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Knowledge of protein folding pathways and inherent structures is of utmost importance for our understanding
of biological function, including the rational design of drugs and future treatments against protein misfolds.
Computational approaches have now reached the stage where they can assess folding properties and provide
data that is complementary to or even inaccessible by experimental imaging techniques. Minimal models of
proteins, which make possible the simulation of protein folding dynamics by (systematic) coarse graining, have
provided understanding in terms of descriptors for folding, folding kinetics, and folded states. Here we focus on
the efficiency of equilibration on the coarse-grained level. In particular, we applied a new regularized stochastic
quasi-Newton (S-QN) method, developed for accelerated configurational space sampling while maintaining
thermodynamic consistency, to analyze the folding pathway and inherent structures of a selected protein,
where regularization was introduced to improve stability. The adaptive compound mobility matrix B in S-QN,
determined by a factorized secant update, gives rise to an automated scaling of all modes in the protein, in
particular an acceleration of protein domain dynamics or principal modes and a slowing down of fast modes or
“soft” bond constraints, similar to LINCS/SHAKE algorithms, when compared to conventional Langevin dynamics.
We used and analyzed a two-step strategy. Owing to the enhanced sampling properties of S-QN and increased
barrier crossing at high temperatures (in reduced units), a hierarchy of inherent protein structures is first efficiently
determined by applying S-QN for a single initial structure and T = 1 > Tθ , where Tθ is the collapse temperature.
Second, S-QN simulations for several initial structures at very low temperature (T = 0.01 < TF , where TF is
the folding temperature), when the protein is known to fold but conventional Langevin dynamics experiences
critical slowing down, were applied to determine the protein domain dynamics (collective modes) toward folded
states, including the native state. This general treatment is efficient and directly applicable to other coarse-grained
proteins.

DOI: 10.1103/PhysRevE.83.016701 PACS number(s): 02.70.Ns, 05.10.Gg

I. INTRODUCTION

Efficient sampling of (free) energy landscapes is important
in many physical systems, especially when this landscape
is very rugged and/or equilibrium states are unknown. In
methods that are based on an intrinsic kinetic description,
like molecular dynamics (MD), the sampling performance is
dictated by the smallest time or length scale in the description.
As a result, interesting phenomena like the folding of large
proteins, in which the scale associated the fastest (smallest)
(bond vibrations) and the slowest (largest) (formation of α or
β domains) modes deviates by several orders of magnitude,
are inaccessible by standard MD. Slow processes like the
cooperative motion of protein domains remain inaccessible
even with increasing computer power, unless some sort of
coarse-graining or averaging over the smallest degrees of
freedom is carried out. In recent years, approaches based
on smoothing, that is, equilibration on a coarse-grained level
followed by fine-grained refinement [1], were developed to
address this problem and applied with some success. Sev-
eral groups have concentrated on determining representative
coarse-grained minimal models of proteins. Nevertheless, this
approach suffers from a hereditary property, since now the
smallest scale on the coarse-grained level determines the
sampling performance.

Our starting point is conventional coarse-grained Langevin
dynamics (CLD), a widely used stochastic model for effective
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diffusion on a coarse-grained level. We previously showed
how to adapt CLD for improved sampling [2]. The general
stochastic quasi-Newton (S-QN) method applies an automated
scaling for different length and time scales in the system
by including curvature or correlation information in the
space-dependent mobility while maintaining thermodynamic
consistency. Due to the scaling, all modes in the system are
updated roughly equally fast, enabling a significantly larger
time step (orders of magnitude) compared to CLD. In addition,
within this framework CLD reduces to a stochastic form of
the well-known steepest descent method. Since QN methods
are known for their improved ability to locate saddle points
compared to steepest descent, also the sampling pathway is
positively affected. In [3], we introduced the fundamentals for
the efficient determination of J (x) in

dx = [−B(x)∇�(x) + kBT ∇ · B(x)] dt

+
√

2kBT J (x) dW (t) (1)

and considered in detail the performance of S-QN for a
quadratic energy potentials �. In (1), the space-dependent
mobility B(x) = J (x)J (x)T is determined such that it approx-
imates the inverse Hessian. Moreover, the spurious drift term
was omitted in Ref. [3] since we only considered quadratic
�(x); kB is the Boltzmann constant, T the temperature,
and dW is a Wiener process. Turning to the discrete S-QN
equation [3],

xk+1 = xk − 1
2 [B(x′

k)∇�(x′
k) + B(xk)∇�(xk)]�t

+ 1
2 [B(x′

k)B−1(xk) + I ]
√

2kBT J (xk)�Wt, (2)
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x′
k = xk + �xp

k , (3)

�xp

k = −B(xk)∇�(xk)�t + √
2kBT J (xk)�Wt, (4)

the matrix J in B = JJ T is determined by a rank-two
factorized secant update (FSU) scheme. The inverse B−1

is determined via an update method in dual space [3]. As
discussed before [3], S-QN can be seen as a real-space
analogon of existing Fourier acceleration approaches [4–6].

So far, we did not consider a general solution to the
problem of ill conditioning, that is, when the condition
number κ(H ) of the Hessian matrix H = H (x) becomes very
large or when H is singular. For general energy landscapes,
this situation is very likely to occur along the sampling
path. A straightforward example of such a situation is that
� is often invariant under a transformation of the whole
system, rendering a singular H and a completely flat energy
landscape along this eigenvector of H . As B is determined
to increasingly approximate the inverse of H , the condition
number κ(B) will naturally become very large. For this reason,
the update may become prone to numerical errors in the
update of B and/or ∇�. An additional complication is that
the time step in (4) is large and that line searches are not
included, in contrast to most standard optimization methods
[7]. Moreover, for efficiency, our scheme only corrects B in
sampled points, based on local Hessian information. When the
energy landscape is almost flat along one of the eigenvectors,
the large scaling along this direction will give rise to an
updated configuration in a distant and possibly uncorrelated
part of the energy landscape. As a consequence, the next few
updates may suffer from a complex interplay of numerical
errors and a sudden discrepancy between B and the actual
inverse Hessian. An illustrative sketch of such an interplay
is shown in Fig. 1(a) for a Rouse chain with constant but
singular Hessian. Since the Hessian is constant, one could
understand the origin of this overacceleration in terms of the
constant time step. Upon applying S-QN for the Rouse chain
in three dimensions, however, a distinct correlation can be

observed between the sudden deviations from the equilibrium
chain length and the peaks in ‖B‖F [Fig. 1(b)] that start to
appear for rather large ‖B‖F . Close examination indicated
that these chain length deviations are due to numerical errors
in updating B. In particular, � is invariant under translation of
the whole chain, which is the eigenvector 1 = [1...1]T of H

with eigenvalue zero. In terms of the (generalized) inverse of
H , this eigenvector is associated with the largest eigenvalue
(or scaling). After determining the eigenvector associated with
the largest eigenvalue for each B, the sudden increase in
chain length and norm of B was found to coincide with
a slight deviation of this eigenvector from 1. Due to large
scaling along this direction, deviations that exist for some
particles along the chain will be substantially amplified and
result in chain extension or compression. Nevertheless, the
equilibrium chain length was recovered quickly after chain
extension or compression. A way to resolve both previously
discussed issues simultaneously is to constrain the step size
or, equivalently, condition the matrix B by regularization.

Our main goal in this paper is to apply the general S-QN
method for a system of obvious physical relevance. Minimal
models for proteins have the advantage that systematic coarse-
graining procedures gave rise to rather simple but accurate
energy expressions and that folding pathways and folded states
for a number of proteins were determined both experimentally
and by simulation [8–16]. Fast and accurate determination of
folded states and primary modes along the folding pathway
is not only interesting from a scientific point of view; this
system also represents a good benchmark for S-QN because
of the complex energy landscape topography and the fact that
conventional Langevin dynamics is often employed in current
studies [17,18]. We choose one of these proteins, containing
22 amino acids, as a reference system.

First, we introduce the new regularization parameter ε

and show that the regularized B−1 converges to H + εI ,
thereby resolving both the problem of conditioning B and
the singularity of H . Since regularization gives rise to only a

k:
mode:

k + 1:
mode:

k + 2:

equilibrium:

equilibrium:

equilibrium:

(a)

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

10
5

Number of iterations

norm JJT

contour length

(b)

FIG. 1. Reasons why regularization is needed: overamplification of the slow modes and erroneous approximation of the eigenvectors.
(a) Overacceleration of the slow mode. (b) ‖JJ T ‖F and contour length, where the peaks in the contour length coincide with the peaks in
‖JJ T ‖F; equilibrium chain length is 9.
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slight modification of the FSU scheme, the efficiency of the
original scheme (8n2) is retained. Although we do not consider
limited-memory implementation here, the approach can easily
be extended to limited-memory FSU (L-FSU) [3]. We analyze
the effect of regularization and apply the new scheme to the
minimal model of the chosen protein in a stepwise manner,
by including an increasing number of terms of the total
coarse-grained energy expression. We conclude with a detailed
analysis of the collective dynamics and sampling behavior for
the considered coarse-grained protein.

II. THEORY

Our FSU scheme for updating the factorized term is
given by

Jk+1 = Jk + αkskyT
k Jk − α2

kJkJ
T
k ykyT

k Jk

yT
k sk

, (5)

with

α2
k = yT

k sk

yT
k JkJ

T
k yk

, (6)

where sk = xk+1 − xk , yk = ∇�(xk+1) − ∇�(xk), and
Bk+1 = Jk+1J

T
k+1. We have previously shown that (5) is

equivalent to the standard Davidon-Fletcher-Powell (DFP)
update formula [3],

Bk+1 = Bk − BkykyT
k Bk

yT
k Bkyk

+ sksT
k

yT
k sk

. (7)

For a regular Hessian H , the DFP method is known to possess
three important properties [19]: (a) positive-definiteness of the
update matrix is assured provided that B0 is chosen to be
positive definite; (b) for a positive-definite quadratic objective
function �(x), with x an n-dimensional vector, the algorithm
converges to the solution in at most n steps; and (c) for a
positive-definite quadratic objective function �(x), and if the
convergence to the solution requires the full n steps, Bn =
H−1, where the matrix H is the exact inverse Hessian.

In particular, property (a) is a prerequisite for our method,
due to the presence of the noise term containing J with JJ T =
B. Convergence properties (b) and (c) are very sensitive to the
line search accuracy, that is, the determination of the step
size αk such that � is minimal along the search direction
or, alternatively, that all search directions sk = αkBk∇� are
orthogonal. Since our sk contains two terms, scaling as αk and√

αk , respectively, and since J is not always available as a
matrix, the step size in our method, the physically relevant
time step �t [3], was chosen to be a constant. In contrast to
QN methods, where the condition for the step size is either
an exact line search, a reduction of ‖�‖, or the equivalence
to Newton’s method (αk = 1) [20], the time step in S-QN is
also physically constrained. Our time step should be such that
the fastest mode in the system is well represented for M(x) =
B0 = I , the often considered initial value for B. For quadratic
positive-definite �, or for � that are locally well approximated
by a quadratic function, the fastest mode is associated with the
largest eigenvalue λmax(H )(�1) of the Hessian H and the time
step �t is thus upper bounded by λmax(H )�t < 1 as a rule of
thumb. Only when the mobility is a good approximate of the

inverse Hessian, the upper bound increases to �t < 1 and we
obtain improved sampling efficiency.

For a quadratic �, we have previously shown that Bk

determined by FSU with a constant time step does converge to
the generalized inverse Hessian H− in O(n3) steps, instead of
the theoretical quadratic convergence [O(n)] in property (c)
[3]. However, one should consider that this H was singular
and that the convergence of the nonextremal eigenvalues
of B was actually much faster than O(n3). The invariance
of � under certain fully cooperative displacements, such
as a translation or a rotation with respect to the center of
mass, is a common property and gives rise to a singular
H . As a result of λmin(H ) = 0 and the rank-two update
formula, the extremal eigenvalues of B continued to increase
or decrease with increasing k and the condition number of B,
κ(B) = λmax(B)/λmin(B), became arbitrarily large. In general,
a low condition number κ(B) is desirable because of possible
round-off errors in the update scheme [21]. As λmax(B)
becomes very large, any error in the associated eigenvector
is seriously amplified. Moreover, since this displacement is
very large, the condition number κ(Bk) may be much larger
than the condition number of the inverse Hessian G(xk+1) in
the updated position for general �. It is unclear if the DFP
scheme can recover [22].

A. Existing approaches for conditioning B

Solutions to both problems, the exact line searches and
conditioning, have been considered in the QN literature. The
attempts to avoid ill conditioning mainly focus on quadratic
and convex objective functions, and the analysis was carried
out under conditions which are typical for QN methods. Many
of the algorithms without line searches are rank-one update
formulas that do not always satisfy the required property (a),
that is, a positive-definite B, and may even give rise to
singular updates [23]. The most successful rank-two approach
without exact line searches relies on the convex class of update
formulas given by [22]

Bk+1(φ) = (1 − φ)BDFP
k+1 + φBdual

k+1 = BDFP
k+1 + φvkvT

k , (8)

where BDFP
k+1 is the DFP update given by (7) and

Bdual
k+1 =

(
I − skyT

k

sT
k yk

)
Bk

(
I − yksT

k

sT
k yk

)
+ sksT

k

sT
k yk

,

(9)

vk = (
yT

k Bkyk

)1/2
{

sk

sT
k yk

− Bkyk

yT
k Bkyk

}
.

The update Bdual
k+1 is dual to DFP in the sense that it is derived

from (7) by inversion via the Sherman-Morrison theorem and
subsequently interchanging yk and sk . The free parameter φ is
determined based on update properties and should be chosen
0 � φ � 1 to retain convergence property (c) [22,24]. This
class of update formulas was found to be more robust to the
update becoming singular or unbounded than the individual
methods for φ ∈ {0,1} in the case of inexact line searches.
Later contributions have adapted (8) for optimal conditioning
of B (see [25] for details). In sizing, the objective function �

is multiplied with a scalar parameter, based on the recognition
that the update scheme is invariant under this scaling. The
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second method is switching, where this switch is between
different methods of the convex class (8).

Issues of instability and sensitivity to (numerical) noise
also occur in ill-posed problems in mathematics. Common
strategies to deal with these issues include reducing the
dimensions of the system—e.g., using different refinements:
rigid body, torsion, and angle—and removing or adapting the
small eigenvalues of the system. A number of established
methods, including truncated singular value decomposition,
truncated total least square, generalized singular value de-
composition, truncated rank-revealing decomposition, and
Tikhonov regularization, exist for this purpose. Physically
inspired regularization uses prior knowledge of the system
to convert an ill-posed problem (or singular problems) into
regular problems. A way to do this is to define additional
constraints, for instance, by prohibiting atoms from getting
too close to each other. In our Rouse chain [3], constraints
based on the null space of H could be applied, by subtracting
translations and rotations in the displacement of the total chain.
Translations are treated by keeping the chain center of mass
fixed and subtracting this part of the displacement in (21).
Subtracting chain rotation can be done by finding a rotation
matrix R, such that the root mean square deviation (RMSD),
defined as

σRMSD = min
R

N∑
i

∥∥Rr̃k
i − rk

i

∥∥, (10)

is minimal, where r̃i is the position of particle i at iteration k

after adding the Langevin displacement and after translation of
the chain back to its original center of mass. The new position
of particle i becomes rk+1

i = Rr̃k
i . Obviously, determining R

by straightforward minimization is inefficient, but quaternion
algebra provides an efficient alternative [26].

B. RFSU: A regularized FSU method

Since proper scaling of different modes is key to our
approach, we consider the ill-conditioned or singular H and
hence the arbitrary large condition number κ(B) the most
important issue. We further rely on the observation that the
convergence for the nonextreme eigenvalues of B for the
quadratic � in Ref. [3] was relatively fast, and the free
parameter φ in the convex class of Broyden methods is
determined based on conditioning properties. Moreover, by
conditioning (7) we avoid the nontrivial task of deriving a
factorized update algorithm for (8) and determining a good
value of φ for general objective functions � (remember that
φ = 0 is the DFP method). We could in principle use sizing for
conditioning B determined by (7), but this may not help since
H itself is singular. Instead, we regularize the DFP scheme
using an approach that is conceptually very similar to Tikhonov
regularization.

The key idea is very simple: We adapt the update
scheme such that B̃−1

k converges to H̃ = H + εI , with ε a
(small) regularization parameter. It is easy to show that the
eigenvalues {λ1(H ),...,λn(H )} shift to {λ1(H̃ ),...,λn(H̃ )} =
{λ1(H ) + ε,...,λn(H ) + ε}. For ε > 0, all eigenvalues of H̃

are nonzero and the condition number becomes bounded, that
is, κ(H̃ ) = λmax(H )/ε + 1, since λmax(H ) is bounded. Similar
regularization was previously introduced [27] to deal with

negative curvatures, but relied on compute-intensive explicit
determination of eigenvalues of B via LDLT factorization.
Although the key idea is simple, we have to adapt our update
formula for B in dual space. Let Bk+1 of (7) be the update.
The inverse Gk+1 of Bk+1 in the dual space is explicitly given
by (9) after interchanging yk and sk:

Gk+1 =
(

I − yksT
k

yT
k sk

)
Gk

(
I − skyT

k

yT
k sk

)
+ ykyT

k

yT
k sk

. (11)

It is easy to see that the secant condition in
the dual space, Gk+1sk = yk , is satisfied. Following
an idea introduced by Powell for treating the ill-
conditioned case in constrained optimization [28,29], we
note that any matrix G̃k+1 obtained by (11) after
replacing yk by ỹk satisfies the secant condition G̃k+1sk = ỹk .
Let again G̃k+1 be the regularized matrix Gk+1 + εI . Since Gk

converges to H , G̃k converges to H̃ = H + εI . We can now
determine ỹk from

ỹk = G̃k+1sk = Gk+1sk + εsk = yk + εsk. (12)

After inversion, we obtain the update scheme

B̃k+1 = B̃k − B̃k ỹk ỹT
k B̃k

ỹT
k B̃k ỹk

+ sksT
k

ỹT
k sk

, (13)

with ỹk = yk + εsk that satisfies the secant condition B̃k+1ỹk =
sk . Since ỹT

k sk = yT
k sk + εsT

k sk and sT
k sk is always positive, a

possible cause of numerical errors in the original scheme,
that is, yT

k sk is positive but very small, is avoided. We are
only left with the proof that B̃k converges to [H + εI ]−1. We
follow the proof given in Ref. [22] (Sec. 6) and assume that
the objective function is quadratic positive-definite. Setting
K = [H + εI ]1/2B̃[H + εI ]1/2 and denoting Kk+1 and Kk

by K∗ and K , respectively, we can rearrange (13) into

K∗ = K − KzzT K

zT Kz
+ zzT

zT z
, (14)

where z = [H + εI ]1/2sk and yk = H sk . In particular, z is
an eigenvector of the first two terms in (14) with λ = 0 and
the third term sets this eigenvalue to λ = 1 while leaving
the others unchanged. Since relation (14) is exactly the
same as in Ref. [22], the convergence of B̃ to [H + εI ]−1

is proven. The matrix H̃ is now regular, so [H + εI ]−1 =
H−1 − εH−1H−1 + O(ε2) exists and is well defined. Finally,
we shortly consider the condition number of B̃k+1. Let v be a
eigenvector of Gk+1 with eigenvalue λ. It is easy to see that v is
also an eigenvector of Bk+1 with eigenvalue 1/λ. Moreover, v
is an eigenvector of Gk+1 + εI = G̃k+1 with eigenvalue λ + ε

and of B̃k+1 with eigenvalue 1/(λ + ε). Hence, the condition
number κ(B̃k+1) = [λmax(Gk+1) + ε]/ε with ε a freedom of
choice. In other words, the condition number and the maximum
displacements have become bounded when λmax(Gk+1) is
finite. A factorized J̃k+1 such that J̃k+1J̃

T
k+1 = B̃k+1 is found

by (5) after replacing yk with ỹk .

III. RESULTS AND DISCUSSION

A. The choice of the regularization parameter

A good choice of ε depends on properties of the system, in
particular on the time step �t and on the smallest eigenvalues
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analytical inverse Hessian of Φ
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FIG. 2. Comparison of the eigenvalues of the analytic inverse Hessian and the mobility as constructed by regularized FSU and other
regularization methods. (a) Eigenvalues of mobility constructed with regularized FSU for different values ε. (b) Eigenvalues of the mobility
constructed with different regularization methods.

of the Hessian H . Since H can easily become singular, a useful
rule of thumb is that the step size on the energy landscape
is maximized by RFSU, by a factor ≡ �t/ε. Small ε only
slows down the largest collective displacements, while for very
large ε, the regularization term in B starts to dominate and
RFSU will resemble conventional Langevin dynamics with
constant friction 1/ε. Here we start by analyzing RFSU for the
one-dimensional (1D) chain of our previous paper [3] with a
harmonic potential

�spring =
n−1∑
i=1

(xi,i+1 − 1)2 (15)

and xi,i+1 = |xi − xi+1|2 the distance between particle i and
i + 1. Since the Hessian for this potential is constant, we can
analyze the converged eigenvalues of B for different ε. We
note that these eigenvalues should converge to [λ(H ) + ε]−1

(see theory section).
Figure 2(a) shows that choosing different ε indeed does

not have a noticeable effect on the smallest eigenvalues.
As expected, the effect is most significant for the larger
eigenvalues [≡small λ(H )] and the largest eigenvalue always
converged to 1/ε [remember that λmin(H ) = 0]. In Fig. 2(b)
we compare the eigenvalue spectra of Bε (◦) using RFSU for
ε = 0.001 and B� (+) using FSU for n = 27. We previously
showed [3] that B� converges to a generalized inverse of
H . After 10 000 steps, the largest eigenvalue of Bε has
converged to 1/ε = 103, while the largest eigenvalue of B�

is still increasing [3] (both exceed the vertical axes limit).
In particular, B obtained by RFSU converges to a unique
(H + εI )−1, the rate of which depends on the value of ε.
Additional symbols in Fig. 2(b) denote the eigenvalues spectra
obtained for (15) by analytic inversion and for two types of
physically inspired regularizations. First (�), we explicitly
constrained FSU for chain translation by resetting the center
of mass to the original position at each time step. Second (·),
we calculated the analytic eigenvalue spectrum for (15) with

an additional penalty function for the center of mass, similar
to earlier work [3]. It is clear that these two types of regular-
izations have a very similar effect, since the eigenvalue spectra
overlap. However, both spectra differ from RFSU. Removing
or penalizing the slowest mode in the displacements apparently
slows down all modes compared to the nonregularized case.
In particular, the eigenvalue spectrum seems shifted (by one)
when one compares the spectra for the nonregularized (+)
and the physically inspired regularized results (� and ·). In
contrast, the spectrum for RFSU and nonregularized FSU share
many features. In RFSU the acceleration of the slowest modes
is maximized and the condition number κ(B) is therefore
constrained.

We also review the effect of regularization on the ill-
conditioning and overacceleration issues discussed in the
Introduction (see Fig. 1). We consider a 1D chain (15) for
n = 100 for overacceleration [3] and the same 3D Rouse
chain as in Fig. 1 for ill conditioning. Figure 3(a) shows
the evolution of the chain length for different values of ε,
including ε = 0 of FSU. Overacceleration persists in RFSU
for small values of ε, as the chain length falls substantially
below the equilibrium length leq = 99 before converging. For
the largest considered value, ε = 0.1, convergence to leq is
considerably slowed down and approaches the one obtained
for conventional Langevin dynamics [3], since the diagonal
regularization matrix starts to dominate. Here, the contribution
of collective modes is severely damped by maximizing the
largest eigenvalues of B to 1/ε = 10, resulting in a much
slower cooperative chain contraction than in FSU. Proper
behavior is obtained somewhere between these two extremes,
in particular for 0.025 < ε < 0.01, where the chain length
convergence is even better than that of FSU. We found that
ε = 0.004 is optimal. Application of RFSU also resolves the
problem of an ill-conditioned B. Upon comparing the matrix
norm of B in Fig. 1(b) for FSU and Fig. 3(b) using RFSU
with ε = 0.01, one can observe that the sudden increases in
the chain length are completely absent after regularization.
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FIG. 3. Examples of the regularization effect on overacceleration and on amplification of numerical errors. (a) Effect of the regularization
on the convergence toward the equilibrium contour length of a 3D Rouse chain with equilibrium length 99. (b) Effect of the regularization on
‖JJ T ‖F and the contour lengths during the simulation of a 3D Rouse chain with equilibrium length 9.

Clearly, the effect of amplification of numerical errors in B is
no longer present or considerably reduced.

B. Minimal model for a protein

The development of coarse-grained or minimal models
for proteins has always been a very active area of research.
Besides the intellectual challenge, a solution to the protein
folding problem will have important implications for the
understanding and design of protein function and possible
causes of diseases due to protein misfolds. Experiments show
that small, single-domain proteins reach their native states on
the time scale in the order of 10–1000 ms, thereby setting a
lower bound for the representation of the smallest modes. The
effect of smoothing the energy landscape by coarse graining
was previously discussed (we refer to existing reviews [30]
for details) and coarse-grained models are believed to provide
valuable information of folding, assembly, and function(s) of
biomolecules.

Since the earliest efforts of Flory for heterogeneous poly-
mers [31], several groups have focused on a coarse-grained
off-lattice Cα representation of proteins. Such a representation
disregards side-chain effects and introduces a three-letter
particle code for each peptide depending on their nature:
hydrophobic(B), polar or hydrophilic(L), and neutral(N ). A
general expression for the conformational energy potential
�total for a string of particles is then given by

�total = �bond + �bending + �dihedral + �non, (16)

where the terms are the potential for bond length variation,
which can be omitted if the bond length is fixed [32], bond
angles, dihedral angles, and nonbonded interactions. Using this
model, several sequence-dependent properties such as folding
trajectories, metastable fold states and lifetimes, the effect of
mutations and thermodynamic properties such as folding and
collapse temperatures have been considered and compared to

existing experimental observations to discriminate between
fast and slow folders [16].

A realistic kinetic description is vital for these studies
and most of them rely on Langevin dynamics, either in
the over- or underdamped limit. Our S-QN model considers
Langevin dynamics in the overdamped case as a starting
point but does not follow a realistic pathway due to the
incorporation of curvature information. This is a property
shared among many other methods, for instance Monte Carlo
(MC) and methods that employ a biasing potential [33], aimed
at improved sampling. However, S-QN does allow for an
automated determination of collective modes and is much
more efficient than Langevin dynamics in finding transition
and equilibrium states in a thermodynamically consistent way,
as we show in this section. The particular coarse-grained
protein was taken from an earlier study by Veitshans et al. [16],
which has the advantage that the equilibrium structure and
many other properties are known. This enables us to focus
on the performance and features of the S-QN method. Due to
these unique properties, we believe that this model represents
a valuable contribution to the coarse-grained protein modeling
toolkit.

1. Terms in the energy potential

The bond potential is given by

�bonded =
N−1∑
i=1

kb
ij (di,i+1 − d0)2, (17)

with N the number of particles, j = i + 1, di,i+1 = ‖ri −
ri+1‖2 is the distance between particle i and i + 1, d0 is the
reference bond length, and kb

ij is the force (or spring) constant.
The angle or bending potential is given by

�bending =
N−2∑
i=1

ka
ijk(θijk − θ0)2, (18)
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with j = i + 1, k = i + 2, θijk is the bond angle defined by
the bond vectors rij = ri − rj and rkj = rk − rj , θ0 is the
reference angle, and ka

ijk is the force constant. The torsion
potential considered in the next paragraph is very general,

�torsion =
N−3∑
i=1

kt
ijkl[1 + cos(nijklφijkl − φ0)], (19)

with j = i + 1, k = i + 2, l = i + 3, φijkl the torsion angle
between the normal of the plane through particles i, j , k and
the normal of the plane through particles j , k, l. Again, kt

ijkl

is the force constant, φ0 is the reference angle, and nijkl is
the multiplicity. The nonbonded potential is of Lennard-Jones
type and given by

�non =
N−3∑
i=1

N∑
j=i+1

4

[
Cij

(
d0

di,j

)12

− Dij

(
d0

di,j

)6
]

. (20)

2. Preliminary calculation of sampling distributions

First, we consider the thermodynamically consistency of the
sampling obtained by RFSU, which should be the Boltzmann
distribution in equilibrium, when only intramolecular inter-
actions contribute (�non = 0). In this case, all contributions
are decoupled and the sampling distributions for the different
terms can be considered separately. Sampling distributions for
the bond length, angle, and torsion for the torsion potential
(19) are considered using a simulation of 10 000 steps in total.
We apply RFSU for a string of N = 9 equivalent particles,
n = 3 × N = 27, and use kBT = 10 and �t = 10−2. The
force constants are set to kb

ij = ka
ijk = ka

ijkl = 103 and the
reference variables d0 = 1 and θ0 = φ0 = π

2 . We varied ε and
the initial configurations. The presented results are for one
initial configuration and rather high ε = 0.1, but representative
for all other cases.

The chain length during the simulation [Fig. 4(a)] converges
to an equilibrium leq = (N − 1)d0 = 8 after roughly 1000
iterations. The analytic Boltzmann distribution was calculated
using N exp (−�/kBT ), where � is the considered potential
term. Starting with the bond length, we see in Fig. 4(b) that
the analytic distribution is reproduced well by the simulated
sampling distribution, with mean d0 = 1. From Figs. 4(c)
and 4(d) we conclude the same for the simulated distribution
of the bending angles and dihedrals, respectively. Apparently,
S-QN is effective in sampling the equilibrium values for the
bond length, angles, and dihedrals, in spite of the rather
large ε.

We note that the update is governed by the noise term for
the chosen value of kBT = 10 (the noise/drift ratio � 1). Al-
though slow modes are seriously damped due to regularization,
relative to the nonregularized case, the collective contributions
of noise and drift enable this effective sampling. As a control,
we also performed a simulation using conventional Langevin
equation, with a constant mobility M = 1 (all other parameters
are the same). After 10 000 steps, the sampling distribution is
far from equilibrium and preferable bond length, bending, and
torsion angles were not detected.

3. Application to the model protein

Finally, we apply RFSU to an earlier considered
coarse-grained protein G [16], represented by the string
LB9(NL)2NBLB3LB, where each letter denotes a hydropho-
bic (B), hydrophilic (L), or neutral (N ) coarse-grained peptide.
The simulations in Ref. [16] were performed using Langevin
dynamics in the underdamped limit for different friction
coefficients. Since the value of σ = Tθ − TF /Tθ for G is
rather low (σ = 0.20), with Tθ = 0.78 the collapse transition
and TF = 0.62 the folding transition temperature (in reduced
units of εh/kB , with εh a scaling factor in the nonbonded
potential), it was argued that the native state has a large
basin of attraction [16]. The native confirmation can thus be
accessed rapidly and over a rather wide temperature range
and would appear to be kinetically two-state-like. For the later
comparison, the β-type folded state of protein G is displayed in
Fig. 1 of Ref. [16]. All three neutral residues are concentrated
in a turn region. The hydrophobic residues in the branches at
either side of this turn tend to be in close contact with each
other while the hydrophilic residues point outward. We refer
to this state as native in the remainder.

a. Parameters in the potential terms. In Veitshans et al.,
the average strength of the hydrophobic interaction εh (J ) is
the unit of energy in the model, and subsequently the particle
mass m (kg), the bond length a (m), the Boltzmann constant
kB (J/K), as well as εh itself were set to unity. Moreover,
the temperature is measured in units of εh/kB (K), and it was
noted that a natural choice for the unit of time is provided by
(ma2/εh)1/2 (s) [16]. In our simulations, we combine an update
scheme for the factorized mobility with the S-QN equation in
dimensionless units, which can be obtained from (1) as

dx̃ = [−B̃(x̃)∇�̃(x̃) + T̃ ∇ · B̃(x̃)]dt̃ +
√

2T̃ J̃ (x̃) dW (t̃),

(21)

using x̃ = x/xsc, t̃ = t/tsc, T̃ = T/Tsc, B̃ = tsckBTscB/x2
sc,

and �̃ = �/kBTsc. It is clear that (1) and (21) are equivalent
for kB = 1, and we have conveniently disregarded this subtle
distinction so far. Nevertheless, we note that the values of all
parameters mentioned in this article, including kBT = T and
�t , are given in dimensionless units. For the model protein,
we may choose xsc = a, tsc = (ma2/εh)1/2, and Tsc = εh/kB

to obtain (21), rendering the same (reduced) temperature in the
two treatments. The equivalent [16] dimensionless parameters
for the potential (16) are then determined as kb

ij /2 = 100,
d0 = 1, ka

ijk/2 = 20, and θ0 = 105◦ in the bond length and
angle potentials. Similarly, the coefficients in the dihedral
potentials [16],

�dihedral =
N−3∑
i=1

[Ai(1 + cos φi) + Bi(1 + cos 3φi)] , (22)

are Ai = 0 and Bi = 0.2 if two or more of the four particles are
neutral (N ) and Ai = Bi = 1.2 in all other cases. Nonbonded
potentials are given by (20) with coefficients Cij = −Dij = 2

3
if one particle is of the L type and the other of type L or B,
Cij = Dij = 1 if both particles are of type B, and Cij = 0 and
Dij = −1 if either one of two particles is of type N .
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FIG. 4. Sampling properties of the contour length, bond length, bending angles, and dihedrals using regularized FSU with N = 9 (i.e.,
n = 27), ε = 0.01, kBT = 1, and �t = 10−2. (a) Total chain length vs iteration index k. (b) Distribution of the bond lengths according to
the Boltzmann distribution and the calculated distribution using regularized FSU. (c) Distribution of the angles according to the Boltzmann
distribution and the calculated distribution using regularized FSU. (d) Distribution of the dihedrals according to the Boltzmann distribution and
the calculated distribution using regularized FSU.

b. Distance measure. The distance between a simulated
and a reference state is determined using the common structure
overlap function χ ,

χ = 1 − 2

N2 − 5N + 6

N−3∑
i=1

N∑
j=i+3

�
(
εtol − ∣∣di,j − d ref

i,j

∣∣),
(23)

where N is the number of particles, dij and d ref
ij are distances

between particle i and j in the simulated and reference state,
respectively, and � is the Heaviside function. The structure
overlap function is insensitive to chain rotation or translation.
If |di,j − d ref

i,j | � εtol, particles i and j are assumed to be in a
contact according to the reference state. Unless mentioned

otherwise, our reference state is the native state shown in
Fig. 8(i). We use εtol = 0.2 [16].

c. Regularization parameter and time step. Before review-
ing simulation results, we shortly consider the regularization
parameter and the time step. In all simulations with RFSU we
used either ε = 10−3 or ε = 10−2, a choice that is based on the
results of our previous analysis. A large time step provides an
enhanced sampling of the potential energy surface. Initially,
we considered �t = 10−2 for RFSU and found that the
simulations are stable. In CLD, such a large time step causes
instability and we were forced to simulate with a reduced
�t = 10−4. Nevertheless, this cause for instabilities is also
active in the initial stages of RFSU since the initial mobility
B0 = I does not yet include proper scaling for the different
modes. This phenomenon is clear in Fig. 6(a) where one can
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observe irregular high peaks during the initial iterations of
the simulation. In principle, one can remedy this behavior
by preconditioning, that is, determining a proper choice of
B0 = J0J

T
0 �= I . This approximate inverse Hessian B0 can

be determined by performing the S-QN method for kBT = 0
(standard QN). Such a B0 was found to enable stable simulation
for an even increased �t = 10−1.

d. Starting configuration. The simulation pathway over
the potential energy hypersurface naturally depends on its
complex topography, making the observation of a folding
event within the considered limits of simulation time sensitive
to the starting state on this folding funnel. The starting
state and influence of external factors in biological folding
processes remain a matter of speculation, complicating the
determination of realistic starting states. Many simulations of
protein conformational changes or dynamics begin at the native
crystal structure using the atomic coordinates measured from
electron-density maps obtained by x-ray diffraction methods.
Other simulations start from more random conformations that
often obey constraints, in that selected interatomic distances in
the conformation have particular values. Sometimes this can
be done analytically by choosing as random variables either
the torsion angles, which always preserve bond length and
bond angle values, or the rigid-body rotations and translations,
which always preserve the internal structure of the rigid
fragment. Methods for generating random structures that
satisfy constraints on the distances between pairs of atoms
or groups given upper and lower bounds also exist [34,35].
Weak constraints on bond lengths, angles, and torsions are also
used in many coarse-grained descriptions, where random (coil)
starting configurations are generated at elevated temperatures
by presimulation, after disabling nonbonded interactions, or by
simulated annealing (SA). The study of Veitshans [16] used
a SA procedure to generate 100–300 independent states for
protein G and showed that, for T = 0.41 < TF , the fraction of

unfolded chains decays roughly exponentially with time and
vanishes around t = 3000. Here, we select specific starting
configurations, the V-shape shown in Figure 8(a), with upper
and lower bounds for otherwise random bond length, angles,
and torsions. These structures are inspired by our focus on the
collective dynamics and based on the identification of the turn
region in the native state [16]. We expect that the domains at
either side of the turn point will collectively approach each
other in RFSU to reach the native state. The large � of this
state and the collective behavior that is required for folding
suggest that this state is part of a region that is rather distant
from the native state. Moreover, the fraction of folded proteins
in CLD will depend on the cumulative Kramer’s transitions
rates for all potential energy barriers between starting and
native states. A direct comparison of our result to the folding
rates obtained by Veitshans is therefore rather impossible [16].
Instead, we compare RFSU and CLD (with B = γ I ) for the
same (random) starting states.

e. Simulations for T > Tθ . We start with simulations for
kBT = 1, which reduces to T = 1 in reduced units [16]. We
note that this temperature is well above the collapse transition
temperature Tθ = 0.78. Our reason for this choice is that
sampling at elevated temperatures increases the probability of
barrier crossing. In Ref. [16], the averaged overlap function 〈χ〉
was found to be 〈χ〉 ≈ 0.8 for T = 1, where the averaging is
carried out over pathways for different starting configurations.
As mentioned, our starting configuration is the V-shaped
conformation displayed in Fig. 8(a). For this structure, χ = 1
and the domains at either side of the turning point are rather far
apart. We used B0 = I and �t = 10−2 for S-QN, where the
mobility Bk+1 was determined by RFSU. For CLD, we used
γ = 1 and �t = 10−4.

Figure 5 shows the evolution of the structure overlap
function χ for both S-QN (a) and CLD (b). The final (averaged)
values are around the same χ ≈ 0.8, in good agreement with
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FIG. 5. Comparison of the structural overlap functions χ obtained by regularized FSU and conventional Langevin dynamics for simulations
of a model protein with kBT = 1. (a) Overlap function with respect to a configuration from the native class using the regularized FSU with
ε = 10−3 and �t = 10−2. (b) Overlap function with respect to a configuration from the native class using the conventional Langevin dynamics
with �t = 10−4.
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FIG. 6. Evolution of the potentials � for simulations of a model protein with kBT = 1. (a) Evolution of the potentials � obtained by
the regularized FSU with ε = 10−3 and �t = 10−2. (b) Evolution of the potentials � obtained by the conventional Langevin dynamics with
�t = 10−4.

the results of Veitshans et al. [16], although the one for S-QN
reaches this average value much earlier than that for CLD.
Clearly, the chains exhibit in a random coil conformation
during its evolution in both methods. The corresponding
evolution of the potentials � for both simulations are shown
in Fig. 6. Although � falls off much faster for S-QN, it
fluctuates at a somewhat higher range (values between 40
and 60) than the CLD simulations (between 20 and 40).
Although this performance looks very similar, the information
contained in Figs. 5 and 6 is incomplete. To analyze the
sampling in S-QN and CLD, we explored the potential well
structure around the sampling path. In particular, we used
conformations obtained at every 500 time steps in S-QN
and CLD for quenching into local minima of � or inherent
structures by a standard QN method with a backtracking
line search. The rather flat wells and local minima of � are
displayed in Figs. 7(a) and 7(b). Missing parts of the wells
were added symmetrically. In Figs. 7(c) (S-QN) and 7(d)
(CLD) we show a correlation map of inherent states obtained
for S-QN and CLD, respectively. Using the overlap function
χ as a measure for similarity between different inher-
ent states, white squares denote fully uncorrelated struc-
tures (χ ≈ 1), while black squares denote fully cor-
related or similar structures (χ ≈ 0). The first entry
in the correlation map is the starting structure shown
in Fig. 8(a) and autocorrelation gives rise to a back
diagonal.

Correlated inherent structures were found to map one-
to-one to distinct local minima of the potential energy
�, ranging from � = −0.1 to � = −11.1. Based on this
analysis, we classified the inherent structures for S-QN
into several categories: � ≈ −0.1 (k = 500,1000,1500),
� ≈ −4.6 (k = 9000), � ≈ −5.9 (k = 8500,9500), � ≈
−6.7 (k = 4500), � ≈ −7.6 (k = 7000,8000,10 000), � ≈
−8.4 (k = 3000,5000,5500,6500), � ≈ −10.4 (k = 2500),

and � � −10.5 (k = 2000,3500,4000,6000,7500). Repre-
sentative structures are displayed in Figs. 8(b)–8(i) in the
order of decreasing �. For CLD all local minima are the
same, � ≈ −0.1 in Fig. 7(b), and only the inherent structure
in Fig. 8(b) was identified by the quenching procedure. These
results show that a much larger part of the potential energy
landscape is sampled by S-QN compared to CLD, which
samples only very locally, despite the apparently very similar
χ in Fig. 5. The structure in Fig. 8(i) (� = −10.75) is visually
equal to the native structure of protein G in Fig. 1 of Ref. [16].
We note that we identified a slightly different structure with
even lower � = −11.13. However, this structure belongs to
the same class.

f. Simulations for T < TF . We focus on the multiscale
nature of our method by considering a temperature T = 0.01,
much lower than the folding temperature. For such a low
temperature, folding may become very slow in conventional
Langevin dynamics [16]. To anticipate, we selected several
V-shaped random initial configurations that are not extremely
far from the native state but still have minimal overlap: χ is
close to one. We carried out a preconditioning step for the
determination of B0 in RFSU, which prevents the irregularity
at the beginning of the simulation [see inset, Fig. 6(a)]. This
preconditioning enables stable simulations with �t = 10−1.
For a genuine comparison of folding rates in S-QN and
CLD, an appropriate constant mobility γ in CLD should be
determined. We can either determine this mobility based on
physical properties, that is, the effective friction coefficient, or
relate to the inverse Hessian in the initial x0. The fastest mode
for a quadratic potential, the one that sets the maximum time
step in CLD, is associated with the largest eigenvalue of H .
Using the calculated largest eigenvalue λmax(B−1

0 ) ∼ O(105)
of the approximation B−1 of H + εI ∼ H in x0 and taking
into account the time step in S-QN, we obtain an equivalent
time step �t for CLD of approximately 10−6. Since we found
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FIG. 7. Comparison of the local minima found by quenching after every 500 steps for the regularized FSU and the conventional Langevin
dynamics. In order to plot on a log scale �+ instead of � is shown, where �+ = � + c+, with c+ = 12. The correlation matrices show the
correlations between the configurations of the inherent state; the darker the square, the more correlated the configurations are. (a) Local minima
found during the simulation with regularized FSU. (b) Local minima found during the simulation with conventional Langevin dynamics.
(c) Correlations of the configurations corresponding to the local minima obtained during sampling with regularized FSU.
(d) Correlations of the configurations corresponding to the local minima obtained during sampling with conventional Langevin
dynamics.

the scheme to be stable for �t = 10−4, we use this value
instead. For each method (S-QN and CLD) we performed
10+ simulations using different starting configurations. From
each of these two sets, we selected and analyzed the one that
reaches the lowest �.

From Fig. 9(a), we observe a much faster decrease of
the potential energy �total for S-QN than for CLD, de-
spite the fact that we have chosen a larger time step in
CLD. For better understanding of the folding kinetics, we
considered the evolution of the different contributions to
the energy potential separately [see Figs. 9(a), 9(b), 9(c),
and 9(d)].

Collective modes in S-QN are typically first observed in
the potentials for intrachain interactions (�bond, �bending, and
�dihedral) while the contribution of the nonbonded potential
remains rather insignificant to later stages. The bond length
and angles converge in O(10) steps to their equilibrium values
[see Figs. 9(a) and 9(b)]. From Fig. 9(c), one can observe that
after ∼500 iterations the curves for �dihedral and �total have the
same decreasing nature and eventually start to overlap after
k ∼ 2000. At this stage, the equilibration of the dihedral angles
is clearly the main contribution to the decreasing potential
�total, an observation that is supported by the other intrachain
potentials fluctuating around zero. Following this stage, there
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FIG. 8. Configurations representing a typical structure from different classes found based on the correlation matrix: (a) initial configuration,
(b) � ≈ −0.1, (c) � ≈ −4.6, (d) � ≈ −5.9, (e) � ≈ −6.7, (f) � ≈ −7.6, (g) � ≈ −8.4, (h) � ≈ −10.4, (i) � � −10.5.

is a sudden drop in �total after 5000 iterations, reflecting
an equivalent drop in �LJ [Fig. 9(d)]. The torsion potential
responds to this sudden drop by a small increase followed
by equilibration. We conclude that this reflects a collective
chain collapse where different chain domains at either side
of the turn move coherently, a process that is considerably
accelerated when the long-range Lennard-Jones interactions
become more significant. In the rearrangement process that
follows, most probably concentrated in the turn region, the
bond lengths and bond angles remain constant but the torsion
angles have to adapt.

For CLD we see a gradual decrease of the intrachain po-
tentials and the nonbonded potentials, a signature of diffusion.
The intrachain potentials decrease much slower than for S-QN
and the bonds and angles reach equilibrium values only after
O(103) steps. We note that large force constants in the bond
terms, introduced by Veitshans et al. [16] as an alternative to
RATTLE or SHAKE, ensure some collectivity. Unlike S-QN, one
can observe an immediate but small decrease of the nonbonded
potential [Fig. 9(d)], indicative of a very slow and sequential
collapse of nonbonded interaction sites along the chain. From
the values of torsion and nonbonded potentials at k = 20 000
it is clear that this zipperinglike process continues beyond the

end of the simulation and that the chain has not reached a
stable state.

Next, we consider the structure overlap function χ = χtotal,
using the structure of Fig. 8(i) from the native class as a
reference state. Although principal modes can, in principle,
be determined as eigenvectors of B along the simulation
pathway, domains that play a role in collective behavior can be
anticipated from the start and the native state. We define partial
overlap functions χleft and χright that only consider two disjunct
subdomains LB8 and BLB3LB at either side of the turn region,
respectively. We note that the partial overlap functions can both
vanish even when the structure is not native. Subdomains are
chosen such that the turn region is excluded. In Fig. 10(a)
all structure overlap functions are combined for S-QN. It
is clear that the left and the right domains assemble into a
native conformation very fast. However, after χleft and χright

have vanished, they increase again at later stages and fluctuate
between 0 and 0.3 due to internal reorganizations. While the
subdomains rearrange (at least 70% stays conform to the native
state), χtotal is gradually decreasing. After 1000 iterations,
the rearrangements in the left and right domains damp out. The
sudden drop in χtotal coincides with the drop in the nonbonded
potential [see Fig. 9(d)], when the LJ interactions become
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FIG. 9. Comparison of the evolution of the different potentials during simulation with the regularized FSU and the conventional Langevin
dynamics. (a) Comparison of the evolution of �bond during simulations with the regularized FSU and the conventional Langevin dynamics.
(b) Comparison of the evolution of �angle during simulations with the regularized FSU and the conventional Langevin dynamics. (c) Comparison
of the evolution of �dihedral during simulations with the regularized FSU and the conventional Langevin dynamics. (d) Comparison of the
evolution of �LJ during simulations with the regularized FSU and the conventional Langevin dynamics.

significant, and small rearrangements in subdomains. Once the
native state is found (around k = 15 000) only conformations
in the native basin are sampled, since collective modes seize
to contribute and the noise amplitude is low for T = 0.01.
For a comparison, Fig. 10(b) contains the overlap functions
for conventional Langevin dynamics. It is clear that χleft and
χright decrease at least one order of magnitude slower than in
S-QN. Although the subdomains eventually reach their native
conformation, rearrangement of the chain as a whole is much
slower and the chain does not reach the native conformation
within simulation time.

The analysis of the overlap function with respect to the
native class seems arbitrary for comparing the dynamics,
since conventional Langevin dynamics does not necessarily
converge to the same class as S-QN. Therefore, we introduce

different reference states, in particular the state with the lowest
observed � during each of the simulations (the lowest observed
state) by S-QN or CLD. In Figs. 10(c) and 10(d) χtotal, χleft,
and χright for S-QN and CLD are shown, respectively. The
analysis for the S-QN is very similar to the one discussed
earlier, since the lowest observed state is in the class of
native states. For CLD, we see that both subdomains rearrange
into their lowest observed structure very slowly and that
the signature of χtotal is highly correlated with these partial
overlap functions. In particular, the formation of optimal
structure (almost) coincides with the formation of optimal
partial structure in the two subdomains. This is a clear sign
of noncooperative behavior. As a reference, partial structure
forms at an earlier stage and moves collectively as the result
of long-range interactions in S-QN.
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FIG. 10. Evolution of the structural overlap with respect to the configuration corresponding to the lowest observed � and with respect to
the configuration from the native class during the simulation with regularized FSU and the conventional Langevin equation. (a) Evolution of the
structural overlap with respect to a configuration from the native class as reference configuration during the simulation with regularized FSU.
(b) Evolution of the structural overlap with respect to a configuration from the native class as reference configuration during the simulation
with conventional Langevin dynamics. (c) Evolution of the structural overlap with respect to the configuration corresponding to the lowest
observed � during the simulation with regularized FSU. (d) Evolution of the structural overlap with respect to the configuration corresponding
to the lowest observed � during the simulation with conventional Langevin dynamics.

IV. DISCUSSION

a. Force constants. Fixed bond lengths are often enforced
in molecular modeling by computationally demanding SHAKE

or RATTLE algorithms [36,37]. An alternative constraint
method, LINCS (Linear Constraint Solver) developed in 1997
[32], directly resets the constraints rather than the derivatives
of the constraints and is up to four times faster than SHAKE. In
Ref. [16], an alternative approach is employed to circumvent
the computational demands associated with these methods.
Stiff bonds are enforced by setting the force constants to a
high k = 100. A trade-off of this approach is that the time step
should be reduced. The automated scaling provided by S-QN

gives rise to a fast convergence to the equilibrium chain length
leq and “soft” constraints on the bond length, as we showed
for Rouse chains in one and three dimensions, even for a
very small force constant k = 1. From this protein study, we
found that the minimization of the intrachain energy potentials,
and also � itself, is rather insensitive to a scaling of the
potential

�α = α(�bond + �bending + �dihedral) + �non, (24)

where α was varied between 0.1 and 1. Although they may vary
in details, the signatures of both the intramolecular potentials
and the (partial) overlap functions do not depend on the
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considered values of α. In particular, the overlap func-
tions are of the same form as illustrated in Fig. 10(a):
First the partial structures (left and right part) are es-
tablished, followed by a drop in χtotal, indicating the in-
creasing influence of long-range interactions. Hence, the
bond length is automatically constrained and the force
constants in the potential can be significantly reduced.
This observation provides tools for further optimization of
performance.

b. Different starting configurations and regularization
parameter choice. We accounted for the kinetic arrest that may
occur at a very low temperature kBT = 0.01 by considering a
sharper V-shaped starting conformation than shown in Fig. 8(a)
for kBT = 1. Moreover, the regularization parameter ε used
in RFSU for kBT = 0.01 is one order of magnitude larger
(ε = 10−2) than in the simulation with kBT = 1 (ε = 10−3)
to avoid overacceleration. Since the value of regularization
parameter ε determines the upper bound to the acceleration
of the collective modes, that is, the damping with respect
to the nonregularized case, a reduced ε speeds up the
slowest collective modes that are important for bringing the
structure of Fig. 8(a) to the native configuration. We have
also performed simulations with V-shaped starting configu-
rations that have minimal overlap at the beginning of the
simulations, χ ≈ 1, and found very similar signatures in
the overlap functions and the contribution of the potential
terms.

c. Partial structures. The partial structures LB8 and
BLB3LB, important for the analysis of collective modes,
were chosen based on the native chain conformation shown
in Fig. 8(i), or alternatively Fig. 1 of Ref. [16]. The question
may arise whether our analysis is sensitive to this particular
choice. For this reason, we systematically varied the partial
structures. The evolution of the partial overlap functions for
the left wing, LBi with i = 3, . . . ,7, converges to zero in the
same way as for LB8 in Fig. 10(a). These partial structures,
however, remain in their native configuration after this stage,
unlike LB8, which was shown to fluctuate between 0 and 0.3.
For the right partial structure, we also calculated the partial
overlap function for LB3LB, B3LB, and B2LB. Shortening
the subdomain leads to increased convergence to the native
partial structure, although all convergence rates are very
similar to the one for BLB3LB [O(10)]. Extending partial
structures beyond the chosen ones affects the evolution of
overlap functions. The fluctuations in the overlap function
of LB8 are caused by one of the B beads, that is part of
the turn region. Including the turn region completely, by
dividing the chain in two equally large subdomains LB9N

and (LN )2BLB3LB, slows down the convergence rates of the
partial overlap functions, since the turn region has to facilitate
collective rotation and contraction by local rearrangements.
Nevertheless, for RFSU these partial overlap functions posses
the same features as in Fig. 10(a): The partial overlap
functions vanish before the chain as a whole finds it native
state.

V. CONCLUSIONS

We applied a regularized S-QN method to study a protein
model. The new form of regularization was incorporated in

the FSU algorithm used for the determination of the curvature-
dependent mobility B in S-QN and resolves often occurring
problems associated with a singular or ill-conditioned local
curvature H . The RFSU scheme is based on determining an
estimate of local curvature (B−1) that converges to H + εI

instead of H and does not affect the efficiency of the original
FSU scheme [3].

This work is part of a series of articles toward the
development of a general efficient and stable method for
thermodynamically consistent accelerated equilibration. In
Ref. [2], we introduced the principles of S-QN and proved
enhanced sampling performance and barrier crossing for one-
and two-dimensional examples. In the original S-QN, standard
DFP and Choleski decomposition was used for the determi-
nation of B and the noise amplitude, respectively. In Ref. [3],
we introduced cost-effective FSU and L-FSU algorithms for
determining L with B = LLT and analyzed the sampling
performance and multiscale nature for a simple but physically
relevant Rouse chain with quadratic potential. Here, we regu-
larized S-QN via RFSU and applied the resulting method for
a previously developed coarse-grained model of a rather short
protein with a β-type folded state. We developed an efficient
two-step approach: The enhanced sampling gives rise to many
inherent states, that is, local minima on the energy landscape,
when simulating above the collapse temperature, and, below
the folding temperature, the cooperative modes of a protein
can be efficiently determined and considerably speed up the
folding process when compared to conventional Langevin
dynamics.

A detailed analysis of the S-QN results shows that the
folding pathway can be divided into local and collective parts.
Bond length, bond angles, and torsions are equilibrated in this
order, a feature that is rather insensitive to the force constants
used in the potentials. After this equilibrium is established,
a sudden drop in the total potential occurs, corresponding to
the nonbonded interactions becoming more significant. This
sudden drop coincides with the sudden drop in the total overlap
function, which provides a distance measure with respect to
the native state. The overlap function also shows that partial
structures, that is, carefully chosen subdomains of the protein,
form prior to this drop and move collectively to reach the
native state. This collective dynamics is absent in conventional
Langevin dynamics, where native contacts form as a result of
(local) diffusion.

The considered coarse-grained protein is rather short and
was previously determined to be a good folder [16]. Moreover,
the native structure was known from this earlier study, although
we identified a slightly different structure with even lower
potential energy. It is tempting to use the two-step approach
for the determination of inherent structure and principle mode
analysis of proteins with direct biological function. Crystal
structures can serve as input for the determination of inherent
structures of biological relevance, and inherent structures
can be analyzed for the class of proteins that are not easily
crystallized, for instance, membrane proteins. Realistic
coarse-grained parameters for these proteins can, in principle,
be determined by systematic coarse-graining procedures and
external factors (for instance, chaperones) can be explicitly
included in the S-QN method. We leave such study for future
work.
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