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A family of multi-rater kappas that can always be
increased and decreased by combining categories

Matthijs J. Warrens, Leiden University

Abstract. Cohen’s kappa is a popular descriptive statistic for measuring
agreement between two raters on a nominal scale. Various authors have
generalized Cohen’s kappa to the case of m ≥ 2 raters. We consider a family
of multi-rater kappas that are based on the concept of g-agreement (g =
2, 3, . . . ,m), which refers to the situation in which it is decided that there is
agreement if g out of m raters assign an object to the same category. For
the family of multi-rater kappas we prove the following existence theorem:
In the case of three or more categories there exists for each multi-rater
kappa κ(m, g) two categories such that, when combined, the κ(m, g) value
increases. In addition, there exist two categories such that, when combined,
the κ(m, g) value decreases.

Key words. Inter-rater reliability; Cohen’s kappa; Schouten-type inequal-
ity; Hubert’s kappa; Mielke, Berry and Johnston’s kappa.
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1 Introduction

In various fields of science, including behavioral sciences and the biomedi-
cal field, it is frequently required that a group of subjects is classified into
a set of mutually exclusive (nominal) categories, such as psychodiagnostic
classifications (Fleiss 1981; Zwick 1988). Because there is often no golden
standard, researchers require that the classification task is performed by
multiple raters. The agreement of the ratings is then taken as an indicator
of the quality of the category definitions and the raters’ ability to apply
them. The most popular measure for summarizing agreement between two
raters is Cohen’s (1960) kappa, denoted by κ (Kraemer, 1979; Brennan &
Prediger, 1981; Schouten, 1986; Zwick, 1988; Kraemer, Periyakoil & Noda,
2002; Hsu & Field, 2003; Warrens 2008a, 2010a,b). The value of Cohen’s κ is
1 when perfect agreement between the two raters occurs, 0 when agreement
is equal to that expected under independence, and negative when agreement
is less than expected by chance.

The number of categories used in various classification schemes varies
from the minimum number of two to five in many practical applications.
Ratings are usually summarized in a square agreement table of size k × k,
where k is the number of categories. It is sometimes desirable to combine
some of the categories (Warrens, 2010c), for example, when two categories
are easily confused (Schouten, 1986), and then calculate the κ value of the
collapsed (k − 1) × (k − 1) agreement table. Schouten (1986) presented a
necessary and sufficient condition for the κ to increase when two categories
are combined, and showed that it depends on which categories are combined
whether the value of κ increases or decreases. Using the condition presented
in Schouten (1986), Warrens (2010c) showed that for a nontrivial table with
k ≥ 3 categories there exist two categories such that, when the two are
merged, the κ value of the collapsed (k − 1) × (k − 1) agreement table is
higher than the original κ value, that is, the κ value increases, and that
there exist two categories such that, when combined, the κ value decreases.

The popularity of Cohen’s κ has led to the development of many ex-
tensions (Nelson & Pepe, 2000; Kraemer et al., 2002) including kappas for
groups of raters (Vanbelle & Albert, 2009a,b) and weighted kappas for or-
dinal categories (Vanbelle & Albert, 2009c; Warrens, 2011a,b). Cohen’s κ
has also been extended to the important case of multiple raters (Hubert,
1977; Conger 1980; Von Eye & Mun, 2006; Mielke, Berry & Johnston, 2007,
2008; Warrens, 2010d). With multiple raters there are several views in the
literature on how to define agreement (Hubert, 1977; Conger, 1980; Pop-
ping, 2010). For example, simultaneous agreement (or m-agreement) refers
to the situation in which it is decided that there is only agreement if all
m raters assign an object to the same category (see for example Warrens,
2009). Hubert (1977, p. 296) refers to this type of agreement as DeMoivre’s
definition of agreement. In contrast, pairwise agreement (or 2-agreement)
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refers to the situation in which it is decided that there is already agreement if
only two raters categorize an object consistently. Conger (1980) argued that
agreement among raters can actually be considered to be an arbitrary choice
along a continuum ranging from m-agreement to 2-agreement. g-agreement
with g ∈ {2, 3, . . . ,m} refers to the situation in which it is decided that
there is agreement if g out of m raters assign an object to the same category
(Conger, 1980).

In this paper we consider a family of multi-rater kappas for nominal
categories that are based on the concept of g-agreement (g ∈ {2, 3, . . . ,m}).
Various multi-rater kappas proposed in the literature belong to this family.
Given m ≥ 2 raters we can formulate m − 1 multi-rater kappas, one based
on 2-agreement, one based on 3-agreement, and so on, and one based on m-
agreement. The kappa statistic for m raters that is based on g-agreement is
denoted by κ(m, g). We prove the following existence theorem for the family
of multi-rater kappas: In the case of three or more categories there exist for
each κ(m, g) two categories such that, when combined, the κ(m, g) value
increases. In addition, there exist two categories such that, when combined,
the κ(m, g) value decreases. The paper is organized as follows. The family
of multi-rater kappas is introduced in the next section. In Section 3 we
present a sufficient and necessary condition for κ(m, g) to increase when
two categories are combined. In Section 4 we present the existence theorem.
Section 5 contains numerical illustrations of the existence theorem. Section
6 contains a conclusion.

2 A family of multi-rater kappas

In this section we consider a family of multi-rater kappas. We first introduce
Cohen’s (1960) κ.

Suppose that two raters r1 and r2 each independently classify the same
set of w ∈ N≥1 objects (individuals, observations) into k ∈ N≥2 nominal
(unordered) categories indexed by c1, c2 ∈ {1, 2, . . . , k} that are defined in
advance. Let

F = {f ( r1 r2
c1 c2 )}

be a 2-way contingency table of size k × k where the element f ( r1 r2
c1 c2 ) indi-

cates the number of objects placed in category c1 by rater r1 and in category
c2 by rater r2. If we divide the elements of F by the total number of objects
w we obtain the table

P = {p ( r1 r2
c1 c2 )}

with relative frequencies p ( r1 r2
c1 c2 ) = w−1f ( r1 r2

c1 c2 ). For notational conve-
nience we will work with table P instead of F. Table P contains the 2-
agreement between the raters and is therefore also called an agreement table.
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The elements of P add up to 1. Row and column totals

pr1
c1 =

k∑
i=1

p ( r1 r2
c1 ci ) and pr2

c2 =
k∑

i=1

p ( r1 r2
ci c2 )

are the marginal totals of P. The marginal total pr1
c1 denotes the proportion

of objects assigned to category c, by rater r1, and likewise pr2
c2 . An example

of P for five categories is presented in Table 1. This 5 × 5 table contains
the relative frequencies of data presented in Landis and Koch (1977) and
originally reported by Holmquist et al. (1967) (see also, Agresti, 1990, p.
367). Two pathologists (pathologists A and B in Landis & Koch, 1977, p.
365) classified each of 118 slides in terms of carcinoma in situ of the uterine
cervix, based on the most involved lesion, using the categories 1) Nega-
tive, 2) Atypical squamous hyperplasia, 3) Carcinoma in situ, 4) Squamous
carcinoma with early stromal invasion, and 5) Invasive carcinoma.

Insert Table 1 about here.

Cohen’s κ for raters r1 and r2 is defined as

κ =
O − E
1− E

=

k∑
i=1

(
p ( r1 r2

ci ci )− pr1
ci
pr2

ci

)
1−

k∑
i=1

pr1
ci p

r2
ci

where

O =
k∑

i=1

p ( r1 r2
ci ci ) and E =

k∑
i=1

pr1
ci
pr2

ci

are called the proportions of observed and expected agreement. Standard
errors for κ can be found in Fleiss, Cohen and Everitt (1969). For the data
in Table 1 we have

O = .186 + .059 + .305 + .059 + .025 = .636,

E = (.220)(.229) + (.220)(.102) + (.322)(.585) + (.186)(.059) + (.051)(.025)
= .273,

and
κ =

.636− .273
1− .273

= .498.

There are several ways to extend Cohen’s κ for two raters to the case
of m ≥ 2 raters. Here we consider a multi-rater kappa that incorporates
the concept of g-agreement where g ∈ {2, 3, . . . ,m}. Let p

( r1 ··· rg
c1 ··· cg

)
where
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rj ∈ {1, 2, . . . ,m} and ci ∈ {1, 2, . . . , k} denote the proportion of objects
placed in category c1 by the rater r1, in category c2 by rater r2, and so on,
and in category cg by rater rg. Furthermore, let prj

ci denote the proportion
of objects assigned to category ci by rater rj . The quantities p

( r1 ··· rg
c1 ··· cg

)
can be seen as the elements of a g-dimensional table or g-agreement table
P(g). An example of P(3) for five categories is presented in Table 2. This
5×5×5 table contains the relative frequencies of classifications of 118 slides
by three pathologists (pathologists A, B and C in Landis & Koch, 1977,
p. 365). By summing the elements of the table P(g) over g − 1 of the g
dimensions we obtain the marginal totals prj

ci for rater rj . For example, if
we add the five slices in Table 2, that is, if we sum all elements over the
direction corresponding to pathologist 3, we obtain Table 1, the 5× 5 cross-
classification between pathologists 1 and 2. The other two collapsed tables
corresponding to the 3-dimensional table in Table 2 are the two 5× 5 tables
in Table 3.

Insert Tables 2 and 3 about here.

A g-agreement kappa for m ≥ 2 raters can be defined as

κ(m, g) =
O(m, g)− E(m, g)(

m
g

)
− E(m, g)

=

k∑
i=1

m∑
r1<···<rg

(
p
( r1 ··· rg

ci ··· ci

)
−

g∏
j=1

p
rj
ci

)
(
m
g

)
−

k∑
i=1

m∑
r1<···<rg

g∏
j=1

p
rj
ci

.

where

O(m, g) =
k∑

i=1

m∑
r1<···<rg

p
( r1 ··· rg

ci ··· ci

)
E(m, g) =

k∑
i=1

m∑
r1<···<rg

g∏
j=1

p
rj
ci

are the observed and expected g-agreement for m raters and(
m

g

)
=

m!
g!(m− g)!

.

The binomial coefficient
(
m
g

)
is the maximum value of O(m, g). The value of

κ(m, g) is 1 when perfect agreement between m raters occurs, and 0 when
O(m, g) = E(m, g). Standard errors for κ(m, g) can be found in Hubert
(1977).
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We consider some special cases of κ(m, g). For m = g = 2 we have
Cohen’s κ = κ(2, 2). For g = 2 we obtain

κ(m, 2) =

k∑
i=1

m∑
r1<r2

(
p ( r1 r2

ci ci )− pr1
ci
pr2

ci

)
(
m
2

)
−

k∑
i=1

m∑
r1<r2

pr1
ci p

r2
ci

.

Coefficient κ(m, 2) is based on the 2-agreement between the raters. This
descriptive statistic was first considered in Hubert (1977, p. 296, 297) and
has been independently proposed by Conger (1980). The measure is also dis-
cussed in Davies and Fleiss (1982), Popping (1983), Heuvelmans and Sanders
(1993) and Warrens (2008b, 2010d). Furthermore, coefficient κ(m, 2) is a
special case of the descriptive statistics proposed in Berry and Mielke (1988)
and Janson and Olsson (2001). For the data in Tables 1 and 3 we have

O(3, 2) = (.186 + .059 + .305 + .059 + .025) + (.161 + .144 + .169 + .042 + .017)
+ (.169 + .059 + .271 + .025 + .017)

= .636 + .534 + .542 = 1.712,

E(3, 2) = (.220)(.229) + (.220)(.102) + (.322)(.585) + (.186)(.059) + (.051)(.025)
+ (.220)(.263) + (.220)(.356) + (.322)(.314) + (.186)(.051) + (.051)(.017)
+ (.229)(.263) + (.102)(.356) + (.585)(.314) + (.059)(.051) + (.025)(.017)

= .273 + .248 + .283 = .804,

and
κ(3, 2) =

1.712− .804
3− .804

= .413.

For g = m we obtain

κ(m,m) =

k∑
i=1

(
p ( r1 ··· rm

ci ··· ci )−
m∏

j=1
p

rj
ci

)

1−
k∑

i=1

m∏
j=1

p
rj
ci

.

Coefficient κ(m,m) is based on the m-agreement between the raters, and is
thus a coefficient of simultaneous agreement (Hubert, 1977; Popping, 2010).
Coefficient κ(m,m) is the unweighted kappa proposed in Von Eye and Mun
(2006, p. 22), Mielke et al. (2007, 2008) and Berry, Johnston and Mielke
(2008). For the data in Table 2 we have

O(3, 3) = .153 + .034 + .169 + .025 + .017 = .398,

E(3, 3) = (.220)(.229)(.263) + (.220)(.102)(.356) + (.322)(.585)(.314)
+ (.186)(.059)(.051) + (.051)(.025)(.017) = .081,
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and
κ(3, 3) =

.398− .081
1− .081

= .345.

In general, for fixed m raters κ(m, g) will produce different values for dif-
ferent values of g. For example, for the data in Tables 1, 2 and 3 we have
κ(3, 2) = .413 and κ(3, 3) = .345.

3 A Schouten-type inequality

In this section we derive a Schouten-type inequality for κ(m, g). The in-
equality is named after Schouten (1986) who was the first to present this
type of inequality for Cohen’s κ for two raters. Lemma 1 is used in the proof
of Theorem 1.

Lemma 1. Let n, h ∈ N≥3 and let a1, a2, . . . , an, b1, b2, . . . , bn, e1, e2, . . . , eh
and d1, d2, . . . , dh be nonnegative real numbers. Suppose that at least one
a`, one b`, one eq and one dq is not zero, and that

n∑
`=1

b` >

h∑
q=1

dq.

Then
n∑̀
=1

a` −
h∑

q=1
eq

n∑̀
=1

b` −
h∑

q=1
dq

<

n∑̀
=1

a`

n∑̀
=1

b`

⇔

h∑
q=1

eq

h∑
q=1

dq

>

n∑̀
=1

a`

n∑̀
=1

b`

.

Proof: Let a =
∑n

`=1 a`, b =
∑n

`=1 b`, e =
∑h

q=1 eq and d =
∑h

q=1 dq. Since
a, b, e, d > 0 and b−d > 0 we have (a−e)/(b−d) < a/b⇔ b(a−e) < a(b−d)
⇔ be > ad ⇔ e/d > a/b. �

For Theorem 1 below we assume the following situation. For m ≥ 2 raters
let P(g)

` for ` ∈
{

1, 2, . . . ,
(
m
g

)}
denote the

(
m
g

)
distinct g-agreement tables

with k ≥ 3 categories. Let κ(m, g) denote the kappa value corresponding to
the P(g)

` for ` ∈
{

1, 2, . . . ,
(
m
g

)}
. Furthermore, let κ∗(m, g) denote the kappa

values corresponding to g-agreement tables that are obtained by combining
categories t and u of the P(g)

` .
We have the following Schouten-type inequality for κ(m, g).
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Theorem 1. κ∗(m, g) > κ(m, g) ⇔

m∑
r1<···<rg

[ ∑
ci∈{t,u}

p
( r1 ··· rg

c1 ··· cg

)
− p

( r1 ··· rg

t ··· t

)
− p ( r1 ··· rg

u ··· u )

]
m∑

r1<···<rg

[ ∑
ci∈{t,u}

g∏
j=1

p
rj
ci −

g∏
j=1

p
rj

t −
g∏

j=1
p

rj
u

] >

(
m
g

)
−O(m, g)(

m
g

)
− E(m, g)

.

Proof: Let n =
(
m
g

)
(kg − k) and h =

(
m
g

)
(2g − 2). Since O(m, g), E(m, g)

and (
m

g

)
=

m∑
r1<···<rg

1 =
m∑

r1<···<rg

∑
ci∈{1,...,k}

p
( r1 ··· rg

c1 ··· cg

)
are finite sums, we can choose the a`, b`, eq and dq in Lemma 1 such that

n∑
`=1

a` =
(
m

g

)
−O(m, g) and

n∑
`=1

b` =
(
m

g

)
− E(m, g)

and

h∑
q=1

eq =
m∑

r1<···<rg

 ∑
ci∈{t,u}

p
( r1 ··· rg

c1 ··· cg

)
− p

( r1 ··· rg

t ··· t

)
− p ( r1 ··· rg

u ··· u )

 ,
h∑

q=1

dq =
m∑

r1<···<rg

 ∑
ci∈{t,u}

g∏
j=1

p
rj
ci −

g∏
j=1

p
rj

t −
g∏

j=1

p
rj
u

 .
If we combine categories t and u, the observed agreement O(m, g) is in-
creased by

∑h
q=1 eq whereas the expected agreement E(m, g) is increased by∑h

q=1 dq. We have

κ∗(m, g) =
O(m, g)− E(m, g) +

h∑
q=1

(eq − dq)

(
m
g

)
− E(m, g)−

h∑
q=1

dq

.

Hence
n∑̀
=1

a` −
h∑

q=1
eq

n∑̀
=1

b` −
h∑

q=1
dq

=

(
m
g

)
−O(m, g)−

h∑
q=1

eq

(
m
g

)
− E(m, g)−

h∑
q=1

dq

= 1− κ∗(m, g).

We also have
n∑̀
=1

a`

n∑̀
=1

b`

=

(
m
g

)
−O(m, g)(

m
g

)
− E(m, g)

= 1− κ(m, g).
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Since κ∗(m, g) > κ(m, g) ⇔ 1 − κ∗(m, g) < 1 − κ(m, g), the result then
follows from applying Lemma 1. �

4 An existence theorem

In this section we show that the multi-rater coefficient κ(m, g) can always
be increased and decreased by combining categories.

The following result comes from Warrens (2010c, pp. 674-675). The
proof of Lemma 2 was provided by an anonymous reviewer.

Lemma 2. Let n ∈ N≥2 and let a1, a2, . . . , an, at least 2 non zero and
non identical, and b1, b2, . . . , bn be real nonnegative numbers with bs 6= 0 if
as 6= 0 for all s ∈ {1, . . . , n} and bs 6= as for at least one s ∈ {1, . . . , n}.
Furthermore, let a =

∑n
s=1 as and b =

∑n
s=1 bs. Then there exist indices

i, i′ ∈ {1, . . . , n} with i 6= i′ such that

ai

bi
>
a

b
and

ai′

bi′
<
a

b
.

Proof: Without loss of generality, let a1 > 0 and a2 > 0 (a1 6= a2). (i)
(n = 2) Since b1 6= a1 or b2 6= a2, we immediately have a1/b1 < a/b if
a2/b2 > a/b and a2/b2 < a/b if a1/b1 > a/b. (ii) (n > 2) Suppose a1/b1 >
a/b. Then there exists a s ∈ {2, . . . , n} such that as/bs < a/b. Indeed,
suppose as/bs > a/b, s ∈ {2, . . . , n}. Then asb > bsa and by summation
(a2 + a3 + · · · + an)b > (b2 + b3 + . . . + bn)a or (a − a1)b > (b − b1)a or
a1b < b1a or a1/b1 < a/b, which contradicts the starting assumption.
�

In Theorem 2 we assume the same situation that is assumed for Theorem
1. Theorem 2 shows that it is always possible to increase or decrease the
value of κ(m, g) by merging two categories.

Theorem 2. Assume that one P(g)
` has at least 2 non identical and non

zero elements. Then there exist categories t and u such that κ∗(m, g) >
κ(m, g) if t and u are combined. Furthermore, there exist categories t′ and
u′, t 6= t′ and/or u 6= u′, such that κ∗(m, g) < κ(m, g) if t′ and u′ are
combined.
Proof: Note that, since

m∑
r1<···<rg

∑
ci∈{1,...,k}

p
( r1 ··· rg

c1 ··· cg

)
=

m∑
r1<···<rg

1 =
(
m

g

)
and

m∑
r1<···<rg

∑
ci∈{1,...,k}

g∏
j=1

p
rj
ci =

m∑
r1<···<rg

g∏
j=1

(
k∑

i=1

p
rj
ci

)
=

m∑
r1<···<rg

1 =
(
m

g

)
,
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the p
( r1 ··· rg

c1 ··· cg

)
and the

g∏
j=1

p
rj
ci for rj ∈ {1, 2, . . . ,m} and ci ∈ {1, 2, . . . , k},

satisfy the criteria of the as and bs of Lemma 2. Since we have finite sums
we can choose the as and bs such that for each pair of categories t and u,
there is a as equal to the term

m∑
r1<···<rg

 ∑
ci∈{t,u}

p
( r1 ··· rg

c1 ··· cg

)
− p

( r1 ··· rg

t ··· t

)
− p ( r1 ··· rg

u ··· u )


and a bs equal to the term

m∑
r1<···<rg

 ∑
ci∈{t,u}

g∏
j=1

p
rj
ci −

g∏
j=1

p
rj

t −
g∏

j=1

p
rj
u


for s ∈

{
1, 2, . . . ,

(
k
2

)}
. In this case we have

(k
2)∑

s=1

as =
(
m

g

)
−O(m, g) and

(k
2)∑

s=1

bs =
(
m

g

)
− E(m, g),

and the result follows from application of Lemma 2 and Theorem 1. �

5 Numerical illustrations

To illustrate the existence theorem (Theorem 2) we consider the agreement
data in Table 2 (and corresponding Tables 1 and 3) for three raters on
five categories. For this 5 × 5 × 5 table, denoted by (1)(2)(3)(4)(5), we
have κ(3, 2) = .413 and κ(3, 3) = .345 (see Section 2). Let the collapsed
4× 4× 4 table that is obtained by combining categories 1 and 2 be denoted
by (12)(3)(4)(5). The kappa values corresponding to (12)(3)(4)(5) are

κ(3, 2) =
2.000− 1.122

3− 1.122
= .468 and κ(3, 3) =

.517− .150
1− .150

= .432.

Thus, both kappa values increase when categories 1 and 2 are merged. The
table (12)(3)(4)(5) also illustrates that the increase may be more substantial
for one multi-rater kappa compared to another kappa (.468− .413 = .055 <
.087 = .432 − .345). If we in addition combine the categories 3 and 4
we obtain the 3 × 3 × 3 table denoted by (12)(34)(5). The kappa values
corresponding to (12)(34)(5) are

κ(3, 2) =
2.305− 1.373

3− 1.373
= 0.573 and κ(3, 3) =

.653− .209
1− .209

= .560,

which illustrates that the multi-rater kappas can be increased by successively
merging categories (.413 → .468 → .573 and .345 → .432 → .560). If we
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combine the categories 1, 2 and 3 instead we obtain the 3 × 3 × 3 table
denoted by (123)(4)(5). The kappa values corresponding to (123)(4)(5) are

κ(3, 2) =
2.602− 2.288

3− 2.288
= .440 and κ(3, 3) =

.805− .651
1− .651

= .441,

which shows that one kappa value may decrease (from .468 to .440) while
another kappa value increases (from .432 to .441). This example also il-
lustrates that it depends on the data which g-agreement kappa (κ(3, 2) or
κ(3, 3)) has the highest value.

The values of the multi-rater kappas can also decrease if two categories
are merged. For example, if we combine the categories 2 and 5 we obtain the
4 × 4 × 4 table denoted by (1)(25)(3)(4). The kappa values corresponding
to (1)(25)(3)(4) are

κ(3, 2) =
1.712− .848

3− .848
= .402 and κ(3, 3) =

.398− .086
1− .086

= .342.

If we in addition combine the categories 1 and 4 we obtain the 3×3×3 table
denoted by (14)(25)(3). The kappa values corresponding to (14)(25)(3) are

κ(3, 2) =
1.729− .991

3− .991
= .367 and κ(3, 3) =

.246− .109
1− .109

= .154,

which illustrates that the multi-rater kappas can be decreased by successively
merging categories (.413→ .402→ .367 and .345→ .342→ .154).

6 Conclusion

In this paper we considered a family of multi-rater kappas that extend the
popular descriptive statistic Cohen’s κ for two raters. The multi-rater kap-
pas are based on the concept of g-agreement (g ∈ {2, 3, . . . ,m}), which refers
to the situation in which it is decided that there is agreement if g out of
m raters assign an object to the same category. For the family of multi-
rater kappas we proved the following existence theorem: In the case of three
or more nominal categories there exist for each multi-rater kappa κ(m, g)
two categories such that, when combined, the κ(m, g) value increases. In
addition, there exist two categories such that, when combined, the κ(m, g)
value decreases. The theorem is an existence theorem since it states that
there exist categories for increasing (decreasing) the κ(m, g) value, although
it does not specify which categories these are. The inequality in Theorem
1 can be used to check if the κ(m, g) value increases or decreases when two
categories are combined. The special case for m = 2 raters of this inequality
was used in a procedure in Schouten (1986) to find categories that are easily
confused. The multi-rater inequality in Theorem 1 can be used for a similar
procedure for kappas for multiple raters.
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Table 1: Relative frequencies of classifications of 118 slides by two patholo-
gists.

Pathologist 2
Pathologist 1 1 2 3 4 5 Row totals
1 .186 .017 .017 0 0 .220
2 .042 .059 .119 0 0 .220
3 0 .017 .305 0 0 .322
4 0 .008 .119 .059 0 .186
5 0 0 .025 0 .025 .051

Column totals .229 .102 .585 .059 .025 1
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Table 2: Five slices of the 3-dimensional 5×5×5 table of relative frequencies
of classifications of 118 slides by three pathologists.

Pathologist 2 Category
Pathologist 1 1 2 3 4 5 Pathologist 3

1 .153 .008 0 0 0 Category 1
2 .017 .025 .034 0 0 Total = .263
3 0 0 0 0 0
4 0 0 .017 0 0
5 0 0 0 0 .008
1 .034 .008 .017 0 0 Category 2
2 .025 .034 .085 0 0 Total = .356
3 0 .017 .136 0 0
4 0 0 0 0 0
5 0 0 0 0 0
1 0 0 0 0 0 Category 3
2 0 0 0 0 0 Total = .314
3 0 0 .169 0 0
4 0 .008 .085 .034 0
5 0 0 .017 0 0
1 0 0 0 0 0 Category 4
2 0 0 0 0 0 Total = .051
3 0 0 0 0 0
4 0 0 .017 .025 0
5 0 0 .008 0 0
1 0 0 0 0 0 Category 5
2 0 0 0 0 0 Total = .017
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0.17
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Table 3: Relative frequencies of classifications of 118 slides by two pairs of
pathologists.

Pathologist 3
Pathologist 1 1 2 3 4 5 Row totals
1 .161 .059 0 0 0 .220
2 .076 .144 0 0 0 .220
3 0 .153 .169 0 0 .322
4 .017 0 .127 .042 0 .186
5 .008 0 .017 .008 .017 .051

Column totals .263 .356 .314 .051 .017 1

Pathologist 3
Pathologist 2 1 2 3 4 5 Row totals
1 .169 .059 0 0 0 .229
2 .034 .059 .008 0 0 .102
3 .051 .237 .271 .025 0 .585
4 0 0 .034 .025 0 .059
5 .008 0 0 0 .017 .025

Column totals .263 .356 .314 .051 .017 1
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