hepatic function on the pharmacokinetics and safety of panobinostat. The FDA guidance16 

for industry, recommends a PK study in patients with impaired hepatic function if hepatic 

metabolism and/or excretion accounts for a substantial portion (>20 percent of the 

absorbed drug) of the elimination of a parent drug or active metabolite. This is essential 

for dosage recommendations in clinical practice.

This study used a design whereby all enrolled patients (N = 25) received a single initial 

fixed panobinostat dose. This optimizes PK comparisons across all hepatic function groups. 

Hepatic dysfunction, per NCI-ODWG criteria based on bilirubin level, are similar to other 

studies of anticancer agents in patients with hepatic dysfunction.21-24 This study showed 

that systemic exposure of panobinostat was increased with increasing hepatic impairment. 

Imbalances in patient demographics, such as age and BSA, may have contributed to the 

observed differences in the panobinostat plasma exposure among patients with normal, 

mild, moderate and severe hepatic functions. After adjusting for age and BSA in a linear 

mixed model analysis the adjusted geometric means of the hepatic impairment groups 

were not substantially affected. Due to the large PK variability of panobinostat, adjusted 

geometric means of normal, mild and moderate groups were associated with wide 

confidence intervals. The impact of change in adjusted geometric means, seen between 

hepatic function groups was deemed not clinically significant based on the covariate 

relationship identified in the population PK analysis. 

Panobinostat is extensively metabolized primarily through non-CYP-mediated pathways. 

CYP pathways contribute < 50% to the overall metabolism of panobinostat.14 Conversely, the 

clinical impact of CYP pathways inhibition, has been shown to be minor, as co-administration 

of panobinostat with a strong CYP3A4 inhibitor, ketoconazole increased panobinostat 

exposure to < twofold.25 

Protein binding in the mild and normal group of 83% was within the range of historical 

values, but was lower in the moderate and severe hepatic impaired patients (74 to 77%). 

The extent of increase in free AUC0-∞ in mild and moderate groups were somewhat similar 

to those not adjusted for protein binding, reflecting the limited role of protein binding on 

the free drug exposure for a moderately bound drug like panobinostat.

Clinical safety profile of panobinostat was qualitatively and quantitatively consistent with 

known safety data in patients with advanced malignancies and adequate hepatic function 
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treated in previous single agent oral studies.3-5,8-11 The dose of 30 mg given three times a 

week on a weekly schedule was moderately tolerated by all patients regardless of their 

liver function. This is expressed by the low relative DI (0.63) seen in the majority of patients 

regardless of their liver function. A limitation of the study is the short duration of exposure 

to drug (median of 1.35 months), due to disease progression. A rapid decline in patient 

condition often occurs in patients with advanced solid cancers and hepatic dysfunction due 

to lack of effective therapy. Nevertheless this study demonstrated the impact of hepatic 

impairment on the systemic exposure of panobinostat. 

The clinical relevance of liver-function-related PK changes in regard to safety could 

not be adequately established as increased exposures of panobinostat did not lead to 

corresponding increases in main toxicities, thrombocytopenia and QTc prolongation. In 

regards to thrombocytopenia, PK/PD modeling analyses have shown a dose-schedule 

dependent relationship between oral panobinostat treatment and platelet response.26 

Since platelet kinetics are largely dependent on the baseline platelet count, tumor group 

and panobinostat dose and schedule, systemic exposure alone is not sufficient to predict 

overall risk of thrombocytopenia. Schedule and/or dose reduction have been successfully 

implemented to manage thrombocytopenia risk when patients experience decreased 

platelet counts during panobinostat treatment.

QTc prolongation has drawn attention during a phase I study with continuous intravenous 

administration of panobinostat;27 however in the current study as well as in the other studies 

using single agent panobinostat, this does not seem to be a major issue.3-5,9-11,28 The lack of 

QTcF signal evidenced by intensive ECG monitoring throughout the study is consistent with 

historical data indicating a < 1% incidence of grade 3 QTc prolongation across the clinical 

oral dose range of 20-40 mg. In patients with normal or impaired liver function, the only 

observed QTc abnormalities were few increases in QTcF < 60 msec.

In summary, the results of this PK study in cancer patients with varying degrees of hepatic 

impairment have shown that the systemic exposure of panobinostat increases with the 

severity of organ impairment. The extent of increase is less than twofold in the presence of 

moderate liver impairment. The safety findings suggest that the increasing degree of hepatic 

impairment did not appear to substantially increase toxicity in the hepatic dysfunction 

groups and that the rates of grade ≥ 3 adverse events and serious adverse events in patients 

with hepatic impairment are within the range of the rates in patients with normal hepatic 

function. Therefore an exposure-response relationship for safety could not be established 

in patients with mild to moderate liver dysfunction. Therapeutic management of these 
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patients should aim at assuring that effective doses are delivered with careful monitoring 

and treatment modifications, based on patient’s safety and tolerability. Conversely the 

lack of data for severe hepatic impairment would suggest great caution in administering 

panobinostat to this vulnerable patient population. This study has been complemented by a 

parallel trial in cancer patients with varying degrees of renal impairment recently completed.
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Summary

Cardiac glycosides have a long history in the treatment of cardiac disease. However, several 

preclinical studies as well as two phase I studies have shown that cardenolides may also possess 

anticancer effects. The mechanisms of these anticancer effects may include intracellular decrease 

of K+ and increase of Na+ and Ca2+; intracellular acidification; inhibition of IL-8 production and of 

the TNF-α/NF-κB pathway; inhibition of DNA topoisomerase II and activation of the Src kinase 

pathway. To date three cardiac glycosides have been developed for treatment of cancer and were 

tested in a phase I clinical trial to determine dose-limiting toxicities and maximum tolerated dose. 

Future studies of this novel class of anticancer drugs are warranted to determine their possible 

role in cancer treatment.
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INTRODUCTION

Cardiac glycosides have been used in the treatment of cardiac disease for more than 

200 years and were already known to the ancient Egyptians over 3000 years ago.1 Cardiac 

glycosides contain a common molecular structure comprised of a steroid nucleus, an 

unsaturated lactone ring at the C-17 position, and one or more glycosidic residues at the 

C-3 position.2,3 Chemically, cardiac glycosides can be divided into two groups: cardenolides 

and bufadienolides. Cardenolides contain a lactone ring of five members and bufadienolides 

are characterized by a 6-membered unsaturated lactone ring.

Common cardenolides include digoxin, digitoxin, digitoxigenin, lantoside C and ouabain 

(Figure 8.1). From a therapeutic point of view, the most important cardiac glycosides are 

digoxin and digitoxin as they are both used for the treatment of cardiac congestion and 

some types of cardiac arrhythmias, such as atrial fibrillation.

A variety of reports suggested that cardiac glycosides may have anticancer properties. In 

the 1960s clear inhibition of malignant cells of cardiac glycosides in vitro was reported. 

Almost two decades later, observation of the altered morphology of breast cancer cells 

from women on digitalis by Stenkvist et al. showed more benign characteristics than cancer 

cells from control patients not on digitalis.4,5 Stenkvist et al. also showed that 5 years after 

the mastectomy, the recurrence among patients not taking digitalis was 9.6 times that in 

patients taking digitalis.6

In this manuscript, we will give an overview of the possible mechanisms involved in the 

anticancer activity of cardiac glycosides and discuss their early development in cancer 

therapeutics.

Possible cytotoxic mechanisms of action

It is well known that cardiac glycosides, such as digitoxin, inhibit the activity of the  

Na+/K+-ATPase (also known as the Na+ pump or Na+/K+ pump). This pump is a transmembrane 

enzyme that acts as an electrogenic ion transporter in the plasma membrane of all 

mammalian cells. Each cycle of the Na+/K+-ATPase activity extrudes three Na+ from the cell, 

moves two K+ into the cell and utilizes one ATP. The primary role of the Na+/K+-ATPase is 

therefore, to maintain high intracellular K+ and low intracellular Na+. This pump also has an 

important role in regulating cell volume, cytoplasmic pH and Ca2+ levels through the Na+/H+ 

and Na+/Ca2+ exchangers, respectively, and in driving a variety secondary transport processes 
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figure 8.1 Chemical structures of common cardenolides.
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such as Na+ dependent glucose and amino acid transport.7,8 Inhibiting Na+/K+-ATPase by 

cardiac glycosides leads to higher levels of intracellular Ca2+, which leads to a decrease in 

heart rate and an increase in contractility of the heart. However, the decrease in intracellular 

K+ and increase in intracellular Na+ and Ca2+ following inhibition of the Na+/K+-ATPase may 

also induce apoptosis.9-14 Inhibition of the Na+/K+-ATPase by digitoxin and subsequent 

increase in intracellular Ca2+ led to the induction of apoptosis of prostate cancer cells.15,16

Besides inducing apoptosis by intracellular decrease of K+ and of Na+ and intracellular 

Ca2+, cytotoxic mechanisms of action include intracellular acidification; inhibition of IL-8 

production and the TNF-α/NF-κB pathway; inhibition of DNA topoisomerase II and activation 

of the Src kinase pathway (Figure 8.2). Whether the Na+/K+-TPase is the primary target of 

cardiac glycosides or not is actually a matter of intense debate.17

Intracellular decrease of K+ and increase of Na+ and Ca2+ 

Inducing apoptosis by excessive K+ efflux and intracellular K+ depletion are early key 

steps in apoptosis.9 Physiological concentration of intracellular K+ acts as a repressor of 

apoptotic effectors. Loss of cellular K+, a common event in apoptosis of many cell types, 

may trigger the apoptotic cascade including caspase cleavage, cytochrome c release, and 

Figure 8.2  Proposed mode of action of cardiac glycosides. Cardiac glycosides (CG) induce 
apoptosis by intracellular decrease of K+ and of Na+ and intracellular Ca2+. Other cytotoxic 
mechanisms of action include intracellular acidification; inhibition of IL-8 production and the 
TNF-α/NF-κB pathway; inhibition of DNA topoisomerase II and activation of the Src kinase pathway.

Na+/K+-
ATPase

Na+/Ca2+

exchanger
Na+/H+

exchanger

Na+

K+

H+

Ca2+

Src kinase 
pathway

activation

CG

TNF-α/NF-κB 
pathway

disruption

IL-8

inhibition

nucleus
DNA topo-

isomerase II
inhibition

extracellular

intracellular

CG
CG



Cardiac glycosidesChapter 8

118

endonuclease activation. Pro-apoptotic disruption of K+ homeostasis can be mediated by 

over-activated K+ channels or ionotropic glutamate receptor channels, and most likely, 

accompanied by reduced K+ uptake due to dysfunction of Na+/K+-ATPase. Studies indicate 

that also mitochondrial K+ channels and K+ homeostasis play important roles in apoptosis.9-11

During apoptosis, there is compelling evidence indicating an early increase in intracellular 

Na+ followed by a decrease in both intracellular K+ and Na+ suggesting a regulatory role 

for these cations during both the initial signaling, and the execution phase of apoptosis. 

Studies have shown that the Na+/K+-ATPase is involved in controlling perturbations of Na+ 

and K+ homeostasis during apoptosis.14

Also cellular Ca2+ overload, or perturbation of intracellular Ca2+ compartmentalization, can 

cause cytotoxicity and trigger either apoptotic or necrotic cell death.15

Intracellular acidification

Published data suggests that intracellular alkalinisation can produce malignant transfor-

mation.18-25 It is also suggested that alkalinisation may be required for the development 

and maintenance of the transformed phenotype cancer cells and may be implicated in key 

cancer related processes.18-25 In contrast, it has been observed that intracellular acidifica-

tion can induce apoptosis in cancer cells and play an important role in the induction of 

apoptosis by different stimuli.24,26-32 For example, Rich et al. demonstrated that apoptosis 

of leukemic cells accompanies reduction of intracellular pH after targeted inhibition of 

the Na+/H+ exchanger.24 Moreover stress-activated protein kinase pathway activation and 

mitochondrial-derived hydrogen peroxide acts as an effector mechanism leading to induc-

tion of apoptosis by intracellular acidification.26,27

These observations indicate that induction of intracellular acidification possesses anticancer 

effects. Interestingly, cardiac glycosides induce intracellular acidification in cancer cells as 

the inhibition of the Na+/K+-ATPase may increase intracellular concentrations of Na+, reduce 

the activity of the Na+/H+ exchanger and trigger intracellular acidification.

Inhibition of IL-8 production and the TNF-α/NF-κB pathway

Inhibition of IL-8 production and the TNF-α/NF-κB pathway is another mechanism of 

cardiac glycosides to produce anticancer effects. As production of IL-8 has been associated 

with important processes involved in tumor progression such as apoptosis resistance, 

angiogenesis or metastasis, inhibition of its expression is therefore thought to produce 
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anticancer effects.33-35 Juncker et al. demonstrated that the hemi-synthetic cardenolide 

UNBS1450 leads to inhibition of IL-8 synthesis via NF-κB pathway disruption leading to 

apoptotic cell death.36 Srivastava et al. showed similar results for digitoxin37 whereas Yang 

et al. demonstrated that cardiac glycosides were potent blockers of the TNF-α/NF-κB 

pathway, which results in apoptosis, as NF-κB induces the expression of genes that are 

inhibitors of apoptosis.38

Inhibition of DNA topoisomerase II

Recently published data suggest that digitoxin may inhibit topoisomerase II. Because of their 

central role in DNA replication, transcription and repair processes, topoisomerase II inhibitors 

are a category of drugs commonly used in the treatment of malignancies by inducing 

apoptosis.39,40 López-Lázaro et al. demonstrated that a renal adenocarcinoma cancer cell 

line was hypersensitive to digitoxin and died by apoptosis. In vitro experiments showed 

that digitoxin induced levels of DNA-topoisomerase II cleavable complexes comparable to 

etoposide, a topoisomerase II poison widely used in cancer chemotherapy. Cells exposed to 

digitoxin for 30 min showed low but statistically significant levels of DNA-topoisomerase II  

cleavable complexes; however these complexes disappeared after 24 h exposure.39 The 

same research group also showed that digitoxin, at concentrations commonly found in 

the plasma of cardiac patients, significantly reduced etoposide and idarubicin-induced 

topoisomerase II cleavable complexes in leukemia cells.40 Also other cardiac glycosides, such 

as ouabain, digoxin, proscillaridin and bufalin, have shown to inhibit topoisomerase II.41,42 

Bielawski et al. demonstrated that digoxin, ouabain and proscillaridin A exerted significant 

inhibitory effects on the proliferation of breast cancer cells. Of the two cardiac glycosides, 

proscillaridin A was more effective at inhibiting the proliferation of breast cancer cells than 

digoxin or ouabain.41 Hashimoto et al. showed that bufalin caused a marked decrease in the 

steady-state level of topo II alpha mRNA in human leukemia cells, which led to a decrease 

in the amount and activity of the enzyme and to the induction of apoptosis.42

Activation of the Src kinase pathway

Multiple studies have established that the binding of cardiac glycosides to Na+/K+-ATPase 

not only inhibits the ATPase activity but also stimulates protein tyrosine kinases such as 

Src. This process is the consequence of an additional function played by Na+/K+-ATPase 

besides its control of ionic cellular homeostasis, which is already the trigger of complex 

intracellular signalization pathway forming a signalosome. Accordingly, pools of non-
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pumping Na+/K+-ATPase are localized in plasma membrane caveolae, where it clusters 

with other plasma membrane proteins and receptors, including growth factor receptors 

(i.e., the epidermal growth factor receptor EGFR).43 Binding of Na+/K+-ATPase by cardiac 

glycosides may in turn unleash several kinase-dependent cascades, which are implicated 

in cell proliferation. Activated Src in turn transactivates EGFR, resulting in the assembly and 

activation of multiple signaling cascades controlled by the extracellular signal-regulated 

kinase (ERK)1/2 and phospholipase C-γ/protein kinase C pathways.44 Liang et al. suggested 

that cells contain a pool of Src-interacting Na+/K+-ATPase that not only regulate Src activity 

but also serve as receptors for ouabain to activate protein kinases.44 One year before, in 

2005, Kometiani et al. showed in breast cancer cell lines that ouabain-induced cell growth 

inhibition may be mediated by activation/transactivation of Src/EGFR by Na+/K+-ATPase, 

which leads to activation of ERK1/2, increase in the levels of the cell cycle inhibitor P21Cip1 

and subsequent growth arrest.45 Kometiana et al. also demonstrated that digoxin and 

digitoxin concentrations close to or at therapeutic plasma levels had effects both on 

proliferation and ERK1/2 similar to those of ouabain, supporting the proposed potential 

value of digitalis drugs for the treatment of breast cancer.45 The existence of signalosomes 

where Na+/K+-ATPase plays a non-ionic activity has highlighted an endogenous activity 

of cardiac glycosides. Ouabain is endogenously produced46 and circulating in the plasma, 

it acts in a paracrine/endocrine fashion and its levels are considered critical to determine 

several physio-pathological responses.47-49 Interestingly, these endogenous biological effects 

correlate with a complex signaling cascade involving kinases.50 The discovery of these 

non-canonical functions has very recently suggested a role for Na+/K+-ATPase as hormone 

receptor.51 Altogether, these findings suggest in a very next future important hints in the 

elucidation of anticancer effects ascribed to cardiac glycosides and help in the explanation 

of preventive effects observed in patients under treatment with digitalis especially towards 

forms of hormonal cancer.

Impact of cardiac glycosides on cancer cells

Cardiac glycosides exert anti-proliferative and cytocidal effects on different cancer cell 

models.17,52 Their ability to impair cancer cell viability represents a main hallmark of their 

anticancer activities. Nevertheless, multiple types of cell death are triggered by cardenolides 

and bufadienolides. The induction of apoptosis has been frequently reported. Both extrinsic 

and intrinsic apoptosis pathways were triggered. Moreover, the sensitization to other 

therapeutic agents has been also described. In a consistent number of reports, cardiac 
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glycosides led to the accumulation of cells essentially in the S phase53,54 and G2/M55-58 phase. 

This event has been correlated to the elicitation of intracellular reactive oxygen species.55,57 

Besides, in adherent cancer cell models, cardiac glycosides have been shown able to activate 

an autophagic cell death.17 This dual cytocidal ability underlines the promising use of cardiac 

glycosides especially for the treatment of those forms of cancer that are resistant to agents 

inducing apoptosis. Nevertheless, the mechanisms determining the kind of cell death 

accomplished upon treatment with cardiac glycosides remain still unclear and debated. One 

possibility is that sustained autophagy may be commonly activated as a first response by the 

cells followed by a switch to apoptosis in cancer cells prone to activate programmed forms of 

cell death. In contrast, autophagic cell death may be undertaken as a kind of final backup cell 

death modality whenever apoptosis cannot take place. This hypothesis implies that cardiac 

glycosides may induce stress conditions that potentially lead to alterations of metabolic 

activities. Finally, very recently clinically used cardiac glycosides, as digoxin and digitoxin, 

have been shown to induce immunogenic cell death.59 Interestingly, among the parameters 

determining immunogenic cell death is the autophagy-dependent secretion of ATP.60

Observational studies

In the last decades observational studies have shown that digitalis may have an anticancer 

effect. In 1979, Stenkvist et al. reported that breast cancer cells from patients while taking 

digitalis for chronic heart disease were smaller and more uniform in morphology than 

breast cancer cells not exposed to cardiac glycosides.5 Also the tumor mass was smaller 

at diagnosis in patients taking digitalis compared to patients not taking digitalis. The risk 

of recurrence was 9.6 times higher in the group of patients who were not taking digitalis.6 

Later, Goldin et al. conducted a retrospective trial of 127 cancer patients. They found only 

one cancer death (of a total of 21 deaths) within patients taking digitalis, suggesting that 

the use of cardiac glycosides may also prevent the development of cancer.61

Two large case control studies could nevertheless not show a significant protective 

benefit.62,63 The authors of the large case-control study in Norway concluded that elevated 

morbidity and mortality in the digitoxin population disturbed efforts to isolate eventual 

anticancer effects of digitoxin.62

However, in 2008, Ahern et al. suggested in their case control study that digoxin treatment 

moderately increases the risk of invasive breast cancer among postmenopausal women 

instead of reducing it.64
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Preclinical studies in cancer

The unusual species-dependent sensitivity to growth inhibition of cardiac glycosides across 

a broad spectrum of tumor cells is the reason for the paucity of animal data.

In the past decade there has been a substantial increase in the number of in vitro and in 

vivo studies regarding the effects of cardiac glycosides on the growth of human malignant 

tumor cells. In 1967 Shiratori already reported about the growth inhibitory effect of cardiac 

glycosides on neoplastic cells65 and many research reports followed.

Cardiac glycosides in phase I clinical trial

To date, there are three cardiac glycosides or derivatives that have been developed for 

treatment of cancer and were assessed in a phase I clinical trial. The initial product was 

Anvirzel™, an aqueous extract of Nerium oleander, the second was PBI-02504, a super 

critical CO2 extract of Nerium oleander and the third UNBS1450, a semisynthetic cardenolide 

derivate of 2’’-oxovoruscharin extracted from Calotropis procera, a desert shrub.36,52

In 2000, Manna et al. demonstrated that oleandrin inhibits the activation of NF-κB and AP-1 

and their associated kinases.66 Smith et al. showed that Anvirzel™, like oleandrin, inhibits 

fibroblast growth factor (FGF)-2 export in vitro from prostate cancer cells in a concentration- 

and time-dependent fashion and may, therefore, contribute to the antitumor activity of 

this treatment for cancer.67

Based on these preclinical data, a phase I study started and Mekhail et al. reported in 2006 the 

results of this study of Anvirzel™.68 The study reported a phase I trial to determine the maximum 

tolerated dose (MTD) and safety of Anvirzel™ in 18 patients with advanced, refractory solid 

tumors. Patients were randomized to receive this agent by intramuscular injection at doses 

of 0.1, 0.2 and 0.4  ml/m2/day with subsequent patients receiving 0.8 or 1.2  ml/m2/day  

sequentially. Eighteen patients were enrolled and completed at least one treatment cycle of 

3 weeks. Most patients developed mild injection site pain (78%). Other toxicities included 

fatigue, nausea, and dyspnea. Traditional dose-limiting toxicity was not seen, but the MTD 

was defined by injection volume as 0.8 ml/m2/day. No objective antitumor responses were 

seen. They concluded that Anvirzel™ can be safely administered at doses up to 1.2 ml/m2/day,  

with the amount administered intramuscularly limited by volume. The recommended phase 

II dose level is 0.8 ml/m2/day.
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PBI-05204 has recently completed testing for safety in Phase I clinical trial.69 The publication 

of conclusions is in process and the initial findings were presented at the annual meeting 

of the American Society of Clinical Oncology (ASCO) in June 2011. PBI-05204 (Oleandrin), 

inhibits the α-3 subunit Na+/K+-ATPase pump. Relative expression of the α-3 subunit in 

tumor cells correlates with proliferation. Oleandrin inhibits FGF-2 export, activation of 

NF-κB, phosphorylation of Akt, p70S6K and decreases mTOR activity. In this first-in-human 

study, the authors sought to determine the MTD/recommended phase II dose and to define 

the pharmacokinetics (PK) and pharmacodynamics (PD) of PBI-05204 in advanced cancer 

patients. Forty-six patients were dosed at 8 dose levels (DL) of PBI-05204 (0.6 to 10.2 mg/day).  

Two dose-limiting toxicities occurred at DL 8 (grade 3 proteinuria, fatigue) thus the MTD 

was DL 7. Most common adverse events (AEs) were fatigue (56.1%), abdominal pain (41.5%), 

constipation (41.5%), nausea (41.5%), and diarrhea (39.0%). Cardiac disorders were reported 

in 10 patients (24.4%), all grade 1, except for one patient with grade 2 supraventricular 

tachycardias (SVT). Of the 45 evaluable patients, 7 showed a stable disease for > 4 months, 

with bladder, colorectal, fallopian tube, breast, appendical and pancreatic carcinoma (2 

patients). They concluded that PBI-05204 is well tolerated up to 10.2 mg/day with very 

little AEs or cardiotoxicity.

UNBS1450, has also been tested in an open-label, dose escalation study to evaluate the 

safety, tolerability and pharmacokinetics of this single agent, administered once every 

3 weeks in separate cohorts of patients with advanced solid tumors or lymphoma. Chemical 

modifications of 2’’-oxovoruscharin (a novel cardenolide extracted from Calotropis procera) 

has led to the identification of UNBS1450.70 The activity of the compound in preclinical 

cancer models, independent of cell type, has been tested in vitro on 57 human cancer models 

from 11 distinct histological types.70 In aggressive and metastatic orthotopic NSCLC,71,72 

refractory prostate cancer73 and glioma74 models, UNBS1450 was more potent than tested 

reference compounds, including paclitaxel, irinotecan, oxaliplatin, mitoxantrone and 

temozolomide.71-75 UNBS1450 was the most potent inhibitor of all three isozymes (α3β1, 

α2β1 and α1β1) with a potency ~6 to > 200 times greater than that ouabain (another 

cardenolide) and digoxin74 The general mechanism of action associated with UNBS1450-

mediated anticancer effects relates to the compound’s propensity in disorganizing the actin 

cytoskeleton and thus non ATPase-mediated effects.73-75 UNBS1450 can thus be considered 

both anti-proliferative (cytotoxic) and anti-migratory.75,76 given that the actin cytoskeleton 

is essential to cytokinesis and to cancer cell migration.77 In sharp contrast to digitalis-like 

cardenolides, UNBS1450 does not induce intracellular Ca2+ or Na+ increase at concentrations 

at which it induces potent antitumor effects.74,75 UNBS1450 induces both apoptotic and 
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non-apoptotic cell death processes depending on the cellular environment. Non-apoptotic 

cell death mechanisms such as lysosome membrane permeabilisation71 and autophagy74 

were observed in solid tumors and thus may overcome major apoptosis resistance pathways 

responsible in part for the failure of therapeutics in certain cancers. Canonical intrinsic 

apoptosis was demonstrated by Juncker et al. in leukemia and lymphoma cellular models 

with an early degradation of anti-apoptotic Mcl-1, Bak and Bax activation leading to 

cytochrome C release, caspase-9, -7 and -3.36 Experimental data involving NF-κB inhibition/

deactivation evidenced it as an important new approach to the treatment of various 

malignancies was shown by the same authors.36 UNBS1450 deactivates the cytoprotective 

NF-κB pathways at several points, in sharp contrast to specifically designed NF-κB inhibitors 

acting at one precise point.72 In leukemia cells, UNBS1450 inhibits degradation of the IκB 

inhibitor of p50/p65 NF-κB heterodimers thus preventing transcription factor translocation 

in the nucleus. Using genomic and proteomic approaches, it was possible to evidence 

UNBS1450-mediated down-regulation of c-MYC gene, MYC oncoprotein-related genes, 

and genes with nucleolar functions.15 UNBS1450-induced marked down-regulation of 

c-MYC expression in a number of human cancer cell lines lead to nucleolar disorganization 

resulting in impairment of cancer cell survival.15 Unfortunately the phase I study was closed 

in 2011 by the sponsor because of bankruptcy before reaching the MTD after including 23 

patients. Preliminary data will be published elsewhere.

Conclusion

Cardiac glycosides have a long history in the treatment of cardiac diseases, but several 

preclinical studies have shown that cardenolides have also anticancer effects. Two cardiac 

glycosides, Anvirzel™ and PBI-02504, completed testing for safety in a phase I clinical 

trial. Another phase I trial with UNBS1450 was closed early. Several mechanisms seem to 

participate in these anticancer effects. Additional in-depth preclinical research is required 

to find out the possible role for cardiac glycosides as primary anticancer agents as well as 

bona fide biological markers. As the pharmacological and safety profile of compounds like 

digitoxin is well known future clinical investigations should be accelerated.78
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Abstract

Introduction

UNBS1450, a semisynthetic cardenolide glycoside derivative is considered a promising anticancer 

agent targeting overexpressed sodium pump α subunits in malignant tumors. This paper 

summarizes preclinical data and the preliminary results of a non-completed clinical phase I trial 

with the compound.

Preclinical data

Experiments on a human hematopoietic cancer cell line, already previously used as cell model to 

investigate the effects of UNBS1450 were performed in order to evaluate the minimum exposure 

time to UNBS1450 required to trigger the commitment phase of apoptosis. With this purpose, two 

strategies were pursued. First, the histiocytic lymphoma U937 cells were incubated for different 

times with an apoptogenic concentration of UNBS1450 (20 nM) followed by recovery. Second, U937 

cells were incubated with 10nM UNBS1450 for 1 h, a concentration/time mimicking the conditions 

during patients’ treatment. In this instance, the experiment was also performed in presence of 

different percentages of fetal calve serum (FCS) (0.1-10%) used for cell culture cultivation to monitor 

any influence of serum to sequester the compound and therefore alter its action. The effect of 

UNBS1450 on viability (induction of apoptosis) and cell proliferation was then assessed following 

these conditions during the recovery phase.

Patients and methods used in the clinical trial

A phase I trial to evaluate the safety, tolerability and pharmacokinetics of single agent, UNBS1450 

administered once every three weeks in separate cohorts of patients with advanced solid tumors 

not amenable to established forms of therapy was conducted.

Results of the clinical trial

The study was closed by the sponsor because of bankruptcy before reaching the maximum 

tolerated dose (MTD) after including 23 patients. The half-life of UNBS1450 was very short being 

around 0.1 h within the tested dose range. There appeared an approximately linear relationship with 

dose for both mean maximum plasma drug concentration (Cmax) and area under the curve 0-t where 

t is last time at which drug was quantifiable (AUClast) values over the dose range 90-615 µg/patient.  

There were no Response Evaluation Criteria In Solid Tumors (RECIST) responses in any of the 

patients.

Conclusion

The primary endpoint of the clinical phase I was not reached due to early termination of the study 

for non-scientific reasons. The available preclinical work could not guide us in adapted scheduling 

of the patients. More research is necessary to establish the optimal dose and schedule of UNBS1450 

for future phase I/II studies. 
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INTRODUCTION

The sodium pump, sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), has been 

suggested as an interesting oncology target. It serves as a versatile signal transducer and it 

plays a key role in cell adhesion. Several malignancies are characterized by an overexpression 

of its α subunits.1

Numerous studies investigated the changes in the transmembrane transport of cations 

during the course of malignant cell transformation, due to increases in Na+/K+-ATPase 

activity, specifically through the upregulation of the Na+/K+-ATPase α subunits.1 This was 

confirmed in a large proportion of clinical non-small cell lung carcinoma (NSCLC) samples2 

while more than 50% of glioblastoma samples expressed 10 times more α1 messenger 

ribonucleic acid (mRNA) compared to samples from normal brains.3 Those studies also 

pointed to a difference in the density of the enzyme, as well as isozyme expression, at the 

plasma cell membrane of tumor cells.3 

Cardiotonic steroids (CSs), and notably cardenolides, are the natural ligands and inhibitors 

of the Na+/K+-ATPase, thus supporting the possibility of their potential development as 

anticancer agents targeting overexpressed Na+/K+-ATPase α subunits.4,5 While CSs have 

been widely used for the treatment of heart failure, early epidemiological evaluations have 

indicated lower mortality rates in cancer patients who were on digitalis, a cardenolide, at 

the time of first diagnosis.6-9 To date, the development of CSs as anticancer agents has been 

impaired by a presumed narrow therapeutic margin resulting from the theoretical risk to 

induce cardiovascular side effects.1,10

Chemical modifications of 2”-oxovoruscharin (a novel cardenolide extracted from Calotropis 

procera) based on an understanding of the structure activity relationship within the series, 

has led to the identification of UNBS1450.11 The activity of the compound in preclinical 

cancer models, independent of cell type, has been tested in vitro on 57 human cancer 

models from 11 distinct histological types.11 In aggressive and metastatic orthotopic 

NSCLC,4,5 refractory prostate cancer12 and glioma3 models, UNBS1450 was more potent than 

tested reference compounds, including paclitaxel, irinotecan, oxaliplatin, mitoxantrone 

and temozolomide.3-5,12,13

UNBS1450 was the most potent inhibitor of all three isozymes (α3β1, α2β1 and α1β1) 

with a potency ~6 to > 200 times greater than that ouabain (another cardenolide) and 

digoxin.3 The general mechanism of action associated with UNBS1450-mediated anticancer 

effects relates to the compound’s propensity in disorganizing the actin cytoskeleton.3,12,13 



UNBS1450Chapter 9

134

UNBS1450 can thus be considered both anti-proliferative (cytotoxic) and anti-migratory13,14 

given that the actin cytoskeleton is essential to cytokinesis and to cancer cell migration.15 

In sharp contrast to digitalis-like cardenolides, UNBS1450 does not induce intracellular  

Ca2+ or Na+ increase at concentrations at which it induces potent antitumor effects.3,13 

UNBS1450 induces non-apoptotic cell death processes (such as lysosome membrane 

permeabilization4 and autophagy3) and thus may overcome major apoptosis resistance 

pathways responsible in part for the failure of therapeutics in certain cancers. Experimental 

data involving NF-κB inhibition/deactivation evidenced it as an important new approach to 

the treatment of various malignancies.15 UNBS1450 at 10 nM (its mean anti-proliferative IC50 

concentration) deactivates the cytoprotective NF-κB pathways at several points, in sharp 

contrast to specifically designed NF-κB inhibitors acting at one precise point.5 Furthermore, 

the anticancer activity of UNBS1450 is not affected by chemotherapy resistance expressed 

in cancer cells. UNBS1450 kills chemoresistant cells harboring the multidrug resistance 

phenotype (PgP overexpression) and/or apoptosis-resistant cancer cells with the same 

efficacy as it does for chemosensitive cancer cells.

Using genomic and proteomic approaches, it was possible to evidence UNBS1450-mediated 

down-regulation of c-MYC gene, MYC oncoprotein-related genes, and genes with nucleolar 

functions.12

UNBS1450-induced marked down-regulation of c-MYC expression in a number of human 

cancer cell lines lead to nucleolar disorganization resulting in impairment of cancer cell 

survival.12 The present data suggest that c-MYC could be used as a marker of UNBS1450-

mediated antitumor activity. An exploratory cardiovascular study in dogs comparing the 

effects of intravenously administered digoxin and UNBS1450 showed similar effects on 

the cardiovascular system. There was no evidence of an increased toxicity or increased 

pro-arrhythmic effects of UNBS1450 compared to digoxin. The structural uniqueness of 

UNBS1450 taken with its ability to i) disorganize the actin cytoskeleton, ii) disorganize 

nucleolar structure and functions, iii) kill chemoresistant and/or apoptosis-resistant cancer 

cells, and iv) deactivate constitutively activated cytoprotective signaling pathways and to 

induce lysosomal membrane permeabilization and/or autophagy-related cell death thus 

overcoming major pathways responsible for the failure of cancer chemotherapy, support 

its development as an anticancer agent targeting overexpressed sodium pump α subunits.

On the basis of the above mentioned presumed antitumor properties of UNBS1450 we 

started a classical phase I study with the drug.
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Material and methods

Cell culture

U937 cells (histiocytic lymphoma) were cultured in RPMI 1640 medium (Lonza, Verviers, 

Belgium) supplemented with 10% (v/v) FCS (Lonza, Verviers, Belgium) and 1% (v/v) 

antibiotic-antimycotic (BioWhittaker, Verviers, Belgium) at 37°C and 5% of CO2. Experiments 

were performed in culture medium containing 10% of FCS, unless otherwise indicated. 

UNBS1450 was a kind gift of Unibioscreen (Brussels, Belgium).

Washout experiments

Cells were seeded at a density of 3.0 × 105 cells/ml and incubated with 20 nM UNBS1450 

for different times (0, 1, 2, 4, 6, 8, 10, and 12 h). Then cells were washed and resuspended 

in the same volume of fresh medium for recovery. As a positive control, cells were cultured 

in the presence of UNBS1450 throughout the experiment. Apoptosis was analyzed 24-48 h  

after the start of the treatment (time 0= T0).

Determination of apoptosis

a) Analysis of nuclear fragmentation. Percentage of apoptotic cells was quantified as 

the fraction of apoptotic nuclei (different stages of nuclear fragmentation) assessed by 

fluorescence microscopy (Leica-DM IRB microscope, Lecuit, Luxembourg) upon staining 

with the DNA-specific dye Hoechst 33342 (Sigma, Bornem, Belgium). The fraction of 

cells with nuclear apoptotic morphology was counted (at least 300 cells in at least three 

independent fields).16,17 

b) Mitochondrial membrane potential analysis. At the indicated time points, U937 cells were 

loaded with 50 nM MitoTracker Red (MTR; Molecular Probes)16,18 at 37°C for 20 min, and 

immediately analyzed by flow cytometry using a BD FACScalibur (BD Biosciences, San José, 

CA, USA), tuned at 488 nm, standard band pass filters FL3 (630 nm). Data were recorded 

for further analysis with Cell Quest software (http://www.bdbiosciences.com/features/

products/display_product.php?keyID=92). The mean fluorescence value was determined 

by counting at least 10000 cells. Data were further analyzed using FlowJo 8.8.7 software 

(Tree Star Inc). 

c) Induction of apoptosis was molecularly confirmed by Western blot analysis of caspase-3 

cleavage (see also section below).
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Western Blot analysis

Cells were washed with cold phosphate buffered saline (PBS), and cells extracts were 

prepared using M-PER® Mammalian Protein Extraction Reagent (Pierce, Erembodegem, 

Belgium) completed with a protease inhibitor cocktail (Roche, Luxembourg), 1 μM phenyl

methylsulfonyl fluoride (PMSF), 1 mM sodium orthovanadate, 5 mM sodium fluoride (Sigma, 

Bornem, Belgium). Cells were incubated 15 min at 4°C in lysis buffer and centrifuged at 

14000 g, 15 min, 4°C. Twenty μg of proteins were separated by size using sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE, 10%), transferred onto polyvinylidene 

difluoride membranes. Following a 1 h incubation period in 5% non-fat milk in PBS-Tween, 

membranes were probed with primary antibodies to Mcl-1 and caspase-9 (Cell Signaling 

Technology, Leiden, The Netherlands; 1:1000 in PBS-T/BSA 5%) and caspase-3 (Santa 

Cruz, Biotechnology, Boechout, Belgium; 1:1000 in PBS-T/Milk 5%). Protein bands were 

visualized via chemiluminescence using the ECL+ Western Blotting Detection System Kit® 

(GE 36 Healthcare, Roosendaal, The Netherlands), following incubation with secondary 

antibodies horseradish peroxidase (HRP)-conjugated (Mcl-1 and caspase-9: 1:4000, anti-

rabbit; caspase-3: 1:4000, anti-mouse; Santa Cruz). Equal loading of samples was controlled 

using β-actin (Sigma, 1:10000, in PBS-T/Milk 5%; secondary antibody: 1:10000, anti-mouse, 

in PBS-T/Milk 5%, Santa Cruz).

Patients and Methods used in the clinical trial

Study design

This was an open-label, dose escalation study to evaluate the safety, tolerability and 

pharmacokinetics of single agent, UNBS1450 administered once every three weeks in 

separate cohorts of patients with advanced solid tumors not amenable to established 

forms of therapy with curative intent. 

The primary objective of this study was to determine the MTD and to establish the 

recommended phase II dose of UNBS1450 when administered intravenously once every 

three weeks. The secondary objectives of this study were to describe the safety profile 

of UNBS1450, including the dose-limiting toxicity (DLT); to assess the pharmacokinetic 

(PK) profile of UNBS1450; to study preliminary evidence of pharmacodynamic (PD) 

relationships with UNBS1450 systemic exposure; to perform UNBS1450-related explorative 

immunomonitoring in peripheral blood; to assess the preliminary antitumor activity of 

UNBS1450; to study the expression of the Na+/K+-ATPase pump α subunits in the study 
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population for potential correlation with clinical responses; to evaluate c-MYC as a potential 

surrogate marker for antitumor efficacy of UNBS1450 in sequential tumor biopsies.

Dose escalation followed a classical 3 + 3 design.19 Up to 6 patients were enrolled in this 

study per dosing cohort. Any patient who received at least 1 dose of UNBS1450 was 

evaluable for safety. However patients were required to complete at least the initial 21 days 

of treatment period/observation to be evaluable for determination of MTD, unless they 

were withdrawn due to a DLT prior to day 22. Patients continued to receive UNBS1450 for 

as long as the investigator felt it was appropriate but would be discontinued from study 

drug in case of clinically and/or radiographically documented disease progression; the 

occurrence of unacceptable toxicity; failure to recover from hematological and/or non-

hematological toxicity despite a dosing delay of up to 14 days; medical or ethical reason, 

including noncompliance and pregnancy (following discussion between the investigator 

and sponsor); and/or patient’s request or investigator’s recommendation. Discontinuation 

of treatment for non-medical reasons (e.g. bankruptcy) was not mentioned in the protocol 

or contract.

Eligibility criteria

The inclusion and exclusion criteria were histologically or cytologically confirmed 

malignancy that was advanced and/or metastatic and refractory to established forms of 

therapy or for which no effective therapy exists with curative intent; age 18 years or older; 

an Eastern Cooperative Oncology Group Performance status (ECOG PS) ≤ 2; left ventricular 

ejection fraction (LVEF) (by echocardiography) > 55% and no uncontrolled ischemic heart 

disease; a predicted life expectancy of at least 3 months and adequate hematopoietic, 

hepatic, cardiac, renal, and thyroid function; no sign of arrhythmias or conduction 

abnormalities; normal electrolytes; not taking any of the following medication: digoxin, 

digitoxin or molsidomin, and agents with similar mode of action.

Study procedures

Patients received UNBS1450 intravenously once every 3 weeks via central or peripheral 

intravenous line. The dose was administered over a 1 h infusion, but the actual infusion 

time could be adapted depending on clinical signs.

Eleven PK samples were collected on day 1 during cycles 1 and 3, between 0 and 5 h after 

start of infusion (for a 1 h infusion time: prior to dosing, and 20, 40, 60 (just before end of 
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infusion), 65, 70, 75, 80, 90, 105, and 4 h post start of infusion). Blood samples were taken 

prior to drug administration on day 1 of cycles 2 and 4.

As this was the first UNBS1450 exposure to humans, the most suitable PD parameters were 

used during the trial, based on findings made while treating and observing the patients. 

If possible, the pharmacodynamic biomarker c-MYC and other upstream or downstream 

markers of the pathway would be assessed in tumor samples and any changes related to 

PK and clinical outcome.

Blood counts and clinical chemistry (including serum Na+, K+, Ca2+, Mg2+, liver function 

tests, bilirubin, creatinine, blood urea nitrogen (BUN), alkaline phosphatase, total protein, 

albumin, blood glucose), CBC (complete blood count), and thyroid stimulating hormone 

(TSH) were obtained at baseline, predose on day 1 (if > 7 days after baseline), and once 

weekly. Creatine kinase (including MB isoenzyme analysis) and troponin I were also assessed 

at baseline, predose on day 1, on day 2, and at least weekly on every cycle. Urinalysis were 

obtained at baseline and repeated predose on day 1 of each cycle. Electrocardiograms 

(ECGs) were performed at baseline, during infusion, up to 2-4 h post dose on day 1 of 

each and on day 2 at 24 h post dose, prior to dosing on day 22, and at last study visit. 

Echocardiography was performed at baseline, on day 22, at end of dosing, and 15 days 

after last cycle. Echocardiography was assessed by a cardiologist. Physical exams were 

performed every 3 weeks. 

UNBS1450 were supplied in injectable, ready for use, clear glass vials. Each vial contained 

10.5 ml (including overfill) with 10 μg UNBS1450/ml of saline solution. The amount of 

UNBS1450 present per vial was 100 μg. Dosing of UNBS1450 was reduced and/or interrupted 

for any hematological and non-hematological toxicities related to UNBS1450. Treatment 

for all patients was repeated provided they reached pre-specified hematological and non-

hematological recovery levels (e.g., absolute neutrophil count (ANC) 1.5 × 109/L; platelet 

count 100 × 109/L; non-hematological toxicity ≤ common toxicity criteria (CTC) grade 1 

or ≤ 1 grade worse than baseline severity, etc.). If adequate recovery of these levels was 

not achieved at time of next dose, dosing was postponed until they were reached. Intra-

patient dose escalation was not permitted. Dosing was interrupted for any patient with 

heart rate-corrected QT (QTc) ≥ 470 msec during any ECG. Provided there was no significant 

cardiac toxicity, dosing might resume at the next lower dose level when QTc has decreased 

to ≤ 440 msec. Any patient with persistent QTc > 470 msec for more than 1 day (confirmed 

by a follow-up 10-sec ECG on the next day) was withdrawn. Dosing was stopped if there 

was any development of clinically significant cardiac arrhythmia or an absolute decrease 
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of ≥ 10% in the LVEF from baseline. Once a patient’s dose was reduced for a drug-related 

toxicity, the dose was not re-escalated. 

Criteria for evaluation

Safety was assessed via physical examination, vital signs, clinical laboratory tests (CBC, 

clinical chemistry, urinalysis), ECG, echocardiography, and adverse events.

Response assessments (physical examination, CT scan, etc.) were performed every 2 cycles 

and evaluated according to RECIST version 1.0.20 Plasma concentration versus time profiles 

of UNBS1450 was obtained from the analysis of plasma samples. PK parameters were 

calculated for each subject. Parameters included AUClast, area under the curve extrapolated 

from 0-∞ (AUC0-∞), Cmax, %AUC extrapolated, half-life alpha (T1/2 alpha) and T1/2 beta, clearance 

(Cl), volume of distribution (Vz) and time of maximum plasma drug concentration (Tmax). A 

standard 3 + 3 dose phase I dose escalation scheme was used. Pharmacokinetic parameter 

estimates were summarized by dose cohort using descriptive statistics: N, mean, median, 

minimum, maximum. In addition, geometric means with 90% confidence intervals were 

calculated for AUC0-∞, AUC0-t, Cmax, drug concentration at 4 h post initiation of drug infusion 

(C4h).

Results of the clinical trial

From October 2008 to October 2010 23 patients were enrolled into seven cohorts in this 

study in two investigational sites in Belgium and the Netherlands. Patients in cohorts 1 

to 7 received single doses of 90, 140, 210, 265, 350, 465 and 615 µg/patient of UNBS1450 

as a 60 min i.v. infusion respectively. Two patients, included in the 23 patients, had to be 

replaced after cycle 1 drug administration owing to non drug-related adverse events. 

Additionally, two patients in each of cohorts 2, 3 and 5 and one patient from cohorts 4, 6 

and 7 have completed 3 cycles of compound administration (a cycle = one administration 

every 3 weeks). 

In October 2010 the study was closed by the sponsor because of financial reasons. Because 

of this, MTD was not reached. Not enough data for a response evaluation were available 

because of the sudden end of the trial. 
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PK results

Given the very short half-life of UNBS1450 determined in the first three cohorts, sampling 

time points were revised a first time from cohort 4 in order to get more usable data at the 

early times post administration, and for a second time for cohort 7 where only the last time 

point during the infusion was changed (from 60 to 55 min). Accordingly, blood samples 

from cohort 7 were taken predose, at 20, 40 and 55 min during the infusion, and then at 5, 

10, 15, 20, 30, 45 and 180 min post end of infusion while for cohorts 1-3, they were taken 

predose, at 20 and 40 min during the infusion, immediately before the end of the infusion 

(60 min) and then at 5, 15, 45, 90, 180, 300 and 560 min post infusion. Corresponding plasma 

samples were analyzed using a validated Liquid Chromatography - Mass Spectrometry and 

Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS) method with a lower 

limit of quantification (LLOQ) of 0.1 ng/mL at the CRO Notox. As a result of the change in 

the sampling time points, it was believed more robust PK parameters would have been 

determined since cohort 4. However, certain calculated PK parameters notably clearance 

and volume of distribution should still be considered preliminary estimates given the 

compound’s short half-life and inability to follow drug concentrations in plasma generally 

beyond 0.75 h post end of infusion, despite an appreciably sensitive quantitative method. 

Furthermore, given the compound’s short half-life, Cmax and Tmax values were likely to be very 

sensitive to even small errors around sampling times. PK parameters were been determined 

using a non-compartmental analysis model (Table 9.1).

As explained previously, in this clinical study for the overwhelming majority of patients 

across all dose groups, Tmax has been surprisingly observed earlier than the end of infusion. It 

had been postulated that this could be due to problems of drug delivery attributable to the 

infusion pump potentially exacerbated by the extremely short half-life of the compound. 

Consequently, a change in PK sampling time points was proposed for cohort 7, namely the 

60 min post start of infusion sampling time being changed to 55 min, in order to avoid 

possible sample collection after the infusion had been completed. Unfortunately, this 

change did not bring the expected outcome, as certainly in two individuals Tmax was again 

observed before the end of infusion at 40 min. 

There appeared an approximately linear relationship with dose for both mean Cmax and 

AUClast values over the dose range 90-615 µg/patient. However, at 465 µg/patient, mean 

Cmax and AUClast values were lower than might have been expected and only marginally 

increased over corresponding values determined in cohort 5 dosed at 350 µg/patient 

(Figure 9.1). Mean Cmax and AUClast values from cohort 7 dosed at 615 µg/patient however 
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appear to indicate that any previous suggestion that systemic exposure at 465 µg/patient 

may have plateaued and showed non-linearity was not the case, and was likely due to the 

limited data forcing the comparison of small size dose groups of different individuals (n = 

3 or 4) who have received doses not corrected for body surface area. 

However, when dose normalized individual Cmax and AUClast values were compared, there 

appeared to be a slight trend for a disproportional increase in both these parameters with 

increasing dose over the range 90-615 µg/patient (Figures 9.2 and 9.3). 

In vitro evaluation of the minimum exposure time to UNBS1450 required to 
trigger the commitment phase of apoptosis

To determine the time required for UNBS1450 to trigger the commitment phase of apoptosis, 

we exposed U937 cells to 20 nM UNBS1450 (a concentration we previously reported as 

apoptogenic).21 Cells were incubated for different times, then, the treatment was washed 

out and cells were resuspended in fresh medium for recovery. Apoptosis was estimated 

respectively at 24 and 48 h (as described in Material and methods). Figure 9.4 (panels A-B) 

shows that a treatment time > 8 h is required to trigger apoptosis, with a more relevant 

accumulation of apoptotic cells starting from 10-12 h of continuous treatment. The Western 

Figure 9.1  Mean Cmax and AUClast values versus dose.
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blot analysis of caspase-9 and -3 cleavage further confirmed the results got by estimating 

apoptosis by two different consolidated approaches, as the analysis of nuclear morphology 

and fragmentation and the loss of mitochondrial membrane potential (Figure 9.4C). The 

difference with the positive control was not due to a delay in apoptosis: the same analysis 

Figure 9.2  Dose normalized Cmax versus dose group.
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Figure 9.3  Dose normalized AUClast versus dose group.
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Figure 9.4  Washout experiments on U937 cells. U937 cells were treated at T0 with 20 nM 
UNBS1450. Then at the indicated times, the compound was removed and cells were resuspended 
in fresh medium. At T0 + 24 h and T0 + 48 h, the impact on cell viability of the different times of 
exposures to UNBS1450 was evaluated by considering (A) the nuclear fragmentation as assessed 
by Hoechst staining and fluorescence microscope observation; (B) the mitochondrial membrane 
potential as analyzed by MTR staining and FACS analysis. (C) The induction of apoptosis was further 
confirmed by caspase-3 cleavage. The results are the mean of three independent experiments 
or representative of three experiments. Significant difference compared to untreated cells: * P < 
0.05, ** P < 0.01, *** P < 0.001.
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performed after 48 h did not show any accumulation of apoptotic cells in samples exposed 

to washout experiments. 

We have identified Mcl-1 protein as the earliest Bcl-2 protein targeted by UNBS1450 in 

U937 cells.21 The findings so far refer to a continuous treatment of the cells with 20 nM 
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UNBS1450.21 Next, we explored Mcl-1 protein status during washout experiments with 

UNBS1450 in U937 cells. The Western blot analysis reported in Figure 9.5 shows Mcl-1 

protein levels as estimated after 24 h from the start of treatment with 20 nM UNBS1450 

(T0; see also Materials and methods). Mcl-1 appeared down-regulated with the complete 

disappearance of the protein at times > 12 h.

Since the treatment with UNBS1450 was performed with cell culture medium containing 

10% FCS, a percentage which may sequester and, therefore, limit the cytotoxic activity of 

UNBS1450, we cultured U937 cells in medium with different concentrations of FCS (0.1-

10%) in the presence of UNBS1450. Then, U937 cells were cultured again in fresh medium 

with 10% FCS during the recovery phase. Concentration and time of exposure to UNBS1450 

(10 nM; 1 h) were chosen to mimic the concentration used in patients treatment and the 

turnover of the compound into the body as emerging from the clinical trials. After 24 h 

and 48 h, the analysis of apoptosis excluded any relevant impact of UNBS1450 on U937 

cell viability (data not shown). 

Next, we wanted to investigate whether in the same conditions, a cytostatic effect might 

take place. When the challenge with UNBS1450 was performed in a medium containing 

0.1% FCS, we witnessed a significant reduction of the cell concentration in UNBS1450 treated 

versus untreated cells at 24 h as well as after 48 h of recovery (Figure 9.6A-B). To ascertain 

whether this reduction effectively corresponded to a reduced cell growth at both time 

points of recovery, we calculated the 24 h/0 h and 48 h/24 h (of recovery) cell proliferation 

ratio, which is directly proportional to the doubling time of the cells. The analysis revealed 

that the cytostatic effect was limited to the early 24 h of recovery, whereas at longer times 

the rate of cell proliferation was completely restored.

Figure 9.5  During washout experiments the decrease of Mcl-1 protein fits with the commitment 
to apoptosis. U937 cells were treated at T0 with 20 nM UNBS1450. Then at the indicated time points, 
the compound was removed and cells resuspended in fresh medium. At T0 + 24 h, the impact on 
Mcl-1 of the different exposures times to UNBS1450 was evaluated by Western blot analysis. The 
results are representative of three independent experiments with comparable results.
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Discussion

This study was designed to translate preclinical evidence into a clinical phase I study 

evaluating the safety, tolerability and pharmacokinetics of UNBS1450 administered once 

every three weeks in separate cohorts of patients with advanced solid tumors or lymphoma 

not amenable to established forms of therapy with curative intent. The selected route of 

administration was intravenous because the compound was poorly available when given 

orally. The intravenous route is also the safest for such a potentially cardiotoxic compound 

Figure 9.6  Analysis of the impact of FCS on the cytostatic effects of UNBS1450. U937 
cells were treated for 1 h with 10 nM UNBS1450 in a medium containing the percentage 
of FCS indicated in the panels. Then at the indicated times, the compound was removed 
and cells were resuspended in 10% FCS fresh medium (T0) for recovery. (A) At T0 + 24 h  
(24 h) and T0 + 48 h (48 h) the cell concentration was estimated by Trypan Blue exclusion assay as 
described in Material and methods. (B) Cell proliferation index between T0 + 24 h and T0 (24 h/T0; 
light grey bars); T0 + 48 h and T0 + 24 h (48 h/24 h; dark grey bars). The results are the mean of three 
independent experiments +/- SD. Significant difference compared to untreated cells: * P < 0.05.
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as it enabled to perform close cardiac monitoring in each patient who would enter this 

phase I protocol.

Preclinical pharmacology studies using in vitro and animal models indicate that UNBS1450 

is characterized by marked anticancer activity due to both anti-proliferative and anti-

migratory (anti-metastatic) features resulting from the propensity of UNBS1450 in 

disorganizing the actin cytoskeleton, which leads to cell death through autophagy, rather 

than through apoptosis. In vitro, UNBS1450 kills apoptosis-resistant cancer cells, including 

multidrug resistant cancer cells. UNBS1450 belongs to the same chemical family as digoxin, 

a cardiotonic steroid used to treat congestive heart failure. Cardiotonic steroid receptors 

relate to the α subunits of the sodium pump (the Na+/K+-ATPase). The α-1 subunit of 

the sodium pump is overexpressed in 30-40% of a large set of solid cancers, including 

gliomas, melanomas, renal cell carcinomas,  non-small cell lung cancers, and colon cancers. 

Overexpression of the sodium pump α-1 subunit is also suspected in breast, prostate, and 

head and neck cancers. The therapeutic ratio with respect to the safety profile/antitumor 

activity of digoxin is too weak to be used as a potential anticancer agent. On the contrary, 

UNBS1450 displays tenfold higher binding affinity for the α-1 subunit of the sodium pump 

than digoxin. With a toxicity profile similar to digoxin, UNBS1450 shows an antitumor 

activity at least 10 times more pronounced, designating it as a potential candidate for 

clinical application in oncology, especially where no effective curative therapy exists as 

it is the case for advanced and/or refractory prostate, breast, non-small cell lung, colon 

and renal cancers, and for melanomas and glioblastomas. This compound could also find 

potential use in the treatment of metastatic cancers, knowing that 90% of cancer patients 

die today from their metastases. 

Because of financial reasons this phase I study was closed before reaching the MTD, so it is not 

possible to establish the recommended phase II dose of UNBS1450. It has to be emphasized 

again that with such a very short life compound, timing deviations around the sampling time 

can have a big impact on Cmax/Tmax values, while the limited drug concentration-time profile 

post end of infusion make calculation of accurate pharmacokinetic parameters difficult.

UNBS1450 requires treatment times > 8 h to significantly induce apoptosis in the U937 

cancer cell model, when used at the apoptogenic concentration of 20 nM. Mcl-1, which 

we identified previously as an anti-apoptotic protein early affected by UNBS1450 resulted 

impacted within the same time required for committing cells to the death.21 The low 

concentrations required to affect cancer cells (in the range of nanomolar concentrations) 

and the fact that UNBS1450 appears to be particularly active on Mcl-1, an intracellular 
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molecular target currently at the center of many investigations to find out new anticancer 

therapeutics prompts to explore in the future any further strategies based on the use of 

this cardiac glycoside in targeting Mcl-1 as potential suitable approach in clinics to fight 

many forms of cancer. 

The percentage FCS does not exert any specific impact on UNBS1450 apoptogenic 

properties, when used for 1 h at 10 nM. UNBS1450 exerts a cytostatic effect on U937 cells 

during the first 24 h of recovery when cells are treated in 0.1% FCS medium. 

These results may be the base to evaluate specific protocols of administration concerning 

the number of applications and the lag time between one administration and another, 

therefore about relevance of tempting different protocols of cycles of treatment alternated 

to recovery phase.

Moreover, although the absence of a direct impact on cell viability when challenging cells 

for 1 h with 10 nM of the compound, it would be worth to evaluate whether UNBS1450 

may sensitize U937 cells to further cytocidal treatment in combination experiments 

with known chemotherapeutic agents. Alternatively, it would be considered to evaluate 

whether UNBS1450 may sensitize U937 cells to further cytostatic treatment in combination 

experiments with known cytostatic agents. Both assays may provide information about 

any potential chemoadjuvant activity of this compound, which remains to be determined.

Looking back, we realize that the preclinical work was not extensive enough to start with 

this phase I trial. Based on washout experiments we think the optimal dose may have been 

much higher and the optimal schedule more intensively. Because leukemia cells seem to 

be the most sensitive cells we suggest that a followup phase I study is done in patients 

with hematological malignancies. 
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In this chapter the reported studies and reviews presented in this thesis are summarized.

The first part of this thesis focuses on some novel formulations, especially camptothecin 

glycoconjugate BAY 56-3722 (formerly BAY 38-3441) and liposomal drug formulations. The 

second part of this thesis focuses on histone deacetylase (HDAC) inhibitors and cardiac 

glycosides, especially UNBS1450. Chapter 1 gives a general introduction and describes the 

general aim of this thesis to explore some novel formulations and new classes of anticancer 

drugs in solid tumors. It also describes the outline of the thesis.

Novel formulations

Liposomal drug formulations

In Chapter 2, a review of liposomal anticancer drugs is presented. The main advantages, 

1) improved pharmacokinetics and drug release; 2) enhanced cellular penetration; 3) 

tumor targeting and 4) multi-ingredients systems, and an up-to-date overview of the 

current clinical development are discussed. Furthermore, some liposome-specific adverse 

effects such as various skin reactions, and also hypersensitivity reactions, are described. 

We concluded that further studies with liposome-encapsulated anticancer drugs, including 

the development of novel liposomal formulations, are warranted to provide evidence for 

increased efficacy and tolerability as compared with their non-liposomal counterparts. 

A dose-escalating phase I study of LiPlaCis, a liposomal formulated platinum compound, in 

patients with advanced solid tumors is reported in Chapter 3. This phase I dose-escalating 

study was conducted to define the maximum tolerated dose (MTD), the recommended phase 

II dose, pharmacokinetics and pharmacodynamics, as well as the preliminarily antitumor 

effects of a three-weekly schedule of LiPlaCis in patients with solid tumors. Although the 

toxicity pattern of LiPlaCis differed from cisplatin toxicity, renal damage was not prevented 

by the formulation. Acute infusion reactions required addition of extensive premedication 

that in turn could not completely prevent a high incidence of acute infusion reactions. The 

observed safety profile suggested no benefit over standard cisplatin formulations and 

LiPlaCis reformulation is required to enable further development. Recently a new phase I 

dose-escalating study with LiPlaCis started to find the recommended phase II dose. 

In Chapter 4 a randomized, clinical bioequivalence study comparing the pharmacokinetics 

and safety of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation versus 

paclitaxel in Cremophor® EL (Taxol®) in patients with advanced cancer is reported. 
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Our objectives were to (1) to determine bioequivalence of paclitaxel pharmaceutically 

formulated as LEP-ETU and as Taxol® and (2) to assess the safety and tolerability of LEP-ETU 

following intravenous administration. Thirty two of the 58 patients were evaluable patients 

and were analyzed for bioequivalence. The number of patients that dropped out of the 

study was concerning high. This high drop-out rate was most likely due to a poor patient 

selection. Mean total paclitaxel Cmax values for LEP-ETU and Taxol® were 4955.0 ng/mL  

and 5108.8 ng/mL, respectively. Mean total paclitaxel AUC0-∞ values for LEP-ETU and Taxol® 

were 15853.8 ng·h/mL and 18550.8 ng·h/mL, respectively. Ratios of the geometric means 

of LEP-ETU divided by Taxol® for Cmax were 97% (90% CI, 91%-103%) and for AUC0-∞ were 

84% (90% CI, 80%-90%). These results meet the required 80-125% bioequivalence criteria. 

The most frequently reported adverse events after LEP-ETU administration were fatigue, 

alopecia, and myalgia.

BAY 56-3722

Chapter 5 describes a phase II study of BAY 56-3722 (formerly BAY 38-3441), a camptothecin 

glycoconjugate, in patients with recurrent or metastatic inoperable colorectal cancer 

resistant to irinotecan. Patients received BAY 56-3722 i.v. 320 mg/m2 daily for 3 days every 

3 weeks. Twenty-four patients received the study treatment. Triggered by adverse events 

in two other studies with this compound the study was put on a clinical hold while the 

safety data were reviewed for the entire program. We felt it was our obligation to report 

the fate of BAY 56-3722 and the unique situation of a clinical hold during a phase II study.

New classes of anticancer drugs

HDAC inhibitors

The HDAC inhibitors recently are being investigated as possible treatments for cancer. The 

HDAC inhibitors are a group of targeted agents which are characterized as class I-specific 

or as pan-deacetylase (pan-DAC) inhibitors, which show activity against both classes I and 

II HDACs. Two of them, vorinostat and romidepsin, are already approved by the US Food 

and Drug Administration (FDA) for the treatment of cutaneous T-cell lymphoma (CTCL). 

Romidepsin is also approved for the treatment of peripheral T-cell lymphoma (PTCL). Much 

research was focused on the treatment of hematological malignancies, but the last decade 

also clinical trials with HDAC inhibitors in solid tumors were conducted. Despite promising 

results in the treatment of hematological malignancies, HDAC inhibitors have generally not 
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been effective in clinical trials involving solid tumors. In Chapter 6, a review of the clinical 

trials in solid tumors of HDAC inhibitors is presented.

In Chapter 7 a phase I study to evaluate the pharmacokinetics and safety of oral panobi-

nostat in patients with advanced solid tumors and various degrees of hepatic function 

is reported. This study demonstrated the impact of hepatic impairment on the systemic 

exposure of panobinostat and showed that patients with mild or moderate hepatic func-

tion could be safely treated with the same dose of panobinostat as patients with normal 

hepatic dysfunction, despite somewhat higher pharmacokinetic values. 

Cardiac glycosides

Besides novel formulations, also ‘old drugs’ for example cardiac glycosides, could be useful 

in the treatment of cancer. Cardiac glycosides have a long history in the treatment of cardiac 

disease. However, several preclinical studies as well as two phase I studies have shown that 

cardenolides may also possess anticancer effects. The mechanisms of these anticancer 

effects may include intracellular decrease of K+ and increase of Na+ and Ca2+; intracellular 

acidification; inhibition of IL-8 production and of the TNF-α/NF-κB pathway; inhibition of 

DNA topoisomerase II and activation of the Src kinase pathway. In Chapter 8 a review of 

cardiac glycosides in cancer therapy is presented. To date only three cardiac glycosides 

have been developed for treatment of cancer and were tested in a phase I clinical trial to 

determine dose-limiting toxicities and maximum tolerated dose.

Chapter 9 reports the preclinical data and the preliminary results of a non-completed 

clinical phase I trial with UNBS1450, a semisynthetic cardenolide glycoside derivative. The 

primary endpoint of the clinical phase I was not reached due to early termination of the 

study for non-scientific reasons. The available preclinical work could not guide us in adapted 

scheduling of the patients. To establish the optimal dose and schedule of UNBS1450 for 

future phase I/II studies more research is necessary.

Conclusion

Many current anticancer drugs have non-ideal pharmaceutical and pharmacological 

properties, which can lead to adverse consequences, including lack of or suboptimal 

therapeutic activity, dose-limiting side effects and poor patient quality of life. In this thesis we 

focused on some novel formulations, especially camptothecin glycoconjugate BAY 56-3722  

(formerly BAY 38-3441) and liposomal drug formulations, hoping to overcome some of 
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these problems. We also focused on ‘old drugs’ for new indications, as an example HDAC 

inhibitors and cardiac glycosides.

Unfortunately, the outcomes of some of the presented studies were disappointing: a clinical 

hold during the phase II study of BAY 56-3722, no benefit of LiPlaCis over standard cisplatin 

formulations and a non-completed clinical phase I trial with UNBS1450. 

It is known that many phase I and phase II trials do not result in new treatment options 

used in daily practice. It is also known that publishing negative trial results is seen as less 

attractive and is also more difficult than publishing positive trial results. But sharing these 

results is essential for improving the knowledge necessary for the development of future 

research by the scientific community. For example a new phase I dose-escalating study 

with LiPlaCis started because in our phase I study a recommended dose for a phase II study 

was never reached which is now the aim of this phase I dose-escalating study. In addition, 

based on the preclinical evaluation and preliminary report of the incomplete phase I 

pharmacokinetic trial using UNBS1450 we now know that based on washout experiments 

the optimal dose may have been much higher and the optimal schedule more intensively.

Beside the disappointing outcomes of some of the presented studies, we demonstrated 

that LEP-ETU and Taxol® met the required 80-125% bioequivalence criteria and we showed 

that patients with mild or moderate hepatic function could be safely treated with the same 

dose of panobinostat as patients with normal hepatic function. 

The reviews of liposomal anticancer drugs, HDAC inhibitors and cardiac glycosides all 

showed that to fulfill the high expectations of all these formulations and new drugs and 

to overcome the existing problems much research is still necessary.
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In dit hoofdstuk worden de beschreven studies en reviews van dit proefschrift samenge-

vat en bediscussieerd. Het eerste deel van het proefschrift concentreert zich op nieuwe 

formuleringen, in het bijzonder camptothecine glycoconjugaat BAY 56-3722 (voorheen  

BAY 38-3441) en liposomale formuleringen. Het tweede deel van dit proefschrift richt zich 

op histone deacetylase (HDAC) remmers en cardiale glycosiden, in het bijzonder UNBS1450. 

Hoofdstuk 1 geeft een algemene inleiding en beschrijft het doel van het proefschrift, het 

onderzoeken van enkele nieuwe formuleringen en nieuwe klassen van antikankermedicatie 

in solide tumoren. Het beschrijft eveneens de indeling van het proefschrift. 

Nieuwe formuleringen

Liposomale antikankermedicatie

In Hoofdstuk 2 wordt een review over liposomale antikankermedicatie gepresenteerd. 

De belangrijkste voordelen, 1) het verbeteren van de farmacokinetiek en het beschikbaar 

maken van het medicament; 2) het vergroten van de cellulaire penetratie; 3) het doelgericht 

benaderen van de tumor en 4) de mogelijkheid meerdere medicamenten tegelijkertijd 

toe te dienen, worden bediscussieerd, evenals een overzicht van de actuele klinische 

ontwikkelingen. Daarnaast beschrijven we enkele liposoomspecieke bijwerkingen zoals 

huidreacties en overgevoeligheidsreacties. We concludeerden dat er meer studies met 

liposomale antikankermedicatie, inclusief het ontwikkelen van nieuwe liposomale formu-

leringen, nodig zijn om te bewijzen dat deze middelen ten opzichte van niet-liposomale 

middelen effectiever zijn en minder bijwerkingen hebben. 

In Hoofdstuk 3 wordt een dosis-escalatie fase I studie met LiPlaCis, een liposomale 

formulering van cisplatin, bij patiënten met vergevorderde solide tumoren beschreven. 

Deze fase I dosis-escalatie studie werd uitgevoerd bij patiënten met solide tumoren om 

de maximum getolereerde dosis (MTD), de aanbevolen fase II dosis, de farmacokinetiek en 

farmacodynamiek en antitumoreffecten van driewekelijks LiPlaCis vast te stellen. Hoewel 

het toxiciteitsprofiel van LiPlaCis verschilt van dat van cisplatin, werd renale schade niet 

voorkomen met deze formulering. Ondanks toediening van uitgebreide premedicatie kon 

een hoge incidentie van acute infusiereacties niet geheel worden voorkomen. Het geob-

serveerde veiligheidsprofiel liet geen voordelen zien ten opzichte van standaard cisplatin 

en herformulering van LiPlaCis is noodzakelijk om verdere ontwikkeling mogelijk te maken. 

Recent is een nieuwe fase I dosis-escalatie studie met LiPlaCis gestart om de aanbevolen 

fase II dosering vast te stellen.
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In Hoofdstuk 4 wordt een gerandomiseerde, klinische bio-equivalentiestudie beschreven, 

die de farmacokinetiek en veiligheid van liposomaal paclitaxel (liposome-entrapped pacli-

taxel easy-to-use (LEP-ETU)) vergelijkt met die van paclitaxel in Cremophor® EL (Taxol®) bij 

patiënten met vergevorderde kanker. Ons doel was om (1) de bio-equivalentie vast te stellen 

van paclitaxel geformuleerd als LEP-ETU en Taxol® en (2) de veiligheid en tolereerbaarheid 

van LEP-ETU vast te stellen na intraveneuse toediening. Tweeëndertig van de 58 patiënten 

werden geëvalueerd en geanalyseerd ter beoordeling van bio-equivalentie. Het aantal pati-

ënten dat uitviel in de studie was zorgwekkend hoog. Meest waarschijnlijk was dit het gevolg 

van een slechte patiëntenselectie. De gemiddelde totale paclitaxel Cmax waarden voor LEP-

ETU en Taxol® waren resepectievelijk 4955.0 ng/mL en 5108.8 ng/mL. De gemiddelde totale 

paclitaxel AUC0-∞ waarden voor LEP-ETU en Taxol® waren respectievelijk 15853.8 ng·h/mL  

en 18550.8 ng·h/mL. De verhoudingen van het geometrische gemiddelde van LEP-ETU 

gedeeld door Taxol® voor Cmax waren 97% (90% CI, 91%-103%) en voor AUC0-∞ 84% (90% CI,  

80%-90%). Op basis van de vereiste 80-125% bio-equivalentiecriteria kon geconcludeerd 

worden dat beide formuleringen bio-equivalent zijn. De meest frequente bijwerkingen 

die werden gezien na toediening van LEP-ETU waren vermoeidheid, alopecia en myalgie.

BAY 56-3722

Hoofdstuk 5 beschrijft een fase II studie van BAY 56-3722 (voorheen BAY 38-3441), een 

camptothecine glycoconjugaat, bij patiënten met terugkerend of gemetastaseerd inope-

rabel colorectaal carcinoom refractair voor irinotecan. Patiënten werden elke 3 weken 

gedurende 3 dagen dagelijks behandeld met BAY 56-3722 i.v. 320 mg/m2. Vierentwintig 

patiënten namen deel aan de studie. In verband met bijwerkingen in 2 andere studies met 

hetzelfde middel werd de studie voortijdig beëindigd. We voelden het als onze verplichting 

om deze studie te publiceren om het lot van BAY 56-3722 te beschrijven, evenals de unieke 

situatie van het voortijdig beëindigen van een fase II studie.

Nieuwe klassen van antikankermedicatie 

HDAC-remmers

De HDAC-remmers zijn recent onderzocht als mogelijke middelen in de behandeling van 

kanker. De HDAC-remmers zijn een groep van doelgerichte middelen die gekarakteriseerd 

worden als klasse I specifieke remmers of als pan-deacetylase (pan-DAC) remmers, die zowel 

tegen klasse I als II HDACs actief zijn. Twee HDAC-remmers, te weten vorinostat en romi-
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depsine, zijn reeds goedgekeurd door de US Food and Drug Administration (FDA) voor de 

behandeling van het cutane T-cel lymfoom (CTCL). Romidepsine is eveneens goedgekeurd 

voor de behandeling van het perifere T-cel lymfoom (PTCL). Veel onderzoek was gefocust op 

de behandeling van hematologische maligniteiten, maar het laatste decennium zijn er ook 

klinische onderzoeken met HDAC-remmers bij patiënten met solide tumoren uitgevoerd. 

Ondanks veelbelovende resultaten bij de behandeling van hematologische maligniteiten, 

zijn HDAC-remmers in het algemeen niet effectief gebleken in klinische studies bij solide 

tumoren. In Hoofdstuk 6 geven we een overzicht van de klinische onderzoeken verricht 

bij patiënten met solide tumoren. 

In Hoofdstuk 7 worden de resultaten van een fase I studie beschreven naar de farmacokine-

tiek en veiligheid van oraal panobinostat bij patiënten met vergevorderde solide tumoren 

en verschillende mate van leverfunctiestoornissen. Deze studie laat het gevolg van een 

verminderde leverfunctie zien op de systemische expositie van panobinostat en toont dat 

patiënten met milde of middelmatige leverfunctiestoornissen veilig behandeld kunnen 

worden met dezelfde dosering panobinostat als patiënten met een normale leverfunctie, 

ondanks wat hogere farmacokinetiekwaarden. 

Cardiale glycosiden

Naast nieuwe formuleringen, zouden ook ‘oude medicamenten’, zoals bijvoorbeeld cardi-

ale glycosiden, bruikbaar kunnen zijn in de behandeling van kanker. Cardiale glycosiden 

hebben een lange geschiedenis in de behandeling van hartziekten. Daarnaast laten een 

aantal preklinische en ook 2 fase I onderzoeken zien dat cardiale glycosiden mogelijk 

ook antikankereigenschappen bezitten. De mechanismen van deze antikankereffecten 

zijn onder andere afname van intracellulair K+ en toename van Na+ en Ca2+, intracellulaire 

verzuring, remming van IL-8 productie en van de TNF-α/NF-κB route, remming van DNA 

topoisomerase II en activatie van de Src kinase route. Hoofdstuk 8 beschrijft een review 

over cardiale glycosiden in de behandeling van kanker. Vandaag de dag zijn er drie cardiale 

glycosiden die ontwikkeld zijn voor de behandeling van kanker en die getest zijn in fase I 

onderzoek om de dosis limiterende toxiciteit en MTD vast te stellen.

Hoofdstuk 9 beschrijft de preklinische data en voorlopige resultaten van een niet af-

geronde fase I studie met UNBS1450, een synthetisch cardenolide-glycosidederivaat. 

Het primaire einddoel van deze klinische fase I studie werd niet bereikt omdat de studie 

vroegtijdig werd beëindigd om niet-wetenschappelijke redenen. Het beschikbare pre-

klinische onderzoek gaf ons geen adequaat doseringsschema voor de patiënten. Om de 
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optimale dosering vast te stellen van UNBS1450 voor toekomstige fase I/ II studies is meer  

onderzoek nodig.

Conclusie

Veel hedendaagse antikankermiddelen hebben geen ideale farmaceutische en farmaco-

logische eigenschappen, hetgeen nadelige gevolgen kan hebben, zoals een suboptimale 

therapeutische activiteit, dosislimiterende bijwerkingen en een slechte kwaliteit van le-

ven van patiënten. In dit proefschrift richtten we ons op nieuwe formuleringen, te weten 

camptothecine glycoconjugaat BAY 56-3722 (voorheen BAY 38-3441) en liposomale formu-

leringen in de hoop deze problemen te overwinnen. We richtten ons ook op ‘oude medica-

menten’ voor nieuwe indicaties, zoals bijvoorbeeld HDAC-remmers en cardiale glycosiden. 

Helaas waren de uitkomsten van sommige van de beschreven studies teleurstellend: een 

voortijdige beëindiging van een fase II studie met BAY 56-3722, geen voordeel van LiPlaCis 

ten opzichte van de standaard cisplatinformulering en een niet afgeronde fase I studie 

met UNBS1450.

Het is bekend dat veel fase I en fase II studies niet resulteren in nieuwe behandelingen voor 

de dagelijkse praktijk. Het is eveneens bekend dat het publiceren van negatieve studiere-

sultaten als minder aantrekkelijk wordt beschouwd en moeilijker is dan het publiceren van 

positieve studieresultaten. Maar het is essentieel om deze resultaten te delen om de kennis 

voor de ontwikkeling van toekomstig onderzoek te verbeteren. Zo is recent een nieuwe fase 

I dosis-escalatie studie gestart met LiPlaCis omdat in onze fase I studie de aanbevolen dosis 

voor fase II onderzoek nooit bereikt is. Daarbij, gebaseerd op de preklinische evalutie en het 

voorlopige rapport van de incomplete fase I farmacokinetiekstudie met UNBS1450, weten 

we nu, op basis van de washout experimenten, dat de optimale dosering waarschijnlijk 

veel hoger is en het optimale doseringsschema intensiever.

Naast de teleurstellende uitkomsten van sommige van de beschreven studies lieten we ook 

zien dat LEP-ETU en Taxol® voldoen aan de 80-125% bio-equivalentiecriteria en lieten we zien 

dat patiënten met milde of middelmatige leverfunctiestoornissen veilig behandeld kunnen 

worden met dezelfde dosering panobinostat als patiënten met een normale leverfunctie. 

De reviews van liposomale antikankermiddelen, HDAC-remmers en cardiale glycosiden 

laten zien dat er nog veel onderzoek nodig is om aan de hoge verwachtingen van deze 

nieuwe formuleringen en nieuwe medicamenten te voldoen en de bestaande problemen 

te overwinnen.
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Graag wil ik iedereen die direct of indirect heeft bijgedragen aan het tot stand komen van 

dit proefschrift hartelijk bedanken.


