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Cohen’s quadratically weighted kappa is higher than

linearly weighted kappa for tridiagonal agreement tables

Matthijs J. Warrens, Leiden University

Abstract: Cohen’s weighted kappa is a popular descriptive statistic for
measuring the agreement between two raters on an ordinal scale. Popular
weights for weighted kappa are the linear weights and the quadratic weights.
It has been frequently observed in the literature that the value of the quadrat-
ically weighted kappa is higher than the value of the linearly weighted kappa.
In this paper this phenomenon is proved for tridiagonal agreement tables. A
square table is tridiagonal if it has nonzero elements only on the main diag-
onal and on the two diagonals directly adjacent to the main diagonal.

Key words: Cohen’s kappa; Ordinal agreement; Linear weights; Quadratic
weights.
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1 Introduction

The kappa coefficient (denoted by κ) is a widely used descriptive statistic for
summarizing two nominal variables with identical categories [2, 5, 19, 20, 21,
22, 25, 26]. Cohen’s κ was originally proposed as a measure of agreement
between two raters (observers) who rate each of the same sample of objects
(individuals, observations) on a nominal scale with n ∈ N≥2 mutually ex-
clusive categories. The κ statistic has been applied to numerous agreement
tables encountered in psychology, educational measurement and epidemiol-
ogy. The value of κ is 1 when perfect agreement between the two raters
occurs, 0 when agreement is equal to that expected under independence,
and negative when agreement is less than that expected by chance. The
popularity of κ has led to the development of many extensions [1, 11, 23].

A popular generalization of Cohen’s κ is the weighted kappa coefficient
(denoted by κw) which was proposed for situations where the disagreements
between the raters are not all equally important [6, 9, 10, 13, 16, 25]. For
example, when categories are ordered, the seriousness of a disagreement de-
pends on the difference between the ratings. Cohen’s κw allows the use of
weights to describe the closeness of agreement between categories. Popular
weights are the so-called linear weights [4, 12, 16] and the quadratic weights
[9, 13]. In this paper the linearly weighted kappa will be denoted by κ1,
whereas the quadratically weighted kappa will be denoted by κ2.

A frequent criticism against the use of κw is that the weights are arbi-
trarily defined [16]. In support of κ2 it turns out that κ2 is equivalent to
the product-moment correlation coefficient under specific conditions [6]. In
addition, κ2 may be interpreted as an intraclass correlation coefficient [9, 13].
In support of κ1 it turns out that the components of κ1 corresponding to an
n×n agreement table can be obtained from the n−1 distinct collapsed 2×2
tables that are obtained by combining adjacent categories [16].

It has been frequently observed in the literature that the value of κ2 is
higher than the value of κ1. For example, consider the data in Table 1 taken
from a study in [15]. In this study 100 patients were rated by two randomly
allocated observers on their degree of handicap. For these data we have κ1 =
0.780 < 0.907 = κ2. A value of 1 would indicate perfect agreement between
the observers. The value of κ2 does not always exceeds the value of κ1. It
turns out however that the inequality holds for a special kind of agreement
table. In this paper we prove that κ2 > κ1 when the agreement table is
tridiagonal. A tridiagonal table is a square matrix that has nonzero elements
only on the main diagonal and on the two diagonals directly adjacent to the
main diagonal [25]. Note that Table 1 is almost tridiagonal. Agreement tables
that are tridiagonal or approximately tridiagonal are frequently observed in
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Table 1: Ratings of 100 patients by pairs of observers on the degree of dis-
ability on a 6-category scale [15].

Observer 1 Row
Observer 2 0 1 2 3 4 5 totals
0 = No symptoms 5 5
1 = Not significant disability 6 2 8
2 = Slight disability 1 4 13 5 2 25
3 = Moderate disability 6 9 4 19
4 = Moderately severe dis. 2 8 1 11
5 = Severe disability 8 24 32

Column totals 6 10 21 16 22 25 100

applications with ordered categories [3, 7, 8, 14].
The paper is organized as follows. In the next section we define a partic-

ular case of κw, denoted by κm, of which κ1 and κ2 are special cases. The
main result, a conditional inequality between κm and κ` for m > ` ≥ 1, is
presented in Section 3. The result depicted in the title of this paper is an
immediate consequence of the main result.

2 Cohen’s weighted kappa

Suppose that two observers each distribute the same set of k ∈ N≥1 objects
(individuals) among a set of n ∈ N≥2 mutually exclusive categories that are
defined in advance. Let F = (fij) with i, j ∈ {1, 2, . . . , n} be the agreement
table with the ratings of the observers, where fij indicates the number of
objects placed in category i by the first observer and in category j by the
second observer. We assume that the categories of observers are in the same
order so that the diagonal elements fii reflect the number of objects put in
the same categories by the observers. For notational convenience we work
with the table of proportions P = (pij) with relative frequencies pij = fij/k.

Row and column totals

pi =
n∑

j=1

pij and qi =
n∑

j=1

pji
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are the marginal totals of P . The weighted kappa statistic can be defined as

κw =
Ow − Ew

1− Ew

(1)

where

Ow =
n∑∑

i,j=1

wijpij and Ew =
n∑∑

i,j=1

wijpiqj.

For the weights wij we require wij ∈ [0, 1] and wii = 1 for i, j ∈ {1, 2, . . . , n}.
In (1) we assume that Ew < 1 to avoid the indeterminate case Ew = 1. If we
use wij = 1 if i = j and wij = 0 if i 6= j for i, j ∈ {1, 2, . . . , n}, κw is equal to
Cohen’s unweighted κ.

Examples of weights for κw that have been proposed in the literature, are
the linear weights [4, 12, 16, 24] given by

w
(1)
ij = 1− |i− j|

n− 1
(2)

and the quadratic weights [9, 13] given by

w
(2)
ij = 1−

(
i− j
n− 1

)2

. (3)

Let m ∈ R≥1. The weights in (2) and (3) are special cases of the family of
weights given by

w
(m)
ij = 1−

(
|i− j|
n− 1

)m

for m ≥ 1.

In this paper we are particularly interested in the special case of κw given by

κm =
Om − Em

1− Em

(4)

where

Om =
n∑∑

i,j=1

w
(m)
ij pij and Em =

n∑∑
i,j=1

w
(m)
ij piqj.

Special cases of κm are the linearly weighted kappa κ1 and the quadratically
weighted kappa κ2. We have κ = κm in the case of n = 2 categories [17, 18, 19]
and if Om = 1. For the data in Table 1 we have O1 = 0.924, E1 = 0.655 and
κ1 = 0.780, and O2 = 0.982, E2 = 0.811 and κ2 = 0.907.
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3 A conditional inequality

Theorem 1 shows that, for m > ` ≥ 1, κm > κ` if P is tridiagonal. The latter
concept is captured in the following definition.

Definition. A square agreement table P is called tridiagonal if the only
nonzero elements of P are the pii for i ∈ {1, 2, . . . , n}, and the pi,i+1 and
pi+1,i for i ∈ {1, 2, . . . , n− 1}.

Theorem 1. Let n ≥ 3 and let m > ` ≥ 1. Furthermore, suppose that P
is tridiagonal and that not all the pi,i+1 and pi+1,i are 0. Then κm > κ`.
Proof: We first show that (5) is equivalent to (9). Since 1− E` and 1− Em

are positive numbers, we have κm > κ` if and only if

Om − Em

1− Em

>
O` − E`

1− E`

(5)

m
(Om − Em)(1− E`) > (O` − E`)(1− Em)

m
Om − Em −OmE` + EmE` > O` − E` −O`Em + E`Em. (6)

Subtracting O` +E`Em from and adding Em +O`E` to both sides of (6), we
obtain

(Om −O`)(1− E`) > (Em − E`)(1−O`). (7)

Let w(`) and w(m) denote the weights of pi,i+1 and pi+1,i respectively for κ`

and κm. We have

w(m) − w(`) =
1

(n− 1)`
− 1

(n− 1)m
. (8)

Since m > ` ≥ 1 it follows from (8) that w(m)−w(`) > 0. Furthermore, since
not all the pi,i+1 and pi+1,i are 0, there is an element on one of the diagonals
adjacent to the main diagonal for which the weights satisfy w(m) − w(`) > 0.
Hence Em − E` > 0, and inequality (7) is equivalent to the inequality

Om −O`

Em − E`

>
1−O`

1− E`

. (9)

Next, if P is tridiagonal inequality (9) becomes

(w(m) − w(`))
∑n−1

i=1 (pi,i+1 + pi+1,i)∑∑n
i,j=1(w

(m)
ij − w

(`)
ij )piqj

>
(1− w(`))

∑n−1
i=1 (pi,i+1 + pi+1,i)∑∑n

i,j=1(1− w
(`)
ij )piqj

. (10)
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Since
∑n−1

i=1 (pi,i+1 + pi+1,i) > 0 (not all the pi,i+1 and pi+1,i are 0), (10) is
equal to the inequality

n∑∑
i,j=1

[
(w(m) − w(`))(1− w(`)

ij )− (1− w(`))(w
(m)
ij − w

(`)
ij )
]
piqj > 0. (11)

For |i − j| = 0 we have w
(`)
ij = w

(m)
ij = 1, whereas for |i − j| = 1 we have

w
(`)
ij = w(`) and w

(m)
ij = w(m). In both cases we have (w(m)−w(`))(1−w(`)

ij ) =

(1− w(`))(w
(m)
ij − w

(`)
ij ). Hence, inequality (11) holds if

(w(m) − w(`))(1− w(`)
ij )− (1− w(`))(w

(m)
ij − w

(`)
ij ) > 0 (12)

for |i− j| ≥ 2.
We have

1− w(`)
ij =

(
|i− j|
n− 1

)`

(13a)

1− w(`) =
1

(n− 1)`
(13b)

w
(m)
ij − w

(`)
ij =

(
|i− j|
n− 1

)`

−
(
|i− j|
n− 1

)m

. (13c)

Using the identities in (8) and (13), inequality (12) is equal to[(
1

n− 1

)`

−
(

1

n− 1

)m
](
|i− j|
n− 1

)`

>

(
1

n− 1

)`
[(
|i− j|
n− 1

)`

−
(
|i− j|
n− 1

)m
]

m(
1

n− 1

)`( |i− j|
n− 1

)m

>

(
1

n− 1

)m( |i− j|
n− 1

)`

m(
|i− j|
n− 1

)m−`

>

(
1

n− 1

)m−`

. (14)

Inequality (14) and thus inequality (12) hold for |i − j| ≥ 2, and hence
inequality (11) is valid. This completes the proof. �

Recall that κ denotes Cohen’s unweighted kappa. Since κm satisfies the
conditions of the theorem in [25] we have the following result.
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Corollary 1. Let n ≥ 3. Furthermore, suppose that P is tridiagonal and
that not all the pi,i+1 and pi+1,i are 0. Then κm > κ.

Thus, the value of Cohen’s κ never exceeds the value of κm if the agreement
table is tridiagonal.

The result depicted in the title of this paper is an immediate consequence
of Theorem 1.

Corollary 2. Let n ≥ 3. Furthermore, suppose that P is tridiagonal and
that not all the pi,i+1 and pi+1,i are 0. Then κ2 > κ1 > κ.
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