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Abstract 
Foam cell formation due to excessive accumulation of cholesterol by macrophages is a 
pathological hallmark of atherosclerosis. Macrophages cannot limit the uptake of 
cholesterol and therefore depend on cholesterol efflux pathways for preventing their 
transformation into foam cells. Several ABC-transporters, including ABCA1 and 
ABCG1, facilitate the efflux of cholesterol from macrophages. These transporters, 
however, also affect membrane lipid asymmetry which may have important implications 
for cellular endocytotic pathways. We propose that in addition to the generally accepted 
role of these ABC-transporters in the prevention of foam cell formation by induction of 
cholesterol efflux from macrophages, they also influence the macrophage endocytotic 
uptake.  
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Introduction 
Atherosclerotic cardiovascular disease is the major cause of morbidity and mortality 

worldwide (1). A pathological hallmark of atherosclerosis is the excessive accumulation of 

cholesterol by macrophages leading to their transformation into foam cells (2). Macrophages 

play an important role in the initiation of the early atherosclerotic lesions. In addition, during 

the further progression of the lesion, macrophages also contribute to the formation of the 

necrotic core and may affect the stability of the atherosclerotic lesion. Especially in the 

initiation of atherosclerosis, cholesterol homeostasis in macrophages is of prime importance, 

as dysregulation of the balance of cholesterol influx and cholesterol efflux will lead to 

excessive accumulation of cholesterol in the macrophage and their transformation into foam 

cells. This minireview highlights important aspects of macrophage cholesterol homeostasis.  

 

Macrophage cholesterol accumulation 
Cholesterol may enter macrophages via several different pathways. Macrophages express 

high levels of scavenger receptors, which bind and internalize oxidatively modified 

lipoproteins. Furthermore, macrophages also contain several other types of binding sites that 

are involved in the accumulation of unmodified lipoproteins and lipoprotein remnants, 

including the LDL receptor (LDLr), LDL receptor-related protein (LRP), VLDL receptor 

(VLDLr), and proteoglycans (see Fig1).  

 

 
Figure. 1. Macrophage cholesterol accumulation.  
Cholesterol may enter macrophages via several different pathways and induce the transformation of 
macrophages into foam cells, the first step in atherosclerotic lesion development (2). Scavenger receptors, 
including scavenger receptor A (SR-A), scavenger receptor BI (SR-BI), and CD36 mediate the uptake of 
modified lipoproteins by macrophages. Native lipoproteins are taken up via the LDL receptor (LDLr), the VLDL 
receptor (VLDLr), and LDL receptor related protein 1 (LRP1). Furthermore, cholesterol may enter macrophages 
via fluid-phase macropinocytosis.  
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An important receptor implicated in the accumulation of oxidatively modified lipoproteins is 

scavenger receptor A (SR-A). SR-A is highly expressed in macrophage-derived foam cells in 

atherosclerotic plaques (3-5). It binds many polyanionic molecules, but the affinity of SR-A 

for modified lipoproteins varies. The uptake of acetylated LDL (AcLDL) and oxidized LDL 

(OxLDL) by SR-A deficient macrophages was 30% and 70% of that in wildtype 

macrophages, respectively (6, 7), while AcLDL degradation in SR-A deficient macrophages 

was 17% of control (8). Total body SR-A deficiency resulted in 50% and 20% reduction in 

atherosclerotic lesion size in apoE knockout (apoE−/−) and LDL receptor knockout mice 

(LDLr−/−), respectively (6, 9). Using the technique of bone marrow transplantation, Linton et 

al. (10) generated C57Bl/6 mice and LDLr−/− mice that were selectively deficient for SR-A 

in macrophages. In both mouse models a 60% reduction in lesion area was observed in 

absence of macrophage SR-A, indicating an important pro-atherogenic role of SR-A 

expression by macrophages. Macrophage SR-A overexpression in LDLr−/− mice and 

apoE−/− mice, however, did not significantly affect atherosclerotic lesion development (11, 

12).  

SR-A belongs to a growing list of scavenger receptor family members (for review (13)). In 

addition to SR-A, also CD36 was shown to bind and internalize minimally modified forms of 

LDL (14). Peritoneal macrophages of CD36 deficient mice exhibit a 60–80% decrease in 

OxLDL binding (15). While SR-A appeared to be more important for AcLDL and fully 

oxidized LDL binding and degradation, CD36 was more active towards mildly oxidized LDL 

(16). In macrophages from SR-A/CD36 double knockout mice the degradation of AcLDL and 

OxLDL was inhibited for 75–90% while the cholesteryl esters from modified lipoproteins 

failed to accumulate and no foam cell forming was possible. These data establish that SR-A 

and CD36 are responsible for the preponderance of modified LDL uptake in macrophages and 

that other scavenger receptors do not compensate for their absence. Zhao et al. (17) showed 

recently that the lipid accumulation in macrophages induced by native LDL from apoE−/− 

mice is also blocked for 80% by the absence of SR-A and CD36. ApoE−/− mice reconstituted 

with CD36-deficient bone marrow displayed a 88% reduction in lesion area after 12 weeks 

Western-type diet feeding (18), establishing the essential role of macrophage CD36 in lesion 

formation. On the other hand, Moore et al. recently reported that deletion of SR-A or CD36 

does not ameliorate atherosclerosis in apoE−/− mice (19). The reason for this absence of an 

effect is presently unclear. It might either indicate that modified lipoproteins are less 

important in lesion formation as currently thought or that additional (pathological) stimulants, 

i.e. bacterial pathogens, are needed to evoke the crucial role of these scavenger receptors.  

- 22 - 



Chapter 2 

Scavenger receptor BI (SR-BI), an HDL receptor which mediates the selective uptake of 

cholesterol esters from HDL by the liver (20, 21) is also expressed by lipid-laden 

macrophages in human and murine atherosclerotic lesions (22-24). It binds native and 

modified lipoproteins, anionic phospholipids, and apoptotic cells (25). In addition to its role in 

the selective uptake of HDL cholesteryl esters, SR-BI stimulates the bi-directional flux of free 

cholesterol between cells and HDL and the rate of cholesterol efflux from various cell types 

correlates with the expression of SR-BI (26-28). Bone marrow transplantation studies have 

shown that SR-BI on macrophages reduces the development of advanced atherosclerotic 

lesions in LDLr−/− (29, 30) and apoE−/− mice (31). In contrast, the development of small 

fatty streak lesions in LDLr−/− mice is facilitated by macrophage SR-BI (30). It thus appears 

that, depending on the stage of lesion development, SR-BI in macrophages is either 

proatherogenic or antiatherogenic, indicating a dual role for SR-BI in the pathogenesis of 

atherosclerosis. This unique dual role is probably a direct effect of the finding that SR-BI is a 

multi-functional, multi-ligand receptor that facilitates the binding of a wide array of native 

and modified lipoproteins and mediates the bi-directional flux of cholesterol between HDL 

and cells. Its function in the binding of atherogenic lipoproteins, like native VLDL and 

oxidized LDL is expected to induce foam cell formation, while efflux of intracellular 

cholesterol to HDL will prevent foam cell formation and thus atherosclerotic lesion 

development.  

In addition to SR-BI, also members of the LDL receptor family, including the LDL receptor, 

LRP1, and the VLDL receptor have been implicated in macrophage foam cell formation. The 

LDL receptor is a major pathway for the uptake of VLDL by macrophages (32,33). However, 

for long the role of the macrophage LDL receptor in foam cell formation and atherosclerotic 

lesion development was thought to be limited, as it is rapidly downregulated upon cellular 

cholesterol accumulation(34). However, by performing bone marrow transplantation studies, 

we(35) and others (36) have provided in vivo evidence that the macrophage LDL receptor 

facilitates diet-induced atherosclerosis. In addition, to the LDL receptor, also the VLDL 

receptor is abundantly expressed by macrophage-derived foam cells in atherosclerotic lesions 

(37-39). In contrast to the LDL receptor, the expression of the VLDL receptor is not 

responsive to cholesterol loading (40). Furthermore, reconstitution of macrophage VLDL 

receptor expression in VLDL receptor knockout mice largely increased atherosclerotic lesion 

development, indicating that the macrophage VLDLr is a pro-atherogenic factor(41). LRP1 is 

a multi-ligand and multi-functional receptor involved in a variety of physiological processes, 

including the uptake of apoE-containing lipoproteins (42). Macrophage-specific LRP1 
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knockout mice, however, display a reduced susceptibility to atherosclerotic lesion 

development, indicating that macrophage LRP1 is protective and that the pro-atherogenic 

function of LRP1 in the accumulation of lipids by macrophages is limited in vivo (43).  

The majority of the processes described above for macrophage cholesterol accumulation 

involve rapid receptor-mediated coated-pit endocytosis. In addition, modified LDL is taken 

up by macrophages in part by the slower process of macropinocytosis (44). At high 

concentrations (0.5–2 mg/ml), native LDL can induce macrophage foam cell formation in 

PMA-activated (45, 46) and M-CSF-differentiated (47) human monocyte-derived 

macrophages by fluid-phase macropinocytosis. Macropinocytosis, first described by Lewis in 

1931 (48), is the actin-dependent formation of large vesicles, allowing the internalization of 

large quantities of fluid-phase solute (for review (49)). It is a major endocytotic pathway in 

epithelial cells, fibroblasts, neutrophils, and macrophages that occurs constitutively, but is 

highly increased by growth factors, such as epidermal growth factor (EGF) (50), macrophage 

colony stimulating factor (M-CSF) (51, 52), and phorbol esters (53, 54). Macropinosomes are 

dynamic structures formed by the closure of lamellipodia at ruffling membranes and range in 

size from 0.2 to 5 m in diameter (49). In unstimulated macrophages, membrane ruffles are 

relatively small and seldom form macropinosomes (54). After stimulation by PMA or M-CSF, 

the ruffles transform into longer and broader lamellipodia that regularly form 

macropinosomes by resealing with the cell surface, enclosing extracellular medium (52, 54). 

Macropinosomes start as early endosomes derived from the plasma and rapidly mature into 

late endosomes and finally merge into a stable, resident lysomal compartment (55).  

Although most studies on macropinocytosis are performed on cells in vitro, in vivo spleen, 

lymph nodes, and liver are organs active in fluid-phase endocytosis (56). Furthermore, fluid-

phase uptake in Kupffer cells, resident macrophages of the liver, takes place via 

macropinocytosis in vivo (57). Thus, it is also plausible that this constitutive uptake of fluid-

phase contributes to macrophage foam cell formation in the arterial wall.  

 

ABC-transporters: key molecules for macrophage cholesterol efflux 
Macrophages are incapable of limiting the uptake of lipids via the wide variety of uptake 

mechanisms described above and therefore, largely depend on cholesterol efflux pathways to 

maintain cellular lipid homeostasis. A key transporter involved in the efflux of cholesterol and 

phospholipids from macrophages is ATP-binding cassette transporter A1 (ABCA1)(58) (see 

Fig 2). ABCA1 is a 2261-amino acid, 240-kDa protein belonging to a large family of 
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conserved transmembrane proteins that use ATP as an energy source to transport a wide 

variety of substrates across cellular membranes(59). It is a full transporter, consisting of two 

6-helix transmembrane domains that serve as a pathway for the translocation of substrates 

across membranes and two nucleotide-binding domains that bind ATP and provide the energy 

for transport. ABCA1 mediates the transport of cholesterol and phospholipids to lipid-free 

apolipoproteins such as apoAI (60). Macrophage ABCA1 expression is highly upregulated by 

oxysterol-dependent transactivation of the ABCA1 promoter by the liver X receptor (LXR) 

(61, 62). Furthermore, ABCA1 is highly expressed in atherosclerotic lesions, where it co-

localizes with cholesterol-loaded macrophages (63). Bone marrow transplantation 

experiments showed that disruption of ABCA1 in macrophages results in a marked increase 

in atherosclerotic lesion development (64, 65). Thus, ABCA1-dependent cholesterol efflux is 

a crucial factor in the prevention of excessive cholesterol accumulation in macrophages of the 

arterial wall and their transformation into foam cells. By transplantation of ABCA1 

overexpressing bone marrow into LDLr−/− mice, we have recently provided the first evidence 

that ABCA1 expression by macrophages plays a critical role in the protection against the 

progression of atherosclerosis (66).  

 

 
 
Fig. 2. Macrophage cholesterol efflux. Macrophages cannot limit the uptake of cholesterol and therefore depend 
on cholesterol efflux pathways for the prevention of excessive cholesterol accumulation and atherosclerotic 
lesion development (2). ABCA1 facilitates the efflux of cholesterol from macrophages to lipid-poor apoAI, 
while ABCG1 and SR-BI mediate the efflux of cholesterol to mature HDL. In addition, other transporters of the 
ABC-transporter superfamily might mediate cholesterol efflux from macrophages.  
 
 
In addition to ABCA1, macrophages also express ABCG1, which is induced during 

cholesterol uptake in macrophages (67, 68) and is activated via LXR (69, 70). ABCG1 is a 

half transporter with a single 6-helix transmembrane domain and a single nucleotide domain 

that needs to form a homodimer or a heterodimer with another ABC-transporter to be 

functional. In contrast to ABCA1, ABCG1 facilitates cellular cholesterol and phospholipid 

- 25 - 



Regulation of cholestol homeostasis in macrophages and consequences for atherosclerotic lesion development 

efflux from macrophages to mature HDL, but not to lipid-free apolipoproteins (71-73). 

ABCA1-mediated lipid efflux, however, transforms lipid-free apoAI into an efficient 

substrate for ABCG1-dependent efflux, suggesting that ABCA1 and ABCG1 might synergize 

to mediate cholesterol efflux to apoAI (75). Macrophages isolated from ABCG1 knockout 

mice display a reduction in cholesterol efflux capacity upon treatment with LXR activators 

(72, 75, 76). Furthermore, targeted disruption of ABCG1 in mice results in massive lipid 

accumulation in macrophages within lungs and multiple other tissues upon high-fat, high-

cholesterol diet feeding, while overexpression of ABCG1 protects tissues from dietary 

induced lipid accumulation (72. 75). ABCG1 thus plays a critical role in preventing cellular 

lipid accumulation. Since ABCG1 is expressed by macrophage-derived foam cells in the 

human atherosclerotic plaque (77), it is anticipated that macrophage ABCG1 will also play an 

important role in atherosclerotic lesion development. To assess the role of macrophage 

ABCG1 in atherosclerosis, we recently generated LDLr−/− mice that are selectively deficient 

in macrophage ABCG1 by using bone marrow transfer (78). After 12 weeks of feeding a 

high-cholesterol diet containing 0.25% cholesterol and 15% fat lungs of the LDLr−/− mice, 

reconstituted with ABCG1 knockout bone marrow showed a striking accumulation of lipids in 

macrophages localized to the subpleural region. Furthermore, both after 6 weeks and 12 

weeks of high-cholesterol diet feeding macrophage ABCG1 deficiency resulted in a moderate 

33–36% increase in lesion formation. Under the same conditions, macrophage ABCA1 

deficiency, however, did lead to a 2-fold increase in lesion development in LDLr−/− mice 

after both 6 (unpublished results) and 12 weeks on the high-cholesterol diet (64), establishing 

that at both time points the potential effect of ABCG1 deficiency on atherosclerotic lesion 

formation is certainly less prominent as compared to ABCA1.  

Both ABCA1 and ABCG1 belong to a large family of evolutionary conserved transmembrane 

proteins that use the energy of ATP hydrolysis to translocate a wide variety of substrates 

across cellular membranes. To date, 51 members of the family of ABC-transporters have been 

identified, which, based on structural similarities, have been subdivided into seven families, 

designated ABC A-G (59, 79, 80). A vast majority of these ABC-transporter genes are 

expressed by macrophages and show cholesterol influx or efflux dependent gene regulation 

(67, 81). It is therefore conceivable that a significant portion of the cholesterol-responsive 

ABC-transporters may be involved in macrophage lipid homeostasis and play pivotal roles in 

foam cell formation and atherogenesis.  

The closest relatives of ABCA1 that are expressed by macrophages and display cholesterol-

responsive regulation are ABCA2 (82), ABCA6 (83), ABCA7 (84-87), ABCA9 (88), and 
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ABCA10 (89). ABCA7 has recently been shown to mediate phospholipid efflux to apoAI (86, 

87, 90), while also a role in cholesterol efflux has been indicated (87). Like ABCA1, ABCA7 

is sensitive to LXR activation (81), and the expression is upregulated by cholesterol loading 

and downregulated upon cholesterol efflux to HDL (84). However, disruption of ABCA7 

expression in macrophages did not affect phospholipid or cholesterol efflux to ApoAI (86). 

Moreover, in ABCA1-knockout macrophages, there was no detectable apoAI-stimulated 

phospholipid efflux, inconsistent with a residual role of ABCA7.  

Also members of the ABCB-subfamily of ABC-transporters have been implicated in 

macrophage lipid homeostasis. ABCB1, a ubiquitous transporter which confers multidrug 

resistance (91) is upregulated upon differentiation from monocytes to macrophages and is 

highly responsive to activation by LXR agonists (81). Furthermore, increased ABCB1 mRNA 

was found in atherosclerotic specimens, suggesting a role for ABCB1 in atherosclerotic lesion 

development in vivo (92). The exact role of ABCB1 in macrophage lipid homeostasis, owever 

is still unclear. Some studies suggest that ABCB1 mediates the esterification of plasma 

membrane cholesterol (93, 94), while more recently using a specific inhibitor of ABCB1 

evidence was provided that the esterification of cholesterol is not correlated with ABCB1 

activity (95). Recently, Le Goff et al. also showed that cholesterol efflux is increased in 

ABCB1 stably transfected drug-selected LLC-MDR1 cells, but not in the ABCB1-inducible 

HeLaMDR-Tet and 77.1 MDR-Tet cells (96). Another ABC-transporter that is expressed by 

macrophages is ABCB4, which plays an important role in the secretion of phospholipids into 

the bile (97). Interestingly, in contrast to ABCA1, expression of ABCB4 is downregulated by 

cholesterol loading and upregulated by cholesterol efflux (67). In addition to ABCG1 (70) and 

(67), also ABCG4 (98) of the ABCG subfamily of ABC-transporters shows cholesterol-

responsive regulation in macrophages and promotes cholesterol efflux from cells to HDL 

(74). ABCG4 has been suggested to be the heterodimeric partner for ABCG1 (99). However, 

no effect of macrophage ABCG4 deficiency was observed on cholesterol efflux from 

macrophages (77). Finally, other LXR-regulated ABC-transporters expressed by macrophages 

include ABCB9, ABCB11, ABCC2, ABCC5, ABCD1, ABCD1, ABCD4, and ABCG2 (81).  

Thus although some members of the ABC-transporter superfamily might be more attractive 

candidates than others, currently still little is known about the exact function of most of the 

cholesterol-responsive ABC-transporters in macrophages in vivo and their potential relevance 

for the process of foam cell formation and atherosclerotic lesion development.  
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ABC-transporters in regulation of plasma membrane lipid asymmetry; 

implications for macrophage foam cell formation 
Lipids in plasma membranes of eukaryotic cells are asymmetrically distributed between the 

inner and outer membrane leaflet (100). The choline-containing phospholipids, 

phosphatidylcholine (PC) and sphingomyelin (SM) are primarily located on the external 

leaflet, while the amine-containing glycerophospholipids, phosphatidylserine (PS) and 

phosphatidylethanolamine (PE) are concentrated in the internal leaflet. In addition, the minor 

phospholipids phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylinositol-4-

monophosphate (PIP), and phosphatidylinositol-4,5-biphosphate (PIP2) are enriched at the 

cytoplasmic leaflet. The generation and maintenance of membrane lipid asymmetry is 

mediated by the interplay of different transporters (for review (101, 102)). Two classes of 

ATP-dependent transporters of lipids can be distinguished: (1) the aminophospholipid 

translocase or “flippase”, which transports PS and PE from the outer leaflet to the inner leaflet 

and (2) “floppases” that transport lipids in the opposite direction from inside to outside. In 

circumstances of cell activation, cell injury, or programmed cell death (apoptosis) extensive 

remodeling of membrane phospholipids asymmetry occurs resulting in rapid egress of PS and 

PE to the cell surface. This is mediated by non-selective “scramblases” 103) (see Fig 3).  

 

 

 
Fig. 3. Regulation of membrane asymmetry by transbilayer movement of phospholipids. Lipids in plasma 
membranes of eukaryotic cells are asymmetrically distributed between the inner and outer membrane leaflet. 
Phosphatidylcholine (PC) and sphingomyelin (SM) are primarily located on the external leaflet, while 
phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylinositol (PI) are concentrated in the 
internal leaflet. The generation and maintenance of membrane lipid asymmetry is mediated by the interplay of 
different transporters, including the aminophospholipid translocase or “flippase”, which transports PS and PE 
from the outer leaflet to the inner leaflet and “floppases” that transport lipids in the opposite direction from 
inside to outside. Several members of the ABC-transporter superfamily, including ABCA1, ABCG1, and 
ABCB4 are recognized as “floppases”. “Scramblases”, which are activated by e.g. cell injury or programmed 
cell death, lead to loss of the membrane asymmetry. Adapted from Graham, T.R. (132). 
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Interestingly, several members of the ABC-transporter superfamily are recognized as 

“floppases”. ABCC1, or multi-drug resistance-associated protein MRP1, has been implicated 

in the active transport of PC and SM to the outer leaflet of the membrane. Inhibition of 

ABCC1 results in decreased amounts of BSA-extractable NBD-labelled PC and SM analogs 

in erythrocyte membranes (104). Furthermore, erythrocytes from ABCC1 knockout mice 

show enhanced accumulation of NBD-labelled PS analog (105). Interestingly, inhibition of 

ABCC1 for prolonged periods of time also results in significantly smaller amounts of PC and 

SM present in the outer leaflet of erythrocyte membranes, suggesting that ABCC1 might also 

be involved in the maintenance of the outward orientation of endogenous choline-containing 

phospholipids (104). ABCB1, a ubiquitous transporter which confers multidrug resistance, 

actively transports hydrophobic molecules from the inner to the outer leaflet of the plasma 

membrane (91). Recently, it was demonstrated that it functions as a broad-specificity 

“floppase” for NBD-labled phospholipid analogs, including PC, PE, and SM (106, 107) and 

simple glycosphingolipids (108). ABCB4 functions as a selective “floppase” for PC (106). 

Mice deficient for ABCB4 develop severe damage to both the hepatocytes and the bile ducts 

of the liver as a result of impaired phospholipid secretion into the bile (97). Furthermore, 

using fibroblasts from transgenic mice expressing human ABCB4 it was confirmed that 

ABCB4 promotes the transfer of PC from the inner to the outer leaflet of the plasma 

membrane (109). Erythrocytes from mice with a homozygous disruption of ABCB1 or 

ABCB4 displayed reduced PC cell surface translocation, supporting a role for these 

transporters in natural PC translocation (110). Although both ABCB4 and ABCB1 can 

translocate PC, ABCB1 is unable to compensate for the absence of ABCB4 in transporting 

PC into the bile of ABCB4 knockout mice (97).  

Several studies have shown that the levels of PS in the outer leaflet of cells are directly related 

to the expression level of ABCA1, providing evidence that ABCA1 functions as a PS 

“floppase” and pumps PS from the inner leaflet to the outer leaflet of the cellular membrane 

(111-113). Indeed, compared to ABCA1 wild-type mice, erythrocytes from ABCA1 knockout 

mice expose reduced amounts of PS after stimulation with a Ca2+-ionophore (111). In 

addition, ABCA1 mediates the efflux of PC (114). Recently, Kobayashi et al. provided 

evidence that in addition to PC, ABCA1 also transports SM, but that it has a preference for 

PC (115).  

ABCG1, which facilitates cholesterol efflux to mature HDL, also transports PC (67, 74) and 

SM (115). In contrast to ABCA1, ABCG1 preferentially mediates the secretion of SM over 

PC (115). Interestingly, disruption of the ABCG1 gene in mice not only results in the tissue 
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accumulation of cholesterol, but also of phospholipids, while overexpression of ABCG1 

results in decreased tissue phospholipid levels (73). Mutations in ABCG5 and ABCG8 cause 

sitosterolemia which is characterized by elevated plasma levels of phytosterols due to 

increased intestinal absorption and impaired biliary secretion of sterols (116). In contrast to 

ABC-transporters with outward directed “floppase” activity, the retina-specific ABC-

transporter ABCA4 is an inward directed “flippase” that transports retinal PE derivates (117).  

In the presence of an acceptor molecule, the ‘flopping’ of lipids from the inner to the outer 

leaflet of the membrane can result in a net flux of lipids, such as phospholipids and 

cholesterol, across the lipid bilayer and into the luminal space. This process of cholesterol 

efflux will prevent the transformation of macrophages into foam cells. On the other hand, 

alterations in the lipid balance across the bilayer of the plasma membrane plays a critical role 

in membrane budding and endocytosis (118, 119). This is a combined effect of the increase in 

the number of lipids in one leaflet as well as the molecular shape of the phospholipids. The 

headgroup and the lipid backbone of PC and PS have similar cross-sectional areas and are 

thus cylindrical, while PE with a small headgroup is cone-shaped (120). Transbilayer 

transport of lipids thus leads to a difference in the surface area between both membrane 

monolayers and induces bending of the membrane. In agreement, incorporation of additional 

amounts of PC and SM in the outer leaflet of the plasma membrane results in reduced 

endocytosis (121). Furthermore, transport of PS from the external to the internal leaflet of the 

plasma membrane by the “flippase” aminophospholipid translocase enhances endocytosis 

(122, 123), while disruption of this transport results in defective endocytosis (124).  

Interestingly, absence of ABCA1 in Tangier fibroblasts has also been associated with 

enhanced endocytosis, probably as a result of reduction of the surface area difference between 

the two membrane leaflets due to the transport of PS to the outer leaflet (125). Conversely, 

Alder-Baerens et al. demonstrated that overexpression of ABCA1-GFP results in reduced 

receptor-mediated endocytosis of fluorescent transferrin and reduced fluid-phase endocytosis 

(126). Increased endocytosis in absence of ABCA1 can be normalized through the addition of 

synthetic PS to the outer leaflet (125). Thus, ABC-transporters with “floppase” activity can 

reduce receptor-mediated and fluid-phase endocytosis by alteration the asymmetry of the 

plasma membrane lipid bilayer. Both receptor-mediated endocytosis and fluid-phase 

macropinocytosis are important processes involved in the induction of macrophage foam cell 

formation. Thus, in addition to the generally accepted role of the ABC-transporters ABCA1 

and ABCG1 in prevention of foam cell formation by induction of cholesterol efflux from 

macrophages, these transporters are also expected to inhibit the uptake of lipids by 
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macrophages. In agreement, it was shown that upregulation of macrophage ABCA1 and 

ABCG1 by LXR activation, not only reduces macrophage foam cell formation by inducing 

macrophage cholesterol efflux but also by inhibiting fluid-phase macropinocytosis of LDL 

(127). In addition, recently we have demonstrated that specific disruption of ABCB4 in 

macrophages promoted macrophage foam cell formation and atherosclerotic lesion 

development (128). The increased foam cell formation in absence of ABCB4 was not the 

effect of macrophage ABCB4-deficiency on cholesterol and PC efflux, but rather of increased 

accumulation of modified LDL (129).  

 

Perspectives 

Current therapeutic strategies to prevent atherosclerosis are primarily based on the use of 

statins, inhibitors of the novo cholesterol synthesis that decrease serum LDL cholesterol 

levels thereby inhibiting the uptake of native and oxidatively modified LDL by macrophages 

in the arterial wall (130, 131). Despite the proven effectiveness of statins and their widespread 

use, the incidence of cardiovascular disease still remains high, indicating that there is an 

important need for new alternative therapies. With the discovery of the role of ABCA1 in 

macrophage cholesterol efflux, we have entered a new era in which the superfamily of 

evolutionary conserved ABC-transporters is linked to the pathogenesis of atherosclerosis. 

Although since the discovery of ABCA1 already several additional ABC-transporters have 

been implicated in macrophage cholesterol efflux, the quantitative role of these transporters in 

macrophage cholesterol homeostasis is still unknown. For instance, SR-BI and ABCG1 

contribute for only 20% and 22%, respectively, to the transport of cholesterol from 

macrophages to HDL indicating that still unidentified gene products are responsible for the 

cholesterol efflux to HDL. The identification of additional relevant transporters for 

cholesterol efflux to HDL forms a short term scientific challenge. On a longer term the 

modulation of ABC-transporters might lead to new therapeutic approaches which will lead to 

regression of (advanced) atherosclerotic lesions with potential beneficial effects for treatment 

of cardiovascular disease.  
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