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CHAPTER 1 

General introduction 
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1. The cell nucleus 
1.1    A concise historical perspective 
 
The eukaryotic cell nucleus was first named in 1831 by Robert Brown when he ob-
served an opaque structure in orchid cells. Most likely, he was not the first person 
who observed the cell nucleus. Already in 1802, it was Franz Bauer who described a 
structure in plant cells that could reflect the cell nucleus. Also, it is even possible that 
van Leeuwenhoek was actually the first person who observed the cell nucleus back in 
1682 when he studied plant cells. These scientists, however, had no clue about the 
content and function of this organelle at that time. Knowledge about the constituents 
and function of the nucleus evolved rapidly after the first isolation of the nucleus in 
1869 by Friedrich Miescher (Miescher, 1871). For this isolation he used white blood 
cells derived from pus, which he treated with a pig-stomach extract and acid. Mi-
escher discovered that the nucleus contains a substance made up of large molecules 
containing phosphorus and nitrogen which he named ‘nuclein’. When the substance 
was separated into protein and acid molecules it was in 1889 referred to as nucleic 
acid by a pupil of Miescher, Richard Altmann. It was only since the discovery of the 
chemical structure of DNA by James Watson and Francis Crick in 1953 that the pre-
cise role of this molecule in life became known. 
 
1.2    What is inside the cell nucleus? 
 
1.2.1   Chromatin  
 
The mammalian nucleus is surrounded by a double membrane and contains sub-
compartments that partition macromolecular machineries to facilitate and coordinate 
the various nuclear functions, including DNA replication, DNA repair, gene transcrip-
tion, RNA processing, RNA transport and the transduction of intra- and extracellular 
signals (Stenoien, 2000; Carmo-Fonseca, 2002; Rippe, 2007). Essentially, there are 
two main compartments that can be distinguished in the cell nucleus, one is the chro-
mosome territory, and the other is the remaining space, called the interchromatin do-
main (ICD) (Cremer, 2002). The basis for this assumption is the model (for which 
substantial evidence has been presented) that each chromosome forms a distinct 
chromosome territory that shows no or little intermingling with neighbouring chromo-
somes (Manuelidis, 1985). Within a chromosome territory, DNA is folded around oc-
tamers of histone proteins forming nucleosomes separated by linker DNA. The result-
ing “beads on a string” conformation is a platform for other proteins to bind and is 
collectively called chromatin. This structure is proposed to fold into 30 nm fibers that 
form, in turn, DNA loop domains (Cook & Brazell, 1976; Paulson & Laemmli, 1977). 
These DNA loops vary in size from 20 to 200 kb and contain many genes and clusters 
of functionally related genes. DNA loops are not only thought to be important for 
gene regulation, but also for the organization of replicons (a region of DNA that 
replicates from a single origin of replication in the genome). DNA loop anchorage 
sites were shown to colocalize with replication origins (van der Velden, 1984; Razin, 
1986) and DNA loop sizes were shown to correlate with that of the replicons 
(Buongiorno-Nardelli, 1982; Marilley & Gassend-Bonnet, 1989). DNA loops are sug-
gested to be attached to the nuclear matrix via Loop Anchorage Regions (LARs). 
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These regions have a rather complex structure and may include several elements, e.g., 
topoisomerase II binding sites (for review see Razin, 1996; Vassetzky, 2000b). To-
gether, these studies suggest a strict organization principle for chromatin. The reality 
is, however, that we know very little about the organization of chromatin in the cell 
nucleus. Even there is debate whether the 30 nm fibre exists in living cells (Maeshima 
et al., 2010).  
 
Typically, euchromatin is referred to as a transcriptionally active open chromosome 
structure having ample access to the transcription and RNA processing machinery, 
while heterochromatin is referred to as a transcriptionally inactive, compact chromatin 
structure (John, 1988; Felsenfeld & Groudine, 2003). However, these morphological 
terms do not provoke a very clear functional distinction, as some genes show tran-
scriptional activity in supposed heterochromatic regions (Bühler & Moazed, 2007) 
and some are silenced in supposed euchromatic regions. Despite some cell type spe-
cific variation, heterochromatin is mainly positioned at the nuclear periphery and 
around nucleoli. It is probably also for this reason that chromatin at the nuclear pe-
riphery shows a relatively low transcriptional activity and a low gene density (Boyle, 
2001; Finlan, 2008). Transcriptionally competent regions preferentially localize to-
wards the interior of the cell nucleus and to the periphery of chromosomal territories 
(Verschure, 1999). The status of chromatin is characterized best by the presence or 
absence of specific histone and DNA modifications, rather than relying on morpho-
logical features. Histone modifications associated with transcriptional repression in-
clude methylation of histone H3 on Lysine 9 (Steward, 2005) and Lysine 36 (Strahl, 
2002), and deacetylation (leading to hypoacetylation) of histone H3 (Grunstein, 1997; 
Turner, 2000). Histone H3 lysine 9 (H3-K9) methylation creates a specific binding 

site for heterochromatin protein 1 (HP1), which is targeted there by the methylating 
enzyme SUV39H1 (Steward, 2005; Krouwels et al., 2005). However, methylated H3-
K9 is also able to suppress transcription in absence of HP1 by a mechanism involving 
histone deacetylation (Steward, 2005). 
 
Methylation is the most common form of alkylation, and in biochemistry it refers to 
the replacement of a hydrogen atom with a methyl group (CH3). In biological sys-
tems, DNA methylation is mediated by a conserved group of proteins called DNA 
(cytosine-5) methyltransferases (Goll & Bestor, 2005). In vertebrates DNA base me-
thylation typically occurs at cytosine-phosphate-guanine sites (CpG sites), DNA re-
gions where a cytosine is directly followed by a guanine in the DNA sequence. This 
methylation results in the conversion of the cytosine to 5-methylcytosine, and the 
formation of Me-CpG is catalyzed by the enzyme DNA methyltransferase. CpG sites 
are uncommon in vertebrate genomes but are often found at higher density near verte-
brate gene promoters where they are collectively referred to as CpG islands. The me-
thylation state of these CpG sites can have a major impact on gene activity/expression 
in somatic cells. In eukaryotes, typically 2-7% of cytosines (bases that are part of the 
nucleotides which constitute DNA) are methylated, and this methylation is often 
tissue specific (Razin & Cedar, 1991). Cytosine methylation is common to all large-
genome eukaryotes and present in only a few small-genome eukaryotes. Not only is 
there a clear correlation between gene expression and undermethylation, transfection 
experiments clearly demonstrated that this modification acts as a repressor of tran-
scription (Razin & Cedar 1991). Tissue-specific genes appear to be methylated in al-
most all cell types and presumably undergo demethylation when expressed in a spe-
cific tissue type. In contrast, housekeeping genes contain CpG islands that are 
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unmethylated in all cells (Bird, 1986). Both histone and DNA methylation can act as 
epigenetic markers providing heritable mechanisms for gene silencing (Nakayama, 
2001; Grewal & Rice, 2004). 
 
  
1.2.2   The interchromatin domain 
 
The interchromatin domain is inevitably a crowded space since both proteins and 
RNAs travel through this compartment to reach their destination or exert their func-
tion in this compartment. RNA forms together with proteins ribonucleoprotein (RNP) 
particles, which are thought to form a continuous nuclear network. This structure is 
the source of the RNP particles that are released from the nucleus by chemical or me-
chanical extraction (Smetana, 1963). RNA-selective staining procedures have made a 
complete ultrastructural characterization of the nuclear RNP network possible (Bern-
hard, 1969; Biggiogera & Fakan, 1998). Making use of EDTA regressive staining to 
localize RNA, Monneron & Bernhard were able to define, characterize and classify 
the interconnected nuclear RNP structures and distinguished interchromatin granule 
clusters, perichromatin fibrils, perichromatin granules and coiled bodies (Monneron & 
Bernhard, 1969). The discovery of these structures was important for our understand-
ing of nuclear RNA metabolism (Misteli & Spector, 1998; Misteli, 2000). Perichro-
matin fibrils are sites of RNA transcription (Bachellerie, 1975; Cmarko, 1999), 
whereas interchromatin granule clusters (or speckles) play a central role in the assem-
bly and/or modification of pre-mRNA splicing factors (Mintz, 1999; Smith, 1999; 
Spector, 2001). 
 
To ensure unimpeded exchange of molecules between the nucleus and the cytoplasm, 
the ICD has direct access to nuclear pores. Nuclear pores are multiprotein complexes 
embedded in the nuclear envelope, which mediate and regulate nucleocytoplasmic 
transport (Vasu & Forbes, 2001; Fahrenkrog & Aebi, 2003). The ‘basket’ structure at 
the nucleoplasmic side of the nuclear pore consists of eight filaments, which attach to 
a distal ‘ring’ structure. Several reports suggest that these ‘rings’ connect to filaments 
that extend into the nucleus and facilitate nucleocytoplasmic transport (Cordes, 1993; 
Parfenov, 1995; Cordes, 1997). 
  
 
1.2.3 Chromatin organization is dynamic.  
 
It has been hypothesized that the spatial arrangement of the genome in the interphase 
nucleus is an important factor in the regulation of gene activity (Zink, 2004) and pos-
sibly also in orchestrating DNA replication and DNA repair. Gene loci positioned 
megabases apart on the same or even different chromosomes were shown to interact, 
suggesting that some genes are spatially positioned together in a microenvironment to 
coordinate their transcription and/or to facilitate the processing of their RNA tran-
scripts (Branco & Pombo, 2006; Lonard & O'Malley, 2008). Although it is a proven 
fact that the cell nucleus is an ordered and structured compartment, the same structure 
is highly dynamic to regulate key functions such as transcriptional activity in response 
to signaling events and differentiation. In particular, fluorescence in situ hybridization 
and the application of chromosome conformation capture techniques, or a combina-
tion of both, provided important insight in the existence and dynamics of long-range 
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chromatin-chromatin interactions (Dekker, 2006). Also the positioning of specific 
chromatin regions at particular nuclear bodies are examples supporting the notion that 
the genome is not randomly organized in the cell nucleus (Smith, 1995). The chal-
lenge now is to unravel the underlying mechanisms that establish and maintain this 
non-random organization of chromatin in the cell nucleus.  
 
Understanding the organization principles of the nucleus is important because rear-
rangements in nuclear organization have been observed in cells derived from various 
diseases, including cancer, and in cells with a senescent or apoptotic phenotype (Vijg 
& Dollé, 2002; Busuttil, 2004; Raz, 2008; Shin et al., 2010). Furthermore, a striking 
change in nuclear organization has been observed in embryonic stem cells at the onset 
of differentiation (Butler et al., 2009). Most profound rearrangements in chromatin 
structure have been observed when a sperm pronucleus and an egg nucleus fuse after 
fertilization. In many species, the size of DNA loops increases from ca. 50 kbp in 
early embryogenesis to 200 kbp in cells of the adult organism (Buongiorno-Nardelli, 
1982). Notably, the average size of DNA loops was observed to decrease in trans-
formed cells (Linskens, 1987). In several human cancer cell lines the DNA loop size 
was found to be about 50 kbp, i.e. significantly smaller than in normal cells where it 
varies between 70-700 kbp (Oberhammer, 1993). It is important to unravel the 
mechanisms that control these aspects of nuclear organization to understand their im-
pact on the etiology, progression, and possibly treatment of human diseases. Once un-
derstood, the hope is that this new knowledge might open possibilities for treatment 
strategies of human disease. 
 
 
1.3    Nuclear bodies 
 
In addition to soluble components, the interchromatin domain (ICD) contains differ-
ent kinds of subcompartments or nuclear bodies that vary in size, composition and 
function (Figure 3; Tsutsui, 2005). Unlike the organelles present in the cytoplasm, 
nuclear bodies are not surrounded by a membrane structure. Therefore, it is still an 
open question how these bodies assemble and maintain their unique protein constella-
tion. It came more or less as a surprise that most if not all proteins that reside in bod-
ies are in a dynamic equilibrium with their surroundings (Misteli, 2001). A few of 
these proteins have been reported to shuttle between various bodies (Snaar, 2000; Ol-
son, 2004). Thus far, up to twelve different types of bodies have been identified, 
which are either permanently or temporally present in the cell nucleus depending on 
the physiological state of the cell (Spector, 2001). The most prominent nuclear bodies 
are discussed below.   
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Figure 3. Protein domains present in the mammalian cell nucleus. 
OPT domains: transcriptionally active sites that contain a specific set of transcription factors 
and RNA pol II, appear close to nucleoli in G1. Nuclear pore complex: multiprotein complexes 
where the inner and outer nuclear membranes are fused and where materials can transit between 
the cytoplasm and the nucleus. Cleavage body: either overlap or are localized adjacent to Cajal 
bodies, they consist of factors involved in the cleavage and polyadenylation steps of pre-mRNA 
processing. Heterochromatin: inactive chromatin. PcG body: have been found to be associated 
with pericentric heterochromatin (Saurin, 1998) and contain polycomb group proteins (i.e. 
RING1, BMI1 and hPc2). Gems: Gemini of Cajal bodies, they have been found adjacent to or 
coinciding with Cajal bodies. Gems are characterized by the presence of the survival of motor 
neurons gene product (SMN) and an associated factor, Gemin2 (Matera, 1999). SAM68 nuclear 
bodies/ Perinucleolar compartments (PNC): have been identified as unique structures that are 
associated with the surface of nucleoli and are thought to play a role in RNA metabolism 
(Huang, 2000). Both structures are predominantly found in cancer cells and they are rarely ob-
served in primary cells. Other nuclear bodies are discussed in the text. (Adapted from Spector, 
2001) 
 
 
1.3.1   Nucleolus 
 
The nucleolus was one of the first subcellular structures that were identified by early 
users of the light microscope (Montgomery, 1898). Nucleoli appeared as highly 
refractive black dots in the nucleus of cells, reflecting its dense protein content. The 
nucleolus is a dynamic multifunctional nuclear domain where ribosomal RNA is 
synthesized and the ribosomal subunits are assembled (Olson, 2002). Using mass 
spectrometry, up to 700 human proteins have been characterized in purified nucleoli 
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and up to 30% of these proteins are encoded by previously uncharacterized genes 
(Andersen, 2002; Andersen, 2005). Although it is not expected that all proteins found 
in nucleoli also have a function in this structure, their diversity is consistent with the 
idea that the nucleolus performs additional roles beyond generating ribosomal subunits 
(Pederson, 1998; reviewed by Olson, 2002). For example, many proteins related to 
cell cycle regulation (about 3.5% of the identified proteome), DNA damage repair 
(about 1%) and pre-mRNA processing (about 5%) have been identified in isolated nu-
cleoli. Nucleoli have therefore been implicated in processes such as cell cycle regula-
tion (Yamauchi, 2007), virus-replication (Jacob, 1968), regulation of tumor 
suppressor and oncogene activities (Itahana, 2003), DNA damage repair (van den 
Boom, 2004), signal recognition particle assembly (Jacobson & Pederson, 1998), 
RNA modification (Sansam, 2003), tRNA processing (Paushkin, 2004), aging by 
modulating telomerase function (Kieffer-Kwon, 2004; Zhang, 2004), regulation of 
protein stability (Mekhail, 2004; Rodway, 2004), senescence (reviewed by Comai, 
1999; Rosete, 2007) and apoptosis (Baran, 2003). In addition, nucleoli are thought to 
play a role in the maturation and transport of mRNAs (Schneiter, 1995).  
 
A possible function of the nucleolus in mRNA export was proposed 25 years ago 
based on observations in interspecies heterokaryons obtained from fusing chicken 
erythrocytes with mouse cells. It was observed that in the dormant chicken nucleus 
gene expression was initiated at precisely the same time when a nucleolus became 
detectable (Sidebottom & Harris, 1969; Deák, 1972; Harris, 1972). Furthermore, it 
was observed that UV irradiation of the chicken nucleolus in these heterokaryons 
greatly suppressed chicken-specific gene expression (Perry, 1961; Deák, 1972). Addi-
tional support for a role of nucleoli in mRNA export came by the observation that 
processed myc and myoD transcripts, unlike actin or lactate dehydrogenase tran-
scripts, are present in the nucleolus of several cell types (Bond & Wold, 1993). Be-
cause myc intron 1-containing pre-mRNA was not detected in nucleoli but instead in 
the nucleoplasm, it was suggested that the nucleolar localization of Pol II transcripts is 
a general phenomenon for transcripts that have a rapid cytoplasmic turnover only 
(Bond & Wold, 1993). It should be noted, however, that these observations have thus 
far not been confirmed by others. In cells derived from species that vary from sea ur-
chins to humans, nuclear poly(A)+ RNA is found present primarily in discrete "tran-
script domains", which often concentrate around nucleoli (Carter, 1991). Thus, 
whether nucleoli are involved in some steps of nuclear mRNA export has yet to be 
confirmed.  
 
 
1.3.2   Cajal bodies 
 
Cajal bodies are spherical nuclear bodies that are generally present in dividing cells 
and in cells that show high transcriptional activity. They are prominently present in 
most tumor cells, which rapidly proliferate, and in neurons that are metabolically ac-
tive (Cajal, 1903; Ogg & Lamond, 2002). They were first reported in 1903 by the 
Spanish cytologist Ramón y Cajal who named them “nucleolar accessory bodies”, be-
cause of their prominent association with nucleoli in neuronal cells (Cajal, 1903). Ca-
jal bodies were subsequently rediscovered by numerous researchers and given a vari-
ety of names in different cell types (Gall, 2000). The name “coiled body” was coined 
by electron microscopists, referring to their morphology in EM sections. It was not 
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until 1999 that Joseph Gall suggested to link Cajal’s name to the nuclear body that 
was originally described by him in 1903 (Gall, 1999). The number and size of Cajal 
bodies varies among cell types (in mammalian cells typically 0 –10 per nucleus, rang-
ing 0.1–2 �m in diameter) and they also show cell cycle variation within cell types. 
Cajal bodies can be discriminated in the nucleus by the presence of the protein coilin, 
either by immunocytochemistry or by exogenous expression of coilin-GFP (Snaar, 
2000; Ogg & Lamond, 2002).  
 
Recent studies indicated that Cajal bodies play a role in the assembly and/or modifica-
tion of the transcription and RNA-processing machinery (Gall, 1999; Jády, 2003). Ca-
jal bodies are enriched in snRNPs (small nuclear ribonucleoproteins) and snoRNPs 
(small nucleolar ribonucleoproteins) spliceosome subunits. Solid evidence has been 
provided that the final steps in snRNP maturation including snRNA base modifica-
tion, U4/U6 snRNA annealing, and snRNA-protein assembly of both snoRNAs and 
snRNAs occur in Cajal bodies (Darzacq, 2002; Verheggen, 2002; Jady, 2003; Stanek, 
2008). Despite their role in splicing factor maturation, Cajal bodies do not represent 
major sites of transcription per se, but they were observed frequently in association 
with a few specific genes coding for small nuclear snRNAs and histone genes in in-
terphase cells. Because Cajal bodies do not contain either DNA (Thiry, 1994) nor 
non-snRNP protein splicing factors (Raska, 1991; Carmo-Fonseca, 1992) it is unlikely 
that these bodies are sites of transcription or pre-mRNA splicing. Thus, the current 
view is that Cajal bodies play a crucial role in the spliceosome cycle in which the pro-
duction of new snRNPs is promoted by the import and modification of substrates (re-
viewed by Stan�k & Neugebauer, 2006). In addition, Cajal bodies may play a role in 
the recycling of snRNPs from splicing complexes that are released after finishing pre-
mRNA splicing. Interestingly, also the RNA subunit (hTR) of the enzyme telomerase 
was shown to accumulate in Cajal bodies (Jady, 2004; Zhu, 2004). During the S-
phase, when telomerase is likely to act, hTR has been found to associate with a subset 
of telomeres while Cajal bodies are present at close distance (Jady, 2006; Tomlinson, 
2006 ). Mutant hTR, which fails to accumulate in Cajal bodies, was fully capable of 
forming catalytically active telomerase in vivo. Telomere extension, however, turned 
out to be strongly impaired (Cristofari, 2007). This functional deficiency was accom-
panied by a decreased association of telomerase with telomeres suggesting that Cajal 
bodies also play an important role in telomere elongation.  
 
 
1.3.3   Speckles 
 
Speckles, also referred to as SC35 domains or interchromatin granule clusters (IGC), 
are thought to be storage sites of factors involved in mRNA synthesis, splicing, and 
RNA export (Dirks, 1999; reviewed by Lamond & Spector, 2003). The prevailing 
view is that splicing factors are recruited from speckles to sites of active transcription 
(Dirks, 1997; Misteli, 1997). At the electronmicroscopical level of resolution, IGCs 
range in size from one to several micrometers in diameter and are composed of 20–
25-nm granules that are connected by thin fibrils, resulting in a beaded chain 
appearance (Thiry, 1995)..Other splicing factor containing structures in the nucleus 
are perichromatin fibrils, Cajal bodies and interchromatin-granule-associated zones, 
also referred to as paraspeckles (Visa, 1993). Speckles, however, can be easily dis-
criminated from these structures by their morphology and protein content and are pre-
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sent throughout the nucleoplasm in regions that contain little or no DNA (Thiry, 
1995). Furthermore, in situ hybridization studies revealed that speckles do not contain 
genes. Instead, active transcription sites were found positioned throughout the 
nucleoplasm and also next to speckles. Some genes have been reported to localize 
preferentially close to speckles (Huang, 1991; Xing, 1993; Xing, 1995; Smith, 1999; 
Johnson, 2000).  
 
These observations indicate that speckles are functionally related to gene expression. 
Hall and coworkers proposed that speckles are hubs that spatially link the synthesis of 
specific pre-mRNAs to a rapid recycling of copious RNA metabolic complexes, 
thereby facilitating expression of many highly active genes (Hall, 2006). In addition 
to increasing the efficiency of each step, sequential steps in gene expression might be 
structurally integrated at each speckle, consistent with evidence that the biochemical 
machineries for transcription, splicing, and mRNA export are coupled (Hall, 2006). 
The observation that speckles also contain poly(A)+ RNA led to the suggestion that 
speckles play a role in RNA metabolism and export (Carter, 1991, 1993; Molenaar, 
2004). A substantial amount of mature mRNA is found to be retained in nuclear 
speckles until ATP is added, suggesting that speckles prevent the export of otherwise 

fully processed mRNAs until an energy-requiring cellular signal releases them 
(Schmidt, 2006). 
 
1.3.4   PML bodies 
 
The most mysterious of all nuclear bodies is the PML body, also known as ND10 (nu-
clear domain 10) or Kremer bodies (Kr) (Dyck, 1994; Koken, 1994; Weis, 1994). 
Promyelocytic leukemia bodies (PML bodies) are nuclear protein bodies, ranging in 
size from 0.3 μm to 1.0 μm in diameter and are characterized by the presence of the 
PML protein. Typically there are 10-20 PML nuclear bodies (PML-NB) present in the 
cell nucleus and they are believed to be tightly associated with nuclear matrix proteins 
(Stuurman, 1992). Electron microscopy studies have shown that PML-NBs are 
composed of a ring-like protein structure that does not contain nucleic acids in the 
centre of the ring (Boisvert, 2000; Dellaire & Bazett-Jones, 2004). At the periphery of 
the ring, however, PML-NBs are believed to make extensive contacts with chromatin 
fibers through protein-based threads that extend from the core of the bodies (Eskiw, 
2004). These contacts have been proposed to be essential for maintaining the integrity 
and positional stability of PML-NBs in the nucleus. 
 
PML bodies were originally characterized using human auto-antibodies derived from 
patients with primary biliary cirrhosis (Bernstein, 1984; Szostecki, 1990; Maul, 2000). 
Using such antibodies, Bernstein et al. described in 1984 the presence of certain typi-
cally speckled structures, which later came to be known as nuclear domain 10 
(ND10), PML bodies, or PODs. PML bodies, however, were first named after exam-
ining cells derived from patients with acute promyelocytic leukemia (APL) (de The, 
1991). Most APL patients carry the chromosomal translocation t(15,17), resulting in a 
fusion protein between the retinoic acid receptor-� (RAR) and the PML protein (de 
The, 1991; Melnick & Licht, 1999). The PML-RAR� fusion protein fails to locate to 
PML bodies (Melnick& Licht, 1999) and is thought to block differentiation of bone 
marrow cells (Naeem, 2006). In addition, the leukemic blast cells of APL patients re-
veal fragmented or dispersed PML bodies. Treatment of APL patients with all-trans-
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retinoic acid or arsenic trioxide results in the degradation of the PML-RAR� fusion 
protein, restoration of PML bodies and remission of the disease (Koken, 1994; Weis, 
1994). Recently, it has been shown that arsenic-induced degradation of PML or PML-
RAR� is mediated by the ubiquitin ligase RNF4 (Lallemand-Breitenbach, 2008; 
Tatham, 2008).  
 
In PML bodies, nearly eighty different proteins have been found present. Among 
them are Sp100, Sp140, SUMO-1, HAUSP (USP7), CBP and BLM, Daxx, pRB, and 
p53 (Hodges, 1998; LaMorte, 1998; Alcalay, 1998; Zhong, 1999; Zhang, 1999; 
Zhong, 2000; for a review see Salomoni & Pandolfi, 2002). Because of this variety of 
proteins, PML bodies have been implicated in many different functions, such as tran-
scription regulation, protein storage, senescence and interferon-induced antiviral de-
fense (Chelbi-Alix, 1995; Maul, 1998). Concerning transcription regulation, PML 
bodies have been suggested to be involved in both transcriptional activation (Maul, 
1998; Zhong, 2000) and transcriptional repression (Everett, 1999). However, whether 
PML bodies play indeed an essential role in transcription is not clear since PML-/- 
mice show a very moderate phenotype. PML-/- mice are morphologically normal and 
do not have higher rates of spontaneous cancers than littermate controls (Wang, 
1998a; Wang, 1998b). Some regions of the human genome that display high transcrip-
tional activity do, however, associate frequently with PML NBs, although RNAi-
mediated knockdown of PML did not perturb the expression of these genes (Wang, 
2004).  
 
PML bodies have also been implicated in DNA damage repair as several repair fac-
tors transit through PML bodies in a temporally regulated manner (Graham & Bazett-
Jones, 2004). Furthermore, PML bodies have been shown to recruit single-stranded 
DNA (ssDNA) molecules in response to exogenous DNA damage (Bøe, 2006). PML 
bodies are also associated with the sites of initial viral DNA transcription/ replication 
in virus infected cells (Maul, 1996; Maul, 1998; Guldner, 1992; Stadler, 1995). PML 
bodies are subsequently disrupted at later stages in the infectious viral cycle (Maul, 
1993). Upon treatment of cells with interferon, PML is induced and the number of 
nuclear bodies increases dramatically (Lavau, 1995; Gaboli, 1998). This suggests a 
role for PML and the nuclear bodies as part of the anti-viral defense machinery acti-
vated by interferons in viral infections. DNA and RNA viruses have a variety of ef-
fects on PML body morphology, where arenaviruses and the human immunodefi-
ciency virus (HIV) transport PML to the cytoplasm, and herpesviruses “unwind” PML 
bodies (Borden, 1998; Melnick & Licht, 1999; Maul, 2000; Turelli, 2001). However, 
findings with HIV infected cells are somewhat controversial, since another group did 
not see PML NBs translocate during infection (Bell, 2001). 
 
It has been established that PML is the primary essential component of PML NBs, 
and conjugation of SUMO-1 to PML is suggested to be a prerequisite for PML body 
formation (Ishov, 1999;  Zhong, 2000). PML SUMOylation likely plays a regulatory 
role in the structure, composition, and function of PML bodies (Sternsdorf, 1997). 
Elegant studies demonstrate that the RING domain of PML directly interacts with 
Ubc9, an enzyme which covalently attaches the SUMO1 protein onto distal regions of 
PML, including one B-box and a region near the nuclear localization signal (Duprez, 
1999).    
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It has been demonstrated that PML contains a SUMO binding motif that is independ-
ent of its SUMOylation sites and is required for PML-NB formation. A model for 
PML-NB formation was proposed in which PML SUMOylation and noncovalent 
binding of PML to SUMOylated PML through the SUMO binding motif constitutes 
the nucleation event for subsequent recruitment of SUMOylated proteins and/or pro-
teins containing SUMO binding motifs to the PML NBs (Shen, 2006). 
  
Alternatively, PML bodies may have the ability to self-assemble. Purified RING-
domains (small zinc-binding domains) of PML and other proteins have been shown to 
self-assemble into supramolecular structures in vitro that resemble the structures they 
form in cells (Kentsis, 2002). Over-expression of SUMO-1 prevented the stress-
mediated breakdown of PML bodies, indicating that PML body stability is partially 
dependent on SUMO-1 (Eskiw, 2003). Interestingly, many of the proteins found in 
the PML NBs have been shown to be SUMOylated (Seeler & Dejean, 2003).  
 
Like PML bodies, also the PML protein has been implicated in different cellular func-
tions including suppressing cell growth and cell transformation (Mu, 1994; Ahn 1995; 
Koken, 1995; review: Melnick & Licht 1999). Transduction of APL patient derived 
NB4 cells with a retrovirus harboring the coding sequence for PML suppressed the 
ability of these cells to form colonies in soft agar. In addition, conditioned medium 
from these cells suppressed colony formation of wild-type NB4 cells, suggesting the 
release of negative growth control factors (Mu, 1994). Furthermore, PML-
overexpressing NB4 cells, when injected into nude mice, yielded smaller tumors that 
appeared with a longer latency than vector-expressing cells (Mu, 1994). In various 
human tumors, PML expression was shown to be decreased (Gurrieri, 2004a) and in 
some cases it was shown that low levels of PML correlated with poor disease outcome 
(Chang, 2007). Consistent with a role as tumor suppressor, it has been reported that
overexpression of PML suppresses the growth of various cancer cells (Liu, 1995; Mu, 
1997; Le, 1998). Also, PML knockout mice revealed an increased susceptibility to 
chemical-induced carcinogenesis (Wang, 1998a) and spontaneous tumorigenesis 
(Trotman, 2006).  
  
Probably one of the most important functions of PML is to control apoptosis. The 
physiological relevance of this is emphasized by in vivo studies demonstrating that 
mice and cells that lack PML are resistant to a vast variety of apoptotic stimuli 
(Wang, 1998a). Although the molecular mechanism remains largely unknown, PML 
is thought to be a pivotal factor in � irradiation-induced apoptosis (Wang, 1998a) and 
essential for the induction of programmed cell death by Fas, tumor necrosis factor � 
(TNF), ceramide and type I and II interferons (IFNs) (Wang, 1998a; Quignon, 1998). 
In support of these thoughts, PML�/� mice and PML�/� cells are resistant to the le-
thal effects of �-irradiation (Wang, 1998a; Yang, 2002). 
 
 
2. The nuclear matrix 
2.1 Evidence for a nuclear matrix structure? 
 
For more than 30 years it has been hypothesized that the mammalian cell nucleus con-
tains a filamentous framework, referred to as nuclear matrix or karyoskeleton, which 
provides structural support to the various nuclear components and a framework for all 
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nuclear activities. It is the observation that nuclei withstand strong hydrodynamic 
shear force, compression and friction during cell or tissue homogenization as well as 
extreme osmotic pressure that prompted scientists to believe in a nuclear matrix struc-
ture (Maggio, 1963a; Penman, 1966; Blobel & Potter, 1966; Dounce, 1995; Pederson 
1997). The term ‘nuclear matrix’ was first used in 1974 to describe a filamentous 
structure that remained present when cell nuclei were salt extracted using 1.0- 2.0 M 
NaCl (Berezney & Coffey, 1974). Numerous studies followed since, using variations 
on extraction protocols until proteins, RNA- and DNA-sequences were all shown to 
be connected to the nuclear matrix (Berezny & Jeon, 1995). Interestingly, Jackson and 
Cook observed in 1988 an extensively anastomatized nuclear network of filaments 
after performing nuclear extractions of cells that were encapsulated in agarose spheres 
(Jackson & Cook, 1988). This network is believed to resemble the filamentous struc-
ture that remains present after a high ionic strength extraction of the nucleus (Capco, 
1982). Many studies found 3-5 and 10-30 nm ribonucleoprotein elements/filaments 
remaining present in the nucleus after extraction using RNP-depleted and RNP-
containing resinless electron microscopy (resin is an embedding material that scatters 
electrons in a similar way as the embedded specimen does) or whole mount electron 
microscopy (Monneron & Bernhard, 1969; Berezney & Coffey, 1974; Comings & 
Okada, 1976; Capco, 1982; Small, 1985; Fey, 1986; Jackson & Cook, 1988). RNP 
filament domains are thought to be very important  for nuclear matrix organization 
and for some time it was not possible to remove chromatin from the nucleus without 
removing the RNP filament domains as well (Fey, 1986).  
 
These ultrastructural studies of sectioned cell nuclei did, however, not confirm the 
presence of a filament system that was thought to comprise the nuclear matrix in situ. 
In fact enormous doubt was raised concerning the procedures used to extract cell nu-
clei could possibly reveal the nuclear matrix structure that may exist in vivo. All nu-
clear matrix preparation procedures used thus far involved harsh treatments, including 
the removal of nucleic acids, heat (Mirkovitch, 1984; Martelli, 1991), Cu 2+ (Mirk-
ovitch, 1984; Neri, 1997), sulfhydryl cross-linking (Kaufmann & Shaper, 1984), and 
highly concentrated monovalent salts such as 2 M NaCl (Berezney & Coffey, 1977). 
Significantly, it has been noted that such treatments themselves result in protein rear-
rangements and protein aggregations (Palade & Siekevitz, 1956; Tashiro, 1958; Madi-
son & Dickman, 1963; Lothstein, 1985). Also, protein-protein interactions and van 
der Waals forces between proteins and water change profoundly when high ionic 
strength is used (Kauzmann, 1959; Varshavsky & Ilyin, 1974), which is true for most 
standard nuclear matrix preparation procedures. Consequently, such artificially intro-
duced protein filaments might easily be interpreted as a nuclear matrix structure 
(Finkelstein, 1997). The existence of a nuclear matrix still needs to be confirmed by 
other techniques, like for example live cell imaging and RNA interference.  
  
Many who did not believe in the existence of the nuclear matrix became converted by 
the idea that ribonucleoproteins are functionally integrated elements of the nuclear 
architecture. Several groups reported pre-mRNA and splicing-intermediates to be re-
tained in RNP-containing nuclear matrix preparations (Ben Ze'ev, 1982; Ciejek, 1982; 
Mariman, 1982; Ross, 1982; Gallinaro, 1983; Ben Ze'ev & Aloni, 1983). Also, several 
studies showed that the hyperphosphorylated form of the largest subunit of RNA po-
lymerase II is associated with nuclear sites that are rich in pre-mRNA splicing factors, 
and importantly, are retained in nuclear matrix preparations (Mortillaro 1996, Vincent 
1996). Hyperphosphorylation of RNA polymerase II is functionally linked to the most 
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active form of this enzyme (Dahmus, 1996). Taking all this evidence into account it 
can be concluded that it is very likely that there is a nuclear matrix, but still further 
research is necessary to precisely define its components.  
  
Recent advances in the study of the protein composition of the nuclear matrix allowed 
the characterization of several proteins that are specifically associated with the nu-
clear matrix in tumor cells (Konety & Getzenberg, 1999). Some of these proteins are 
used for the diagnosis of cancer; e.g., NMP22 is specifically present in the nuclear 
matrix of bladder cancer cells (Ozen, 1999). Hence, detecting changes in the nuclear 
matrix structure may serve as a valuable tool in cancer diagnostics. 
 
2.2   The nuclear lamina
 
The nuclear envelope is a double-layered membrane that encloses the contents of the 
nucleus during most of the cell's lifecycle and forms a boundary between chromo-
somes and the cytoplasm in eukaryotic cells. The main components of the nuclear en-
velope are the inner nuclear membrane, the outer nuclear membrane, which is con-
tinuous with the endoplasmatic reticulum, and the nuclear pore complexes (Stuurman, 
1998; Goldman, 2002). On the inner surface of the nuclear membrane, the nuclear 
lamins (type-V intermediate filaments) are polymerized to form a thin fibrous struc-
ture, 20-50 nm thick. The nuclear lamins form together with the inner nuclear mem-
brane (INM) proteins the ‘nuclear lamina’, a stable yet dynamic network that main-
tains extensive interactions with both INM-specific integral membrane proteins and 
chromatin (Hutchison, 2002). There are two classes of lamins, A-type lamins (lamin 
A/lamin C, each alternatively spliced from the same gene) and B-type lamins which 
bind to the lamin B receptor (LBR). Mutations in the lamin A/C and lamin B genes 
result in diseases ranging from cardiac and skeletal myopathies and partial lipodystro-
phy to peripheral neuropathy and premature aging (Mounkes, 2003). Specifically, mu-
tations in the genes encoding for A-type lamins and their binding partners have been 
associated with Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, Dunni-
gan-type familial partial lipodystrophy and Hutchinson-Gilford progeria syndrome 
(Bonne, 1999; Fatkin, 1999; Cao, 2000; Shackleton, 2000; Burke & Stewart, 2002; 
De Sandre-Giovannoli, 2003; Eriksson, 2003). B-type lamins are constitutively ex-
pressed in all somatic cells and contain a stable C-terminal farnesyl modification, 
which mediates tight association with the INM. Unlike B-type lamins, the A-type 
lamins are expressed only in differentiated cells (Lebel, 1987; Stuurman, 1998). They 
are components of the peripheral lamina and of structures in the nuclear interior 
(Moir, 2000). The lamina may be linked to nuclear pore baskets through Nup153 
(Foisner, 2001). 
  
The nuclear lamina is considered to be an important determinant of interphase nuclear 
architecture (Lenz-Bohme, 1997; Schirmer, 2001) because it plays an essential role in 
maintaining the integrity of the nuclear envelope and provides anchoring sites for 
chromatin (Moir, 1995; Gant & Wilson, 1997; Stuurman, 1998; Gant, 1999). In addi-
tion to the well-characterized peripheral location of lamins, there is considerable evi-
dence for an intranuclear distribution of lamins. Both, localization in intranuclear 
spots (Goldman, 1992; Bridger, 1993; Moir, 1994) and a diffuse distribution through-
out the nucleus (Hozak, 1995) have been reported. Intranuclear lamins have been 
shown to localize at sites of DNA replication (Jenkins, 1995; Goldman, 2002; Mar-
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tins, 2003; Gruenbaum, 2003) and to support nuclear activities such as DNA replica-
tion and RNA synthesis (Nili, 2001; Spann, 2002; Wilkinson, 2003; Haraguchi, 
2004). It is not yet clear whether intranuclear lamins form a network and whether 
such a network would be required for the activities supported by the lamins.  
  
The nuclear lamins bind to several INM proteins, including lamina-associated poly-
peptides 1 and 2ß (LAP1, LAP2ß), emerin and Man1, which share a common struc-
tural motif of about 40 amino acid residues, called the LEM (LAPs, emerin and 
Man1) domain (Lin, 2000). Although additional LEM domain proteins such as 
Nesprin, Otefin, and Lem-3 have been identified (Lin, 2000). All LAP1 isoforms and 
LAP2� interact preferentially with A-type lamins, while the lamin B receptor and 
LAP2� interact with the B-type lamins and emerin interacts with both types of lamins 
(Foisner, 2001). Lamins can also bind to chromatin proteins (histone H2A or H2B 
dimers), as well as ostensibly soluble proteins including lamina-associated polypep-
tide-2� (LAP2�), Kruppel-like protein (MOK2), actin, retinoblastoma protein (RB), 
barrier-to-autointegration factor (BAF), sterol-response-element-binding protein 
(SREBP) and one or more components of RNA-polymerase-II-dependent transcrip-
tion complexes and DNA-replication complexes (Gruenbaum, 2003; Zastrow, 2004). 
In cells that lack A-type lamins, many of these proteins are not retained at the NE but 
instead drift throughout the NE/ER network (Sullivan, 1999; Lee, 2002; Liu, 2003; 
Muchir, 2003; Wagner, 2004). Lamins and their associated proteins are proposed to 
have roles in large-scale chromatin organization (Sullivan, 1999; Liu, 2000; Guil-
lemin 2001; Liu, 2003; Raz, 2006; Raz, 2008), the spacing of nuclear pore complexes 
(Liu, 2000; Schirmer, 2001), the positioning of the nucleus in cells (Starr, 2001; Starr 
2002) and the reassembly of the nucleus after mitosis (Lopez-Soler, 2001). Lamins 
have been shown to interact with chromatin at more than 1,300 sharply defined large 
domains, 0.1-10 megabases in size (Guelen, 2008). These lamina-associated domains 
are typified by low gene-expression levels, indicating that they represent a repressive 
chromatin environment (Guelen, 2008). 
  
The nuclear lamina is linked to the cytoskeleton via the nesprin protein family, which 
include high molecular weight proteins embedded in the inner and outer nuclear 
membrane (Zhang, 2001; Mislow, 2002). When nesprins are associated with the outer 
nuclear membrane, the amino-terminus is exposed towards the cytoplasm and binds to 
microfilaments (Zhang, 2001;  Zhen, 2002) and intermediate filaments (Wilhelmsen, 
2005). As such they connect the nucleus to the cytoskeleton (Wang & Suo, 2005). 
This anchorage of the nuclear membrane to the cytoskeleton is essential for migration 
and correct localization of the nucleus inside the cell. Nesprins at the inner nuclear 
membrane (smaller isoforms) bind to lamin A/C and emerin (Mislow, 2002; 
Padmakumar, 2005) through their spectrin repeats in the carboxy-terminus, and – as 
such – interact closely with the nuclear lamina. In this way lamins play not only an 
essential role in the structural integrity of the nucleus but also in the structural integ-
rity of the whole cell, via connections between nuclear lamina, cytoskeleton and ex-
tracellular matrix (Lammerding, 2004; Broers, 2004; Broers, 2005). Absence of the 
A-type lamins or mutations in these structural components of the nuclear lamina leads 
to an impaired cellular response to mechanical stress (Lammerding, 2004). 
Laminopathies show clinical phenotypes comparable to those seen for diseases result-
ing from genetic defects in cytoskeletal components, further indicating that lamins 
play a central role in maintaining the mechanical properties of the cell. 
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Figure 4. Schematic view of the nuclear envelope, lamina and chro-
matin. The inner and outer membranes of the nuclear envelope are shown with their en-
closed lumen. Also lamin filaments and selected nuclear envelope proteins, including 
lamina-associated protein 1 (LAP1), emerin, LAP2�, MAN1, UNC-84, lamin B receptor 
(LBR), nurim and otefin, are shown. (Adapted from Cohen, 2001). 
 
 
2.3  Are lamins part of the nuclear matrix? 
 
Considering the spatial distribution of lamins in the cell nucleus, the question is raised 
whether lamins are part of the nuclear matrix. A large fraction of the filaments seen in 
resinless section images of (RNP-containing) nuclear matrix preparations are 10-11 
nm in diameter (Jackson & Cook, 1988; He, 1990; Hozák, 1995; Wan, 1999), which 
correspond to the size of an intermediate filament. In one report, it has been described 
that these nuclear filaments react with a lamin A specific antibody (Hozák, 1995). In-
truigingly, many different intermediate filament proteins revealed binding affinity for 
nucleic acids and also share some amino acid sequence homology with transcription 
factors (Traub & Shoeman, 1994). Other studies have also found lamins as discrete 
foci present in the nucleoplasm (Goldman, 1992; Bridger, 1993; Moir, 1994), and it 
has been shown that nucleoplasmic lamins undergo dynamic assembly-disassembly in 
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vivo (Goldman, 1992; Moir, 1994; Schmidt, 1994). Altogether this evidence is in fa-
vour of a role for lamins constituting part of the nuclear matrix, possibly by forming a 
complex network with other proteins like emerin, protein 4.1, nuclear actin and nu-
clear myosin (Pestic-Dragovich, 2000; Kiseleva, 2004).  
  
 
 
2.4  Nuclear actin 
 
Since one of the presumed functions of the nuclear matrix is to support and to facili-
tate/regulate intranuclear transport, possible nuclear matrix components may be simi-
lar to protein filament systems already characterized in the cytoplasm. Thus far, there 
is little if no evidence for the presence of tubulin or microtubules in the nucleus. Nu-
clear actin, however, is present and functional in the cell nucleus of various cell types 
(Clark & Merriam, 1977; Fukui, 1978; Fukui & Katsumaru, 1979; Clark & 
Rosenbaum, 1979; Osborn & Weber, 1980; Welch & Suhan, 1985; De Boni, 1994; 
Yan, 1997; Rando, 2000; Pederson and Aebi, 2002; Bettinger, 2004; Castano et al., 
2010). This is also true for nuclear actin binding proteins (Ankenbauer, 1989; Rimm 
& Pollard, 1989) and nuclear myosin (Hauser, 1975; Berrios & Fisher, 1986; Hagen, 
1986; Rimm & Pollard, 1989; Nowak, 1997). Nuclear actin has initially been sug-
gested to play a role in transcription (Scheer, 1984) and later also in mRNA process-
ing (Sahlas, 1993), chromatin remodelling and nuclear export (Machesky & May, 
2001; Goodson & Hawse, 2002; Olave, 2002). Nuclear actin is also found  present in 
the nucleolus (Clark & Merriam, 1977; Funaki, 1995) and TEM analysis of Xenopus 
oocyte nuclei suggested that short bundles of actin extend from nucleoli towards the 
nuclear envelope (Parfenov, 1995). In addition to actin, nuclei also contain a specific 
isoform of myosin I, nuclear myosin 1 (NM1), which is an actin-dependent motor. 
Antibodies directed against nuclear myosin I block transcription by RNA polymerase 
II when injected into mammalian cells and inhibit isolated transcription complexes in 
vitro (Pestic-Dragovich, 2000). 
  
The most important questions about nuclear actin revolve around its polymeric 
state(s). Nuclear actin does not form long actin filaments (‘F-actin’), it is proposed to 
assume shorter, potentially novel conformations (Pederson & Aebi, 2002; Bettinger, 
2004). Nuclear actin ‘rods,’ ‘bundles,’ and ‘tubules’ have been described by a number 
of investigators (Fukui & Katsumaru, 1979; Iida, 1986; Iida & Yahara, 1986; Nishida, 
1987; Wada, 1998), but their supramolecular organization has remained elusive ex-
cept for one case (Sameshima, 2001). Sameshima et al. have described a new type of 
actin rods formed both in the nucleus and the cytoplasm of Dictyostelium discoideum 

that have been implicated in the maintenance of dormancy and viability at the spore 
stage of the developmental cycle. Examination of their ultrastructure has revealed 
these actin rods as bundles of hexagonally packed actin tubules consisting of three ac-
tin filaments each. (Interestingly, cytoplasmic actin is known to form short ‘protomer’ 
filaments (e.g. at branched intersections with protein 4.1, tropomyosin and spectrin), 
as well as tubes, sheets and short branched filaments (Pederson & Aebi, 2002).). Nu-
clear actin was shown to interact with many structural proteins in the nucleus: the in-
termediate filament protein lamin A (Sasseville & Langelier, 1998), membrane pro-
tein emerin (Holaska, 2004), the nesprin family of filamentous proteins (Zhang, 2002; 
Zhen, 2002) and nuclear-specific isoforms of protein ‘4.1’, an actin scaffolding pro-
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tein (Correas, 1991; Krauss, 1997; Luque & Correas, 2000). An actin network is 
proposed to exist at the INM and to mechanically reinforce the lamina network 
(Holaska, 2004). The actin-binding domain of nuclear-specific isoforms of protein 4.1 
is found to be essential to reconstruct nuclei after mitosis (Krauss, 2003). In 
conclusion, there is ample evidence that actin is present in the cell nucleus and is 
involved in a variety of nuclear processes.  
 
 
3. Telomeres & Nuclear organization 
3.1 Telomere biology 
 
Telomeres are structures at the ends of eukaryotic chromosomes (in greek: telo= end , 
mere= part). They are protein-DNA complexes that protect chromosome termini from 
unregulated degradation, recombination and fusion. They also serve to limit the loss 
of genetic material from chromosome ends that occurs during (incomplete) DNA rep-
lication. After about 60-80 cell divisions, telomere repeats are shortened from a typi-
cal initial length of 10-15 kb in human cells to ~5 kb and below, which triggers cell 
senescence or apoptosis (Harley, 1990; Martens, 2000; Blasco, 2007). The number of 
cell divisions that a normal cell can make before entering in to a state of senescence is 
also referred to as the ‘Hayflick limit’. Leonard Hayflick demonstrated in 1965 that 
normal human diploid cells in a cell culture divide about 50 +/- 10 times (Hayflick, 
1965). 
  
Telomeres consist of tandemly repeated DNA sequences (TTAGGG) bound by vari-
ous telomeric proteins, such as telomere repeat binding factor 1 (TRF1), telomere re-
peat binding factor 2 (TRF2) and protection of telomeres 1 (POT-1) (Blackburn, 
2001). These proteins bind telomeric DNA directly and are interconnected by three 
additional proteins, TIN2, TPP1 and Rap1. Together they form a complex called the 
shelterin complex (figure 6) that allows cells to distinguish telomeres from sites of 
DNA damage (d’Adda di Fagagna, 2004; Shay & Wright, 2004; de Lange, 2005). The 
single stranded end-part of the telomere forms a loop structure, called the t-loop (Grif-
fith, 1999), which is lost when TRF2 function is inhibited by expressing a dominant 
negative allele of TRF2 (van Steensel, 1998). Telomeres have a nonnucleosomal 
chromatin structure, whereas subtelomeric DNA is assembled into nucleosomes 
(Wright, 1992). It is possible that t-loops create an organization similar to nu-
cleosomes that conceal the chromosome ends from the DNA damage surveillance, 
thus preventing telomeres from being degraded. It has been proposed that TRF2 plays 
an important part in protecting telomeres in vivo (Griffith, 1999). Most, if not all 
TRF2 is in a complex with human (h)Rap1, which has been identified as a direct in-
teracting partner of TRF2 (Li, 2000). Two other telomeric proteins, TIN2 and the 
DNA repair protein Ku, interact with telomeres via binding to TRF1 (Kim, 1999; Hsu, 
2000). TRF1 alone is insufficient to control telomere length in human cells, and the 
TIN2 protein is thought to be an essential mediator of TRF1 function (Kim, 1999).
Moreover, TIN2 is thought to bind TRF1 and TRF2 simultaneously, stabilizing the 
TRF2 complex on telomeres (Ye, 2004). TPP1 was also found to interact with both 
TRF1 and TRF2 and to operate as a negative regulator of telomere length 
(Houghtaling, 2004). 
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The length of telomeres is well-controlled by several different factors. If  this were 
not the case, the chromosomes would shorten dramatically with every cell division. In 
most organisms, telomeres are lengthened by the enzyme telomerase (Greider & 
Blackburn, 1985; Greider, 1996). With the exception of a few cell types, including 
stem cells, human somatic cells undergo programmed telomere shortening, a process 
that appears to involve repression of telomerase expression (Cooke & Smith, 1986; de 
Lange, 1990; Harley, 1990; Hastie, 1990; Counter, 1992; Kim, 1994). This progres-
sive decline of telomere length with each cell division may constitute a tumor sup-
pressor mechanism that limits the replicative potential of transformed cells. In agree-
ment, telomerase is frequently activated in human and mouse tumors and restoration 
of telomere length is correlated with immortalization of human cells in vitro (Counter, 
1992, 1994a, b; Kim, 1994; Blasco, 1996; Broccoli, 1996). During the malignant pro-
gression of cancer cells, the maintenance of telomere length is a crucial prerequisite 
for immortalization (Bacchetti, 1996). Therefore, telomere length has emerged as a 
promising clinical marker to predict the risk and prognosis of patients with malignant 
disorders (reviewed by Svenson & Roos, 2009). Most cancer cells activate a telomere 
maintenance pathway and about 90% of these tumors show telomerase activity (Shay 
& Bachetti, 1997). A significant minority of tumors use an alternative lengthening of 
telomeres (ALT) mechanism (Bryan, 1995; Bryan, 1997).  
 
 
 

  
Figure 6. Schematic representation of shelterin on 
telomeric DNA. The shelterin complex consists of six 
subunits, TRF1,TRF2, POT1, TIN2, TPP1 and Rap1. For 
simplicity, POT1 is only shown as binding to the site closest to 
the duplex telomeric DNA although it can also bind to the 3� end. 
(Adapted from de Lange, 2005) 

 
 
3.2   ALTernative lengthening of telomeres 
 
Approximately 10% of all human cancers use instead of the enzyme telomerase an 
alternative mechanism for telomere elongation, the ALT-mechanism. Although details 
of the molecular mechanism of ALT are largely unknown, previous studies have 
shown that the ALT mechanism in human cells likely involves recombination be-
tween telomeres (Murnane, 1994; Dunham, 2000). Saccharomyces cerevisiae cells 
that survive in the absence of telomerase require a functional RAD52 gene, a protein 
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required for DNA recombination (Lundblad, 1993). Also, individual telomeres in hu-
man ALT cells undergo steady telomere attrition upon which sudden lengthening and 
shortening events are superimposed in a manner that is suggestive for recombination 
(Murnane, 1994). Finally, functional evidence for the involvement of recombination 
in the ALT mechanism was provided by showing that DNA sequences are copied 
from telomere to telomere in ALT cells (Dunham, 2000). Telomere lengthening is 
also possible via intra-telomeric DNA copying (Muntoni, 2009). These observations 
are all consistent with a recombination-mediated DNA replication mechanism. 
  
The hallmarks of human ALT cells include a large variance in telomere length, with 
telomeres that range from very short ~5kb, to very long ~50 kb (Bryan, 1995), and the 
presence of ALT-associated promyelocytic leukemia nuclear bodies (APBs) contain-
ing telomeric DNA and telomere binding proteins (Yeager, 1999). ABPs are a subset 
of PML bodies that are not found in normal cells, or in tumor cells that express telom-
erase, and contain additional proteins involved in DNA replication, recombination and 
repair that are not found in normal PML bodies (Yeager, 1999; Yankiwski, 2000; 
Stavropoulos, 2002; Tarsounas, 2004). APBs are found in a minority of cells, ap-
proximately 5% within asynchronously dividing ALT cell populations, from which it 
may be concluded that their formation is cell cycle-dependent (Yeager, 1999; 
Grobelny, 2000; Wu, 2000). It has been suggested that APBs may have an integral 
role in the ALT mechanism (Yeager, 1999; Grobelny, 2000; Wu, 2000, 2003; Mole-
naar, 2003). Consistent with this suggestion, inhibition of ALT in somatic cell hy-
brids, formed by fusing ALT and telomerase-positive cells, resulted in a substantial 
decrease in APBs (Perrem, 2001). It has been shown that inhibition of ALT is accom-
panied by a reduction of APBs, providing evidence for a direct link between APBs 
and ALT activity (Jiang, 2005). Furthermore, it has recently been shown that the 
DNA recombination endonuclease MUS81 is involved in ALT specific telomerase 
recombination and localizes to APBs (Zeng, 2009).  
  
Observational and clinical studies on ALT positive tumors may help to fill the gaps in 
our understanding of the ALT mechanism. ALT is most commonly activated in tu-
mors of neuroepithelial origin (astrocytomas) or mesenchymal origin, including os-
teosarcomas, and in soft tissue sarcomas (Henson, 2005). The reason for this is un-
known, but it is possible that some mesenchymal and neuroepithelial cells repress 
telomerase more tightly than epithelial cells and therefore have a higher probability of 
activating ALT during tumorigenesis. In sarcomas, ALT is more frequently activated 

in subtypes that have a complex karyotype, which could be linked to chromosomal 
instability (Montgomery, 2004; Ulaner, 2004). It could be argued that the ALT 
mechanism is, in part, the cause of this instability because the critically short te-
lomeres found in ALT cells are prone to end-to-end fusions, anaphase bridge forma-
tion, break–fusion–break events and ultimately severe chromosomal rearrangements. 
However, not all soft tissue sarcomas showing complex karyotypes are ALT-positive 
(Henson, 2005), indicating that other factors contribute to chromosomal instability as 
well. 
  
Activation of the ALT pathway has been reported to be a prognostic marker for can-
cer progression. In case of glioblastoma, ALT correlated with a better patient progno-
sis, whereas no influence was detected for osteosarcomas. One of 16 non–small cell 
lung cancer (NSCLC) cell lines (VL-9, SK-LU-1, and VL-7) that lacked telomerase 
activity and displayed characteristics of an ALT mechanism showed significantly re-
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duced tumorigenicity in vitro and in vivo compared to the telomerase positive NSCLC 
cell lines (Brachner, 2006). It can be concluded that there is some evidence indicating 
that the ALT mechanism is indicative for a better patient prognosis, although further 
research is needed to substantiate this conclusion.  
 
 
3.3   Telomeres and the nuclear matrix 
 
The positioning of telomeres in the cell nucleus varies among organisms (Dong & Ji-
ang 1998). In yeast, telomeres are positioned at the nuclear periphery while in mam-
malian cells they seem randomly distributed in the nucleoplasm (Henderson, 1996; 
Bilaud, 1997; Broccoli, 1997; van Steensel, 1998). Biochemical and ultrastructural 
data suggest that in mammalian cells telomeric DNA and telomere binding proteins 
colocalize in individual condensed structures at the nuclear matrix (Ludérus, 1996). 
The shelterin complex component TIN2 is believed to play a dual role in tethering 
telomeres to the nuclear matrix (Kaminker, 2009). Consistent with this association to 
the nuclear matrix, telomeric TTAGGG repeats were found to contain an array of nu-
clear matrix attachment sites at a frequency of at least one per kb. The nuclear matrix 
association is supposed to involve large domains of up to 20-30 kb telomeric DNA, 
encompassing the entire length of most mammalian telomeres (Ludérus, 1996). Be-
cause of their association to a nuclear matrix structure, telomeres are thought to play 
an important role in nuclear organization (de Lange, 2002).  
 
In situ hybridization studies revealed that in yeast telomeres are organized in clusters 
at the nuclear periphery Gilson, 1993; Gotta, 1996). This organization in clusters may 
contribute to the repression of transcription of nearby genes, a phenomenon termed 
telomere position effect (TPE) (Gottschling, 1990). Telomeres in yeast have a nonnu-
cleosomal chromatin structure, whereas subtelomeric DNA is assembled into nu-
cleosomes (Wright, 1992). Subtelomeric chromatin in yeast has therefore many of the 
hallmarks of heterochromatin as present in mammalian cells: it imposes transcrip-
tional repression (Gottschling, 1990) and late replication of nearby sequences 
(Ferguson, 1991).  
  
3.4 Telomere and chromatin mobility in the cell nucleus 

Considering the high DNA content and the large amounts of RNAs and proteins in the 
nucleus, one might intuitively think of the nucleus as a viscous, gel-like environment. 
If this were true, the movement of proteins within the organelle might be severely re-
stricted and specific transport mechanisms would be required to deliver proteins to 
their destinations. Photobleaching experiments have now shown, however, that most 
proteins are highly mobile within the nucleus. The difference between the diffusional 
mobility of nonphysiological solutes in the nucleus as compared to that in an aqueous 
solution is only about fourfold (Fushimi & Verkman, 1991; Seksek, 1997). Thus, 
macromolecules such as fluorescently tagged proteins or RNAs move within the nu-
clear space by simple thermal diffusion at an unexpectedly high speed (Huang, 1998; 
Rademakers, 1999; Phair & Misteli, 2000; Pederson, 2000; Shopland & Lawrence, 
2000; Snaar, 2000; Misteli, 2001,). The time required for travelling from the centre to 
the periphery of the nucleus is in the order of several seconds for an average sized 
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monomeric protein, and only several minutes for a large complex such as a spli-
ceosome or ribosome.   
  
If the subnuclear positioning of any particular chromosomal locus reflects a state of 
transcriptional activity, then genes must be able to move from a transcriptional 
repressive subenvironment to a transcriptional competent environment and to obtain a 
tissue-specific and/or developmental-stage-specific spatial organization. In the past 
few years, various studies addressed the dynamic properties of chromatin in general 
or specific sequences in particular. Using time-lapse imaging of GFP-tagged 
chromosomal loci, Sedat and coworkers showed in yeast and later in flies that 
chromatin is engaged in a continuous random-walk-like motion (Marshall, 1997). 
Later, slightly less constrained random movements were described for multiple yeast 
loci by monitoring the movements of specific chromosomal sites fused to lac 
repressor binding sites that were tagged with GFP-lac repressor proteins (Heun, 
2001a; Heun, 2001b). Telomeres and transcriptionally active non-telomeric loci 
showed clear differences in movement. Active chromosomal loci displayed a random 
walk movement within a radius of 0.5–0.7 μm (Heun, 2001a; Gartenberg, 2004; Sage, 
2005). This represents more than one-quarter of the nuclear diameter in yeast, but less 
than one-tenth of the nuclear diameter in mammalian cells. Because 50% of the yeast 
nuclear volume is contained within a peripheral shell that is <0.4 μm thick, most yeast 
genes have a high probability to encounter the nuclear membrane. Silent telomeres, 
however, moved in a highly constrained manner along the inner surface of the nuclear 
envelope and only rarely occupy the nuclear core (Heun, 2001a; Hediger, 2002; Gar-
tenberg, 2004; Sage, 2005). The movement of a typical yeast telomere is restricted to 
an area at the inner-nuclear-envelope surface occupying 12% of the total nuclear 
volume (Rosa, 2006). Interestingly, a similar constraint movement was observed for a 
subset of active genes. Notably, galactose-induced loci were shown to associate with 
nuclear pores upon induction. In addition, a subtelomeric gene was shown to shift 
from a telomeric focus to a nuclear pore upon induction by low glucose (Cabal, 2006; 
Taddei, 2006). Given their lateral dynamics and striking radial confinement, it was 
suggested that a subset of active genes move from pore to pore (Cabal, 2006). 
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Outline of this thesis 
 
The aim of this thesis is to provide a better understanding of the principles that under-
lie the spatial dynamic organization of the cell nucleus. Chapter 1 reviews the current 
status of knowledge about the structural and functional organization of the cell nu-
cleus. In chapter 2, the development of a computer program is described that has 
been designed to track the 2D and 3D motion of objects in the nucleus of living cells. 
The functionality of the program is demonstrated by tracking the movements of GFP-
tagged telomeres in the nuclei of tumor cells (U2OS) and normal mouse embryonic 
fibroblasts (W8 MEFS). GFP-tagged proliferating cell nuclear antigen (PCNA) is 
used as a nuclear counterstain to correct for cell movements, and as a cell cycle 
marker. In chapter 3, evidence is provided for the existence of a nuclear matrix struc-
ture that is composed of lamin proteins, emerin and actin. By analyzing the dynamics 
of telomeres in nuclei of cells showing reduced levels of lamin expression, it is inves-
tigated whether telomeres anchor to an inner nuclear lamina structure. In chapter 4 
the de novo formation of PML nuclear bodies is described. Using live cell imaging 
and immunocytochemistry it is demonstrated that telomeres play a role in the de novo 
formation of PML bodies. In chapter 5 it is investigated whether nuclear bodies are 
associated with chromatin in the cell nucleus. After treating cells with DNA alkylat-
ing agent MMS, the dynamics of PML bodies, Cajal bodies and speckles has been 
analyzed relative to chromatin in the 3D space of the cell nucleus. In chaper 6 the re-
sults of our studies and future implications are discussed.    
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