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Abstract 
Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter A1 
(ABCA1) are expressed both in macrophages and in the liver, implicating an important 
role for these transporters in the different stages of reverse cholesterol transport. This 
review focuses on the current view on the role of SR-BI and ABCA1 in reverse 
cholesterol transport and the implications for atherosclerotic lesion development. 
Recent findings 
Recent studies indicate that hepatic expression of ABCA1 and SR-BI is important for 
the generation of nascent HDL and the delivery of HDL cholesteryl esters to the liver, 
respectively. Macrophage SR-BI and ABCA1 do not significantly contribute to 
circulating HDL levels. However, the perpetual cycle of HDL lipidation and delipidation 
by the liver ensures the availability of acceptors for cholesterol efflux to maintain 
cholesterol homeostasis in macrophages of the arterial wall and reduce the 
atherosclerotic risk. 
In addition, evidence for a new role for hepatic SR-BI, in addition to its established role 
in the selective uptake of HDL cholesteryl esters, in facilitating postprandial lipid 
metabolism has been provided recently. Furthermore, VLDL particle secretion by the 
liver is dependent on ABCA1-mediated nascent HDL formation. Thus, remnant and 
HDL metabolism are more intertwined at the level of the liver than has been anticipated 
until now. 
Summary 
Recent advances in the understanding of the role of ABCA1 and SR-BI in HDL 
metabolism and their atheroprotective properties indicate an important potential of 
modulating ABCA1 and SR-BI expression in both arterial wall macrophages and the 
liver for the treatment of atherosclerotic coronary artery disease.  
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Introduction 
Atherosclerotic cardiovascular disease is the major cause of morbidity and mortality 

worldwide [1]. A pathological hallmark of atherosclerosis is the excessive accumulation of 

cholesterol by macrophages leading to their transformation into foam cells [2]. Current 

therapeutic strategies to prevent atherosclerosis are primarily based on the use of statins, 

inhibitors of the novo cholesterol synthesis, that decrease serum low-density lipoprotein 

(LDL) cholesterol levels [3,4]. Despite the proven effectiveness of statins and their 

widespread use, the incidence of cardiovascular disease still remains high, indicating that 

there is an important need for new therapies. While LDL cholesterol levels are positively 

correlated with atherosclerosis, numerous epidemiological studies have established an inverse 

correlation between the risk for atherosclerosis and high-density lipoprotein (HDL) 

cholesterol levels [5-7]. Several mechanisms have been proposed by which HDL inhibits the 

development and progression of atherosclerosis, including protection against oxidative 

damage, inhibition of endothelial dysfunction, and anti-inflammatory effects. The most 

important atheroprotective function, however, is its ability to catalyze reverse cholesterol 

transport, a process that describes the HDL-mediated removal of excess cholesterol from 

peripheral tissues, including macrophages in the arterial wall, and subsequent delivery to the 

liver for biliary excretion. The understanding of the process of reverse cholesterol transport 

and the molecular mechanisms that control serum HDL cholesterol levels have been 

dramatically increased by the discovery of scavenger receptor BI (SR-BI) and ATP-binding 

cassette transporter A1 (ABCA1). In this review we will focus on the current view of the role 

of SR-BI and ABCA1 in reverse cholesterol transport and the implications for atherosclerosis. 

 

Scavenger receptor BI and ATP-binding cassette transporter A1 
SR-BI is a 509 amino acid cell surface glycoprotein with a molecular mass of 82-kDa [8,9]. 

Its predicted secondary structure is comprised of two transmembrane and two cytoplasmic 

domains as well as a large extra cellular loop containing several N-glycosylation sites [10]. 

SR-BI is highly conserved in evolution and is expressed in various mammalian tissues and 

cells, including brain, kidney, intestine, heart, placenta, macrophages, endothelial cells, 

smooth muscle cells, and various epithelial cells. The highest expression of SR-BI, however is 

found in organs with critical roles in cholesterol metabolism (liver) and steroidogenesis 

(adrenal, ovary, testis) [9,11,12]. Distinct binding sites on SR-BI have been implicated in the 
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binding of a wide array of ligands, including anionic phospholipids [13], advanced glycation 

end-products [14], apoptotic cells [15], and native and modified lipoproteins [16-19].  

SR-BI mediates the selective uptake of cholesteryl esters from HDL by cells by a process in 

which the cholesteryl esters are internalized without the net internalization and degradation of 

the lipoprotein itself [reviewed in 20]. The exact cellular mechanisms for selective uptake of 

cholesteryl esters, however, are largely unknown. SR-BI reconstituted into liposomes 

mediates high affinity lipoprotein binding and selective cholesterol uptake, indicating that 

selective uptake is an intrinsic capacity of the receptor and does not require specific cellular 

structures or compartments [21]. Alternatively, several recent studies have indicated a so-

called retro-endocytosis pathway, which involves the holo-particle uptake of HDL followed 

by re-secretion of cholesteryl ester-poor HDL leading to the net uptake of lipids. [22-24]. The 

relative contribution of both pathways, however, is currently unknown. In addition to its role 

in the selective uptake of HDL cholesteryl esters, SR-BI stimulates the bi-directional flux of 

free cholesterol between cells and HDL and the rate of cholesterol efflux from various cell 

types correlates with the expression of SR-BI [25-27]. 

ABCA1 is a 2,261-amino acid, 240-kDa protein belonging to a large family of conserved 

transmembrane proteins that use ATP as an energy source to transport a wide variety of 

substrates across cellular membranes [28]. ABC transporters typically consist of two 6-helix 

transmembrane domains that serve as a pathway for the translocation of substrates across 

membranes and two nucleotide-binding domains that bind ATP and provide the energy for 

substrate transport [29,30]. In contrast to SR-BI, which binds mature HDL, ABCA1 interacts 

preferentially with lipid-poor apoA-I. Binding of apoA-I to the extracellular domain of 

ABCA1 results in the lipidation of apoA-I and the formation of nascent HDL. Lipidation of 

apoA-I by the transfer of phospholipids and cholesterol has been suggested to reduce the 

binding affinity to ABCA1, resulting in the release of the lipidated apoA-I [31]. However, 

Fitzgerald and colleagues recently demonstrated that a mutant form of ABCA1 (W590S) that 

avidly binds apoA-I but fails to promote lipid efflux to apoA-I, released apoA-I with the same 

kinetics as wild-type ABCA1, indicating that release of apoA-I from ABCA1 is independent 

of lipid transfer [32]. 

In addition to apoA-I also other apolipoproteins with an amphipathic helical motif, including 

apoA-II, apoC-I, apoC-II, apoC-III, and apoE, efficiently induce lipid efflux [32-34]. The 

exact molecular interaction between ABCA1 and the amphipathic apolipoprotein acceptors 

and the mechanism of lipidation are subject of intensive investigation. According to one 

model ABCA1 is proposed to flip phospholipids to the outer leaflet of the plasma membrane 
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that are subsequent microsolubilized by apoA-I [35,36]. On the other hand several lines of 

evidence suggest that ABCA1 acts as a receptor for apoA-I that induces the transfer of 

cholesterol and phospholipids upon binding of the ligand to its receptor [34,37,38]. In 

addition, also a hybrid model has been proposed in which apoA-I first interacts with the lipid 

bilayer and then through lateral diffusion subsequently forms a complex with ABCA1 [39]. 

Interestingly, recently Denis et al. provided evidence that the majority of ABCA1 exists as a 

tetramer that binds apoA-I and that the formed nascent lipoproteins contain at least four 

molecules of apoA-I [40]. 

ABCA1 is a ubiquitously expressed protein, with highest expression levels in placenta, fetal 

tissues, lung, adrenal glands, brain, and liver [41]. In addition, ABCA1 is highly expressed in 

macrophages and its expression is stimulated by cholesterol loading. The fact that SR-BI and 

ABCA1 are expressed both in macrophages and in the liver implicates an important role for 

these transporters in the different stages of reverse cholesterol transport from the generation of 

nascent HDL, efflux of cholesterol from arterial wall macrophages, to the delivery of HDL 

cholesteryl esters to the liver for excretion into the bile. 

 

SR-BI and Lipoprotein Metabolism 
The first direct evidence that SR-BI plays an important physiological role in HDL metabolism 

was obtained from studies using genetically-engineered mice. Adenovirus-mediated hepatic 

over-expression of SR-BI resulted in the virtual disappearance of plasma HDL and a 

substantial increase in biliary cholesterol [42]. A similar decrease in plasma HDL cholesterol 

levels was found in transgenic mice over-expressing SR-BI under control of the apoA-I 

promoter [43]. These studies indicated the importance of SR-BI in the liver for HDL 

metabolism and cholesterol secretion into the bile. Studies using transgenic mice with liver-  

esters by the liver as compared to non-transgenic controls [44,45]. In contrast, mice with an 

attenuated expression of SR-BI (SR-BIatt mice) due to a mutation in the promoter for SR-BI, 

displayed a decreased hepatic uptake of HDL cholesteryl esters [46]. Conclusive evidence for 

the role of SR-BI in HDL metabolism was provided by the generation of SR-BI knockout 

mice [47,48]. Complete disruption of SR-BI function resulted in a ~2-fold increase in total 

plasma cholesterol levels due to the accumulation of abnormally large HDL particles, specific 

regulators of hepatic cholesterol homeostasis, including HMG-CoA reductase, the LDL not 

over-expression of SR-BI showed an increased selective uptake of HDL cholesteryl reflecting  

alter the hepatic cholesterol (ester) content nor did it affect the expression of key impaired  
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Figure 1. Role of SR-BI in the processing of HDL and remnant lipoproteins by the liver 
SR-BI mediates the selective uptake of cholesteryl esters from HDL without net degradation of the HDL particle 
itself followed by the release of cholesteryl ester-poor HDL (left). VLDL and chylomicron remnants are taken up 
by the liver via a classical endocytotic pathway, that involves an initial sequestration and capture of step in the 
space of Disse, followed by internalization via the LDL receptor or the LDL receptor-related protein (LRP1) 
(middle). Recently also a role for SR-BI in the removal of lipoprotein remnants was established (right). It might 
be speculated that SR-BI functions in the initial sequestration and capture of remnants whereby the subsequent 
internalization is exerted by receptor systems-like the LDL receptor or LRP1. 
 

receptor, and cholesterol 7α-hydroxylase. However, SR-BI deficiency did result in an 

delivery of cholesteryl esters to the liver. Strikingly, SR-BI deficiency did impaired biliary 

cholesterol secretion [49] and an attenuated expression of ABCG5 and ABCG8, ABC half 

transporters implicated in the transport of lipids from the liver to the bile [50]. Recent studies 

in which the uptake of cholesteryl esters from HDL was compared to holo-particle uptake in 

SR-BI knockout and wild-type mice demonstrated that SR-BI is the sole molecule responsible 

for the selective uptake of cholesteryl esters from HDL [51, 52]. 

Interestingly, SR-BI has also been implicated in the clearance of apoB-containing 

lipoproteins, including LDL and VLDL. In vitro, SR-BI recognizes apoB-containing 

lipoproteins [15-19] and apoE [53-56], an important ligand for VLDL removal from the 

circulation. In vivo, transgenic mice over-expressing SR-BI display reduced levels of apoB-

containing lipoproteins [44,57] and are not susceptible to the dietary increase in VLDL and 

LDL levels upon feeding a high-fat/high-cholesterol diet in a heterozygous LDL receptor 

knockout background [58]. In addition, adenoviral over-expression of SR-BI reduces VLDL 
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and LDL levels in C57Bl/6 mice [42,59] and reverses fibrate-induced hypercholesterolemia in 

apoE-/- mice [60]. Conversely, increased levels of LDL cholesterol and apoB protein were 

observed in LDL receptor knockout mice with attenuated expression of SR-BI on a high-

fat/high-cholesterol diet [61]. Furthermore, disruption of the SR-BI gene in apoE-/- mice 

results in an increase in circulating VLDL and LDL levels [48]. These observations all 

implicate an important role for SR-BI in the removal of apoB-containing lipoproteins from 

the circulation. On the other hand, Webb et al. have recently shown that adenoviral over-

expression of SR-BI in human apoB transgenic mice [62] and apoE-/- mice [63] does not 

affect circulating VLDL and LDL levels. 

Interestingly, our group recently demonstrated that the postprandial triglyceride response after 

an intragastric fat-load is higher in the absence of SR-BI [64]. Furthermore, the association of 

chylomicron-like emulsion particles to freshly isolated hepatocytes is largely reduced in the 

absence of SR-BI. Thus, also chylomicron metabolism is altered by disruption of SR-BI in 

mice. Interestingly, consistent with these data, Pérez-Martinez and colleagues have recently 

suggested a role for CLA-1, the human homologue of SR-BI in postprandial lipoprotein 

metabolism in [65]. In addition, several studies on common polymorphisms of CLA-1 have 

been published demonstrating that variants of the SR-BI gene interfere with the metabolism 

of lipids, including apoB lipoproteins in humans and that the effects may differ in men and 

women and are affected by age [66-70]. In Fig. 1 a schematic illustration summarizing the 

role of SR-BI in HDL and remnant metabolism is shown. 

 

SR-BI and Atherosclerosis 
Several lines of evidence indicate an anti-atherogenic role for SR-BI in atherogenesis. Hepatic 

over-expression of SR-BI protects against the development of atherosclerosis [58,59,71]. 

Interestingly, the expression level of SR-BI is critical for its effect on atherosclerosis 

susceptibility. If the SR-BI expression level is too high, HDL levels are too low to sustain net 

cholesterol movement through the reverse cholesterol transport pathway [71]. Conversely, the 

atheroprotective effects of high HDL levels are lost, if the turnover of HDL cholesterol is 

impaired as a result of a reduction of SR-BI expression. LDL receptor deficient (LDLr-/-) 

mice with an attenuated expression of SR-BI are more susceptible to atherosclerotic lesion 

development [61]. Furthermore, disruption of SR-BI in wild-type [51] as well as in LDLr-/- 

mice [72] results in a highly increased susceptibility to atherosclerotic lesion development. 

When cross-bred onto the apoE knockout background, SR-BI-deficiency leads to severe 
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cardiac dysfunction and premature death [73,74]. By cross-breeding the SR-BIxapoE double 

knockout mice with RAG2 mice, that lack B and T lymphocytes, Karackattu et al. recently 

showed that lymphocytes are not required for the rapid onset of coronary artery disease in the 

SR-BIxapoE double knockout mice [75]. 

The pro-atherogenic effects of SR-BI deletion is largely attributed to its effects on the uptake 

of HDL cholesteryl esters by the liver. However, according to the current understanding that 

SR-BI affects the removal of apoB-containing lipoproteins, disruption of SR-BI also increases 

the availability of these atherogenic lipoproteins in the arterial wall. Furthermore, SR-BI is 

expressed in lipid-laden macrophages in human and murine atherosclerotic lesions [76-78]. 

SR-BI might thus also play an important role locally in the arterial wall. Bone marrow 

transplantation studies showed that SR-BI on macrophages protects against the development 

of advanced atherosclerotic lesions in LDLr-/- [72,79] and apoE-/- mice [80]. In contrast, the 

development of small fatty streak lesions in LDLr-/- is facilitated by macrophage SR-BI [79]. 

It thus appears that, depending on the stage of lesion development, SR-BI in macrophages is 

either pro-atherogenic or anti-atherogenic, indicating a unique dual role for SR-BI in the 

pathogenesis of atherosclerosis. This concept is illustrated in Fig. 2. The unique dual role is 

probably a direct effect of the finding that SR-BI is a multi-functional, multi-ligand receptor 

that facilitates the binding of a wide array of native and modified lipoproteins and mediates 

the bi-directional flux of cholesterol between HDL and cells. Its function in the binding of 

atherogenic lipoproteins, like native βVLDL and oxidized LDL is expected to induce foam 

cell formation, while efflux of intracellular cholesterol to HDL will prevent foam cell 

formation and thus atherosclerotic lesion development. 

Although the atheroprotective function of SR-BI has been well established in genetically-

engineered mice, the role of CLA-1 in coronary artery disease in humans is still largely 

unknown. In female patients with premature coronary artery disease an association was found 

between a combination of two common variants in exons 5 and 8 of the CLA-1 gene with 

extreme triglyceride:HDL cholesterol ratios [69]. In addition, recently Rodríguez-Esparragón 

and colleagues showed an association between the CLA-1 exon 8 gene polymorphism and the 

risk of coronary artery disease [81]. Furthermore, CLA-1 is expressed in macrophage-rich 

areas of human carotid atherosclerotic lesions [82], suggesting that this scavenger receptor 

might also play an important role for atherosclerotic lesion development locally in the arterial 

wall in humans. 
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Figure 2. Role of macrophage SR-BI and ABCA1 in atherosclerotic lesion development 
Macrophage SR-BI has a unique dual role in atherosclerosis. The development of initial fatty streak lesions is 
induced by facilitating the uptake of atherogenic lipoproteins like βVLDL and oxidized LDL thereby inducing 
foam cell formation, whereas at later stages of atherosclerotic lesion development, its function in cholesterol 
efflux to HDL protects the arterial wall from extensive lipid accumulation. Macrophage ABCA1 protects against 
atherosclerotic lesion development by mediating the cholesterol efflux to lipid-poor apoA-I. 
 

ABCA1 and Lipoprotein Metabolism 
The recognition that mutations in the human ABCA1 gene are the underlying molecular 

defect in HDL deficiency syndromes such as Tangier disease has contributed substantially to 

the understanding of the function of ABCA1 as a key transporter in reverse cholesterol 

transport [83-85]. The importance of ABCA1 in HDL metabolism was further proved in 

genetically-engineered mice. Targeted disruption of ABCA1 results in a virtual absence of 

HDL cholesterol [86-88], while ABCA1 over-expression increases HDL levels [89,90].  

Since mutations in ABCA1 were recognized to cause rare recessive HDL deficiency 

syndromes, it has been speculated that sequence variants in ABCA1 might contribute to 

variations in plasma HDL cholesterol levels in the general population. Recently, Frikke-

Schmidt et al. provided evidence from the Copenhagen City Heart Study that at least 10% of 

individuals with low HDL in the general population are heterozygous for mutations in 

ABCA1 [91, 92]. This finding is further supported by the data from the population-based 

Dallas Heart Study and in Canadians with low or high plasma HDL cholesterol levels [93]. 

According to the classical view of the reverse cholesterol transport pathway, ABCA1 in 

peripheral cells, including macrophages was presumed to initiate HDL formation by 
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facilitating the transfer of phospholipids and cholesterol from the plasma membrane to lipid-

free apoA-I. However, although total-body ABCA1 deficiency is associated with severe HDL 

deficiency, specific deletion of ABCA1 in macrophages did not affect circulating HDL 

cholesterol levels [94,95]. Furthermore, Haghpassand et al. have shown that reconstitution of 

macrophage ABCA1 expression in ABCA1-deficient mice resulted in only a small but 

significant increase in apoA-I levels and the appearance of α-migrating HDL [94]. The 

contribution of macrophage ABCA1 to overall plasma HDL levels is thus small. It must be 

noted that these studies were performed in the presence of a functional SR-BI in the liver. It is 

thus possible that cholesteryl esters from freshly lipidated HDL were rapidly removed by the 

liver via SR-BI, thereby underestimating the role of ABCA1 in the formation of HDL in the 

periphery. However, serious questions were raised whether the widely held reverse 

cholesterol transport hypothesis was still valid. The liver secretes lipid-free and lipid-poor 

apoA-I [96,97] and expresses high levels of ABCA1 protein [41,98,99], suggesting that the 

liver itself might mediate lipidation of HDL proteins. In a study with isolated primary 

hepatocytes from wild-type and ABCA1-deficient mice, Kiss et al. showed that hepatocyte 

expression of ABCA1 is central to the lipidation of newly synthesized apoA-I [100]. In 

agreement, adenoviral over-expression of ABCA1 in livers of wild-type mice increases HDL 

production, indicating that the liver can be considered as an important source for the 

lipidation of HDL in the circulation [101,102]. Recent studies from the lab of J.S. Parks 

showed that plasma HDL and apoA-I levels are dramatically decreased in mice with a liver-

specific deletion of ABCA1 [103, 104]. Conversely, cross-breeding of mice that selectively 

over-express human ABCA1 in the liver with ABCA1 knockout mice corrected the lipid 

abnormalities in the ABCA1 knockout mice [105]. Thus the liver indeed seems to play an 

important role in the lipidation of HDL proteins. 

Tangier disease (TD) results in extremely low HDL cholesterol levels as a result of ABCA1 

dysfunction. Low HDL cholesterol levels are frequently associated with raised fasting or 

postprandial triglyceride levels. In a small cohort of patients, Kolovou et al. showed that TD 

patients display an increased susceptibility to postprandial hypertriglyceridemia [106].  In 

agreement, Joyce et al. reported that over-expression of human ABCA1 in mice in both liver 

and macrophages not only induces HDL cholesterol levels, but also results in a marked 

reduction in VLDL cholesterol levels [107]. Interestingly, Sahoo et al. recently showed, using 

cultured primary murine hepatocytes, that cholesterol efflux to apoA-I reduced the secretion 

of triglycerides and apoB from wild-type hepatocytes, but not from hepatocytes lacking 

ABCA1 [108]. ABCA1-dependent cholesterol mobilization from hepatocytes to apoA-I for 
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HDL particle formation thus seems to compete for the cholesterol availability for VLDL 

particle secretion. Previously it has been shown that disruption of ABCA1 in mice does not 

affect the hepatic cholesterol content or the fecal excretion of sterols [109]. In the light of the 

recent findings on the link between ABCA1-mediated HDL lipidation and VLDL secretion by 

the liver, the compensatory effects on the hepatic VLDL secretion in ABCA1 knockout mice 

should be investigated.  

 

ABCA1 and Atherosclerosis 
Heterozygotes for mutations in ABCA1 are significantly at risk for coronary artery disease 

and ABCA1 gene variations may contribute to the inter-individual variability in 

atherosclerosis susceptibility in humans [110-116]. The cardioprotective effects of ABCA1 

have been confirmed in several animal models. Over-expression of ABCA1 in mice increases 

serum HDL cholesterol levels and leads to a decreased susceptibility to atherosclerosis in 

apoE knockout [117] and C57Bl/6 mice [107]. In atherosclerotic lesions, ABCA1 co-localizes 

with macrophages, indicating that ABCA1 can also affect lesion development independent of 

effects on HDL cholesterol levels [99].  Indeed, bone marrow transplantation experiments 

showed that disruption of ABCA1 in macrophages results in a markedly increase in 

atherosclerotic lesion development [95,118]. Thus, although ABCA1 in macrophages 

contributes little to the circulating HDL cholesterol levels, ABCA1-dependent cholesterol 

efflux is a crucial factor in the prevention of excessive cholesterol accumulation in 

macrophages of the arterial wall and their transformation into foam cells (Fig. 1).  

Recently, Albrecht et al. showed that ABCA1 protein levels are reduced in advanced carotid 

atherosclerotic lesions [119]. Furthermore, in our group it has been found that over-expression 

of ABCA1 in macrophages could not prevent the initiation of atherosclerosis, but prevented 

the progression to advanced atherosclerotic plaques [120]. Macrophage ABCA1 is thus an 

important determinant for the progression of atherosclerosis from initial fatty streaks into 

advanced lesions, apparently the stage in which endogenous ABCA1 is down-regulated. 

Stimulation of the expression of macrophage ABCA1 thus forms an attractive therapeutic 

target for the development of novel therapeutic agents designed to prevent the development of 

advanced atherosclerotic lesions coronary or cerebral infarction. 
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Figure 3. Perpetual cycle of reverse cholesterol transport 
Reverse cholesterol transport describes the process in which excess cholesterol from peripheral tissues, including 
arterial wall macrophages is transported back to the liver. Reverse cholesterol transport, however, does not solely 
involve unidirectional transport of cholesterol. It is a continuous cholesterol transport cycle in which the liver 
plays an essential role for the generation of nascent HDL by ABCA1 and the continuous regeneration of lipid-
poor HDL by SR-BI, thereby ensuring the availability of acceptors for SR-BI and ABCA1-mediated cholesterol 
efflux to maintain cholesterol homeostasis in the periphery. 
  

Conclusion 
Modulation of SR-BI and ABCA1 expression in liver and macrophages has greatly improved 

the general understanding of the process of reverse cholesterol transport and the relation 

between HDL cholesterol levels and atherosclerosis. Importantly, it is not the HDL 

cholesterol level per se, but rather the kinetics of HDL metabolism in which SR-BI and 

ABCA1 play a decisive role, that determine the atherosclerotic risk. Furthermore, the process 

of reverse cholesterol transport should be envisioned as a cycle in which the liver plays an 

essential role for the generation of nascent HDL by ABCA1 and the continuous regeneration 

of lipid-poor HDL by SR-BI, thereby ensuring the availability of acceptors for SR-BI and 

ABCA1-mediated cholesterol efflux to maintain cholesterol homeostasis in the periphery 

(Figure 3).  
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In addition, the suggested role for hepatic SR-BI in facilitating postprandial lipid metabolism 

and the finding that ABCA1-dependent nascent HDL formation competes for the cholesterol 

availability for VLDL particle secretion, provide new information that remnant and HDL 

metabolism are intertwined both at receptor level and intracellularly. 
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