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Cohen’s Kappa is a Weighted Average

Matthijs J. Warrens, Leiden University

Abstract: The κ coefficient is a popular descriptive statistic for summa-
rizing an agreement table. It is sometimes desirable to combine some of the
categories, for example, when categories are easily confused, and then calcu-
late κ for the collapsed table. Since the categories of an agreement table are
nominal and the order in which the categories of a table are listed is irrele-
vant, combining categories of an agreement table is identical to partitioning
the categories in subsets.

In this paper we prove that given a partition type of the categories, the
overall κ-value of the original table is a weighted average of the κ-values
of the collapsed tables corresponding to all partitions of that type. The
weights are the denominators of the kappas of the subtables. An immediate
consequence is that Cohen’s κ can be interpreted as a weighted average of the
κ-values of the agreement tables corresponding to all non-trivial partitions.

The κ-value of the 2×2 table that is obtained by combining all categories
other than the one of current interest into a single “all others” category,
reflects the reliability of the individual category. Since the overall κ-value is a
weighted average of these 2×2 κ-values the category reliability indicates how
a category contributes to the overall κ-value. It would be good practice to
report both the overall κ-value and the category reliabilities of an agreement
table.

Key words: Inter-rater reliability; Nominal agreement; Partitioning
categories; Scott’s pi; Goodman and Kruskal’s lambda.
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1 Cohen’s kappa

The κ coefficient (Cohen, 1960; Fleiss, 1981; Brennan & Prediger, 1981;
Maclure & Willett, 1987; Zwick, 1988; Hsu & Field, 2003; Warrens, 2008a,b,c,
2010a,b,d, 2011) is a popular descriptive statistic for summarizing the cross
classification of two nominal variables with n ∈ N≥2 identical categories.
Originally proposed as a measure of agreement between two observers who
each rate the same sample of objects (individuals, observations) on a nom-
inal (unordered) scale with the same number of n categories, κ has been
applied to square cross-classifications encountered in psychometrics, educa-
tional measurement, epidemiology, diagnostic imaging (Kundel & Polansky,
2003), map comparison (Visser & Nijs, 2006) and content analysis (Krip-
pendorff, 2004). The popularity of κ has led to the development of many
extensions (Nelson & Pepe, 2000; Kraemer, Periyakoil & Noda, 2004), in-
cluding multi-rater kappas (Conger 1980; Warrens, 2010e), kappas for groups
of raters (Vanbelle & Albert, 2009a,b) and weighted kappas (Cohen, 1968;
Vanbelle & Albert, 2009c; Warrens, 2010c, 2011). The value of κ is 1 when
perfect agreement between the two observers occurs, 0 when agreement is
equal to that expected under independence, and negative when agreement
is less than expected by chance.

Suppose that two observers each independently distribute u ∈ N≥1 ob-
jects (individuals, things) among a set of n mutually exclusive categories
that are defined in advance. To measure the agreement among the two
observers, a first step is to obtain a square contingency table F = {fjk}
where fjk indicates the number of objects placed in category j by the first
observer and in category k by the second observer (j, k ∈ {1, 2, . . . , n}). We
assume that the categories of the observers are in the same order, so that
the diagonal elements fjj of F reflect the number of objects put in the same
categories by both observers (the agreements). For notational convenience,
let P = {pjk} be the corresponding table of proportions with relative fre-
quencies pjk = fjk/u. Row and column totals

pj =
n∑

k=1

pjk and qj =
n∑

k=1

pkj

are the marginal totals of P. The κ coefficient is defined as

κ =
P − E
1− E

=

∑n
j=1 pjj −

∑n
j=1 pjqj

1−
∑n

j=1 pjqj
,

where

P =
n∑

j=1

pjj and E =
n∑

j=1

pjqj

are, respectively, the proportion of observed agreement and the proportion
of agreement expected by chance alone.
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As an example we consider Table 8.12 in Agresti (2007, p. 269) which
reports the religious affiliation in 2004 and at age 16 of 2574 subjects for
categories 1) Protestant, 2) Catholic, 3) Jewish, and 4) None or other. Table
1 contains the corresponding relative frequencies of this 4 × 4 table. We
have P = .477 + .252 + .021 + .053 = .803, E = (.554)(.545) + (.333)(.272) +
(.025)(.024) + (.088)(.160) = .407 and κ = .668.

Table 1: Table of relative frequencies corresponding to Table 8.7 in Agresti
(2007, p. 269).

Affiliation Affiliation in 2004
at age 16 1 2 3 4 Totals
1 .477 .015 .001 .061 .554
2 .039 .252 .000 .042 .333
3 .000 .000 .021 .003 .025
4 .028 .005 .002 .053 .088

Totals .545 .272 .024 .160 1.000

The number of categories used in various classification schemes varies
from the minimum number of two to five in many practical applications.
Cohen’s κ can be seen as an overall measure of agreement across all cat-
egories. It is sometimes desirable to combine some of the n ∈ N≥3 cate-
gories (Warrens, 2010b), for example, when categories are easily confused
(Schouten, 1986) or if one is interested in the degree of agreement for a par-
ticular category (Fleiss, 1981; Fleiss, Levin & Paik, 2003). In the latter case,
the n× n agreement table can be collapsed into a 2× 2 table by combining
all categories other than the one of current interest into a single “all others”
category. The κ-value of the collapsed 2 × 2 table is then an indicator of
the degree of agreement for the individual category (Fleiss, 1981). It turns
out that, if we consider the collapsed 2 × 2 tables for all n categories, the
κ-value of the original n × n table is a weighted average of the individual
kappas of the 2 × 2 tables, where the weights are the denominators of the
individual kappas (Kraemer, 1979; Vanbelle & Albert, 2009a).

In this paper we show that the interpretation of the κ-value as an “aver-
age” value is much broader than a weighted average of 2×2 kappas. It turns
out that the overall κ-value is a weighted average of κ-values corresponding
to all sorts of subtables. Since the categories of an agreement table are nom-
inal and the order in which the categories of a table are listed is irrelevant,
combining categories of an agreement table is identical to partitioning the
categories in subsets. In this paper we prove that given a partition type of
the categories, the κ-value of the n × n table is a weighted average of the
κ-values of the collapsed tables corresponding to all partitions of that type.
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The weights are the denominators of the kappas of the collapsed tables.
The paper is organized as follows. The implications of the main result

are first illustrated in the next section for the case n = 4. The main result
is presented in Section 3. In Section 4 we consider two kappa-like statistics,
namely, Scott’s (1955) π and Goodman and Kruskal’s (1954) λ. Similar to
κ, the descriptive statistics π and λ are of the form (P −E†)/(1−E†) where
the definition of E† is different for each statistic. We investigate whether
results analogous to the main result in Section 3 may be derived for these
agreement measures. Section 5 contains a discussion.

2 Numerical illustration

In this section we give an illustration of Theorem 1 presented in the next
section. As an example we consider the 4 × 4 agreement table presented
in Table 1. There are five ways of collapsing a 4 × 4 table. Apart from
keeping the agreement table intact or combining all categories into a single
“ all others” category, there are three non-trivial ways of collapsing a 4× 4
table, namely, combining all categories except one into a single category (for
example {{1, 2, 3} , {4}}), combining 2 categories into one new category and
combining the 2 other categories into a second new category (for example
{{1, 2} , {3, 4}}), and combining 2 categories into a new category while leav-
ing the others intact (for example {{1, 2} , {3} , {4}}). For each collapsed
table there is a corresponding κ-value. In the following it is discussed how
the κ-values of the collapsed tables are related to the κ-value of the original
4× 4 table.

Table 2: The four collapsed 2 × 2 tables that are obtained by combining
three of the four categories of Table 1.

{1} {2, 3, 4} Totals {2} {1, 3, 4} Totals
{1} .477 .077 .554 {2} .252 .081 .333
{2, 3, 4} .068 .378 .446 {1, 3, 4} .020 .647 .667

Totals .545 .455 1.00 Totals .272 .728 1.00

{3} {1, 2, 4} Totals {4} {1, 2, 3} Totals
{3} .021 .004 .025 {4} .053 .035 .088
{1, 2, 4} .003 .972 .975 {1, 2, 3} .106 .806 .912

Totals .024 .976 1.00 Totals .160 .840 1.00

Fleiss (1981) and Fleiss, Levin and Paik (2003) pointed out that an
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agreement table can be collapsed into a 2×2 table by combining all categories
other than the one of current interest into a single category. For an individual
category the κ-value of the corresponding 2× 2 table is an indicator of the
degree of agreement of the category (Fleiss, 1981). Hence, with n categories
an agreement table can be collapsed into n different 2× 2 tables. The four
collapsed 2 × 2 tables that are obtained by combining three of the four
categories of Table 1 are presented in Table 2.

Let κ {2, 3, 4} denote the κ-value of the 2 × 2 table that is obtained by
combining categories 2, 3 and 4. Furthermore, let E {2, 3, 4} denote the
proportion of chance-expected agreement of the same 2 × 2 table. For the
data in Table 1 we have

κ1 = κ {2, 3, 4} = .707, w1 = 1− E {2, 3, 4} = 1− .505 = .495,
κ2 = κ {1, 3, 4} = .763, w2 = 1− E {1, 3, 4} = 1− .576 = .424,
κ3 = κ {1, 2, 4} = .861, w3 = 1− E {1, 2, 4} = 1− .953 = .047,
κ4 = κ {1, 2, 3} = .357, w4 = 1− E {1, 2, 3} = 1− .781 = .219.

Note that weights w1, w2, w3 and w4 are the denominators of κ1, κ2, κ3 and
κ4. Fleiss (1981, p. 218) noted that the original κ-value (= .668) is identical
to the weighted arithmetic mean of κ1, κ2, κ3 and κ4 using the weights w1,
w2, w3 and w4. We have∑4

i=1wiκi∑4
i=1wi

=
(.495)(.707) + (.424)(.763) + (.047)(.861) + (.219)(.357)

.495 + .424 + .047 + .219

=
.793
1.186

= .668 = κ.

Thus, the overall κ-value is equivalent to a weighted average of the κ-values
of the 4 collapsed 2× 2 tables that are obtained by combining all categories
except one into a single category. A proof of this property of Cohen’s κ for
agreement tables with n ∈ N≥3 categories can be found in Kraemer (1979)
and Vanbelle and Albert (2009a).

There are two other non-trivial ways of collapsing a 4 × 4 table. For
example, instead of combining 3 categories into a single category, the 4× 4
table can be collapsed into a 2 × 2 table by combining 2 categories into
one new category and combining the 2 other categories into a second new
category. This can be done in three different ways. Let κ {1, 2} {3, 4} denote
the κ-value of the 2×2 table that is obtained by combining categories 1 and
2, and 3 and 4. Furthermore, let E {1, 2} {3, 4} denote the proportion of
chance-expected agreement of the same 2× 2 table. For the data in Table 1
we have

κ5 = κ {1, 2} {3, 4} = .460, w5 = 1− E {1, 2} {3, 4} = 1− .745 = .255,
κ6 = κ {1, 3} {2, 4} = .695, w6 = 1− E {1, 3} {2, 4} = 1− .511 = .489,
κ7 = κ {1, 4} {2, 3} = .759, w7 = 1− E {1, 4} {2, 3} = 1− .558 = .442.
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Again, note that the weights w5, w6 and w7 are the denominators of κ5, κ6

and κ7. We have∑7
i=5wiκi∑7
i=5wi

=
(.255)(.460) + (.489)(.695) + (.442)(.759)

.255 + .489 + .442

=
.793
1.186

= .668 = κ,

which shows that the weighted average of κ5, κ6 and κ7, with weights w5,
w6 and w7, is equivalent to the κ-value of the original 4× 4 table.

A third possibility is that we combine only 2 categories into a single
category while leaving the other 2 categories intact. The 4× 4 table is then
collapsed into a 3 × 3 table. This can be done in six different ways. Let
κ {1, 2} denote the κ-value of the 3× 3 table that is obtained by combining
categories 1 and 2, and let E {1, 2} denote the proportion of chance-expected
agreement of the same 3× 3 table. For the data in Table 1 we have

κ8 = κ {1, 2} = .453, w8 = 1− E {1, 2} = 1− .739 = .261,
κ9 = κ {1, 3} = .655, w9 = 1− E {1, 3} = 1− .434 = .566,
κ10 = κ {1, 4} = .766, w10 = 1− E {1, 4} = 1− .543 = .457,
κ11 = κ {2, 3} = .661, w11 = 1− E {2, 3} = 1− .422 = .578,
κ12 = κ {2, 4} = .709, w12 = 1− E {2, 4} = 1− .484 = .516,
κ13 = κ {3, 4} = .674, w13 = 1− E {3, 4} = 1− .413 = .587,

and ∑13
i=8wiκi∑13
i=8wi

=
(.261)(.453) + (.566)(.655) + (.457)(.766)
.261 + .566 + .457 + .578 + .516 + .587

+
(.578)(.661) + (.516)(.709) + (.587)(.674)
.261 + .566 + .457 + .578 + .516 + .587

=
1.982
2.964

= .668 = κ.

Hence, the κ-value of the original 4 × 4 table is equivalent to a weighted
average of the κ-values of all 3× 3 tables that are obtained by combining 2
categories.

Summarizing, we have shown in this section that for the n = 4 case there
are three types of collapsing an agreement table. If we consider all collapsed
tables corresponding to a particular type and calculate the weighted average
of the corresponding kappas, using the denominators of the individual kap-
pas as weights, then this mean value is identical to the κ-value of the original
4× 4 table. Furthermore, if we consider all collapsed tables from several or
all of the partition types, then the weighted mean of the individual kappas
is again equivalent to the original κ-value. For example, we have∑13

i=1wiκi∑13
i=1wi

= κ.
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These observations are formalized in the next section.

3 Main result

In this section we present the main result. We first discuss some terminology
and notation. Let the n ∈ N≥3 nominal categories of the agreement table
be the elements of the set C = {c1, c2, . . . , cn}. A partition of C is a set
of nonempty subsets of C such that every element in C is in exactly one
of these subsets. Since the categories of an agreement table are nominal
and the order in which the categories of a table are listed is irrelevant,
combining categories of a n × n table is identical to partitioning C into
m ∈ {2, 3, . . . , n} subsets. The n× n agreement table can be collapsed into
a m × m table by combining categories that are in the same subset of a
given partition. For n = 4, examples of partitions of C = {c1, c2, c3, c4} are
{{c1, c2} , {c3, c4}} and {{c1, c4} , {c2} , {c3}}. The corresponding agreement
tables have, respectively, sizes 2× 2 and 3× 3.

For a given partition type let a1 denote the number of subsets of size 1,
a2 the number of subsets of size 2, ..., and an the subsets of size n. We have
the identities

n =
n∑

i=1

iai = a1 + 2a2 + . . .+ nan

and

m =
n∑

i=1

ai = a1 + a2 + . . .+ an.

In the following we are interested in all partitions of a certain type, that is,
all partitions that there are for fixed values of a1, a2, . . . , an. The type of a
partition will be denoted by the (n− 1)-tuple (a1, a2, . . . , an−1). Note that
by defining the type of a partition by a (n−1)-tuple instead of a n-tuple, we
avoid the trivial partition with element an = 1 that combines all elements
of C into a single subset. We discussed three types of partitions for the
case n = 4 in the previous section, namely, (1, 0, 1), (0, 2, 0) and (2, 1, 0).
Furthermore, we define the quantities

• d = the number of partitions of the type (a1, a2, . . . , an−1);

• e = the number of partitions of the type (a1, a2, . . . , an−1) in which
two categories are in the same subset.

The quantity d gives the number of different m×m tables for the partition
type (a1, a2, . . . , an−1). For example, for n = 4 and partition types (1, 0, 1),
(0, 2, 0) and (2, 1, 0) we have, respectively, d = 4, d = 3 and d = 6 (see
Section 2). Note that the quantity e is “well-defined” since we consider
all d partitions of the type (a1, a2, . . . , an−1). For example, for n = 4 and
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partition types (1, 0, 1), (0, 2, 0) and (2, 1, 0), we have, respectively, e = 2,
e = 1 and e = 1 (see Section 2). For the identity partition we have e = 0.
Furthermore, note that d > e since we ignore the partition that combines
all categories into a single category.

Theorem 1 shows that given a partition type (a1, a2, . . . , an−1) of n ∈ N≥3

categories, the κ-value of the n×n table is a weighted average of the κ-values
of the d collapsed m×m tables, where the weights are the denominators of
the individual kappas.

Theorem 1. Consider an agreement table with n ∈ N≥3 categories and
consider all d partitions of the type (a1, a2, . . . , an−1). Let κ denote the
κ-value of the n × n table and let Pi and Ei for i ∈ {1, 2, . . . , d} denote,
respectively, the observed and chance-expected agreement of the m × m
tables corresponding to the d partitions. We have

κ =
∑d

i=1wiκi∑d
i=1wi

,

where

κi =
Pi − Ei

1− Ei
and wi = 1− Ei,

for i ∈ {1, 2, . . . , d}.
Proof: We first determine the sum of the Pi. The proportion of observed
agreement Pi of a m × m table is equal to P , the proportion of observed
agreement of the n× n table, plus a sum of the disagreements between the
categories that are combined. If we consider all d partitions and the Pi of
the corresponding collapsed m×m tables, a pair of categories is combined
a total of e times. Hence, if we sum the Pi we have

d∑
i=1

Pi = dP + e
n−1∑
j=1

n∑
k=j+1

(pjk + pkj). (1)

Since
n−1∑
j=1

n∑
k=j+1

(pjk + pkj) =
n∑∑

j,k=1

pjk −
n∑

j=1

pjj = 1− P,

(1) is equal to

d∑
i=1

Pi = dP + e(1− P ) = (d− e)P + e. (2)

Next we determine the sum of the Ei. Given a partition of the type
(a1, a2, . . . , an−1), the row totals of the m ×m table are obtained by sum-
ming the pj of the categories that are combined, whereas the column totals
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are obtained by summing the qj of the categories that are combined. The
proportion of the chance-expected agreement Ei of a m ×m table is then
obtained by adding the products of the row and column totals of the new
categories. Since

(pj + pk)(qj + qk) = (pjqj + pkqk) + (pjqk + pkqj),

the quantity pjqj is exactly once in a partition. Furthermore, the proportion
of the chance-expected agreement Ei of a m ×m table is thus equal to E,
the proportion of chance-expected agreement of the n×n table, plus a sum
of the pjqk +pkqj (j 6= k) of the categories that are combined. If we consider
all d partitions and the Ei of the corresponding collapsed m×m tables, two
categories j and k occur e times together in some subset. Hence, if we sum
the Ei we have

d∑
i=1

Ei = dE + e

n−1∑
j=1

n∑
k=j+1

(pjqk + pkqj). (3)

Since

n−1∑
j=1

n∑
k=j+1

(pjqk + pkqj) =
n∑∑

j,k=1

pjqk −
n∑

j=1

piqi

=
n∑

j=1

pj

n∑
k=1

qk − E = 1− E,

(3) is equal to

d∑
i=1

Ei = dE + e(1− E) = (d− e)E + e. (4)

Finally, using (2) and (4) we have∑d
i=1wiκi∑d
i=1wi

=
∑d

i=1 Pi −
∑d

i=1Ei∑d
i=1(1− Ei)

=
(d− e)P − (d− e)E
(d− e)− (d− e)E

. (5)

Since d − e > 0, (5) is equal to (P − E)/(1 − E) = κ. This completes the
proof. �

Since they cancel out, we did not require explicit formulas for the quan-
tities d and e in the proof of Theorem 1. For example, the number of set
partitions of C of the type (a1, a2, . . . , an−1), that is, the number of set par-
titions with a1 subsets of size 1, a2 subsets of size 2, and so on, is given
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by

d (a1, a2, . . . , an−1) =
n!

(1!)a1 (a1!) (2!)a2 (a2!) · · · ((n− 1)!)an−1 (an−1!)

=
n!∏n−1

i=1 (i!)ai
∏n−1

i=1 (ai!)
(6)

(Abramowitz & Stegun, 1965, p. 823). Thus, the number of different m×m
tables given a partition type (a1, a2, . . . , an−1) of C is given by the formula
in (6).

Theorem 1 has some immediate consequences. For example, if we con-
sider all partitions of two partition types into m1 and m2 categories, then
the κ-value of the original n× n table is a weighted average of the κ-values
of all m1 ×m1 tables and m2 ×m2 tables. Instead of focusing on two par-
titions we could also consider all partitions of n categories. The number
of partitions of a set with n elements is given by the nth Bell number Bn

(Spivey, 2008) which is given by

Bn =
n∑

h=0

S(n, h) =
n∑

h=0

1
h!

h∑
i=0

(−1)h−i

(
h

i

)
in. (7)

In (7), S(n, h) is the Stirling number of the second kind, which is the num-
ber of ways to partition a set with n elements into exactly h nonempty
subsets (Abramowitz & Stegun, 1965, p. 824; Graham, Knuth & Patashnik,
1989, p. 243-253). The first few Bell numbers for n = 3, 4, 5, 6, 7, . . ., are
5, 15, 52, 203, 877, . . .. For example, for Table 1 with n = 4, B4 = 15, and we
have the 13 partitions presented in Section 2. The 2 remaining partitions
are the identity partition that leaves the original 4× 4 table intact, and the
trivial partition that combines all elements into a single subset.

We have the following corollary.

Corollary 1. Consider an agreement table with n ∈ N≥3 categories and
consider the Bn − 1 individual kappas of the smaller agreement tables that
are obtained by taking all nontrivial partitions and the identity partition.
The overall κ-value of the n×n table is a weighted average of the individual
κ-values, where the weights are the denominators of the individual kappas.

4 Kappa-like statistics

In this section we investigate whether results similar to Theorem 1 for Co-
hen’s κ hold for the descriptive statistics Scott’s (1955) π and Goodman
and Kruskal’s (1954) λ. Similar to κ, the latter statistics are of the form
(P − E∗)/(1− E∗) where the definition of E∗ is different for each statistic.
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Reviews of the rationales behind κ, π and λ can be found in Zwick (1988),
Hsu and Field (2003) and Warrens (2010a).

The measure π is defined as

π =
P − E∗

1− E∗
=

∑n
j=1 pjj −

∑n
j=1

(
pj+qj

2

)2

1−
∑n

j=1

(
pj+qj

2

)2 ,

where

E∗ =
n∑

j=1

(
pj + qj

2

)2

(8)

is the proportion of chance-expected agreement if it is assumed that the
frequency distribution underlying the two nominal variables is the same for
both variables (Zwick, 1988; Hsu & Field, 2003; Warrens, 2010a). For the
data in Table 1 we have E∗ = .409 and π = .667.

Using the quantity

rj =
pj + qj

2
the proportion of chance-expected agreement (8) can be written as

E∗ =
n∑

j=1

r2j

from which it follows that π is a special case of κ. We therefore have the
following consequence of Theorem 1.

Corollary 2. Consider an agreement table with n ∈ N≥3 categories and
consider all d partitions of the type (a1, a2, . . . , an−1). Let π denote the
π-value of the n × n table and let Pi and E∗i for i ∈ {1, 2, . . . , d} denote,
respectively, the observed and chance-expected agreement of the m × m
tables corresponding to the d partitions. We have

π =
∑d

i=1wiπi∑d
i=1wi

,

where

πi =
Pi − E∗i
1− E∗i

and wi = 1− E∗i ,

for i ∈ {1, 2, . . . , d}.

Corollary 2 shows that given a partition type (a1, a2, . . . , an−1) of n ∈ N≥3

categories, the π-value of the n×n table is a weighted average of the π-values
of the d collapsed m×m tables, where the weights are the denominators of
the d π-values.

Analogous to Corollary 1 we have the following result.
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Corollary 3. Consider an agreement table with n ∈ N≥3 categories and
consider the Bn − 1 π-values corresponding to the smaller agreement ta-
bles that are obtained by taking all nontrivial partitions and the identity
partition. The overall π-value of the n × n table is a weighted average of
individual π-values, where the weights are the denominators of the Bn − 1
individual statistics.

The measure λ is defined as

λ =
P − E†

1− E†
=

∑n
j=1 pjj −maxj

(
pj+qj

2

)
1−maxj

(
pj+qj

2

) ,

where

E† = max
j

(
pj + qj

2

)
is the arithmetic mean of the marginal totals of the most abundant category
(Goodman & Kruskal, 1954). For the data in Table 1 we have E† = .550
and λ = .564.

Theorem 2 shows that a result analogous to Theorem 1 and Corollary
2 for κ and π does not hold for λ. With regard to Theorem 2 we only
consider the partition type (1, 0, . . . , 1), that is, we collapse the n× n table
into n different 2× 2 tables by combining all categories other than the one
of current interest into a single “all others” category. Theorem 2 shows that
λ can be interpreted as a weighted average of the n 2× 2 lambdas if E† ≥ 1

2
for the n×n table, that is, if the popular category is used on average in half
or more than half of the ratings. This is the case, for example, for the data
in Table 1, where we have E† = (.554 + .545)/2 = .550 > 1

2 .

Theorem 2. Consider an agreement table with n ∈ N≥3 categories and
consider the n partitions of the type (1, 0, . . . , 1). Let λ denote the λ-value of

the n× n table and let Pi and E†i for i ∈ {1, 2, . . . , n} denote, respectively,
the proportions of observed and chance-expected agreement of the 2 × 2
tables corresponding to the n partitions. We have∑n

i=1wiλi∑n
i=1wi

{
= λ if E† ≥ 1

2

< λ if E† < 1
2 and P < 1,

where

λi =
Pi − E†i
1− E†i

and wi = 1− E†i

for i ∈ {1, 2, . . . , n}.
Proof: Since λ is a function of P and has a similar form as κ, the proof is
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similar to the proof of Theorem 1. We first determine the sum of the Pj .
Using d = n and e = n− 2 in (2) we obtain

n∑
i=1

Pi = 2P + (n− 2). (9)

Next we determine the sum of the Ei. If we combine all categories except
category i, the marginal totals corresponding to the “all others” category
are given by

n∑
j=1

pj − pi = 1− pi, and
n∑

j=1

qj − qi = 1− qi. (10)

Using the identities in (10) we have

E†i = max
(
pi + qi

2
,
2− pi − qi

2

)
= max

(
pi + qi

2
, 1− pi + qi

2

)
.

Furthermore, let E† = (pj+qj)/2, so that pj+qj ≥ pi+qi for i ∈ {1, 2, . . . , n}.
We have

E†i = 1− pi + qi
2

for i ∈ {1, 2, . . . , n} and i 6= j.
We distinguish two cases. If (pj + qj)/2 > 1

2 we have

n∑
i=1

E†i =
n∑

i=1

(
1− pi + qi

2

)
−
(

1− pj + qj
2

)
+
pj + qj

2
= 2E†+(n−2). (11)

Using (9) and (11) we have∑n
i=1wiλi∑n
i=1wi

=
P − E†

1− E†
= λ.

Hence, λ is a weighted mean of the λi if E† > 1
2 .

On the other hand, if (pj + qj)/2 ≤ 1
2 we have

n∑
i=1

E†i =
n∑

i=1

(
1− pi + qi

2

)
= n−

n∑
i=1

pi + qi
2

= n− 1. (12)

Using (9) and (12) we have∑n
i=1wiλi∑n
i=1wi

=
2P + (n− 2)− (n− 1)

n− (n− 1)
= 2P − 1.

Thus, if E† = 1
2 we have∑n

i=1wiλi∑n
i=1wi

= 2P − 1 =
P − 1

2

1− 1
2

= λ.
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Finally, it must be shown that the inequality

P − E†

1− E†
> 2P − 1 (13)

holds if E† < 1
2 and P < 1. Since 1−E† > 0, multiplying both sides of (13)

by 1− E† gives P − E† > (2P − 1)(1− E†), which is equivalent to

(1− P )(1− 2E†) > 0. (14)

Since P < 1 and E† < 1
2 , inequality (14), and hence (13), holds. This

completes the proof. �

5 Discussion

Cohen’s (1960) κ is a popular descriptive statistic for summarizing the cross
classification of two nominal variables with identical categories. In the liter-
ature it has been frequently noted that Cohen’s κ can be seen as an overall
measure of agreement across all categories. This notion has been formalized
here in this paper. The main result of this paper is that given a partition
type of the n ≥ 3 categories, the κ-value of the n × n table is a weighted
average of the κ-values of the tables corresponding to all partitions of that
type. The weights are the denominators of the individual kappas (Theorem
1). A direct consequence of Theorem 1 is that Cohen’s κ is equivalent to a
weighted average of the kappas corresponding to the smaller agreement ta-
bles that are obtained by taking all nontrivial partitions. Theorem 1 can also
be formulated for the extensions of Cohen’s κ to groups of raters (Vanbelle
& Albert, 2009a,b).

In the second part of the paper we considered two kappa-like statistics
and investigated whether results analogous to Theorem 1 could be derived
for these agreement measures. Corollary 2 shows that Scott’s (1955) π can,
analogous to κ, be interpreted as a weighted average: given a partition type
of the n categories, the π-value of the n×n table is a weighted average of the
π-values of the collapsed tables corresponding to all partitions of that type.
Theorem 2 shows that Goodman and Kruskal’s (1954) λ can be interpreted
as a weighted average of 2 × 2 lambdas if the popular category is used on
average in half or more than half of the ratings. The latter result shows that
not all measures of the form (P − E)/(1− E), where the definition of E is
different for each statistic, can be interpreted as a weighted average.

Theorem 1 provides an alternative proof to an existence theorem pre-
sented in Warrens (2010b). In this paper it was shown that for any nontrivial
n×n agreement table, there exist two categories such that, when combined,
the κ-value of the collapsed (n− 1)× (n− 1) agreement table is higher than
the original κ-value. In addition, there exist two categories such that, when
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combined, the κ-value of the collapsed table is smaller than the original κ-
value. Theorem 1 shows that the κ-value of the n × n table is a weighted
average of the κ-values of all the (n − 1) × (n − 1) tables that can be ob-
tained by combining two categories. The result in Warrens (2010b) then
follows from the fact that a weighted average of a set of elements is bounded
by the maximum and minimum value of the elements. More generally, it
follows from Theorem 1 that for any partition type there exists a partition
for which the κ-value of the collapsed agreement table is higher than the
original κ-value. In addition, there exists a partition of the same partition
type for which the κ-value of the corresponding agreement table is lower
than the overall κ-value. An illustration of these properties of Cohen’s κ is
presented in Section 2.

In Section 2 it was shown that a 4× 4 agreement table can be collapsed
into a variety of smaller tables. In practice certain collapsed tables are more
interesting than others. Tables that are especially interesting are the 2× 2
tables that are obtained by combining all categories other than the one of
current interest into a single “all others” category. For an individual cate-
gory the κ-value of this 2× 2 table is an indicator of the degree of reliability
of the category (Fleiss, 1981; Fleiss et al., 2003). Using these 2× 2 κ-values
a researcher can inspect how a category contributes to the overall κ-value.
Consider for example the reliabilities κ1 = .707, κ2 = .763, κ3 = .861 and
κ4 = .357 of the four categories from the numerical illustration in Section 2.
Since the overall κ-value (κ = .668) is a weighted average of κ1, κ2, κ3 and
κ4, we immediately see that the ratings on category 4 contribute negatively
to the overall agreement. The remaining three categories have a positive
contribution to the overall agreement. Since the category reliabilities pro-
vide substantially more information on the nominal scale, it would be good
practice to report both the overall κ-value and the category reliabilities of
an agreement table.
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