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The effect of combining categories on

Bennett, Alpert and Goldstein’s S

Matthijs J. Warrens, Leiden University

Abstract: Cohen’s kappa is the most widely used descriptive measure of
interrater agreement on a nominal scale. A measure that has repeatedly been
proposed in the literature as an alternative to Cohen’s kappa is Bennett,
Alpert and Goldstein’s S. The latter measure is equivalent to Janson and
Vegelius’ C and Brennan and Prediger’s kappan. An agreement table can be
collapsed into a table of smaller size by partitioning categories into subsets.
The paper presents several results on how the overall S-value is related to
the S-values of the collapsed tables.

It is shown that, if the categories are partitioned into subsets of the same
size and if we consider all collapsed tables of this partition type, then the
overall S-value is equivalent to the average S-value of the collapsed tables.
This result illustrates that there are types of partitioning the categories that,
on average, do not result in loss of information in terms of the S-value. In
addition, it is proved that for all other partition types the overall S-value is
strictly smaller than the average S-value of the collapsed tables. A conse-
quence is that there is always at least one way to combine categories such
that the S-value increases. The S-value increases if we combine categories
on which there exists considerable disagreement.

Key words: Interrater reliability; Nominal agreement; Merging categories;
Bennett, Alpert and Goldstein’s S; Brennan and Prediger’s kappan; Janson
and Vegelius’ C; Janes’ RE; Cohen’s kappa; Cauchy-Schwarz inequality.
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1 Introduction

In various fields of science, including behavioral sciences, the biomedical
field and engineering sciences, it is frequently required that a group of ob-
jects (for example individuals) is rated by two or more experts on a set of
mutually exclusive (nominal) categories. Examples are the psychiatric diag-
nosis of patients (Fleiss 1981; Zwick 1988) or the classification of production
faults (De Mast, 2007; De Mast & Van Wieringen, 2007). Because there is
often no golden standard, the reproducibility of the ratings is taken as an
indicator of the quality of the category definitions and the raters’ ability to
apply them. Therefore, researchers typically require that the classification
task is performed by at least two raters. A standard tool for measuring in-
terrater agreement is Cohen’s (1960) kappa, denoted by κ (Kraemer, 1979;
Schouten, 1986; Brennan & Prediger, 1981; Zwick, 1988; Banerjee et al.,
1999; Kraemer et al., 2002; Hsu & Field, 2003; Vanbelle & Albert, 2009;
Warrens 2008a, 2011a). The value of Cohen’s κ is 1 when perfect agreement
between the two raters occurs, 0 when agreement is equal to that expected
under independence, and negative when agreement is less than expected by
chance.

Although Cohen’s κ has been used in thousands of applications (Hsu &
Field, 2003) various authors have identified difficulties with kappa’s interpre-
tation (Brennan & Prediger 1981; Uebersax, 1987; Maclure & Willett, 1987;
Thompson & Walter, 1988; Feinstein & Cicchetti 1990; Lantz & Nebenzahl
1996; De Mast & Van Wieringen, 2007; De Mast, 2007). The base rates
are the marginal totals of the agreement table and reflect how often the
categories were used by the raters. Because Cohen’s κ is a function of the
marginal totals the measure is known to be marginal dependent or preva-
lence dependent (Thompson & Walter 1988; Vach 2005; Von Eye & Von Eye
2008). A paradox associated with Cohen’s κ is that, for a fixed value of the
proportion of observed agreement between the raters, agreement tables with
heterogeneous marginal totals (base rates) have higher κ-values than tables
with homogeneous marginal totals. Hence, raters that use similar base rates
are penalized compared to raters with different base rates (Warrens, 2010a).
Uebersax (1987) and De Mast and Van Wieringen (2007) provide several
arguments as to why κ-values from samples with different base rates are not
comparable. Ultimately, the problem is that many agreement tables with
different marginal totals may produce the same κ-value (Uebersax, 1987, p.
144).

An agreement measure that has been proposed by various authors as
an alternative to Cohen’s κ is Bennett, Alpert and Goldstein’s (1954) S
(Umesh, Peterson & Sauber, 1989; Meyer, 1997; Warrens, 2010b). The
measure is equivalent to the measure C in Janson and Vegelius (1979, p.
260) and the coefficient RE proposed in Janes (1979), and is denoted by κn

in Brennan and Prediger (1981). Furthermore, in the case of two categories
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S is equivalent to measures discussed in, among others, Holley and Guilford
(1964), Maxwell (1977) and Krippendorff (1987). A multi-rater version of S
was proposed by Randolph (2005) and Von Eye and Mun (2006) (see also De
Mast, 2007, and Warrens, 2010c). The measure S is a linear transformation
of the proportion of observed agreement. Since S is not a function of the
marginal totals (base rates), it does not suffer from the paradoxes associated
with Cohen’s κ (Warrens, 2010a). Hsu and Field (2003) argue that S has
been proposed as an alternative to Cohen’s κ to overcome kappa’s marginal
dependency. The measure is called the free-marginal kappa in Randolph
(2005).

In the literature κ and S are usually presented as sample statistics, that
is, as functions of the data. Landis and Koch (1977), Kraemer (1979),
Bloch and Kraemer (1989), De Mast and Van Wieringen (2007) and De
Mast (2007) provided accounts of κ and/or S grounded in statistical mod-
eling, making explicit the underlying premises and assumptions. De Mast
(2007) argues that the paradoxical behavior of Cohen’s κ is explained from
the fact that it is a measure of predictive association, rather than a pure
measure of agreement (see also Bloch and Kraemer, 1989). Furthermore,
under the model discussed in De Mast (2007) and De Mast and Van Wierin-
gen (2007) statistic S is the only measure of agreement that can be given
some justification.

The number of categories used in various classification schemes varies
from the minimum number of two to five in many practical applications. It
is sometimes desirable to combine some of the categories and then calculate
the κ-value or S-value of the collapsed agreement table (Bartfay & Donner,
2000). It would be interesting to know how combining categories effects the
values of κ and S. For example, when two categories are easily confused
(Schouten, 1986) the category definitions may overlap to some degree. In
this case one could ask if it is always possible to increase or decrease the
κ-value or S-value by combining two categories. For Cohen’s κ the answer
to this question is affirmative (Warrens, 2010d). We will show in this paper
that for the measure S there is always at least one way to combine categories
such that the S-value increases. Furthermore, we will show that the S-
value increases if we combine categories on which the two raters disagree
considerably between themselves.

As a second example, if the scale of interest consists of too many cat-
egories some of the categories can be combined to reduce the number of
categories for the raters. The most extreme case would be to dichotomize
the categorical variable. In this case one could ask which type of partitioning
of the categories results in the smallest loss or distortion of the information
in terms of the S-value. We will show in this paper that if the categories are
partitioned into subsets of the same size, the overall S-value is equal to the
average S-value of all possible collapsed tables. In other words, it turns out
that we can specify partition types that, on average, do not result in loss of
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information.
The paper is organized as follows. In the next section we introduce

notation and define Cohen’s κ and Bennett et al. S. The main results of
the paper are presented in Section 3. Numerical illustrations of the main
results are presented in Section 4. In Section 5 we present a necessary and
sufficient condition for S to increase if categories are merged. Section 6
contains a discussion.

2 Cohen’s kappa and Bennett et al. S

In this section we introduce Cohen’s κ and the measure S proposed in Ben-
nett et al. (1954). We will study κ and S here as sample statistics, basically
for notational convenience, since the results presented in Section 3 are of an
algebraic nature. Alternatively, one could formulate population parameters
that κ and S intend to estimate. Population parameters for κ and S can
be found in, for example, De Mast (2007) and De Mast and Van Wieringen
(2007).

Suppose that two raters each independently assign the same z ∈ N≥1 ob-
jects (individuals, subjects) to the same set of n ∈ N≥2 unordered categories
that are defined in advance. Let F = {fij} be a square contingency table
where fij indicates the number of objects placed in category i by the first
rater and in category j by the second rater (i, j ∈ {1, 2, . . . , n}). We assume
that the categories of the observers are in the same order, so that the diag-
onal elements fii of the agreement table F reflect the number of objects put
in the same categories by both raters. For notational convenience, let P be
the corresponding table of proportions with relative frequencies pij = fij/z.
Row and column totals

pi =
n∑

j=1

pij and qi =
n∑

j=1

pji

are the marginal totals of P. The marginal totals pi and qi are also called
the base rates and they reflect how often the categories were used by raters
1 and 2 respectively.

A straightforward measure of agreement between the raters is the ob-
served proportion of agreement

P =
n∑

i=1

pii.

There is some consensus in the literature (Zwick, 1988; Hsu & Field, 2003;
De Mast, 2007; Warrens, 2008b, 2008c, 2010b) that the measure P should
be corrected for agreement due to chance. A measure that incorporates
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chance-expected agreement is Cohen’s κ (Cohen, 1960). The measure is
defined as

κ =
P − E
1− E

where

E =
n∑

i=1

piqi

is the proportion of agreement expected by chance alone (Brennan & Predi-
ger, 1981; Zwick, 1988; Hsu & Field, 2003). As an example we consider Table
8.17 in Agresti (2007, p. 272) which reports the ratings by two neurologists
of 149 subjects for categories 1) Certain multiple sclerosis, 2) Probable mul-
tiple sclerosis, 3) Possible multiple sclerosis, and 4) Doubtful, unlikely, or
definitely not multiple sclerosis. The data were originally reported in Landis
and Koch (1977). Table 1 contains the corresponding relative frequencies of
this 4× 4 table. We have

P = .255 + .074 + .034 + .067 = .430
E = (.295)(.564) + (.315)(.248) + (.235)(.074) + (.154)(.114) = .280

and
κ =

.430− .280
1− .280

= .208.

Table 1: Table of relative frequencies corresponding to Table 8.17 in Agresti
(2007, p. 272).

Neurologist 2
Neurologist 1 1 2 3 4 Totals
1 .255 .034 .000 .007 .295
2 .221 .074 .020 .000 .315
3 .067 .094 .034 .040 .235
4 .020 .047 .020 .067 .154

Totals .564 .248 .074 .114 1.00

Bennett et al. (1954) proposed the measure defined by

S =
P − 1

n

1− 1
n

=
nP − 1
n− 1

where n is the number of categories. According to Hsu and Field (2003) S
is a popular alternative for Cohen’s κ. Measure S is not a function of the
marginal totals pi and qi and therefore not marginally dependent. Moreover,
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S is a linear transformation of the proportion of observed agreement P . The
value of S is 1 when perfect agreement between the two raters occurs, and
−1/(n − 1) when P = 0. For n = 2 categories the minimum value of S is
−1. As the number of categories increases the minimum value goes to

lim
n→∞

−1
n− 1

= 0.

For the data in Table 1 we have n = 4 and S = .239.
Brennan and Prediger (1981) argued that Cohen’s κ on the one hand,

and Bennett et al. S on the other hand, are appropriate in different contexts.
Brennan and Prediger (1981) make a distinction between studies where the
marginal totals are fixed a priori or free to vary. Marginals are said to be
“fixed” whenever the marginal totals (base rates) of the categories are known
to the rater before classifying the objects. Brennan and Prediger (1981) find
Cohen’s κ appropriate in reliability studies when marginal totals are fixed.
When either or both of the marginal totals are free to vary Brennan and
Prediger (1981) proposed that κ is replaced by S.

The measure S has been criticized by various authors. Scott (1955)
and Zwick (1988) noted that the value of S can be artificially increased
by increasing the number of unused categories. In particular, since S is a
decreasing function of 1/n (Lemma 1 in Warrens, 2010b) adding categories
to which no objects are assigned by either rater, decreases 1/n and increases
S. De Mast (2007, p. 151) argues that this criticism seems misguided. Some
other limitations of S are discussed in Hsu and Field (2003). For example,
since S does not depend on the marginal totals, its value can be large when
the raters use very different base rates.

Warrens (2008b, 2010b,c) showed how the values of Cohen’s κ and S
are related. An agreement table is called weakly marginal symmetric if the
permutation that orders the marginal totals from lowest to highest is the
same for the pi and the qi. Table 2 is an example of a weakly marginal
symmetric table. Table 1 is not weakly marginal symmetric. The value of
S is higher than that of Cohen’s κ, that is, S ≥ κ, if an agreement table is
weakly marginal symmetric (Warrens, 2010b). For the data in Table 2 we
have S = .55 > .531 = κ. We also have S ≥ κ if both raters assign a certain
minimum proportion of the objects to a specified category (Warrens, 2010c).
Both conditions are commonly observed in practice Warrens (2010b,c). The
two conditions are equivalent in the case of n = 2 categories (Warrens,
2008b,c). The measure S has thus the tendency to produce higher values
than Cohen’s κ.

3 Main results

In this section we present the main results. We first introduce some addi-
tional terminology and notation.
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Table 2: Hypothetical agreement data for two raters.

Rater 2
Rater 1 1 2 3 Totals
1 .10 .00 .05 .15
2 .10 .25 .05 .40
3 .05 .05 .35 .45

Totals .25 .30 .45 1.00

Let the n ≥ 3 nominal categories of the agreement table be the elements
of the set C = {c1, c2, . . . , cn}. A partition of C is a set of nonempty subsets
of C such that every element in C is in exactly one of these subsets. Since
the categories of an agreement table are nominal and the order in which the
categories of a table are listed is irrelevant, combining categories of a n× n
table is identical to partitioning C into m ∈ {2, 3, . . . , n} subsets. The n×n
agreement table can be collapsed into a m×m table by combining categories
that are in the same subset of a given partition. For n = 4, examples of parti-
tions of C = {c1, c2, c3, c4} are {{c1, c2} , {c3, c4}} and {{c1, c4} , {c2} , {c3}}.
The corresponding agreement tables have, respectively, sizes 2×2 and 3×3.

Let a1 denote the number of subsets of size 1, a2 the number of subsets
of size 2, and so on, and an the subsets of size n. We have the identities

n =
n∑

i=1

iai = a1 + 2a2 + . . .+ nan (1a)

m =
n∑

i=1

ai = a1 + a2 + . . .+ an. (1b)

We are interested in all partitions of a certain type, that is, all partitions
that there are for fixed values of a1, a2, . . . , an. The type of a partition can
be denoted by the (n − 1)-tuple (a1, a2, . . . , an−1). Note that by defining
the type of a partition by a (n − 1)-tuple instead of a n-tuple, we avoid
the trivial partition with element an = 1 that combines all elements of C
into a single subset. Three types of partitions for n = 4 categories are
discussed in Section 4, namely, (1, 0, 1), (0, 2, 0) and (2, 1, 0). The number
of set partitions of C of the type (a1, a2, . . . , an−1), that is, the number of
set partitions with a1 subsets of size 1, a2 subsets of size 2, and so on, is
given by

d (a1, a2, . . . , an−1) =
n!

(1!)a1 (a1!) (2!)a2 (a2!) · · · ((n− 1)!)an−1 (an−1!)

=
n!∏n−1

i=1 (i!)ai
∏n−1

i=1 (ai!)
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(Abramowitz & Stegun, 1965, p. 823). Thus, the number of different m×m
tables given a partition type (a1, a2, . . . , an−1) of C is d (a1, a2, . . . , an−1).
For example, for n = 4 and partition types (1, 0, 1), (0, 2, 0) and (2, 1, 0)
we have, respectively, d (1, 0, 1) = 4, d (0, 2, 0) = 3 and d (2, 1, 0) = 6 (see
Section 4).

If we consider all partitions (m×m tables) of a particular partition type,
we may be interested in how often two categories occur together in the same
subset. This number will be denoted by e. Theorem 1 gives the formula of
e.

Theorem 1. Consider all d partitions of the type (a1, a2, . . . , an−1). The
number of times two categories are in the same subset e is given by

e = d

n−1∑
i=1

i(i− 1)ai

n(n− 1)
. (2)

Proof: We first determine the number of set partitions that two categories
are together in a subset of given size i ≥ 2. This number will be denoted by
ei. It then follows that e =

∑n−1
i=2 ei.

Consider an arbitrary subset of size i ≥ 2 of the partition type (a1, a2, . . . , an−1).
For the n− i categories that are not in this subset we consider the number
of partitions of the type (a1, . . . , ai − 1, . . . , an−1). This number is given by

d · i! ai ·
(n− i)!
n!

.

Given two fixed categories in the subset of size i, the number of ways to
choose the remaining i−2 categories in the subset from the remaining n−2
categories is

(
n−2
i−2

)
. The number of partitions in which two categories occur

together in a subset of size i is then given by

ei =
d · i! ai · (n− i)!

n!
· (n− 2)!

(n− i)!(i− 2)!
= d · i(i− 1)ai

n(n− 1)
.

Using e1 = 0, we obtain (2) by summing over all i ∈ {1, 2, . . . , n− 1}. �

The quantities d and e were also used in the proof of Theorem 1 in Warrens
(2011b). In that paper no explicit formula for the number e was presented.

We are now ready to present the main result of the paper. Given a
partition type (a1, a2, . . . , an−1) of the n categories there are d distinct m×m
tables corresponding to the d partitions of this type. Theorem 2 shows that
the overall S-value never exceeds the average S-value of the m×m tables.
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Theorem 2. Consider an agreement table with n ≥ 3 categories and con-
sider all d partitions of the type (a1, a2, . . . , an−1). Let S denote the overall
S-value of the n×n table, let P` for ` ∈ {1, 2, . . . , d} denote the proportions
of observed agreement of the m×m tables corresponding to the d partitions,
and let

S` =
P` − 1

m

1− 1
m

for ` ∈ {1, 2, . . . , d}. If P < 1, then

1
d

d∑
`=1

S` ≥ S. (3)

Proof: We first determine the average of the P`. The proportion of observed
agreement P` of a m × m table is equal to P , the proportion of observed
agreement of the n× n table, plus a sum of the disagreements between the
categories that are combined. If we consider all d partitions and the P` of
the corresponding collapsed m×m tables, a pair of categories is combined
a total of e times (Theorem 1). Hence, the average of the P`

1
d

d∑
`=1

P` =
1
d

dP + e

n−1∑
i=1

n∑
j=i+1

(pij + pji)

 . (4)

Since
n−1∑
i=1

n∑
j=i+1

(pij + pji) =
n∑

i=1

n∑
j=1

pij −
n∑

i=1

pii = 1− P,

(4) is equal to
1
d

d∑
`=1

P` = P +
e(1− P )

d
. (5)

Using (2) in (5) we obtain

1
d

d∑
`=1

P` = P +
1− P
n− 1

· 1
n

n−1∑
i=1

i(i− 1)ai = P +
1− P
n− 1

· w, (6)

where

w = w (a1, a2, . . . , an−1) =
1
n

n−1∑
i=1

i(i− 1)ai.

Using (6), the average of the S` is then given by

1
d

d∑
`=1

S` =
m
(

1
d

∑d
`=1 P`

)
− 1

m− 1
=
mw(1− P ) + (n− 1)(mP − 1)

(n− 1)(m− 1)
.
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Hence, we have (3) if and only if

mw(1− P ) + (n− 1)(mP − 1)
m− 1

≥ nP − 1. (7)

Using algebra it can be shown that for 1−P > 0 inequality (7) is equivalent
to the inequality w ≥ (n/m)− 1. The latter inequality can be written as

1
n

n−1∑
i=1

i2ai −
1
n

n−1∑
i=1

iai ≥
n

m
− 1. (8)

Using (1) and the fact that an = 0, inequality (8) is equal to(
n−1∑
i=1

i2ai

)(
n−1∑
i=1

ai

)
≥

(
n−1∑
i=1

iai

)2

. (9)

Finally, inequality (9) follows from using ui = i
√
ai and vi =

√
ai in the

Cauchy-Schwarz inequality(
n−1∑
i=1

u2
i

)(
n−1∑
i=1

v2
i

)
≥

(
n−1∑
i=1

uivi

)2

(10)

(Abramowitz & Stegun, 1965, p. 11). This completes the proof. �

Theorem 2 shows that the overall S-value is equal to or smaller than the
average S-value of the collapsed tables. Next, Theorem 3 specifies when the
overall S-value is equivalent to the average S-value.

Theorem 3. Consider the situation in Theorem 2. (3) is an equality if
and only if ak = m for some k ∈ {1, 2, . . . , n− 1} and ai = 0 for i 6= k.
Proof: The Cauchy-Schwarz inequality (10) becomes an equality if and only
if one of the (n−1)-tuples (u1, u2, . . . , un−1) and (v1, v2, . . . , vn−1) is a scalar
multiple of the other (Abramowitz & Stegun, 1965, p. 11). Hence, (3)
becomes an equality if and only if the (n − 1)-tuple (

√
a1, 2
√
a2, . . . , (n −

1)√an−1) is a multiple of (
√
a1,
√
a2, . . . ,

√
an−1). This is the case if and

only if ak = m for some k ∈ {1, 2, . . . , n− 1} and ai = 0 for i 6= k.

4 Numerical illustrations

In this section we present numerical illustrations of Theorems 2 and 3 from
Section 3. We will use the 4× 4 agreement table presented in Table 1 as an
example. Apart from keeping the agreement table intact or combining all
categories into a single category, there are three non-trivial ways of collapsing
a 4 × 4 table. We may combine all categories except one into a single
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category (Fleiss, 1981; for example {{1, 2, 3} , {4}}), combine 2 categories
into one new category and the 2 other categories into a second new category
(for example {{1, 2} , {3, 4}}), or combine 2 categories into a new category
while leaving the others intact (for example {{1, 2} , {3} , {4}}). For each
collapsed table we may calculate the corresponding κ-value and S-value. In
this section it is shown how the κ-values and S-values of the collapsed tables
are related to the overall κ-value and the overall S-value of the original 4×4
table.

An n×n agreement table can be collapsed into n distinct 2×2 tables by
combining all categories except one into a single “all others” category (Fleiss,
1981). Given a 4 × 4 table like the one in Table 1, there are four ways to
combine all categories except one into a single category. Let κ {2, 3, 4} and
S {2, 3, 4} denote the κ-value and S-value of the 2× 2 table that is obtained
by combining categories 2, 3 and 4. For the data in Table 1 we have

κ1 = κ {2, 3, 4} = .337, S1 = S {2, 3, 4} = .302,
κ2 = κ {1, 3, 4} = −.022, S2 = S {1, 3, 4} = .168,
κ3 = κ {1, 2, 4} = .118, S3 = S {1, 2, 4} = .517,
κ4 = κ {1, 2, 3} = .424, S4 = S {1, 2, 3} = .732.

The κ-value of the collapsed 2 × 2 table is an indicator of the degree of
agreement for the individual category. It is called the category reliability in
Fleiss (1981). Let w1, w2, w3 and w4 be the denominators of κ1, κ2, κ3 and
κ4 respectively. Using the weights w1, w2, w3 and w4, we have∑4

i=1wiκi∑4
i=1wi

=
(.526)(.337)− (.407)(.022) + (.274)(.118) + (.233)(.424)

.526 + .407 + .274 + .233

= .208 = κ.

Thus, the overall κ-value of the 4×4 table is equivalent to a weighted average
of the category reliabilities, where the weights are the denominators of the
2 × 2 kappas (Kraemer, 1979; Vanbelle & Albert, 2009). Warrens (2011b)
showed that given any partition type of the categories, the overall κ-value
of the original table is a weighted average of the κ-values of the collapsed
tables corresponding to all partitions of that type. Furthermore, we have

1
4

4∑
i=1

Si =
.302 + .168 + .517 + .732

4
= .430 > .239 = S.

Thus, if the categories are not partitioned into subsets of the same size, the
overall S-value is strictly smaller than the average S-value of the collapsed
tables.

A second possibility is that we combine only two categories into a single
category while leaving the other two categories intact. By merging just two
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categories the 4 × 4 table collapses into a 3 × 3 table. This can be done in
six different ways. Let S {1, 2} denote the S-value of the 3× 3 table that is
obtained by combining categories 1 and 2. For the data in Table 1 we have

S5 = S {1, 2} = .527, S8 = S {2, 3} = .315,
S6 = S {1, 3} = .245, S9 = S {2, 4} = .215,
S7 = S {1, 4} = .185, S10 = S {3, 4} = .235

and
1
6

10∑
i=5

Si = .287 > .239 = S.

Again this shows that if the categories are not partitioned into subsets of
the same size, the overall S-value is strictly smaller than the average S-value
of the collapsed tables.

Finally, since 2 is a divisor of 4 we may combine two categories into
one new category and combine the other two categories into a second new
category. This can be done in three different ways. Let S {1, 2} {3, 4} denote
the S-value of the 2×2 table that is obtained by combining categories 1 and
2, and 3 and 4. For the data in Table 1 we have

S11 = S {1, 2} {3, 4} = .490,
S12 = S {1, 3} {2, 4} = .087,
S13 = S {1, 4} {2, 3} = .141.

Furthermore, we have
1
3

13∑
i=11

Si = .239 = S.

Thus, if the categories are partitioned into subsets of the same size, the
overall S-value is equivalent to the average S-value of the collapsed tables.
Furthermore, if the categories are partitioned into subsets of the same size,
there is, on average, no loss of information in terms of the S-value. However,
the above example also shows that the loss or gain of information may be
substantial for a single partition (compare .087 and .490 to .239).

5 More on combining categories

Theorem 2 in Section 3 shows that the overall S-value is equal to or smaller
than the average S-value of all collapsed tables corresponding to a certain
partition type. Since an average of a set of elements is bounded by the max-
imum and minimum value of the elements, a direct consequence of Theorem
2 is that there is always at least one way to combine categories such that S
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increases. It would be interesting to know what type of categories, for exam-
ple extreme or rarely used rating categories, should be combined if we want
to increase S. In this section it is shown that the S-value increases if we
combine categories on which the two raters disagree considerably between
themselves.

Since P is the proportion of observed agreement we may interpret 1−P
as the proportion of observed disagreement. The quantity 1−P is obtained
by summing all off-diagonal elements of agreement table P. Furthermore,
because P has n(n− 1) off-diagonal elements the quantity (1−P )/n(n− 1)
on the right-hand side of inequality (12) below is the average of the off-
diagonal elements. In the following we will call (1−P )/n(n−1) the average
disagreement.

The following result presents a necessary and sufficient condition for S to
increase when u ∈ {1, 2, . . . , n− 1} categories are combined. The quantity
U in (11) is the sum of all pairwise disagreements between the u categories.

Theorem 4. Consider an agreement table with n ≥ 3 categories and let
S denote the corresponding S-value. Let S∗ denote the S-value correspond-
ing to the agreement table we obtain by combining u ∈ {1, 2, . . . , n− 1}
categories, denoted by i1, i2, . . . , iu. Also define

U =
u−1∑
j=1

u∑
k=j+1

(pijik + pikij ). (11)

We have S∗ > S if and only if

n− u+ 1
n(u− 1)

· U >
1− P
n(n− 1)

. (12)

Proof: If we combine u of the n categories the proportion of observed agree-
ment is increased by U . Furthermore, the collapsed table has n − u + 1
categories. We therefore have S∗ > S if and only if

P + U − 1
n−u+1

1− 1
n−u+1

>
P − 1

n

1− 1
n

m
(n− u+ 1)(P + U)− 1

n− u
>
nP − 1
n− 1

m
(n− 1)(n− u+ 1)(P + U)− (n− 1) > (nP − 1)(n− u)

m
(n− 1)(n− u+ 1)U > (u− 1)(1− P )

which is equivalent to inequality (12). �
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Inequality (12) can be seen as a Schouten-type inequality for the statistic
S. This type of inequality was first studied by Schouten (1986) for Cohen’s
κ. See also Warrens (2012).

Although the quantity (1−P )/n(n−1) on the right-hand side of inequal-
ity (12) is the average disagreement, the left-hand side of the inequality is
more difficult to interpret. Inequality (13) below is the special case of in-
equality (12) for two categories.

Corollary. Consider the situation in Theorem 4. If we combine two cate-
gories i and j we have S∗ > S if and only if

n− 1
n

(pij + pji) >
1− P
n(n− 1)

. (13)

The above corollary shows that the S-value increases if and only if (n −
1)/n times the sum of the disagreements pij + pji of categories i and j
exceeds the average disagreement. The S-value thus increases if we combine
categories on which there exists considerable disagreement. Let us illustrate
the corollary using the 4×4 agreement table presented in Table 1. For Table
1 the average disagreement is

1− P
n(n− 1)

=
1− .430

12
= .0475.

Furthermore, we have n = 4 and n/(n − 1) = 1.333. The corollary shows
that the S-value increases if for two categories i and j the quantity pij + pji

exceeds the critical value (1.333)(.0475) = .0633. Since p21 = .221 > .0633
it immediately follows that the value of S increases if we combine categories
1 and 2. Indeed, we have S = .239 and S {1, 2} = .527 (see Section 4).
Furthermore, because p31 = .067 > .0633 and p32 = .094 > .0633 it also
follows that S increases if we combine categories 1 and 3, and 2 and 3.
Moreover, since p12 + p21 > p23 + p32 the increase in S is more substantial
if we combine categories 1 and 2. Finally, since

p14 + p41 = .007 + .020 = .027 < .0633
p24 + p42 = .000 + .047 = .047 < .0633
p34 + p43 = .040 + .020 = .060 < .0633,

the S-value decreases if we combine categories 1 and 4, 2 and 4, and 3 and
4.

6 Discussion

The most widely used descriptive measure for summarizing the cross-classification
of two nominal variables with identical categories, for example, an agreement
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table, is the kappa statistic proposed by Cohen (1960). A measure that has
been proposed by various authors as a ‘better’ alternative to Cohen’s κ is
Bennett, Alpert and Goldstein’s (1954) S, called kappan in Brennan and
Prediger (1981). The measure S has been independently proposed by Jan-
son and Vegelius (1979) and Janes (1979). In this paper we studied the
effect of collapsing categories on the value of Bennett et al. S.

An agreement table with n ≥ 3 categories can be collapsed into an
agreement table of smaller size by combining some of the categories. Since
the categories of an agreement table are nominal and the order in which
the categories of a table are listed is irrelevant, combining categories of
an agreement table is identical to partitioning the categories into subsets.
So for each partition of the n categories into m ∈ {2, 3, . . . , n− 1} subsets
there is a corresponding m ×m table. In this paper we proved that given
a partition type of the categories the overall S-value of the n × n table
never exceeds the average S-value of the m×m tables corresponding to all
partitions of that type (Theorem 2). The overall S-value is equivalent to the
average S-value if the n categories are partitioned into m subsets of equal
size. In all other cases the overall S-value is strictly smaller (Theorem 3).
Numerical illustrations of Theorems 2 and 3 were presented in Section 4. In
Section 5 we presented a necessary and sufficient condition for S to increase
if categories are merged (Theorem 4).

The results have several practical and theoretical implications. If certain
categories are easily confused or if the scale of interest consists of too many
categories, it is desirable to merge some of the categories. How this affects
the κ-value and S-value of the collapsed table usually depends on the data.
It turns out that there exist partition types of the categories that on average
do not result in loss of information as reflected in the overall S-value. If the
categories are partitioned into subsets of the same size the overall S-value
is equal to the average S-value of all possible collapsed tables. However, the
numerical illustrations in Section 4 do show that the loss of information can
be substantial for an individual partition.

It also turns out that there is always at least one way to combine cat-
egories such that S increases. This follows from Theorem 2 and the fact
that an average of a set of elements is bounded by the maximum and mini-
mum value of the elements. The same property was proved for Cohen’s κ in
Warrens (2010d). In Section 5 it was shown that the S-value increases if we
combine categories on which there exists considerable disagreement. The S-
value will increase if we combine categories on which the raters disagree the
most. This is to be expected, since the statistic S is a linear transformation
of the proportion of observed agreement. Thus, for increasing the S-value it
is not important whether categories are rarely used or extreme rating cate-
gories, or what type of partition is used to partition the categories. We gain
information in terms of the S-value if we combine categories on which the
raters disagree (considerably).
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With Cohen’s κ there is also at least one way to combine categories
such that κ decreases. This is however not the case for the measure S. As a
counterexample, consider the hypothetical data for three categories in Table
2. For the data in Table 2 we have P = .10+.25+.35 = .70 and S = .55. We
may combine two of the three categories into a new category and this can
be done in three different ways. For all three collapsed 2× 2 tables we have
P = .80 and S = .60, which illustrates that the S-value can sometimes only
increase if we merge categories. Finally, since S is a decreasing function of
1/n and 1/n a decreasing function of the number of categories n, one might
expect that the measure S tends to produce higher values for large tables
than for smaller ones. However, Theorem 2 shows that the S-value tends to
increase if we combine categories.

The results presented here show that Bennett et al. S and Cohen’s κ
differ in one more characteristic. A general problem with agreement mea-
sures like κ and S is that often only the extreme values (maximum and
zero values) have a clear interpretation (De Mast, 2007). The κ-value of an
agreement table with n ≥ 3 categories can also be interpreted as a weighted
average. Warrens (2011b) showed that given any partition type of the cat-
egories, the overall κ-value of the original table is a weighted average of the
κ-values of the collapsed tables corresponding to all partitions of that type.
The weights are the denominators of the kappas of the subtables. A con-
sequence is that Cohen’s κ can be interpreted as a weighted average of the
κ-values of the agreement tables corresponding to all non-trivial partitions
of the categories. Theorems 2 and 3 show that if the number of categories n
is a composite number the S-value may be interpreted as an average. How-
ever, if n is a prime number the overall S-value is strictly smaller than the
average S-value of all collapsed tables corresponding to a particular partition
type. Raju (1977) derived a similar interpretation in terms of the number
of items in subtests for Cronbach’s (1951) coefficient alpha (Sijtsma, 2009).
Finally, one may be interested if there exist weights such that, similar to
Cohen’s κ, the overall S-value is a weighted average of the S-values of the
collapsed tables. It turns out that such weights do not always exist. As a
counterexample we consider the data in Table 2. Since S = .60 for all three
collapsed 2× 2 tables a weighted average∑3

i=1wiSi∑3
i=1wi

=
(w1 + w2 + w3).60
w1 + w2 + w3

= .60

where wi ∈ R>0 for i ∈ {1, 2, 3}, always exceeds the overall S-value (S =
.55).
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