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in 1977



PROMOTIECOMMISSIE

Promotores:
Prof.dr. H. Putter
Em. prof.dr. H. C. van Houwelingen

Overige leden:
Prof.dr. F. Willekens, Max Planck Institute for Demographic Research,
Rostock, Germany
Prof.dr. C. Legrand, Catholic University of Louvain, Louvain-la-Neuve, Belgium
Dr. R. B. Geskus, Academic Medical Center, Amsterdam, The Netherlands



Table of Contents

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Approaches to survival data with competing risks . . . . . . 3
1.1.2 Missing causes of failure . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Dynamic prediction . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Vertical modeling: a pattern mixture approach to competing
risks 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Vertical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 No covariates . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Vertical modeling in perspective . . . . . . . . . . . . . . . 19

2.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 No covariates . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Simulation experiments . . . . . . . . . . . . . . . . . . . . 30

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Vertical modeling: analysis of competing risks data with missing
causes of failure 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Competing risks data with missing causes of failure . . . . . . . . . 43
3.3 Models for competing risks with missing causes of failure . . . . . . 45

3.3.1 Vertical modeling . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 The proportional cause-specific hazard model . . . . . . . . 47
3.3.3 Multiple imputation . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 The proportional cause-specific hazard approach with con-

stant baseline hazard ratio . . . . . . . . . . . . . . . . . . . 51

i



ii TABLE OF CONTENTS

3.4.2 Vertical modeling . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Vertical modeling in context . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Dynamic prediction by landmarking in competing risks 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Dynamic prediction based on the landmark model . . . . . . . . . 75

4.3.1 Landmarking and competing risks . . . . . . . . . . . . . . 75
4.3.2 Application to the EBMT data . . . . . . . . . . . . . . . . 79

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Dynamic pseudo-observations: a robust approach to dynamic
prediction in competing risks 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Dynamic prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 Dynamic pseudo-observations in competing risks . . . . . . 92
5.2.3 Specification of models . . . . . . . . . . . . . . . . . . . . . 93

5.3 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.2 Dynamic pseudo-observations . . . . . . . . . . . . . . . . . 100
5.3.3 Dynamic prediction by landmarking using dynamic pseudo-

observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Comparison of dynamic prediction models 123
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Dynamic prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.1 Landmarking based on cause-specific hazards . . . . . . . . 129
6.4.2 Models based on dynamic pseudo-observations . . . . . . . 132
6.4.3 Markov multi-state model . . . . . . . . . . . . . . . . . . . 135

6.5 Simulation and results . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.5.1 True Markovian model . . . . . . . . . . . . . . . . . . . . . 136
6.5.2 True non-Markovian model . . . . . . . . . . . . . . . . . . 141

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 144

Nederlandse samenvatting 155



TABLE OF CONTENTS iii

List of Publications 159

Curriculum vitae 161

Acknowledgments 163



iv TABLE OF CONTENTS



1
Introduction

1



2 1. INTRODUCTION



Dynamic Aspects of Competing Risks with

Application to Medical Data

Mioara Alina Nicolaie



2 1. INTRODUCTION

1.1 Introduction

Analysis of lifetime duration, often termed survival analysis, is a topic of broad
interest; its applications overlay a variety of fields such as medical sciences, eco-
nomics, engineering, demography and social sciences. Our particular preference
concerns medical applications; for this reason, the terminology used in the fol-
lowing will involve aspects of life.

The focus of this thesis is on inference in survival models, a subject of topical
interest nowadays. This analytical methodology aims at describing the outcome
survival, which refers to having experienced death or any type of clinical event
which hampers the life course of an individual; examples of situations which
are addressed by it will be given in the remainder of the thesis. Survival data
consists of 1. time to occurrence of an event of interest (e.g., patient lifetime in
case the event is death of the patient), which we call survival time or time-to-
event variable, and 2. some additional clinical information believed to be relevant
to the outcome of interest, which is incorporated in what we call covariates (also
called predictors). The time-to-event variable can be partially or fully observed
during the follow-up period, depending on whether the patient is lost to follow-up
or not; the latter situation occurs due to a certain censoring mechanism. The use
of statistical models for the analysis of time-to-event data has been extensively
addressed in the biostatistical literature; nevertheless, challenges provided by
clinical questions lead researchers to account for broader aspects of the data.
Some may suspect the presence of several, competing endpoints of interest in
the data, such that the occurrence of one precludes the occurrence of others; we
shall refer to this as survival data as competing risks. In competing risks, patient
lifetime (uniquely defined) and time to a specific event (one event out of several)
are, in principle, two distinct concepts but they overlap in reality, because what
we observe as patient lifetime is nothing but the time to the very first event
occurring; time to any of the competing events becomes a latent survival time.

Clinical information collected at the start of the follow-up may be taken into
account in modeling (e.g. type of treatment administered, type of surgery, specific
disease markers). However, patients might respond differently to certain clinical
conditions set at the beginning of the experiment/clinical trial, and this updated
information might be relevant to the outcome of interest. To put things into
perspective, we anticipate the use of patient history in the analysis and we shall
quantify it through so-called time-dependent covariates.

The outline of the Introduction is as follows: in Section 1.1.1 we give an
overview of the main concepts used in competing risks and introduce some in-
ference methods for competing risks, relied on in the remainder of the thesis. In
Section 1.1.2 we motivate the need for an optimal quality of the information on
causes of death. In Section 1.1.3 we provide some background on the topic of
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dynamic prediction.

1.1.1 Approaches to survival data with competing risks

Competing risks data consist of subjects who are susceptible to several types of
events j, where j = 1, . . . , J ; we assume there are no other causes aside this spec-
ified group. Typically, what we observe for a particular patient is the realization
of the time-to-event variable T , where T represents either the time to the first
event occurring or time to censoring, the realization of the indicator δ of the cause
of failure j (δ = j) or censoring (δ = 0), and the realizations of some baseline or
time-dependent covariates Z. A competing risks model can be used to analyse
this type of data (Putter et al., 2007).

A key assumption in these models is that the independent censoring mech-
anism applies, that is the survival time and the (potential) censoring time are
independent, given covariates (Lawless, 2003, p.54). Note that this condition may
hardly be checked given the typical observable data. We also assume accurate
measurements of the covariates and reliable diagnosis of the causes of failure.
Carrol et al. (2006) give a comprehensive treatment of the topic of measurement
errors in covariates and their consequences in survival analysis. In van Rompaye
et al. (2010) the case is discussed when one can not rely on the cause of death
ascertainment.

Basically, a competing risks model can be viewed as adding structure to the
standard survival model. The standard survival model specifies the (overall)
survival function S(t) = P (T > t), that is one minus the distribution function of
the time-to-event variable T . The clinical interpretation of survival function has
a strong appeal to physicians; typical clinical questions addressed by it could be:

Doctor: What is the duration of an illness?
or

Patient: Doctor, (when) will I be cured?
The survival function is interpreted at a population level, and it is obtained by

averaging the individual survival functions. In competing risks, the distribution
of the time-to-event can specialize on the type of events; however, it is possible
to collect all failure types into a single category (an ”all-causes” category) such
that we preserve the interpretation of the time-to-event distribution as defined
in ordinary survival (time to a specific event in competing risks becomes time to
”all-causes”). One way to estimation is to specify a non-/semi-parametric model
for the survival function. A famous non-parametric estimator is the Kaplan-Meier
estimator (Kaplan and Meier, 1958), that is

Ŝ(t) =
∏
ti≤t

(
1− di

ni

)
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where the product is taken over all event time points ti ≤ t, di is the number
of failures at time ti irrespective of their cause and ni is the number of patients
in the risk set R(ti) at time ti. Yet another perspective on the modeling and
estimation of S is obtained if we notice that the survival function is completely
specified by the hazard function of ”all-causes”, that is

S(t) = exp
[
−
∫ t

0

λ(u)du
]

(1.1)

where the hazard function of ”all-causes” is given by

λ(t) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t|T ≥ t)
∆t

(1.2)

being interpreted as the instantaneous failure rate at time t irrespective of its type,
given no event before time t. As a consequence, a regression model specified for
the hazard of ”all-causes” implicitly leads to a model for the survival function.

If we account for the presence of J competing risks, (1.2) becomes the so-called
cause-specific hazard of cause j, that is

λj(t) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t,D = j|T ≥ t)
∆t

, j = 1, . . . , J. (1.3)

Note that λ(t) =
∑J
j=1 λj(t). The λj(·)’s allow us to specify competing risks as

a process-based model. Cortese and Andersen (2010) have studied these models
in a variety of contexts. Basically, we can view competing risks as a Markov
process, whose state space comprises a transient state (the state at time 0) and
several absorbing states (the competing events) and whose transition intensities
are the cause-specific hazards.

Because the λj(·)’s are the natural observable quantities in competing risks
and can be estimated directly from the data, the cause-specific hazard approach
has been the most widely used procedure to the analysis of competing risks data
in medical research (Prentice et al., 1978). There have been various parametric,
semi-parametric or non-parametric models for the cause-specific hazards, among
which the most popular is the Cox proportional hazards semi-parametric regres-
sion model (Cox, 1972) given by

λj(t|Z) = λj0(t) exp (β>j Z), (1.4)

where λj0(·) is a baseline hazard function, βj stands for a vector of unknown
regression parameters and Z is a vector of covariates; the baseline hazard is
interpreted as the hazard corresponding to Z = 0 and βj ’s stand for the effects
of covariates on the hazard scale, j = 1, . . . , J . In this model, no shape on λj0(·)
is assumed and the effects of covariates, called hazard ratios, are the same at all
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time points t. A typical relaxation of the proportionality assumption found in
the literature consist of allowing time-varying effects of covariates (βj = βj(t)),
i.e., a deviation from the proportionality assumption. Typical clinical questions
addressed by the model (1.4) could be:

Doctor: Does this clinical study show that the new drug brings benefits in
terms of preventing disease-specific deaths?
or

Patient: Doctor, what are the chances of dying from the disease within 5 years
with this new drug compared with the standard drug?

Denote β = (βj)j=1,...,J and γ = (λj0)j=1,...,J ; we gather them in θ = (β, γ),
the multidimensional vector of parameters in the competing risks model. Esti-
mation of θ is usually done by means of maximum likelihood procedures. The
full likelihood, under the assumption of independent censoring mechanism, can
be expressed in terms of cause-specific hazards:

L(θ) =
∏
i

∏
j

[
λj(ti)

]1{δi=j}
S(ti)

=
∏
i

∏
j

[
λj(ti)

]1{δi=j}
exp

(
−

J∑
j=1

∫ ti

0

λj(u)du
)
.

This likelihood is proportional to the joint probability distribution of (ti, δi,Zi),
for all patients i. In principle, to obtain an estimator for θ, we can calculate the
maximizer of the log (L(θ)), but in practice this can be quite difficult to obtain.
Instead, a different method can be used, which may lead to an easier estimation
procedure.

Cox (1975) has introduced a modified likelihood, called partial likelihood, in
order to avoid estimation of nuisance parameters as required by the full likelihood,
such as the baseline cause-specific hazards; this likelihood especially addresses
the situation in which one is interested primarily in the effects of covariates in
(1.4), but not in the shape of the hazard or in parameters corresponding to
other additional variables of less interest. Another example of such nuisance
parameters could be those corresponding to the censoring distribution model.
The new perspective brought by the partial likelihood on the data suggests that
sampling is done from the conditional probability of a failure at time t, given
the number of patients at risk at time t instead from the joint density of data as
done when using full likelihood above; thus, it does not require specification of
the baseline hazard. We denote this partial likelihood by LPL(β), where

LPL(β) =

J∏
j=1

∏
i

exp(β>j Zi)∑
k∈R(ti)

exp(β>j Zk)
.
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Inference based on LPL(β) leads to maximum likelihood estimators of the regres-

sion parameters gathered in β, denoted by β̂PL, which share the same asymptotic
behaviour as those given by the full likelihood. However, the partial likelihood
requires no ties in the data. In case of ties, Breslow (1974) or Efron (1977)
approximations to the partial likelihood can be used.

Johansen (1983) argued that the partial likelihood can be obtained as a pro-
file likelihood from the full likelihood; in this perspective, LPL(β) is equated to
L(β, γ̂(β)), where γ̂(β) represents the maximizer of L(θ) with respect to γ for

fixed β. Having obtained β̂PL, estimation of γ can be obtained straightforward
if we plug-in β̂PL in the expression of γ̂(β) which yields

λ̂j(t
(j)
i ) =

1∑
k∈R(t

(j)
i )

exp (β̂>j Zk)

where t
(j)
i is an event time point where a failure of cause j occurs, j = 1, . . . , J .

Another key-quantity in competing risks is the so-called cumulative cause-
specific hazard of cause j given by

Λj(t) =

∫ t

0

λj(t)dt, j = 1, . . . , J.

This summary quantity does not have a simple probabilistic interpretation (An-
dersen and Keiding, 2012). A non-parametric estimator of it is the famous Nelson-
Aalen estimator (Nelson, 1969; Aalen, 1975) and a semi-parametric estimator
implied by (1.4) is given by the Breslow estimator (Breslow (1974)). Obviously,

S(t) = exp (−
∑J
j=1 Λj(t)).

There is another way to measure the risk on a cumulative scale: the cause-
specific cumulative incidence function of cause j, that is

Fj(t) = P (T ≤ t,D = j), j = 1, . . . , J. (1.5)

These can be seen as natural extensions to competing risks of the time-to-event
distribution P (T ≤ t) encountered in ordinary survival. These probabilities may
be estimated non-parametrically using the Aalen-Johansen estimator (Aalen and
Johansen, 1978) or semi-parametrically, exploiting their relationship with the
cause-specific hazards, that is

Fj(t) =

∫ t

0

λj(u) exp(−
J∑
l=1

Λl(u))du, j = 1, . . . , J.

An interesting aspect appears here, revealing the complexity of modeling com-
peting risks. It concerns the interpretability of covariate effects: a covariate may
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not affect the cause-specific hazard of the cause of interest, but still affects the
cumulative risk of it through the effects on the cause-specific hazards of the com-
peting events. We will come back to this feature in this thesis. Examples of
clinical questions which can be addressed with the cumulative incidence function
are:

Doctor: Does the group of young leukemia patients (aged 30 or younger) have
a high risk of developing a second malignancy within two years post-transplant?
or

Patient: Doctor, which is my chance to die due to lung cancer five years after
surgery if I stop smoking soon?

To avoid the drawback of interpretability of covariate effects on the cumulative
incidence scale based on models on cause-specific hazards, several approaches have
been proposed in literature for direct regression on this scale. A famous one is
that of Fine and Gray (Fine and Gray, 1999); they introduced the subdistribution
hazard of cause j which preserves a one-to-one relationship with Fj(t), and is
given by

αj(t) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t,D = j|(T ≥ t) ∪ (T ≤ t,D 6= j))

∆t
,

for j = 1, . . . , J .
Alternative ways to the inference and estimation in competing risks models

will be discussed in this thesis. Andersen and Keiding (2012) postulated three
principles which could be helpful in formulating theory and for a good practice
of competing risks:

(1) Do not condition on the future;

(2) Do not regard individuals at risk after they have died; and

(3) Stick to this world.

It is worth saying that across the existing approaches to competing risks, sev-
eral cannot meet these demands. Ultimately, the goal of these approaches is to
understand how covariates influence the underlying process of competing risks
and to predict an outcome for a new patient, given certain baseline informa-
tion. An extensive discussion of how covariate effects are interpreted for different
functionals in competing risks can be found in Andersen and Keiding (2012).

However, one can easily guess that research questions inspired by real-data
might not readily extract answers using the existing methods. What if we are
interested in patterns over time of causes of failure in competing risks? What
if, in case of failure, causes of failure are just partially known? What if we are
interested to predict the occurrence of a specific failure of a patient, taking into
account a certain part of their history?
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1.1.2 Missing causes of failure

Data might be missing for a variety of practical reasons. We are concerned with
the situation when missing causes of failure in competing risks arise due to reasons
related to observed data (missing at random assumption). It is not difficult to
imagine that this might occur in the process of collecting the data (for instance,
the burden of other urgent matters might prevent the treating physician from
updating the patient report form).

The challenge here is to estimate different functionals (cause-specific hazards,
cumulative incidences, etc.) that would have been observed in a population with-
out missing causes of failure.

Naive methods would delete the individuals with missing causes of failure or
would recode the missing cause and assign it to the cause of interest (especially in
the study of a lethal disease); due to the fact that the information on the survival
time of these patients is omitted, these procedures will result in biased and/or
inefficient estimators.

More elaborate methods were proposed as extensions of some existing regres-
sion models in competing risks to incorporate a subpopulation with incomplete
information on mortality. Discussing these different methods is beyond the scope
of this introduction and we will only describe some features and indicate when
these methods are appropriate.

Goetghebeur and Ryan (1995) proposed a semi-parametric regression model
on cause-specific hazards of two competing causes yielding estimates of the re-
gression coefficients in the Cox proportional hazards model. Their method could
be useful even if the covariates are omitted in the modeling. A particularity of

their approach is that they assume the ratio λ20(t)
λ10(t) to be constant, therefore fa-

cilitating the use of the partial likelihood for inference. However, their inference
method is more elaborate than the traditional partial likelihood, consisting in a
two-stage maximization of (appropriate) partial likelihoods. Extension of their

method to include a time-varying model for λ20(t)
λ10(t) is also discussed.

Lu and Tsiatis (Lu and Tsiatis, 2001) proposed a multiple imputation proce-
dure based on modeling the cause-specific hazards by means of Cox proportional
hazards model. An important feature of their approach is that they could recover
complete data by imputing the missing information from a regression model on
the conditional distribution of the cause of failure given observable data.

However, the question arises whether we could capture and model somehow
a natural way in which such situation occurs, that is detecting when a failure
occurs, irrespective of its cause, and then observing which type of failure arose.
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1.1.3 Dynamic prediction

Treating physicians are often concerned with optimal treatment decisions and,
given that, they are interested to predict a clinical event for a patient taking into
account the individual event history (dynamic prediction).

In this thesis, we are interested to develop dynamic prediction models for
competing risks which are able to address questions such as:

Doctor: Could we standardize the use of a certain clinical management strat-
egy that would depend on the prognosis within first three months post surgery?
or

Patient: Doctor, which is my chance to die due to leukemia five years after
experiencing a recurrence during the first two months post-transplantation?

To this goal, the accuracy of the parameter estimates and the fit of the model
are not the main concern, but we are interested in a model that predicts accu-
rately.

Dynamic prediction in survival analysis has received a lot of interest recently
both in terms of theoretical developments and applications. A comprehensive
discussion from a technical and practical point of view can be found in van
Houwelingen and Putter (2012). In competing risks, the dynamic prediction
probabilities are obtained from the joint distribution of (T,D,Z(·)), where Z(t)
is the covariate process; more exactly, we are interested in the conditional prob-
abilities P (T ≤ t,D = j| T > s, {Z(u) : 0 ≤ u ≤ s}), j = 1, . . . , J , where the
time-dependent covariates play a key role.

There are a number of ways to model and estimate the dynamic prediction
probabilities. If the aim is to comprehensively model the data, a multi-state model
approach (Putter et al., 2007) or a joint modeling approach (Proust-Lima and
Taylor, 2009; Rizopoulos, 2011) can be used to derive a model of the prediction
probabilities; these will require not only a model for the time-to-event variables,
but also a model for how Z(t) will develop beyond the prediction time, that
is for t > s. If one is interested only in the prediction probabilities, a direct
modeling approach can be used, overcoming the burden of assumptions on some
variables not of interest for prediction. Such a direct approach which has received
a lot of attention is landmarking. The key feature of the landmarking is the
updating of the time-varying covariates at each prediction time point. Then, the
challenge becomes how to incorporate the updated information either in a model
for the cause-specific hazards or in a direct model for the conditional cause-specific
cumulative incidence functions.
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1.2 Outline of the thesis

Chapter 2 introduces a new approach to competing risks data, called vertical
modeling. It is built on natural observable quantities in competing risks, that is
it quantifies 1. the chance that a failure occurs, irrespective of its cause and 2.
conditionally that a failure occurred, it quantifies the risk that the event of failure
is ascertained to a certain type of failure. Vertical modeling is recognized to fulfill
the three principles above (see Andersen and Keiding (2012)), due to the fact it
puts forward interpretable functionals and due to its practical applicability. The
vertical modeling approach directly identifies and models the patterns of causes
of failure over time, and it retrieves the cumulative incidence function, making it
available both for prediction and for dynamic prediction. Explicit expressions are
given for the variance of the cause-specific cumulative incidence functions. By
using semi-parametric regression models, our approach can be easily implemented
in any of the existing statistical softwares. Our approach is compared to the non-
parametric approach in a large simulation study. The utility of our method is
demonstrated in the analysis of a real data set. This chapter is based on the work
of Nicolaie et al. (2010).

Since collection of competing risks data might be a cumbersome process in
practice, it is important to be able to deal with less optimal situations which often
reality faces. Chapter 3 reveals another appealing feature of vertical modeling,
that is it deals with competing risks when missing causes of failure occur. Under
some reasonable assumptions, this situation is handled in a natural way by verti-
cal modeling, because it uses all the information on the time of failure (also from
those individuals with missing causes of failure), while the partial information on
the causes of failure is used in an optimal way. Vertical modeling leads to correct
inference; maximum likelihood estimators of regression parameters based on the
observed likelihood coincide with maximum likelihood parameters obtained from
our approach. Other advantages of our method to some existing methods are
discussed and exemplified in the analysis of a real data set. This chapter is based
on the work of Nicolaie et al. (2011).

Chapter 4 proposes a new approach to the topic of dynamic prediction in
competing risks, which comes as an extension of the landmark approach in ordi-
nary survival. It is based on combining in supermodels Cox proportional hazards
models of cause-specific hazards for the cohort of survivors at each landmark
time point. Supermodels, obtained by smoothing the cause-specific baseline haz-
ards over a range of landmark time points, can handle time-varying effects of
covariates or time-dependent covariates, while accounting for multiple causes of
failure. Estimation of regression parameters is done by means of pseudo partial-
likelihoods. The advantage of this method is reduced modeling effort, because
it is targeted directly at the dynamic prediction probabilities, incorporating only
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the necessary information to prediction from the complex underlying process. We
validate empirically our method on a real data set. This chapter is based on the
work of Nicolaie et al. (2013a).

Chapter 5 proposes an alternative to the methods of Chapter 4. Instead of
using the complete prediction interval framework of Chapter 4, the new approach
is targeted directly at the time point where dynamic prediction is of interest. The
key ingredients are pseudo-observations computed for the cohort of survivors
at each landmark time point, called dynamic pseudo-observations. They are
combined in supermodels for a range of landmark time points using a generalized
linear model (GLM) approach, where smoothed time-varying effects of covariates
or time-varying covariates could affect their mean values. Estimation is done
by means of a generalized estimating equations (GEE) method. Mathematical
properties of our method concerning the asymptotic behaviour of our estimators
are considered. The advantage of our method of modeling in a single time point
is its robustness against model mispecification which are likelily to occur in more
comprehensive models. Our method is illustrated in the analysis of a real data
set. This chapter is based on the work of Nicolaie et al. (2013b).

Chapter 6 studies properties of several approaches to dynamic prediction in
competing risks in simulation studies, including the methods introduced in Chap-
ters 4 and 5. The main interest here is not in the fit of the model, but in the
accuracy of the methods to predict a future event taking into account all avail-
able information at that time point. Two main scenarios are considered: first,
the true, underlying stochastic process is chosen to fulfill the Markov property
and, secondly, when it fails to fulfill this property. This chapter is based on the
work of Nicolaie et al. (2013c).
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2
Vertical modeling: a pattern mixture

approach to competing risks

Abstract

We study an alternative approach for estimation in the competing risks frame-
work, called vertical modeling. It is motivated by a decomposition of the joint
distribution of time and cause of failure. The two elements of this decomposition
are 1. the time of failure and 2. the cause of failure conditional on time of fail-
ure. Both elements of the model are based on observable quantities, namely the
total hazard and the relative cause-specific hazards. The model can be imple-
mented using standard software. The relative cause-specific hazards are flexibly
estimated using multinomial logistic regression and smoothing splines. We show
estimates of cumulative incidences from vertical modeling to be more efficient
statistically than those obtained from the standard nonparametric model. We
illustrate our methods using data of 8966 leukemia patients from the European
Group for Blood and Marrow Transplantation.

13
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2.1 Introduction

Competing events in medical research concern situations where individual sub-
jects may experience multiple types of events, such that the occurrence of one
event precludes the occurrence of others (e.g., death in the disease process may
occur due to several mutually exclusive causes). Competing risks models provide
a natural framework to describe multiple causes of failure; they can be seen as
a multi-state model with one initial state 0 (alive, event-free) and a number of
absorbing states j = 1, . . . , J , corresponding to the different types of events An-
dersen et al. (2002).

Interest focuses on the joint distribution of time to failure T and cause of
failure D, abstractly denoted here as P (T,D). Typically this joint distribution is
summarized through the cumulative incidence functions Fj(t) = P (T ≤ t,D = j).
The standard approach of modeling them is through the cause-specific hazard
functions λj(t) (Prentice et al., 1978), the hazard of failing from a given cause
in the presence of competing events. Unfortunately, the cause-specific hazard
function does not have a direct interpretation in terms of survival probabilities
for the particular failure type, since these probabilities also depend on the cause-
specific hazards of the other causes.

The joint distribution of (T,D) may also be decomposed as a mixture model
in two ways:

P (T,D) = P (T |D)P (D) , (2.1)

or as
P (T,D) = P (D|T )P (T ) . (2.2)

The decomposition (2.1) has been proposed and studied by Larson and Dinse
(1985) and has received modest attention (Ng and McLachlan, 2003; Lu and
Peng, 2008; Kuk, 1992). Decomposition (2.1) may perhaps seem more obvious
on first glance, on reflection it is a somewhat awkward construction, resulting
in two major disadvantages. The first is that, from a practical point of view,
an EM-algorithm typically has to be used to infer the missing cause of failure
for censored observations. This makes estimation in model (2.1) time-consuming
and difficult. The second disadvantage is arguably even more important. From
an interpretational point of view, it implies that the cause of death is determined
from the outset. Its estimated distribution will depend on the length of follow-
up, which is hard to reconcile with the implied existence of such a distribution
from the outset. In that respect decomposition (2.2) is arguably more natural; its
constituents are the time of failure T and its cause D once failure has occurred.
Also the ingredients needed to estimate P (D|T ) and P (T ) are closely connected
to the natural observable quantities in the competing risks setting, the cause-
specific hazards. For P (T ) the driving force is λ•(t), the total or all-cause hazard,
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and for P (D|T ) the relevant quantities are the relative cause-specific hazards

πj(t) =
λj(t)
λ•(t)

. Although the idea of the decomposition (2.2) appears to have been

used implicitly (Hachen, 1988; Smits et al., 2000), the decomposition (2.1) has
been used more widely, despite its obvious disadvantages. We feel therefore that
model (2.2) deserves more attention and deeper study.

We introduce in Section 2.2.1 the notation we need to describe the model. In
Sections 2.2.2 and 2.2.3 we describe the model, both with and without covariates.
We contrast the vertical modeling and existing approaches in Section 2.2.4. A
leukemia patients data set analysis demonstrates the utility of our methods in
Section 2.3. In Section 2.4 we discuss our method and results. Technical details
dealing with the computation of standard errors can be found in the Appendix.

2.2 Vertical modeling

2.2.1 Notation

Let T be the time of failure, C the censoring time, and D the cause of failure
with possible values 1, . . . , J . Let Z denote a vector of covariates. We observe
(T̃i,∆i,Zi), for i = 1, . . . , n, where T̃i = min(Ti, Ci) is the earliest of failure and
censoring time, and ∆i = 1{Ti < Ci} ·Di is the cause of failure in case of failure
and 0 in case of censoring. The usual requirement of conditional independence of
(T,D) and C, given Z, is assumed to be true here as well. The aim is to estimate
the joint distribution of (T,D), given by the cumulative incidence functions

Fj(t) = P (T ≤ t,D = j) . (2.3)

Viewed as a function of t, Fj(t) is a possibly (or rather, probably) defective
distribution function.

The standard way of estimating the cumulative incidence functions is through
the cause-specific hazards

λj(t) = lim
∆t→0

P (t ≤ T < t+ ∆t,D = j|T ≥ t)
∆t

, Λj(t) =

∫ t

0

λj(s)ds . (2.4)

Define the total, overall, or all-cause hazard

λ•(t) =

J∑
j=1

λj(t) , Λ•(t) =

∫ t

0

λ•(s)ds =

J∑
j=1

Λj(t) (2.5)
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and its corresponding survival function

S(t) = exp(−Λ•(t)) . (2.6)

In what follows, we shall refer to λ•(t) (Λ•(t)) as the total (cumulative) hazard.
Then the cumulative incidence function of cause j may be expressed in terms of
the cause-specific hazards as

Fj(t) =

∫ t

0

λj(s)S(s−)ds . (2.7)

Covariates may be incorporated in this context through proportional hazards
model imposed on the cause-specific hazards, i.e. by assuming that λj(t|Z) =
λj,0(t) exp(β>j Z) , with λj,0 an unspecified baseline hazard and βj an unknown
vector of regression coefficients, both to be estimated. The βj are usually sup-
posed to be different for different causes, but they may also be taken to be
identical, see for instance Putter et al. (2007). Alternatively, such proportional
hazards model may be specified for the subdistribution hazards (Fine and Gray,
1999).

Define also the relative cause-specific hazards

πj(t) =
λj(t)

λ•(t)
, j = 1, . . . , J . (2.8)

An important issue about the πj(t) is that it describes a local time behaviour,
namely

πj(t) = P (D = j|T = t) . (2.9)

Also,
∑k
j=1 πj(t) = 1. Although the concept of the relative hazard has already

been used in the literature as the ratio of two hazards (see, e.g., Armitage and
Colton (2007)), for ease of reference we shall simply refer to the concept in (2.8) as
the relative hazard. Note that the relative hazard can be essentially any function
taking values in [0, 1].

The intuition for the vertical modeling is that, when estimating the proba-
bility of dying from the target cause, we first estimate the probability of failure,
irrespective of the cause of death (an ”overall” view) and then the conditional
probability of dying from the target cause, given that the death occurred at that
time. In terms of formulas, this idea leads to decomposition (2.2) of the cumu-
lative incidence function. With regard to the modeling aspect, two models are
needed: a model for the overall failure time (irrespective of its cause) and a model
for the cause of failure, given the failure time, models which are described in the
following.
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2.2.2 No covariates

The driving force for the overall failure time distribution is the total hazard; here,
all failures are considered as events, irrespective of the cause of failure. The most
obvious choice for estimation is the nonparametric Kaplan-Meier estimator.

The driving force for the cause of failure given time of failure is the relative
hazard, given by (2.8) and (2.9). Note that due to the independence assumption
of (T,D) and C, we have

πj(t) = P (D = j|T = t) = P (D = j|T = t, C ≥ t)
= P (D = j|T = t, T ≤ C) ,

so that we may restrict ourselves to the observed event time points and ignore
the censored observations. In order to estimate it ”model free”, let 0 < t1 ≤
t2 ≤ . . . ≤ tM be the ordered event times at which failures of any cause occur.
Let dkj denote the number of patients failing from cause j at time tk, and let

dk =
∑J
j=1 dkj denote the total number of failures (from any cause) at time tk.

Let nk be the number of patient at risk (i.e. that are still in follow-up (alive or
not censored) and have not failed from any cause at time tk). The relative hazard
πj(tk) can be estimated by means of estimates of the hazards in (2.8), namely

π̂j(tk) =

dkj

nk

dk
nk

=
dkj
dk

. (2.10)

If we assume that πj(t) is continuous in reality and if we are interested in a
smooth curve of πj(t), we need to smooth, because in the absence of ties, only
one of the dkj equals 1 for a given k, and dk = 1. Therefore, no smoothing
would lead to a very erratic behaviour of πj(t). This leads to the choice of a
smoother as function of time. We will use a predefined set of functions of time
B1(t), B2(t), . . . , Bp(t), for instance spline basis functions, gathered in a vector
B(t)=(B1(t), B2(t), . . . , Bp(t))

>. We will assume that B(t) includes an intercept.
Using this set of time functions, the most natural model for the relative hazard
is a multinomial logistic model, which specifies that

πj(t) =
exp(β>j B(t))∑J
l=1 exp(β>l B(t))

, j = 1, . . . , J , (2.11)

where βj = (βj1, . . . , βjp) is a row vector of p regression coefficients, j = 1, . . . , J .
For identifiability, we may set β1 ≡ 0. In the case of two causes of failure, the
multinomial logistic model will simplify to a binary logistic model. Both multi-
nomial and binary logistic regression models are standard in almost all statistical
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software packages.
It is worth reiterating that a vertical model, through (2.2), describes the joint

distribution of time and cause of failure, just like a model based on the cause-
specific hazards. Thus, the cumulative incidence functions can also be retrieved
from a vertical model. From the model for the total hazard, an estimate of
exp(−Λ•(t)) can be obtained. The reversal of the definition of the relative hazard
πj gives the cause-specific hazard

λj(t) = πj(t)λ•(t) . (2.12)

Finally, the cumulative incidence of cause j can also be expressed in terms of
relative and total hazard, through the relation

Fj(t) =

∫ t

0

λj(u) exp(−Λ•(u))du (2.13)

=

∫ t

0

πj(u)λ•(u) exp(−Λ•(u))du

=

∫ t

0

πj(u)f•(u)du ,

where f• denotes the density corresponding to the overall failure time distribution.
The last equation (2.13) is interesting; it describes the role of the relative hazard
as quantifying the proportion of the overall failure density contributing to the
cumulative incidence function.

Dynamic prediction (i.e., prediction from a later time point s > 0) is also
straightforward for vertical modeling: P0j(s, t) := P (T ≤ t,D = j|T > s) can be
expressed in terms of relative and total hazards as an obvious extension of (2.13),

namely P0j(s, t) =
∫ t
s
πj(u)f•(u)du.

In the Appendix we show how to compute the standard errors of cumulative
incidences from the vertical model.

2.2.3 Covariates

When we want to incorporate covariates in the vertical modeling, we have to
consider ways of incorporating these covariates in the model for the time to
overall failure (the total hazard) and in the model for the cause of failure given
time of failure (the relative hazards). The most obvious model for the time to
failure is a proportional hazards model. Again, all failures are considered as
events, irrespective of the cause of failure. In case of a single categorical variable,
a nonparametric alternative is to use the Nelson-Aalen estimator for different
levels of the covariate.
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For the cause of failure, the most natural model would again be a multinomial
regression model. The challenge here is to obtain sufficiently rich and meaningful
models which are not difficult to fit. One option is to obtain sub-groups and
apply smoothing methods within each subgroup. Alternatively, one could expand
the multinomial logistic regression model of (2.11) to include the covariates and
possibly the interactions of these covariates with the time functions. To illustrate
this last possibility, we propose the following model for the relative hazard

πj(t) =
exp(β>j B(t) ∗ Z)∑J
l=1 exp(β>l B(t) ∗ Z)

, j = 1, . . . , J , (2.14)

where Z stands for the covariate and ∗ for its interaction with the time func-
tions, and where again β1 ≡ 0. Note that no main covariate effects are included
since B(t) includes an intercept. In case this model is not identifiable from the
data, and additive model may be used, where exp(β>j B(t) ∗ Z) is replaced by

exp(β>j B(t) + γjZ), with β1 ≡ 0 and γ1 = 0. A likelihood ratio test could be
used to test whether the covariate by time interaction needs to be included in
(2.14). Sometimes it is biologically or clinically plausible to put restrictions on
the relative hazards; the relative hazard of a specific cause could be decreasing or
non-decreasing, it could be higher than the relative hazard of a second cause, or
it may be plausible that two relative hazards are proportional. Such restrictions
are often more natural for the relative hazards than for the cause-specific hazards;
they may be taken into account in the multinomial regression model, and they
will result in a gain in efficiency.

2.2.4 Vertical modeling in perspective

The most commonly used methods for competing risks are based on the cause-
specific hazards, which can be seen (Figure 2.1) as the transition intensities of
a multi-state mode, with ”Alive” as starting state and failures from the different
causes as absorbing states (Andersen et al., 2002). By far the most popular model
for the cause-specific hazards is the Cox model, which specifies that

λk(t | Z) = λk,0(t) exp(β>k Z) . (2.15)

The advantage of (2.15) is that it is straightforward to fit using standard sta-
tistical software (Lunn and McNeil, 1995). The main disadvantage is that the

one-to-one rate to risk relation, F (t) = 1 − exp(−
∫ t

0
λ(s)ds) (λ being the rate

(hazard) and F being the risk (distribution function)) that we are used to in
ordinary survival analysis no longer holds. The reason is that the effect of a co-
variate on the cumulative incidence of a cause j of interest not only depends on
βj , but also on the other βl’s, because of the fact that the cumulative incidence
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Figure 2.1: A competing risks model with J causes of failure

function Fj(t) =
∫ t

0
λj(s)S(s−)ds depends not only on λj but also on the other

cause-specific hazards λl through S(s−) = exp(−
∑J
l=1

∫ s−
0

λl(u)du) Prentice et
al. (1978); Putter et al. (2007).

This fact prompted by Fine and Gray (1999) to propose a proportional hazards
model on the subdistribution hazard λ∗j (t) which is defined so as to satisfy the

one-to-one rate to risk relation Fj(t) = 1 − exp(−
∫ t

0
λ∗j (s)ds). The Fine-Gray

model specifies
λ∗j (t | Z) = λ∗j,0(t) exp(β∗>j Z) . (2.16)

The usefulness of the Fine-Gray model and the reason for its growing popu-
larity, both in terms of applications and research effort (Andersen et al., 2003;
Klein and Andersen, 2005) is of course that it establishes a one-to-one relation
between covariates and cumulative incidence, but it has a number of disadvan-
tages as well. The subdistribution hazard itself is an awkward construct, there
are technical difficulties to be overcome when fitting the model, and the theory
has not completely developed yet (for instance, time-dependent covariates and
time-dependent covariate effects is still an active research area on time-dependent
covariates in the Fine-Gray model (Beyersmann and Schumacher, 2008)).

Both the proportional cause-specific hazards model (2.15) and the Fine &
Gray model (2.16), despite their differences, can be seen as horizontal models in
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that they model what happens when we follow the arrows in Figure 2.1 from left
to right (they model the rate at which particular types of events occur). Vertical
modeling first describes the total intensity out of the ”Alive” state in Figure 2.1,
say one arrow from left to amounted right. The relative hazards then describe
the transition intensities or cause-specific hazards vertically through their relative
magnitudes. Our model assumes the continuity of the relative hazards, which
after smoothing might facilitate their interpretation. Vertical modeling is most
useful if the biological (or mechanical) system causing failures can be thought of
as consisting of an overall rate of failure which may be subdivided by different
causes of failure. An example might be causes of death in public health where
overall mortality rate as a function of age may be subdivided by different causes
of death and where interest lies in quantifying the contribution of these different
causes of death to overall mortality in the course of time (age). Of course, it
may also be a useful alternative in situations where the proportional hazards
assumptions on the cause-specific and/or subdistribution hazards fail to hold.
An example of violation of these assumptions will be given in the next section.

Just like some authors advise to analyze and report the results of proportional
hazards models on both cause-specific and subdistribution hazards, vertical mod-
eling may be used side-by-side with these two methods, since the different models
emphasize different aspects of the data.

2.3 Data analysis

The data studied in this paper comes from the European Group for Blood and
Marrow Transplantation (EBMT) and was also used in Fiocco et al. (2005). It
consists of 8966 patients with acute myeloid leukemia (AML), acute lymphoblas-
tic leukemia (ALL), or chronic myeloid leukemia (CML), who received an allo-
geneic hematopoietic stem cell transplantation (HSCT) for early leukemia. Data
was reported to EBMT in three time cohorts: 1985-1989 (27%), 1990-1994 (40%),
1995-1998 (33%). The objective was to study whether patterns of causes of
death changed over time, and in particular whether deaths from infections and
graft-versus-host disease (GvHD) only occurred in the first year after transplan-
tation or whether treating physicians should remain alert to the possibility of
dying from infections or GvHD after one year post-transplant (Gratwohl et al.,
2005). For this particular analysis we collapsed the different ”death due to in-
fection” categories. This leaves the following causes of death: death from relapse
and transplant related mortality which was subdivided into death from acute or
chronic graft-versus-host disease (GvHD), infections or ”other” causes, as shown
in Table 2.1. Median follow-up was approximately six years. Gender mismatch
refer to a particular combination of donor/ recipient gender (donor female, re-
cipient male) that is known to confer higher risk of adverse outcome. Covariate
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Table 2.1: Number of events for each competing risk; 5656 patients were alive at
the last follow-up

Event Relapse GvHD Infections Other
Number 1098 843 454 924

Percentage with respect to patients 12 % 9 % 5 % 10 %
events 33 % 25 % 14 % 28 %

information is described in Table 2.2.

Table 2.2: Prognostic factors for all patients

Prognostic factor n (%)
Disease classification AML 3514 (39%)

ALL 1870 (21%)
CML 3582 (40%)

Donor recipient no gender mismatch 6758 (75%)
gender mismatch 2208 (25%)

GvHD prevention no TCD 4390 (49%)
+ TCD 1720 (19%)
unknown 2857 (32%)

Year of HSCT 1985–1989 2390 (27%)
1990–1994 3575 (40%)
1995–1998 3001 (33%)

Age at transplant (years) ≤ 20 1974 (22%)
20–40 4800 (54%)
> 40 2192 (24%)

2.3.1 No covariates

To illustrate our vertical modeling, we are first concerned with the choice of time
functions. With respect to this goal, we start by using piecewise constant func-
tions. We divide the follow-up time interval in five subintervals: I1 = [0, 0.25),
I2 = [0.25, 0.5), I3 = [0.5, 1), I4 = [1, 2.5) and I5 = [2.5,∞), corresponding to
32%, 21%, 19%, 17%, 11% of all events, respectively, and we define Bi(t) = 1Ii(t),
i = 1, . . . , 5. Multinomial regression can be used, or alternatively the resulting
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estimated relative hazards π̂jk of cause j in interval Ik can be obtained directly
from equation (2.11) as

π̂jk =
exp(β̂jk)∑5
l=1 exp(β̂jl)

, j = 1, . . . , 4, k = 1, . . . , 5 . (2.17)

For this special case of piecewise constant time functions, the π̂jk can also be
obtained directly, as in (2.10), namely, the proportion of all failures occurring in
Ik that are attributed to cause j.

Figure 2.2a shows the plots of the associated relative hazards implied by our
choice of time functions, equation (2.17) or, equivalently, the estimated values
from Table 2.3 obtained from (2.17).

These piecewise constant functions are very useful to obtain a first idea of
the relative hazards. Often, it is preferable to show relative hazards as smoothed
functions obtained from (2.17). For illustration, we will use cubic splines, which
consist of piecewise cubic polynomials between adjacent knots (i.e., of the form
ax3 + bx2 + cx + d), are continuous and smooth at each knot, with continuous
first and second derivatives (see, e.g., Schumaker (1981)). For this particular
analysis, we introduce 7 knots on the time axis (ki)i=1,...,7 = −1, −0.5, 0, 0.25,
0.5, 1, 2.5 and 15 which lead to four such functions, denoted by Bi(t), i = 1, . . . , 4.
In Figure 2.2b we show the plots of the associated relative hazards implied by
our choice of spline basis functions, equation (2.11) and the estimated regression
coefficients from Table 2.4. Here we use β1 ≡ 0 for identifiability. In the next
section, we will reexamine this model, adjusting for covariates. Figures 2.2a and
b are of course based on different spline functions, but qualitatively they are the
same. It can be seen from Figure 2.2 that in the first year after transplantation,
the majority of deaths come from the transplant related causes: GvHD, infections
and other causes, while from one year after transplant relapse is the dominating
cause of death. It seems that the other causes of death do not completely dis-
appear. The behaviour of the relative hazards in the right tail is of course very
uncertain due to the small number of events.

Figure 2.3 shows the plots of the cause-specific cumulative hazards implied by
the cubic splines model through (2.11) and (2.12), together with their standard
errors. They are compared with the nonparametric estimates. The estimates of
cumulative hazards are virtually indistinguishable, but the standard errors from
the vertical model are somewhat higher.

Figure 2.4 shows the plots of the cumulative incidence functions together with
their standard errors, which are based on the smoothed relative hazards estima-
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Figure 2.2: The piecewise constant relative hazards and the smoothed relative
hazards

tors, (2.12) and (2.13). The estimates of cumulative incidences and their standard
errors were obtained via the mstate package in R (see de Wreede et al. (2010))
and are based on the standard errors of cumulative hazards as derived in the
Appendix. The estimates of cumulative incidences are again virtually indistin-
guishable, but the standard errors from the vertical model are smaller now. The
fact that the standard errors of the cumulative incidences are smaller, while they
were bigger for the cause-specific cumulative hazards, is caused by the fact that
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Table 2.3: Estimated relative hazards and their standard errors for the multino-
mial model

[0, 0.25) [0.25, 0.5) [0.5, 1) [1, 2.5) [2.5,+∞)
Relapse 0.045 (0.0063) 0.212 (0.0155) 0.469 (0.0197) 0.657 (0.0201) 0.660 (0.0247)
GvHD 0.339 (0.0145) 0.328 (0.0178) 0.199 (0.0158) 0.150 (0.0151) 0.101 (0.0157)
Infections 0.188 (0.0119) 0.188 (0.0148) 0.125 (0.0131) 0.056 (0.0097) 0.036 (0.0097)
Other 0.427 (0.0151) 0.272 (0.0169) 0.207 (0.0160) 0.137 (0.0146) 0.203 (0.0210)

Table 2.4: Estimated regression coefficients and their standard errors for the
multinomial model based on cubic splines

Intercept B1(t) B2(t) B3(t) B4(t)
Relapse – – – – –
GvHD -2.676 (0.398) 6.514 (0.817) 4.186 (0.466) 1.385 (0.402) 1.359 (0.509)
Infections -2.731 (0.488) 7.538 (0.886) 2.943 (0.555) 1.557 (0.494) -0.044 (0.648)
Other -0.557 (0.229) 7.587 (0.741) 0.758 (0.327) 0.013 (0.256) -1.428 (0.342)

for the vertical modeling the estimated cause-specific cumulative hazards for dif-
ferent causes are negatively correlated, while for the nonparametric estimates
they are uncorrelated.

2.3.2 Covariates

The most important covariate to consider is disease subclassification of acute or
early leukemia, classified as either AML (the reference category), ALL or CML.
In Figure 2.5 we show the nonparametric estimates of the total cumulative hazard
for each level of the disease subclassification. There is strong evidence that a Cox
proportional hazards model for overall survival will not be appropriate for this
particular covariate; the estimate of the cumulative hazard for CML shows a much
more gradual increase than those for AML and ALL. We use these Nelson-Aalen
estimators to model the total hazard for each level of disease subclassification.

With respect to the modeling of the cause of failure, we make use of the same
sequence of knots and the same cubic splines Bi(t), i = 1, . . . , 4, as derived in
Section 3.1. Table 2.5 gives the estimated regression coefficients with associated
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Figure 2.3: The estimated cause-specific cumulative hazards (a) and associated
standard errors obtained from the vertical modeling (b)

standard errors. Again we use β1 ≡ 0 for identifiability. A likelihood ratio test
showed that the model (2.14) could not be replaced by a simpler model with only
main effects for cubic splines and disease subclassification (χ2 = 137.09, df = 9,
p < 0.0001). The plots of relative hazards are given in Figure 2.6. The pictures
suggest that AML patients are very similar to ALL patients, with respect to their
cause of death over time. The likelihood ratio test comparing model (2.14) with a
model with equal coefficients for AML and ALL was not significant (χ2 = 16.57,
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Figure 2.4: The cumulative incidences (a) and associated standard errors (b)

df = 15, p = 0.34).

Figure 2.7 shows the plots of the estimated cumulative cause-specific hazards
implied by our model through (2.12) and based on the smoothed relative hazard
estimates. While the relative hazards are similar for AML and ALL, clearly this
is not the case for the cause-specific hazards; especially the cause-specific hazard
for relapse is higher for ALL compared to AML.
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Figure 2.5: Nonparametric estimates of the overall cumulative hazard obtained
for AML, ALL and CML patients separately

Figure 2.8 shows the plots of the cumulative incidences, which are based on the
smoothed relative hazard estimates, (2.12) and (2.13).

Figures 2.7 and 2.8 are practically identical to the corresponding nonparametric
estimates (not shown here). A lack of proportionality can be seen in Figure 2.7:
especially for relapse as cause of death there is strong evidence that proportional-
ity of cause-specific hazards among AML, ALL and CML patients does not hold.
Again, for relapse as cause of death, there is strong evidence from Figure 2.8
that also proportionality of the subdistribution hazards among AML, ALL and
CML patients doesn’t hold. It seems clear that for disease subclassification as
covariate, neither a proportional hazards model for the cause specific hazards,
nor for the subdistribution hazards model is appropriate.

Finally, we illustrate our model including the remaining covariates in the
analysis. In modeling the time to failure, we found that a proportional hazards
model with GvHD prevention, years since HSCT and age at transplant as covari-
ates stratified by disease subclassification and donor recipient in interaction is
appropriate. The estimated hazard ratios and 95% confidence interval for GvHD
prevention, years of HSCT and age at transplant are reported in Table 2.6. Fig-
ure 2.9 shows plots of the estimated cumulative baseline hazards for each of the
six strata.
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Table 2.5: Regression coefficients

AML Intercept B1(t) B2(t) B3(t) B4(t)
Relapse – – – – –
GvHD -1.714 (0.704) 6.333 (1.358) 2.617 (0.801) -0.552 (0.715) -0.014 (0.892)
Infections -1.038 (0.669) 6.648 (1.358) 0.802 (0.780) -0.635 (0.689) -1.941 (0.911)
Other 0.583 (0.428) 6.897 (1.218) -0.760 (0.561) -1.927 (0.465) -2.976 (0.616)

ALL Intercept B1(t) B2(t) B3(t) B4(t)
Relapse – – – – –
GvHD -3.376 (0.309) 6.603 (2.121) 3.915 (2.258) 1.426 (1.743) 1.259 (1.498)
Infections -1.835 (0.318) 6.034 (1.985) 1.254 (2.362) 0.309 (1.995) -2.659 (1.342)
Other 0.416 (0.275) 5.626 (1.167) -1.172 (1.743) -1.238 (1.680) -3.357 (0.723)

CML Intercept B1(t) B2(t) B3(t) B4(t)
Relapse – – – – –
GvHD -3.393 (1.698) 5.821 (0.509) 7.287 (0.462) 3.963 (2.106) 3.107 (0.847)
Infections -4.880 (1.889) 8.105 (0.571) 7.322 (0.507) 5.182 (2.148) 3.290 (1.415)
Other -1.609 (1.181) 7.739 (0.440) 3.981 (0.436) 2.776 (1.476) 0.590 (0.671)

Table 2.6: Hazard ratios with confidence intervals

Prognostic factor HR (95% CI)
GvHD prevention no TCD 1

+ TCD 1.167 (1.065-1.279)
unknown 1.201 (1.109-1.300)

Year of HSCT 1985–1989 1
1990–1994 0.752 (0.693-0.815)
1995–1998 0.600 (0.546-0.659)

Age at transplant (years) ≤ 20 1
20–40 1.515 (1.373-1.671)
> 40 2.045 (1.826-2.290)

With respect to the modeling of the cause of failure, we again use the same
sequence of knots and the same cubic splines Bi(t), i = 1, . . . , 4, as derived earlier.
A stepwise downward selection procedure based on minimizing the AIC selected
a model with interaction between disease subclassification and splines and only
main effects for donor recipient, GvHD prevention, years since HSCT and age
at transplant (AIC=17217.594). Figure 2.10 shows the resulting estimates of the
relative hazards separately for combinations of AML, CML (ALL is similar to
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Figure 2.6: The relative hazards

AML and omitted) and age category, choosing the most common category for
the remaining covariates. It can be seen that older patients die relatively more
frequently of other causes and infections (only for AML).

2.3.3 Simulation experiments

In this section we present the results of three sets of simulations, based on data
sets consisting of n = 500, 1000 and 5000 individuals, respectively. We compare
the estimators of the cumulative incidence functions derived from the vertical
modeling with the nonparametric estimators of cumulative incidences.
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Figure 2.7: The cause-specific cumulative hazard for each level of disease sub-
classification

In each of these three sets of simulations, data sets were generated from a
model with piecewise constant cause-specific hazards; no covariates were included
and the overall failure time distribution was given by a piecewise exponential dis-
tribution on the same five time intervals I1 = [0, 0.25), I2 = [0.25, 0.5), I3 =
[0.5, 1), I4 = [1, 2.5), I5 = [2.5,∞) (see, e.g., Cox and Oakes (1984)), as in Sec-
tion 2.3.1, with rates (α1, α2, α3, α4, α5) = (0.5022, 0.3755, 0.1958, 0.0669, 0.0155),
as estimated from the EBMT data. After generating overall failure times, de-
pending on the interval Ij in which the failure time fell, the cause of failure was
generated according to the (piecewise constant) relative hazards of Table 2.3.
Right censoring times were generated uniformly on (10, 20), leading to a 50-55



32 2. VERTICAL MODELING

0 5 10 15

0.00

0.05

0.10

0.15

0.20

Years since HSCT

C
um

ul
at

iv
e 

in
ci

de
nc

es

AML
ALL
CML

Relapse

0 5 10 15

0.00

0.05

0.10

0.15

0.20

Years since HSCT

C
um

ul
at

iv
e 

in
ci

de
nc

es

AML
ALL
CML

GvHD

0 5 10 15

0.00

0.05

0.10

0.15

0.20

Years since HSCT

C
um

ul
at

iv
e 

in
ci

de
nc

es

AML
ALL
CML

Infections

0 5 10 15

0.00

0.05

0.10

0.15

0.20

Years since HSCT

C
um

ul
at

iv
e 

in
ci

de
nc

es

AML
ALL
CML

Other causes

Figure 2.8: The cumulative incidences for each level of disease subclassification

per cent of censored individuals per simulated data set.
The true cumulative incidence functions at the endpoints of the five time

intervals were calculated from the Chapman-Kolmogorov equation P(s, t) =
P(s, u)P(u, t), s ≤ u ≤ t, and P(sj , tj) = exp((tj − sj)Qj), sj , tj ∈ Ij , where Qj

is the constant intensity matrix containing the exponential cause-specific failure
rates on the intervals Ij and P(s, t) is the transition probability matrix from time
s to time t (see, e.g., Iosifescu (1980)). The package msm package in R Jackson et
al. (2003) was used for calculations. The cumulative incidence probabilities from
the vertical model were calculated using the same cubic spline basis functions
and knots as in our data analysis.

The results, in terms of bias and root mean squared error (RMSE) with respect
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Figure 2.9: The estimated cumulative baseline hazards for each of the six strata
defined by disease subclassification and gender mismatch; the line types distin-
guish between the disease subclassification, the grey scales between donor recip-
ient gender mismatch yes/no

to the true cumulative incidence probabilities are reported in Table 2.8. All
numbers were divided by 10−3. Bias for the vertical model is larger than for the
nonparametric estimates and doesn’t decrease for larger sample sizes, while for
smaller sample sizes, the RMSE of the vertical model is smaller than that of the
nonparametric estimates. As expected, RMSE decreases for the nonparametric
estimates at rate

√
n. The smaller RMSE for the vertical model compared to

the nonparametric estimates seems to disappear for larger sample sizes. This is
most probably due to the fact that we have used the same spline basis functions
and knots, irrespective of the sample size and simulated data set. Probably,
with regard to minimizing the RMSE of the vertical model, our choice of spline
basis functions and knots was not optimal for all sample sizes and has lead to
some degree of oversmoothing of the relative hazards resulting in a small bias of
the estimated cumulative incidence functions. A data-driven optimal choice of
(penalized) spline basis functions and knots would be subject for further research.

2.4 Discussion

We proposed a pattern mixture approach to competing risks analysis, as an al-
ternative or supplementary analysis to the standard analyse based on cause-
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Table 2.7: True cumulative incidence probabilities for simulation studies

Time Relapse GvHD Infections Other
0.25 0.005 0.040 0.022 0.050
0.50 0.022 0.065 0.037 0.071
1.00 0.057 0.080 0.046 0.087
2.50 0.102 0.091 0.050 0.096
15 0.179 0.103 0.054 0.120

Table 2.8: Vertical modeling compared with nonparametric cumulative incidence
estimates. Reported are bias (root mean squared error) with respect to the true
cumulative incidence probabilities; all numbers are divided by 10−3.

Vertical model Non-parametric
n Time Relapse GvHD Infections Other Relapse GvHD Infections Other
500 0.25 1.25 (3.66) 0.04 (8.56) -0.07 (6.14) 1.70 (9.56) 0.01 (3.28) -0.31 (8.83) -0.22 (6.37) 0.03 (9.77)

0.50 1.67 (6.69) -1.36 (10.97) -0.79 (8.14) 0.27 (11.44) 0.18 (6.59) -0.30 (11.11) -0.33 (8.31) 0.19 (11.49)
1.00 1.27 (10.53) -0.37 (12.22) -0.67 (9.21) -0.25 (12.45) 0.19 (10.53) -0.22 (12.30) -0.31 (9.28) 0.26 (12.54)
2.50 -0.05 (13.56) -0.05 (12.72) -0.04 (9.58) 1.02 (13.07) 0.02 (13.71) -0.13 (12.76) -0.36 (9.62) 0.02 (13.08)
15.00 0.01 (17.42) -0.01 (13.62) -0.04 (9.98) 0.26 (14.57) 0.06 (17.65) -0.17 (13.69) -0.41 (10.04) 0.27 (14.78)

1000 0.25 1.25 (2.78) 0.26 (5.86) 0.12 (4.47) -1.65 (6.92) 0.01 (2.30) 0.07 (6.04) 0.03 (4.67) 0.12 (6.97)
0.50 1.49 (4.79) 1.10 (7.71) -0.40 (5.87) 0.19 (8.22) 0.05 (4.64) -0.01 (7.82) 0.04 (5.96) 0.07 (8.33)
1.00 1.20 (7.37) -0.19 (8.51) -0.27 (6.64) -0.45 (9.11) 0.07 (7.34) -0.02 (8.57) 0.09 (6.70) 0.11 (9.15)
2.50 -0.05 (9.50) -0.45 (8.97) 0.00 (6.89) 0.86 (9.56) 0.14 (9.58) -0.03 (9.04) 0.12 (6.93) 0.08 (9.62)
15.00 0.11 (12.33) -0.15 (9.61) 0.11 (7.21) 0.16 (10.45) 0.03 (12.51) -0.16 (9.70) 0.09 (7.25) 0.17 (10.58)

5000 0.25 1.41 (1.77) 0.36 (2.68) 0.07 (2.02) -1.77 (3.47) -0.01 (1.02) 0.08 (2.75) -0.04 (2.11) 0.04 (3.11)
0.50 1.36 (2.43) -0.97 (3.55) -0.46 (2.65) 0.22 (3.63) -0.03 (2.05) 0.08 (3.49) -0.01 (2.67) 0.10 (3.65)
1.00 1.10 (3.41) -0.09 (3.81) -0.37 (2.98) -0.45 (3.94) -0.02 (3.25) 0.09 (3.83) 0.00 (2.99) 0.10 (3.96)
2.50 -0.14 (4.25) -0.35 (4.06) -0.15 (3.11) 0.84 (4.22) -0.02 (4.29) 0.07 (4.08) 0.01 (3.12) 0.13 (4.17)
15.00 0.00 (5.52) 0.12 (4.31) 0.01 (3.23) 0.11 (4.63) 0.00 (5.59) 0.12 (4.35) 0.02 (3.24) 0.09 (4.69)

specific hazards used for competing risks data. It is based on a decomposition
P (T,D) = P (D|T ) ·P (T ) of the joint distribution P (T,D) of the time and cause
of failure that is in our view more natural than the better known decomposi-
tion P (T,D) = P (T |D) · P (D) of Larson and Dinse (1985). The components
P (D|T ) and P (T ) of the decomposition correspond to directly observable quan-
tities, the relative hazard and the total hazard. It is straightforward to build
models for the relative and overall hazards, both with and without covariates,
and to estimate the underlying parameters, using standard statistical software.
We illustrated this using data on different causes of death in the context of bone
marrow transplantation.

Although the approach is not completely new, having appeared at last implic-
itly before in literature (see, e.g., Hachen (1988), Smits et al. (2000)), as far as
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we know, this is the first account with a deeper study of its properties, and with
the inclusion of covariates. From the EBMT data analysis it became clear that
vertical modeling is a useful alternative in cases where the proportional hazards
assumption on the cause-specific and/or the subdistribution hazards is not realis-
tic (see the effect of disease subclassification on death due to relapse). The vertical
modeling approach without covariates, assuming smooth underlying relative haz-
ards and estimating these with a multinomial regression model with cubic splines,
resulted in a gain in efficiency in estimating the cumulative incidence functions,
relative to the nonparametric approach based on the Nelson-Aalen estimator of
the cause-specific hazards.

Concerning the modeling aspect, two models are needed. The most obvious
model for the time to failure is a proportional hazard model where all failures
are considered as events, irrespective of the cause of failure. Here, standard
statistical software can be used. For the cause of failure part, the most natural
model is a multinomial logistic model. The easiest way is (multinomial) logistic
regression with covariates and pre-specified functions of time and, possibly, their
interactions as predictors. One advantage of this approach is that the hazard
functions need not to be proportional. Another advantage of this approach is the
fact that it is easier to apply dimension reduction techniques to the P (D|T ) than
in proportional cause-specific hazards as in Fiocco et al. (2005), since reduced
ranks are more widely used in generalized linear models. In dealing with multiple
time functions the methods of Perperoglou et al. (2006) may be considered.

One advantage of the vertical modeling approach that is worthy of further
investigation is that it is straightforward to deal with missing cause of failure.
These missing causes of failure only influence the estimates of the relative hazards,
not the overall hazard. Thus, the information that is present in the incomplete
data is used in a natural way. Vertical modeling could be an attractive alternative
to the methods of Goetghebeur and Ryan (1995), which are quite involved.

Finally, it is worth pointing out the relation between decomposition (2.2)
and methods of generating competing risks data. A natural way of generating
competing risks data (Dabrowska, 1995; Fiocco et al., 2008; Beyersmann et al.,
2009) is to generate an overall failure time t according to P (T ) and then to sample
from the causes of failure according to P (D|T = t). The ingredients P (T ) and
P (D|T ) are again the total hazard and the relative hazards. In fact we have used
these ideas in our simulation study.
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Appendix: The standard errors of cumulative haz-
ards from vertical modeling

In this appendix we derive the formulas for the standard errors of the cause-
specific cumulative hazards from the vertical modeling.

The Nelson-Aalen estimator of Λ•(t), denoted by Λ̂•(t), makes jumps of size

dΛ̂•(.) at time points 0 ≤ t1 < t2 < . . . < tM <∞ with covariance matrix

var(dΛ̂•) = var
(
(dΛ̂•(t1), . . . , dΛ̂•(tM ))>

)
=



τ2
1 0 0

0
. . .

. . .

. . .
. . .

. . .

. . .
. . . 0

0 0 τ2
M


.

(2.18)
Relevant quantities for our purposes are the relative hazards πj(t); we model
them as in formula (2.8).

Remark. Often it will convenient to retain the system (2.8) and to work

with the p× J Fisher information matrix of β> =
(
β1, . . . , βJ

)>
, denoted by Iβ

which has rank p(J − 1) and, in particular, is not invertible. Let Σβ denote a
Moore-Penrose generalized inverse of Iβ.

We are now interested to develop a formula for the covariance matrix var(Λ̂) =:

ΣΛ of the estimator Λ̂k(t) =
∑
s≤t π̂k(ts)λ̂•(ts) =

∑
s≤t λ̂ks, where λ̂ks = π̂k(ts)λ̂•(ts).

First, we introduce some notation, as follows:

θ = (β, λ•(t1), . . . , λ•(tM ))> ,

Λ =
(
Λ1(t1),Λ2(t1), . . . ,ΛJ(t1),Λ1(t2), . . . ,ΛJ(t2),Λ1(tM ), . . . ,ΛJ(tM )

)>
,

and
λ =

(
λ11, λ21, . . . , λJ1, λ12, . . . , λJ2, λ1M , . . . , λJM

)
.

According to the Delta-method, we get

ΣΛ =
∂Λ

∂λ

∂λ

∂θ
var(θ̂)(

∂Λ

∂λ

∂λ

∂θ
)> . (2.19)
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It is straightforward to see that

∂Λ

∂λ
=



IJ×J 0 0 0
IJ×J IJ×J 0 0

. . .
. . .

. . .
. . .

. . . 0
IJ×J IJ×J . . . IJ×J


(2.20)

where IJ×J is the identity matrix of order J . Also, we have

∂λks
∂βlu

= −πk(ts)πl(ts)λ•(ts)Bu(ts) ,

where k, l ∈ {1, . . . , J}, k 6= l, s ∈ {1, . . . ,M}, u ∈ {1, . . . , p}, and

∂λks
∂βku

= πk(ts)
[
1− πk(ts)

]
λ•(ts)Bu(ts) ,

where k ∈ {1, . . . , J}, s ∈ {1, . . . ,M}, u ∈ {1, . . . , p}.
Moreover,

∂λks
∂λ•(tr)

= πk(ts)δs,r ,

where k ∈ {1, . . . , J}, s, r ∈ {1, . . . ,M} and δ stands for the Kronecker delta.
Setting, for t ≥ 0,

Ω(t) =


π1(t) 0 . . . 0

0 π2(t) . . . 0
. . . . . . . . . . . .
0 0 . . . πJ(t)


−

(
π1(t), π2(t), . . . , πJ(t)

)>(
π1(t), π2(t), . . . , πJ(t)

)
,

α(t) =
(
λ•(t)B1(t), λ•(t)B2(t), . . . , λ•(t)BJ(t)

)
and

Π(ts) =
(
π1(ts), π2(ts), . . . , πJ(ts)

)>
, s ∈ {1, . . . ,M} ,

we get

∂(λ1s, λ2s, . . . , λJs)

∂(β1, β2, . . . , βJ)
= Ω(ts)⊗ (α(ts))

>, s ∈ {1, . . . ,M} , (2.21)
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where ⊗ stands for the Kronecker product, and finally

∂λ

∂θ
=



Ω(t1)⊗ (α(t1))> Π(t1) 0 0 0
Ω(t2)⊗ (α(t2))> 0 Π(t2) 0 0

0
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

Ω(tM )⊗ (α(tM ))> 0 0 0 . . . 0 Π(tM )


(2.22)

As a result, we obtain

Σλ =
∂λ

∂θ


Σβ | 0 0 0
− | − − −
0 | τ2

1 . . . 0
... |

...
. . .

...
0 | 0 . . . τ2

M

 (
∂λ

∂θ
)> . (2.23)

In conclusion, using (2.19), (2.20) and (2.23), we have that

ΣΛ =


W1ΣβW1 + Π̃1 W1ΣβW2 + Π̃1 . . . W1ΣβWM + Π̃1

W2ΣβW1 + Π̃1 W2ΣβW2 + Π̃2 . . . W2ΣβWM + Π̃2

...
...

. . .
...

WMΣβW1 + Π̃1 WMΣβW2 + Π̃2 . . . WMΣβWM + Π̃M

 ,

(2.24)
where

Wk =

k∑
s=1

Ω(ts)⊗ (α(ts))
>, k ∈ {1, . . . ,M} ,

and

Π̃k =

k∑
s=1

τ2
sΠ(ts)(Π(ts))

>, k ∈ {1, . . . ,M} .
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Figure 2.10: The estimated relative hazards of the multivariate model for com-
bination of disease subclassification and age category
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3
Vertical modeling: analysis of competing
risks data with missing causes of failure

Abstract

We propose vertical modeling as a natural approach to the problem of analysis of
competing risks data when failures types are missing for some individuals. Under
a natural missing-at-random assumption for these missing failure types, we use
the observed data likelihood to estimate its parameters and show that the all-
cause hazard and the relative hazards appearing in vertical modeling are indeed
key quantities of this likelihood. This fact has practical implications in that it
suggests vertical modeling as a simple and attractive method of analysis in com-
peting risks with missing causes of failure; all individuals are used in estimating
the all-cause hazard and only those with non-missing cause of failure for relative
hazards. The relative hazards also appear in a multiple imputation approach to
the same problem proposed by Lu and Tsiatis and in the EM-algorithm. We com-
pare the vertical modeling approach with the method of Goetghebeur and Ryan
for a breast cancer data set, highlighting the different aspects they contribute to
the data analysis.
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3.1 Introduction

The problem of missing causes of failure for a subgroup of individuals in com-
peting risks data arises frequently in practice. For instance, in the medical con-
text information on mortality may be lost or not collected (e.g. forms are not
fully completed), or the cause of failure for some individuals may be difficult to
determine (e.g. patients die without autopsy). In the industrial context, the
determination of the cause of failure of a system made up of multiple compo-
nents connected in series may be expensive or may be very difficult to observe
due to the lack of appropriate diagnostics (Park, 2005) The statistical literature
addresses the inference problem in this setting. Some simple methods include
analyses based on omitting cases with unknown failure type or recoding these
cases as due to a certain cause (e.g., the cause of interest in case of a lethal
disease) and then running a standard analysis. Here, the main drawback is sub-
stantial bias and power loss. As to assessing the covariate effects through more
reasonable methods, Goetghebeur and Ryan (1995) proposed a semiparametric
proportional hazards model on the cause-specific hazards, Lu and Tsiatis (2001)
use multiple imputation procedures to impute the missing cause of failure, Craiu
and Duchesne (2004) considered the problem via the EM algorithm on the tradi-
tional cause-specific hazards approach to competing risks, Park (2005) considered
the problem via the EM algorithm on the latent failure time approach and Lu
and Liang (2008) studied the semiparametric additive hazard model.

Recently, Nicolaie et al. (2010) proposed a new mixture approach to competing
risks, called vertical modeling, which factorizes the joint probability distribution
of time of failure T and cause of failure D according to P (T,D) = P (T )P (D|T ),
which corresponds to natural observable quantities in these data, namely, time
to failure and cause of failure given a failure occurred. In this paper, we show
how this makes a natural, easy to implement approach to the above mentioned
problem, because missing causes of failure affect precisely only the last component
in this factorization.

The remainder of the paper is organized as follows: in Section 2 we intro-
duce notation and general concepts in competing risks with missing causes of
failure, without any particular distributional assumption. In Section 3 we dis-
cuss three methods in more detail: vertical modeling, the Goetghebeur and Ryan
method (Goetghebeur and Ryan, 1995) and the Lu and Tsiatis method (Lu and
Tsiatis, 2001). In Section 4 we analyze data from the Eastern Cooperative On-
cology Group (ECOG) (Cummings et al., 1986) by means of two methods. In
Section 4.1 we approach the data through Goetghebeur and Ryan’s method. In
Section 4.2 we analyze the same data by means of vertical modeling. In Section 5
we study vertical modeling in the context of the existing methods. We conclude
in Section 6 with a discussion. Major technical derivations are contained in the
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Appendices A and B.

3.2 Competing risks data with missing causes of
failure

Notation and concepts

Suppose that data are available from n individuals each of whom can experience
one of J types of failure, which we term 1, . . . , J , respectively, or can be subject
to a noninformative censoring. Let T̃ denote the time of failure, C the censoring
time, and D the cause of failure. Let Z denote a p-vector of covariates. In
the absence of missing causes of failure, the observed data for individual i is
(Ti,∆i,Zi), for i = 1, . . . , n, where Ti = min(T̃i, Ci) is the earliest of failure and
censoring time, and ∆i = 1{T̃i < Ci} ·Di is the cause of failure in case of failure
and 0 in case of censoring. The usual requirement of conditional independence
of (T̃ ,D) and C, given Z, is assumed to be true here as well. Data from different
individuals are supposed to be independent.

Suppressing covariates in the notation for a moment, a key concept in com-
peting risks modeling is the cause-specific hazard of cause j

λj(t) = lim
∆t→0

P (t ≤ T < t+ ∆t,D = j|T ≥ t)
∆t

, Λj(t) =

∫ t

0

λj(s)ds,

for j = 1, . . . , J . We will assume continuity of the distribution of T and define
the total, overall, or all-cause hazard

λ•(t) =

J∑
j=1

λj(t) , Λ•(t) =

∫ t

0

λ•(s)ds =

J∑
j=1

Λj(t).

In what follows, we shall refer to λ•(t) (Λ•(t)) as the total (cumulative) hazard.
The survival function, defined as S(t) = P (T > t), corresponds to (Putter et

al., 2007)
S(t) = exp(−Λ•(t)) .

The cumulative incidence function of cause j is defined by (Putter et al., 2007)

Fj(t) =

∫ t

0

λj(s)S(s−)ds, j = 1, . . . , J. (3.1)

As in Nicolaie et al. (2010), we define also the relative cause-specific hazard of



44 3. VERTICAL MODELING

cause j

πj(t) =
λj(t)

λ•(t)
, j = 1, . . . , J. (3.2)

Reversal of the definition (3.2) gives the cause-specific hazard of cause j in terms
of the relative hazard of cause j and total hazard as

λj(t) = πj(t)λ•(t), j = 1, . . . , J. (3.3)

Missing causes of failure; assumptions

In case missing causes of failure occur, let R be an indicator variable taking values
zero or one depending on whether the cause of failure is reported (including
censoring) or not (in which case cause of failure is missing). In this case, the
observed data for individual i is Yi = (Ti,∆i,Zi) if Ri = 0 and Yi = (T̃i,Z) if
Ri = 1, independent across subjects i.

We assume that the missingness mechanism is missing at random (MAR) (Ru-
bin, 1976) that is, the probability of missing information depends only on the
observed data. In our context this means that the probability of a failure cause
being missing, given failure time, covariates and given a failure occurred, does
not depend on the cause; that is, for every individual i with Di > 0

P (Ri = 1|Ti = t,Di,Zi) = P (Ri = 1|Ti = t,Zi). (3.4)

In fact, we will assume ignorability as well, which means that in addition to the
MAR assumption, the parameters of the data model and any parameters in (3.4)
are distinct. This implies that we do not need to consider the model for R for
making inference about θ based on the observed data (Little and Rubin, 1987).
Assumption (3.4) implies that Ri and Di are independent, given Ti and Zi for
Di > 0, expressed equivalently as

P (Di = j|Ri = 1, Ti = t,Zi) = P (Di = j|Ri = 0, Ti = t,Zi)

= P (Di = j|Ti = t,Zi), (3.5)

for j = 1, . . . , J . Note that P (Di = j|Ti = t,Zi) = πj(t|Zi), j = 1, . . . , J .
Intuitively, the MAR assumption expresses the idea that patients who died at
time t due to a known cause of failure are representative of all patients who died
at time t, irrespective whether the cause of failure was observed or no. This
implies that estimation of the parameters of a model for relative hazards uses
only the patients with observed cause of failure, as expressed in (3.5).

Note that these two assumptions on the missingness mechanism are common
to all the approaches described in Section 3.
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Observed likelihood

Define Dj and Du as the set of subjects with failure of cause j, j = 1, . . . , J ,

and of unknown cause, respectively, Dknw =
⋃J
j=1Dj as the set of subjects with

known cause of failure, and let D = Dknw ∪ Du denote all failures.
For simplicity of notation, we suppress the dependence on covariates in the

notation. The likelihood is a product of contributions of the individuals, which
can be divided into three categories. The contribution to the likelihood of a
patient i who is censored at time ti is given by

P (T̃i > ti)P (Ci = ti).

A patient i who died at time ti due to an unknown cause contributes

P (T̃i = ti)P (Ci > ti)P (Ri = 1|T̃i = ti),

while a patient i who died at time ti due to cause j contributes

P (T̃i = ti)P (Ci > ti)P (Di = j|T̃i = ti)P (Ri = 0|T̃i = ti).

These equations follow from independence of (T̃ , D) and C, and from the MAR
assumption implying (3.5). Due to the ignorability assumption, the distribution
of R can be omitted from the full observed likelihood. If we assume that the
distributions of T̃ and C have no common parameters, then we can omit the
contribution of C to the likelihood as well. Therefore, after rearranging terms,
the full likelihood is given by

n∏
i=1

[
P (T̃i > ti)

1{Di=0}P (T̃i = ti)
1{Di>0}

] ∏
i∈Dknw

J∏
j=1

P (Di = j|T̃i = ti). (3.6)

3.3 Models for competing risks with missing causes
of failure

3.3.1 Vertical modeling

We introduce the vertical modeling approach of Nicolaie et al. (2010) as a tool
for dealing with missing causes of failure in competing risks.

Vertical modeling for competing risks

Conceptually, the basic idea behind vertical modeling is the decomposition P (T,D) =
P (T )P (D|T ) of the joint distribution of time and cause of failure. The compo-
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nents P (T ) and P (D|T ) of the decomposition correspond to directly observable
quantities, the total hazard λ• and the relative hazards πj . By (3.1) and (3.3),
the cumulative incidence function of cause j may be expressed according to the
vertical modeling approach in terms of the previous concepts as the product of
the failure time distribution multiplied by the conditional distribution of cause
given a failure occurred which yields (Nicolaie et al., 2010)

Fj(t) =

∫ t

0

πj(s)λ•(s)S(s−)ds . (3.7)

Specifically, the vertical modeling approach to competing risks relies on models
for the total hazard and the relative hazards, rather than models for the cause-
specific hazards in order to describe the joint distribution of time and cause of
failure, Fj(t).

Vertical modeling for competing risks with missing causes of failure

The most appealing feature of vertical modeling in the presence of missing causes
of failure is its ease of implementation. No ad-hoc or time-consuming software is
needed; it can be fitted with standard statistical software.

In the presence of missing causes of failure, vertical modeling naturally sepa-
rates into the two main components of competing risks, where missing causes of
failure are either irrelevant (total hazard) and where missing causes of failure are
relevant (relative hazards). Modeling the rate at which a failure occurs through
a model for the total hazard and estimating the corresponding regression param-
eters involve only the use of information on the failure or censoring times and
covariates, eventually, and it is therefore insensitive to missing causes of failure.
In contrast, modeling the cause of failure in case of failure requires caution due
to the missing information on the actual cause of failure. To clarify this point,
suppose that the total hazard and the relative hazards are parameterized by pa-
rameter vectors β and γ, respectively. Let θ = (β,γ). Specific models for the
total hazard and for the relative hazards will be considered at a later point.

Using the concepts of relative and total hazards it is straightforward to see
that the observed likelihood (3.6) can be rewritten as

L(θ) = L1(β) · L2(γ), (3.8)

where

L1(β) =

n∏
i=1

(λ•(ti))
1{Di>0}S(ti)
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and

L2(γ) =
∏

i∈Dknw

J∏
j=1

(πj(ti))
1{Di=j}.

Equation (3.8) says that the likelihood factorizes into two parts, each involving
one of the two ingredients of the vertical modeling approach. The first part,
L1(β), for the survival time (total hazard) ignores the cause of failure and uses
all the observations; the second part, L1(γ), for the cause of failure given survival
time (relative hazards) uses only the failures with known cause. Since the model
is parameterized in such a way that the parameters appearing in the total hazard
and those in the relative hazard are distinct, we can maximize the likelihood (3.8)
by separately maximizing the total hazard (fitting an overall survival model)
and the relative hazard (fitting a multinomial logistic regression model on the
events with known cause). This greatly simplifies analysis and makes it no more
involved than in the case of data with known causes of failure. If β and γ are each
estimated using maximum likelihood, then vertical modeling will yield maximum
likelihood estimators, and hence is fully efficient.

3.3.2 The proportional cause-specific hazard model

For ease of reference we assume only two causes of failure from now on, that is,
J = 2. Goetghebeur and Ryan (1995) proposed a method of assessing covariate
effects in competing risks data when some failure types are missing, based on a
standard proportional hazards structure for each of the cause-specific hazards of
the two failure types, that is

λj(t|Z) = λj0(t) exp(η>j Z), j = 1, 2. (3.9)

They assume that the ratio between the baseline cause-specific hazards for the
two causes of failure is constant and indicate extensions when this baseline hazard
ratio is expressed through a simple parametric function of time. Denote the vector
of regression parameters associated with this ratio model by ξ. Then, a two-step
Cox partial likelihood-like procedure is used iteratively to estimate the regression
parameters (η1,η2, ξ). In fact, this method involves calculation of the relative
hazards (3.2) for failures with missing cause of death as weighted contributions of
the unknown deaths to the score equations. The first step consists in maximizing
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a Cox partial likelihood, defined as

LGR(η1,η2|ξ) =
∏
i∈D1

eη
>
1 Zi∑

j∈R(ti)
eη
>
1 Zj

∏
i∈D2

eη
>
2 Zi+ξ∑

j∈R(ti)
eη
>
2 Zj+ξ

·
∏
i∈Du

eη
>
1 Zi + eη

>
2 Zi+ξ∑

j∈R(ti)

(
eη
>
1 Zj + eη

>
2 Zj+ξ

) , (3.10)

based on the conditional probabilities of a specific event given that one event of
that type occurs from the risk set at that time. This will result only in estimators
of the regression coefficients (η1,η2), due to the fact that ξ is assumed to be
known. The second step consists in maximizing a Cox partial likelihood-like,
defined as

L∗GR(ξ|η1,η2) =

∏
i∈D1

eη
>
1 Zi

∏
i∈D2

eη
>
2 Zi+ξ

∏
i∈Du

(
eη
>
1 Zi + eη

>
2 Zi+ξ

)∏
i∈D

∑
j∈R(ti)

(
eη
>
1 Zj + eη

>
2 Zj+ξ

) ,

(3.11)
based on the conditional probabilities of an event of specific type, given that
one event occurs, but without conditioning on the type of event. This second
partial likelihood uses the estimated values of the regression parameters from
the first step (η1,η2) and results in an estimator of ξ. Although the method is
specifically aimed at estimating the cause-specific hazard ratio, without covariates
it reduces to estimating the (possibly, time-varying) ratio between the baselines.
We shall refer to his approach as the proportional cause-specific hazard model
with constant baseline hazard ratio.

An important difference between vertical modeling and the above mentioned
model is that vertical modeling separates the parameters for the total hazard
and relative hazards, while the proportional cause-specific hazard model does
not, which can be seen from the identity (3.3) which retrieves the cause-specific
hazards for cause j from the vertical modeling approach. From a vertical model
we can obtain the covariate effect on the cause-specific hazards through (3.3). The
hazard ratio following from a vertical model will typically not be time-constant.
We will come back to this issue in Section 5.

3.3.3 Multiple imputation

Lu and Tsiatis (2001) proposed a multiple imputation procedure to the same
problem of missing causes of failure, where the cause-specific hazard for the cause
of interest is modeled through a proportional hazards relationship. To impute
the failure type for cases with missing cause of failure a semiparametric model
on the relative hazard for the cause of interest is proposed. Parameters of the
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model for the relative hazard are estimated based on the subjects with known
cause of failure, as for vertical modeling. If these imputed values were used,
together with a model for the total hazard, then multiple imputation could just
be considered as a random version of the vertical modeling with the same models
for relative and total hazards. The appeal of multiple imputation lies in the fact
that the complete data sets could be used subsequently for any model, such as
proportional hazards model on the cause-specific and subdistribution hazards.

3.4 Data analysis

We analyze data on 169 elderly women (over the age of 65) with stage II breast
cancer prospectively randomized to receive either tamoxifen or placebo for 24
months in a clinical trial conducted by the ECOG. In the original paper, with
a median follow-up of 55 months, at 4 years 80% of the patients treated with
tamoxifen were still alive and 74% following placebo. No significant treatment
differences were noted in overall survival, with a log-rank p-value of 0.26. The
same data have been studied in the paper of Goetghebeur and Ryan (1995).

Covariate information is described in Table 3.1. Cummings et al. (1986)

Table 3.1: Prognostic factors for all patients.

Prognostic factor n (%)
Number of positive nodes 1-3 90 (53%)

≥ 4 79 (47%)
Estrogen receptor negative 6 ( 4%)

positive 163 (96%)
Treatment placebo 83 (49%)

tamoxifen 86 (51%)

reported two covariates, the number of positive axillary nodes and the estrogen
receptor status (ER) of their primary tumor, as being significantly associated
with overall survival.

The Kaplan-Meier survival curves for each combination of these two covariates
are shown in Figure 3.1. There was one patient with 1-3 positive nodes and
negative estrogen receptor status who was censored. This patient is included in
the analysis but not shown in Figure 3.1.
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Figure 3.1: Kaplan-Meier survival curves of time to death for each combination
of covariates.

In what follows, we will be interested in analyzing death due to cause 1:
breast cancer and due to cause 2: other causes. Complicating factor is that for
a relatively large number of patients, cause of death is unknown. A total of 79
patients died; 44 (56%) of these died of cancer, 17 (21%) of other causes. For 18
patients (21%), the cause of death is unknown. The number of events for each
combination of these two covariates is reported in Table 3.2.

Table 3.2: Number of events per each combination of covariates.

Group Events
Number of Estrogen Number of Cancer Other Unknown Censored

positive nodes receptor patients
1-3 negative 1 0 0 0 1
1-3 positive 89 18 6 9 56
≥ 4 negative 5 5 0 0 0
≥ 4 positive 74 21 11 9 33

Since the effect of treatment was neither significant for survival, nor for the
cause of death, we will ignore treatment from now on and study the effect of the
covariates number of positive nodes and estrogen receptor status, coded as indica-
tors Z1 = I(≥ 4 positive nodes) and Z2 = I(estrogen receptor status is negative),
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and let Z = (Z1, Z2).
For all methods used here, the MAR assumption is used. We shall discuss the

appropriateness of this assumption in Section 6.

3.4.1 The proportional cause-specific hazard approach with
constant baseline hazard ratio

We first analyze cause-specific mortality in these data using the approach of
Goetghebeur and Ryan, based on modeling the cause-specific hazards as in (3.9).
We follow Goetghebeur and Ryan’s original assumption of the baseline hazards
of cancer to be proportional to the baseline hazard of other causes, that is

λ20(t) = λ10(t) exp (ξ). (3.12)

The resulting estimates are shown in Table 3.3. Higher number of positive axillary
lymph nodes and negative estrogen receptor status increase the cause-specific
hazard of death due to cancer, and higher number of positive axillary lymph nodes
increases the death rate due to other causes. No parameter estimate of estrogen
receptor status is given for death due to other causes, because no patient with
negative estrogen receptor status died of a cause other than cancer (see Table
3.2). In Figure 3.2 we show the estimated cumulative incidences of death due to

Table 3.3: A proportional hazards model.

Covariate Cancer Other causes
η1 η2 ξ

Number of positive nodes ≥ 4 0.52 0.78
Estrogen receptor ER- 1.60
Other causes vs cancer -1.02

cancer and other causes for each combination of covariate values following from
this model, calculated by means of the mstate package in R (de Wreede et al.,
2010). For the combination 1-3 positive nodes and negative estrogen receptor
status both cumulative incidence functions are identically zero.

3.4.2 Vertical modeling

Next we analyze cause-specific mortality using vertical modeling. For this purpose
we need to model the total hazard and the relative cause-specific hazards. As for
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Figure 3.2: Cumulative incidences of cancer (a) and other causes (b).

a model for the total hazard, we take a Cox proportional hazards model with Z1
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and Z2 as covariates, that is

λ•(t|Z) = λ0(t) exp(β1Z1 + β2Z2).

The estimated regression coefficient (SE) are 0.59 (0.23) and 1.20 (0.47), respec-
tively. These correspond to hazard ratios of 1.80 (95% CI 1.15 − 2.84) and 3.31
(95% CI 1.32 − 8.29), respectively, confirming that higher number of positive
axillary lymph nodes and negative estrogen are associated with lower survival.
In Figure 3.3 we show the estimated survival curves of time to death for each
combination of these two covariates implied by our model. They look quite sim-
ilar to the nonparametric curves of Figure 3.1, which would indicate that the
proportionality assumption is reasonable.
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Figure 3.3: Model based survival curves of time to death for each combination of
covariates.

For the relative hazards, we fitted a logistic regression model for death due to
cancer on the subset of patients whose cause of death is known:

logit(π1(t|Z)) = κ>B(t) + ν>Z + δ>B(t) ∗ Z,

so that γ = (κ>, ν>, δ>)>. This model incorporates dependence of π1(t|Z) on
time t, covariates and, possibly, their interactions. Here B(t) is a vector of time
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functions, which could for instance be polynomials, piecewise constant or spline
basis functions. In our application we choose spline functions of degree 2 with 2
knots on the time axis, t1 = 3 and t2 = 6, such that roughly the same number
of events occur in each of the three intervals defined by these knots. This yields
B(t) = (1, t, t2, (t − t1)+2

, (t − t2)+2

), where for any number a, the notation
a+ stands for max{0, a}. Deviance and AIC for several models are presented
in Table 3.4. Compared to only time, the inclusion of estrogen receptor did

Table 3.4: Deviance and AIC for different logistic regression models for the rela-
tive hazards.

Model Deviance AIC
B(t) 68.370 78.370
B(t) and Z2 64.804 76.804
B(t) and Z1 68.339 80.339
B(t) and Z1 and Z2 64.778 78.778
B(t) and Z2 and B(t) * Z2 64.803 82.803

not significantly improve the model fit: the p-value of estrogen receptor status
was 0.058. Nodal status had no significant effect on the relative hazards, and
interactions with time were also not significant. Based on the lowest AIC, we
chose the logistic regression model with main effects of time and estrogen receptor
as the model for the relative hazards of cancer and other causes respectively, that
is

π1(t|Z) =
exp(κ>B(t) + νZ2)

1 + exp(κ>B(t) + νZ2)
, π2(t|Z) = 1− π1(t|Z).

In Figure 3.4 we show a plot of the associated relative hazards of death due to
cancer implied by our model for positive and negative estrogen receptor status.
For ER- patients, the estimated relative hazard of death due to cancer equals one
since no ER- patient died of other causes. In Figure 3.5 we show the estimated cu-
mulative incidences of death due to cancer and other causes for each combination
of the covariates, based on our model through Equation (3.7). For comparison,
the cumulative incidence curves of Figure 3.2 are repeated in lighter gray lines.
We see that, minor differences notwithstanding, they are qualitatively similar.
The most striking difference is in the estimate of the cumulative incidence func-
tion of death due to other causes for the subgroup negative estrogen receptor and
higher number of positive axillary lymph nodes: although there is no death due
to other causes for these patients in the data, the estimate from the Goetghebeur
and Ryan approach is increasing, while our estimate is always zero. This could be
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Figure 3.4: The relative hazards of death due to cancer for ER- and ER+.

explained by the fact that in the Goetghebeur and Ryan approach occurrence of
an event impacts both cause-specific hazards at the same time, via the common
baseline hazard λ10(t) they share. Vertical modeling acknowledges the fact that
no deaths due to other causes were observed for the subgroup negative estrogen
receptor and higher number of positive axillary lymph nodes, and thus mirrors
the data more closely. This feature of vertical modeling is indeed apparent from
(3.7), which shows that the proportion of the density of the survival time which
is attributed to the cumulative incidence function of death due to other causes
is dictated by the relative hazard of other causes, and the proportion for this
particular subgroup of patients is zero.

The estimates presented in this Section were obtain via the vm function in R,
to be made available in the vm package.

3.5 Vertical modeling in context

Vertical modeling and cause-specific hazards

It is of interest to compare the Goetghebeur and Ryan approach with vertical
modeling. We take the results of Section 4 as starting points. Assume vertical
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Figure 3.5: Cumulative incidences of cancer (a) and other causes (b) from Goet-
ghebeur’s approach (CSH) versus vertical modeling (VM).

modeling consists of modeling the total hazard and relative hazards as follows

λ•(t|Z) = λ0(t) exp(β1Z1 + β2Z2)
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and

π1(t|Z) =
exp(κ>B(t) + νZ2)

1 + exp(κ>B(t) + νZ2)
, π2(t|Z) = 1− π1(t|Z), (3.13)

respectively.
Goetghebeur and Ryan’s approach is based on the aim to estimate cause-

specific hazard ratios (η1,η2) (see model (3.9)) in the presence of missing causes
of failure. On the other hand, from the relation λ1(t|Z) = λ•(t|Z)π1(t|Z) it is
straightforward to see that vertical modeling will, in general, not result in time-
invariant cause-specific hazard ratios, but in a relation like

λ
(0)
j (t|Z) = λj0(t) exp(η̃>j (t)Z), j = 1, 2. (3.14)

More specifically, from (3.3) it is straightforward to see the regression coefficient
for Z1 in model (3.14) is η̃11(t) ≡ β1, while for Z2 the corresponding regression
coefficient in the same model is

η̃12(t) = β2 + log
π1(t|Z2 = 1)

π1(t|Z2 = 0)
.

In Figure 3.6 we show how η̃12(t) compares with the corresponding coefficient
from the Goetghebeur and Ryan approach.

Moreover, it might be interesting to investigate how a summary cause-specific
hazard ratio can be obtained when fitting a vertical model, therefore when the
model implies a time-varying hazard ratio (see the implied model (3.14)). By
extending to competing risks a result of van Houwelingen (2007) for the case
of ordinary survival, an approximation of a weighted average of η̃1(t) could be
obtained given by

η∗1 ≈
∫ ∞

0

w(t)η̃1(t)dt, (3.15)

where the weights are given by

w(t) =
S(t)C(t)Vη̃1(t)(Z|t)λ1(t)∫∞

0
S(u)C(u)Vη̃1(u)(Z|u)λ1(u)du

,

S(t) and C(t) are the marginal distributions of time to failure and censoring
respectively, λ1(t) = lim∆t→0

1
∆tP (t ≤ T ≤ t+ ∆t,D = 1|T ≥ t) is the marginal

cause-specific hazard, and

Vη1(t)(Z|t) =

∑
j∈R(t) Z2

j exp(η̃1(t)>Zj)∑
j∈R(t) exp(η̃1(t)>Zj)

−

(∑
j∈R(t) Zj exp(η̃1(t)>Zj)∑
j∈R(t) exp(η̃1(t)>Zj)

)2
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Figure 3.6: Implied time-varying regression coefficient of estrogen receptor status
on the cause specific hazard of death due to cancer from Goetghebeur and Ryan’s
approach (CSH) versus vertical modeling (VM).

is the weighted variance of Z given (T = t,D = 1) under the Cox model, with
η̃1(t) as true effect. Technical details are given in Appendix A. Replacing the
parameters in (3.15) by estimates will yield an alternative to the approach of
Goetghebeur and Ryan.

The proportional hazards model with time-varying baseline
hazard ratio

Now, suppose the model is parameterized by means of a Cox proportional haz-
ards model on the cause-specific hazards, where the ratio between the baseline
hazards is time-varying, rather than time constant as in Goetghebeur and Ryan’s
approach. For simplicity, we consider two causes of failure, with cause-specific
hazards

λ1(t |Z) = λ0(t) exp(η>1 Z) ,

λ2(t |Z) = λ0(t) exp(ξ>B(t) + η>2 Z) ,

with η1 and η2 denoting the effects of the covariates on the cause-specific hazards
of cause 1 and 2, respectively, ξ parameterizing the (time-varying) ratio between
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the baseline cause-specific hazard of cause 2 with respect to that of cause 1, and
B(t), as before, a vector of given time functions. This approach implies that the
total hazard is given by

λ•(t |Z) = λ0(t)
[
exp(η>1 Z) + exp(ξ>B(t) + η>2 Z)

]
,

and the relative hazards are given by

π1(t |Z) =
exp(η>1 Z)

exp(η>1 Z) + exp(ξ>B(t) + η>2 Z)
, π2(t |Z) = 1− π1(t |Z) .

Define

w
(1)
i = exp(η>1 Zi) , w

(2)
i (t) = exp(ξ>B(t) + η>2 Zi) , w

(u)
i (t) = w

(1)
i + w

(2)
i (t) .

In Appendix B it is shown that the following partial likelihood can be obtained
as a profile likelihood from (3.8):∏

i∈D1
w

(1)
i

∏
i∈D2

w
(2)
i (ti)

∏
i∈Du

w
(u)
i (ti)∏

i∈D
∑
j∈R(ti)

w
(u)
j (ti)

. (3.16)

For time-fixed relative hazard (i.e., a time-constant hazard ratio between the two
baseline cause-specific hazards), the partial likelihood (3.16) is identical to the
second partial likelihood L∗GR of Goetghebeur and Ryan (1995), see (3.11). Goet-
ghebeur and Ryan use this partial likelihood only to estimate the ξ parameter
and rely on a different partial likelihood, LGR, to estimate the covariate effects
η1 and η2. Their first argument is that the partial likelihood (3.16) yields non-
standard estimators of the covariate effects in case all failures are known. Second,
they argue, the estimators obtained from their first partial likelihood LGR are
generally preferable for reasons of robustness. This last argument is no longer
decisive if the assumption of a time-fixed ratio between the two cause-specific
hazards is relaxed to that of a time-varying ratio. The advantage of using (3.16)
in that case is a likelihood that can easily be maximized and which is more effi-
cient than the sandwich estimators used to obtain standard errors of the methods
of Goetghebeur and Ryan. Appendix B provides expressions for the variances of
the maximum likelihood estimator of (η1,η2, ξ), also in the case of time-varying
relative hazards.
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3.6 Discussion

Missing causes of failure in competing risks is a very common problem. Unless
perhaps in the context of well-controlled clinical trials, determination of the cause
of death is often postponed (and hence often not done) in favor of more urgent
tasks. Outside the medical context, one can also think of situations where this
may occur such as industry, where a machine may fail and the cause may be
expensive to determine, and in demography, where in migration analysis it may be
known when an individual left the home country, but the destination is unknown.
Especially in the last example, known destination is the exception, rather than
the rule.

We proposed vertical modeling for the analysis of competing risks data with
missing causes of failure, as an alternative approach to some ad-hoc methods
(deletion or recoding) or some more reasonable methods based on modeling cause-
specific hazards, and there are two main reasons for that. The first reason is
related to the ingredients of vertical modeling, the total hazard and the relative
hazards, which appear in a natural way in the likelihood of the data when missing
causes of failure are present. The second reason concerns its simplicity, because
any model where the parameters for the total and relative hazards are separated
can be analyzed by separately maximizing the likelihood contributions for the
total hazard, which is not affected by missing causes of failure, and for the relative
hazards, for which missing causes of failure simply may be ignored under an
appropriate missing at random assumption. This approach will then yield the
maximum likelihood estimators.

It is important to discuss the missing at random assumption. The same
assumption underlies both the Goetghebeur and Ryan (Goetghebeur and Ryan,
1995) and Lu and Tsiatis (Lu and Tsiatis, 2001) approaches. It says that in
case of failure, given the failure time and covariates, the probability of the failure
cause being missing does not depend on the cause. In practice, this assumption
may or may not be fulfilled. One can think of situations where some causes of
death are more difficult to verify than others. If these difficult to verify causes
are not investigated more closely and subsequently reported as missing causes of
death, then this could lead to a violation of the missing at random assumption.
If one wants unbiased estimation in the case of such informative missing causes
of failure, then one would have to model the missingness mechanism as well. It
is certainly of interest to pursue this, but outside the scope of this paper.

Appendix A: Derivation of (3.15)

The derivation of (3.15) follows closely van Houwelingen (2007). Consider a
sample of size n and define the counting process Ni(t) = I(Ti ≥ t,Di = 1). Let
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Yi(t) = I(Ti ≥ t) = I(T̃i ≥ t, Ci ≥ t) be the ”at-risk” indicator of the counting

process. We have S(t) = P (T̃i ≥ t) and C(t) = P (Ci ≥ t). Define

S(j)(t) =
∑
i∈R(t)

Zji λ
(0)
1 (t|Zi), s(j)(t) = ES(j)(t), (3.17)

S(j)(η1, t) =
∑
i∈R(t)

Zji λ1(t|Zi), s(j)(η1, t) = ES(j)(η1, t), (3.18)

for j = 0, 1, 2, where the expectation is taken with respect to the distribution of
(T,∆,Z) as it is implied by the model (3.14).

By similar arguments as those of Theorem 2.1 of Struthers and Kalbfleisch
(1986) we can prove that formula (2.6) of Xu and O’Quigley (2000) is still valid
under competing risks, namely, the maximum partial likelihood estimator of the
parameter in model (3.9), when we assume a distribution of the data as derived
from the model (3.14), converges to the solution of∫ ∞

0

[s(1)(t)

s(0)(t)
− s(1)(η1, t)

s(0)(η1, t)

]
s(0)(t)dt = 0. (3.19)

By similar arguments as those of Xu and O’Quigley we can show that

Eη1(t)(Z|t) :=
s(1)(t)

s(0)(t)

gives a consistent estimate of the conditional expectation of Z given (T = t,D =
1) under the model (3.14) and

Vη̃1(t)(Z|t) :=
∂

∂η1

(s(1)(η1, t)

s(0)(η1, t)

)∣∣∣
η1=η̃1(t)

gives a consistent estimate of the conditional variance of Z given (T = t,D = 1)
under the model (3.14).

We can apply the Taylor theorem to expand
s(1)(η∗1 ,t)

s(0)(η∗1 ,t)
around η̃1(t) for a fixed

t, where η∗1 is the solution of (3.19). This yields

s(1)(t)

s(0)(t)
− s(1)(η∗1 , t)

s(0)(η∗1 , t)
≈ [η∗1 − η̃1(t)]Vη̃1(t)(Z|t). (3.20)
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Also, under the random censorship assumption

s(0)(t) = E[Y (t)λ10(t) exp(η̃1(t)Z)] (3.21)

= E[Y (t)] · E[λ10(t) exp(η̃1(t)Z)]

= E[I(T ≥ t)] · E[λ
(0)
1 (t;Z)]

= E[I(T̃ ≥ t, C ≥ t)] · E[λ
(0)
1 (t|Z)]

= S(t)C(t)λ
(0)
1 (t).

Indeed, if we denote by h(z|T ≥ t) = P (Z = z|T ≥ t), the conditional density of
Z given T ≥ t, we have

E[λ
(0)
1 (t|Z)] = E[λ

(0)
1 (t|Z)|T ≥ t]

=

∫ +∞

−∞
λ

(0)
1 (t;u) · h(u|T ≥ t)du

and, further

=

∫ +∞

−∞
lim

∆t→0

P (t ≤ T ≤ t+ ∆t,D = 1|T ≥ t, Z = u)

∆t
P (Z = u|T ≥ t)du

=

∫ +∞

−∞
lim

∆t→0

1

∆t

P (t ≤ T ≤ t+ ∆t,D = 1|T ≥ t, Z = u)

P (T ≥ t, Z = u)

P (Z = u, T ≥ t)
P (T ≥ t)

du

=

∫ +∞

−∞
lim

∆t→0

1

∆t
P (t ≤ T ≤ t+ ∆t,D = 1, Z = u|T ≥ t)du

= lim
∆t→0

P (t ≤ T ≤ t+ ∆t,D = 1|T ≥ t)
∆t

= λ
(0)
1 (t).

Combination of (3.19), (3.20) and (3.21) yields∫ ∞
0

[
η∗1 − η̃1(t)

]
Vη̃1(t)(Z|t)S(t)C(t)λ

(0)
1 (t)dt ≈ 0

which provides an approximation of β∗1 , namely

η∗1 ≈
∫∞

0
S(t)C(t)Vη̃1(t)(Z|t)λ

(0)
1 (t)η̃1(t)dt∫∞

0
S(t)C(t)Vη̃1(t)(Z|t)λ

(0)
1 (t)dt

. (3.22)
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Appendix B: Profile likelihood

Consider two causes of failure, with cause-specific hazards

λ1(t |Z) = λ0(t) exp(η>1 Z),

λ2(t |Z) = λ0(t) exp(ξ>B(t) + η>2 Z) , (3.23)

with η1 and η2 denoting the effects of the covariates on the cause-specific hazards
of cause 1 and 2, respectively, ξ parameterizing the (time-varying) ratio between
the baseline cause-specific hazards of cause 1 with respect to that of cause 2, and
B(t) as before a vector of given time functions. Let θ = (η>1 ,η

>
2 , ξ

>)>. Recall
D1, D2, Du as the set of subjects with failure of cause 1, 2, and of unknown cause,
respectively, Dknw = D1 ∪ D2 as the set of subjects with known cause of failure,
and D = Dknw ∪ Du as the set of subjects with failure, irrespective of the cause.
Further define

w
(1)
i = exp(η>1 Zi) , w

(2)
i (t) = exp(ξ>B(t) + η>2 Zi) , w

(u)
i (t) = w

(1)
i + w

(2)
i (t) ,

each of these variables depending on Zi and θ. Rearranging the terms in the
likelihood (3.6), we see that

L(θ) =
∏
i∈D1

λ1(ti|Zi) ·
∏
i∈D2

λ2(ti|Zi) ·
∏
i∈Du

λ•(ti|Zi) ·
n∏
i=1

exp
(
−Λ•(ti|Zi)

)
,

which for the present parameterization leads to

L(θ) =
∏
i∈D1

w
(1)
i ·

∏
i∈D2

w
(2)
i (ti) ·

∏
i∈Du

w
(u)
i (ti) ·

·
∏
i∈D

dΛ0(ti) ·
n∏
i=1

exp
(
−
∫ ti

0

w
(u)
i (s)dΛ0(s)

)
. (3.24)

Now a profile likelihood argument well known in ordinary survival analysis (see
e.g. Klein and Moeschberger (2003)) can be used as follows: for fixed θ, the
maximizer of the log-likelihood with respect to the baseline hazard is a step
function with increment

λ̂0(ti) =
1∑

j∈R(ti)
w

(u)
j (ti)

. (3.25)
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Replacing this maximizer (3.25) back into the likelihood (3.24) yields, up to a
constant,

L∗(θ) =

∏
i∈D1

w
(1)
i

∏
i∈D2

w
(2)
i (ti)

∏
i∈Du

w
(u)
i (ti)∏

i∈D
∑
j∈R(ti)

w
(u)
j (ti)

,

i.e (3.24). Define

Zη1
(ti) =

∑
j∈R(ti)

Zjw
(1)
j∑

j∈R(ti)
w

(u)
j (ti)

, Zη2
(ti) =

∑
j∈R(ti)

Zjw
(2)
j (ti)∑

j∈R(ti)
w

(u)
j (ti)

,

Zξ(ti) =

∑
j∈R(ti)

B(ti)w
(2)
j (ti)∑

j∈R(ti)
w

(u)
j (ti)

.

Similar to Appendix A, Zη1(t) + Zη2(t) gives a consistent estimate of the condi-
tional expectation of Z given T = t under the model (3.23).

The score functions are given by

∂ logL∗(θ)

∂ηk
=

∑
i∈Dk

Zi +
∑
i∈Du

Ziπki −
∑
i∈D

Zηk(ti), k = 1, 2,

∂ logL∗(θ)

∂ξ
=

∑
i∈D2

B(ti) +
∑
i∈Du

B(ti)π2i −
∑
i∈D

Zξ(ti),

with πki = πk(ti|Zi). Define

Vη1
(ti) =

∑
j∈R(ti)

ZjZ
>
j w

(1)
j∑

j∈R(ti)
w

(u)
j (ti)

− Zη1
(ti)Zη1

(ti)
>,

Vη2
(ti) =

∑
j∈R(ti)

ZjZ
>
j w

(2)
j (ti)∑

j∈R(ti)
w

(u)
j (ti)

− Zη2
(ti)Zη2

(ti)
>,

Vξ(ti) =

∑
j∈R(ti)

B(ti)Z
>
j w

(2)
j (ti)∑

j∈R(ti)
w

(u)
j (ti)

− Zξ(ti)Zξ(ti)
>,

VB(ti) =

∑
j∈R(ti)

B(ti)B(ti)
>w

(2)
j (ti)∑

j∈R(ti)
w

(u)
j (ti)

− Zξ(ti)Zξ(ti)
>.

Similar to the Appendix A,

Vη1(t) + Vη2(t)−
(
Zη1(t) + Zη2(t)

)(
Zη1(t) + Zη2(t)

)>
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gives a consistent estimate of the conditional variance of Z given T = t under the
model (3.23).

The information matrix is given by

I(θ) = −∂
2 logL∗(θ)

∂θ∂θ>
= Iknw(θ) + Iunk(θ),

where

Iknw(θ) =
∑

i∈Dknw

 Vη1
(ti) −Zη1

(ti)Zη2
(ti)
> −Zη1

(ti)Zξ(ti)
>

−Zη2
(ti)Zη1

(ti)
> Vη2

(ti) Vξ(ti)

−Zξ(ti)Zη1
(ti)
> Vξ(ti)

> VB(ti)


and

Iunk(θ) =
∑
i∈Du

 Vη1
(ti) −Zη1

(ti)Zη2
(ti)
> −Zη1

(ti)Zξ(ti)
>

−Zη2
(ti)Zη1

(ti)
> Vη2

(ti) Vξ(ti)

−Zξ(ti)Zη1
(ti)
> Vξ(ti)

> VB(ti)


−
∑
i∈Du

π1iπ2i

 ZiZ
>
i −ZiZ

>
i −ZiB(ti)

>

−ZiZ
>
i ZiZ

>
i ZiB(ti)

>

−B(ti)Z
>
i B(ti)Z

>
i B(ti)B(ti)

>

 .

A rearrangement yields

I(θ) = Itot(θ)− Imiss(θ),

with

I
(θ)
tot =

∑
i∈D

 Vη1
(ti) −Zη1

(ti)Zη2
(ti)
> −Zη1

(ti)Zξ(ti)
>

−Zη2
(ti)Zη1

(ti)
> Vη2

(ti) Vξ(ti)

−Zξ(ti)Zη1
(ti)
> Vξ(ti)

> VB(ti)


and

Imiss(θ) =
∑
i∈Du

π1iπ2i

 ZiZ
>
i −ZiZ

>
i −ZiB(ti)

>

−ZiZ
>
i ZiZ

>
i ZiB(ti)

>

−B(ti)Z
>
i B(ti)Z

>
i B(ti)B(ti)

>

 .

Similar to the work of Louis (1982) in the context of Fisher information in case
of missing values and estimation using the EM-algorithm, Itot(θ) and Imiss(θ)
can be interpreted as the information in the case of complete data and the loss
of information due to the missing data, respectively.
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4
Dynamic prediction by landmarking in

competing risks

Abstract

We propose an extension of the landmark model of van Houwelingen (2007) as
a new approach to the problem of dynamic prediction in competing risks with
time-dependent covariates. We fix a set of landmark time points tLM within
the follow-up interval. For each of these landmark time points tLM we create a
landmark data set by selecting individuals at risk at tLM; the value of the time-
dependent covariate in each landmark data set is fixed at the value at tLM. We
assume Cox proportional hazard models for the cause-specific hazards and we
consider smoothing the (possibly) time-dependent effect of the covariate for the
different landmark data sets. Fitting this model is possible within the standard
statistical software. We illustrate the features of the landmark modeling on a real
data set on bone marrow transplantation.

4.1 Introduction

Prediction is of crucial importance in clinical practice. Prediction models are
used as a basis for treatment decisions and to communicate prognosis to patients.
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Numerous prediction models have been proposed in the statistical and medical
literature for a wide variety of diseases (see, for example, Wilson et al. (1998);
Ravdin et al. (2001)). These are designed to render prediction probabilities of
the event of interest over time, where the starting point is some pre-defined
clinically important point in the event history of the patient, such as birth (age
at onset), diagnosis, or start of primary treatment. The vast majority of these
models are only used (or can only be used) from that starting point, but in
clinical management prediction is equally relevant at later times in the follow-up.
Between the starting point and the time of prediction, information on clinical
events that may influence the prognosis of the endpoint of interest has become
available. In statistical models, this type of information is incorporated through
time-dependent covariates. The predictions that were obtained at the start need
to be updated to include the time-dependent information. This prediction from
later points in time is called dynamic prediction. Dynamic prediction is not
new (Christensen et al., 1983; Madsen et al., 1983; Klein et al., 1993; Arjas
and Eerola, 1993), but is the topic of active recent research (van Houwelingen,
2007; van Houwelingen and Putter, 2008; Proust-Lima and Taylor, 2009) (see,
also, Cortese, G., Gerds, T. A. and Andersen, P. K., Comparison of prediction
models for competing risks with time-dependent covariates, Research report 2011,
Department of Biostatistics, University of Copenhagen). One way of approaching
such dynamic predictions is through multi-state models (Putter et al., 2007),
where the clinically relevant events define states, and transitions from one state
to another are defined and modeled. Under the Markov assumption it is possible
to obtain dynamic prediction probabilities explicitly (Aalen and Johansen, 1978).
Under more realistic assumptions, such explicit calculations are not possible, but
simulation may be used to approximate them (Dabrowska, 1995; Fiocco et al.,
2008).

Given the often time-consuming and indirect way of obtaining dynamic pre-
dictions, statistical researchers have proposed new, more direct ways of getting
these probabilities. One of these new approaches is landmarking (Anderson et
al., 1983). The method was proposed for dynamic prediction by van Houwelin-
gen (2007), and it is useful in particular in the presence of either time-dependent
covariates or covariates with time-varying effects. Van Houwelingen and Put-
ter (van Houwelingen and Putter, 2008) have proposed landmarking as an alter-
native for multi-state modeling if the interest is in obtaining dynamic prediction
probabilities for a single endpoint of interest. They compared the multi-state
and the landmarking approaches to prediction, discussing their advantages and
disadvantages. Increasing interest has been shown in the clinical applications of
this method (Zamboni et al., 2010; McCarthy and Hahn, 2011; Beyersmann et al.,
2011) or extensions of it (Parast et al., 2011; Gran et al., 2010). For a comprehen-
sive overview of the existing methods for dynamic prediction and of landmarking
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in particular, refer to the recent book of van Houwelingen and Putter (2012).
In this paper we consider the situation of multiple competing endpoints, and

our aim is to extend the landmarking approach to competing risks. The same
problem was addressed by Cortese and Andersen (2010) and by van Houwelingen
and Putter (2012). As one of several strategies of dealing with time-dependent
covariates in competing risks Cortese and Andersen (Cortese and Andersen, 2010)
considered landmarking for dynamic prediction in competing risks. They applied
landmarking at a small number of pre-defined relevant time points; this approach
is limited to dynamic prediction at these landmark time points. They made no at-
tempt to construct comprehensive models that would enable dynamic prediction
of the cumulative incidences of the different causes of failure at time points other
than these landmark time points. Van Houwelingen and Putter (van Houwelin-
gen and Putter, 2012) did obtain supermodels for the cause-specific hazards but
did not use these to obtain dynamic prediction of the cumulative incidences of
the causes of interest and concentrated on the combined endpoint.

The paper is organized as follows: in Section 2 the data are introduced and
results are shown of an exploratory data analysis based on a traditional cause-
specific hazards approach. In Section 3 the landmark approach to competing
risks is introduced and applied to the data. Section 4 concludes the paper with
a discussion.

4.2 Exploratory data analysis

In this paper we develop a dynamic prediction model for competing risks aimed
at predicting events of interest at later time points based on the complete his-
tory of the patient up to relevant, intermediate time points. Our data consists of
5582 chronic myelogenous leukaemia (CML) patients, registered at the European
Group for Blood and Marrow Transplantation (EBMT) who received allogeneic
stem cell transplantation (SCT) between 1997 and 2003. Events recorded during
the follow-up of these patients were: acute graft versus host disease (aGvHD),
relapse (Rel) and non-relapse mortality (NRM). Development of aGvHD rep-
resents a major complication to transplants, especially to CML patients, being
associated with considerable morbidity and increased mortality, but also with de-
creased probability of leukemia recurrence. The time of onset of aGvHD, which
by definition occurs within the first 100 days post-transplant, was recorded in
our data, as well as the maximum grade of aGvHD ever reached; here, only grade
2 or higher were considered as aGvHD event. In reality, the highest grade of
aGvHD may be achieved (shortly) after the onset of aGvHD, but since the grade
at onset is often unknown and otherwise too difficult to trace back, this issue is
conveniently ignored in our analysis; we act as if the highest grade of aGvHD
was actually attained at the onset of aGvHD. Although aGvHD occurs in the
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first 100 days after SCT and even though it may be resolved after some time we
assume that it may have a permanent, possibly time-varying effect on relapse and
NRM. We shall distinguish between low grade aGvHD, corresponding to grade
2, and high grade aGvHD, corresponding to grade 3 or higher. This distinction
is clinically relevant, since it is known that high grade aGvHD’s have a larger
and more immediate impact on NRM. Prognostic information at time of SCT
are: year of transplantation and EBMT risk score, a prognostic index based on
available marker information at baseline, known to be predictive of both relapse
and NRM. The latter covariate is divided into three risk groups, denoted as low
risk, medium risk and high risk. The frequencies of the values of these covariates
are shown in Table 4.1. The clinical purpose of our approach is to obtain a dy-
namic prognostic model of relapse free survival and cumulative incidences of Rel
and NRM, given the history of aGvHD and the baseline covariates.

Table 4.1: Prognostic factors for all patients.

Prognostic factor Category n (%)
Risk score Low 2361 (42%)

Medium 2663 (48%)
High 558 (10%)

Year of SCT 1997 773 (14%)
1998 956 (17%)
1999 1004 (18%)
2000 956 (17%)
2001 669 (12%)
2002 658 (12%)
2003 566 (10%)

Figure 4.1a shows a stacked plot of the estimated cumulative incidences of
time to relapse and time to non-relapse mortality; it is clear that the situation of
the patients is quite stable after 5 years. The graph of the censoring distribution
shows that the median follow-up is reached at about 5.5 years. Figure 4.1b shows
a plot of the censoring distribution.

To get an impression when low and high grade aGvHD occur in our data, a
stacked plot of the estimated cumulative incidence functions of time to low and
high grade aGvHD, respectively, is shown in Figure 4.2. The time scale goes to
four months after SCT due to the fact that by definition this intermediate event
occurs quite early in the follow-up interval (within 100 days after SCT).
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Figure 4.1: Cumulative incidences of competing events relapse and NRM (a), the
censoring distribution (b).

To explore the potentially time-varying effects of the time-dependent factors
low and high grade aGvHD, let

Zl(t) = 1{occurrence of low grade aGvHD before time t},
Zh(t) = 1{occurrence of high grade aGvHD before time t}
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Figure 4.2: Cumulative incidence functions of time until aGvHD.

be two binary time-dependent covariates which refer to having experienced low
or high grade aGvHD, respectively, before time t. These covariates are equal
to 0 for all individuals at the time origin, and their values might change to 1
at the time of occurrence of low or high grade aGvHD, respectively. In that
case, they remain time-constant equal to 1 over the remaining follow-up interval.
Note that Zl(t) and Zh(t) are mutually exclusive, in the sense that they cannot
take simultaneously the value 1. An exploratory Cox regression analysis revealed
that the effects of Zl(t) and Zh(t) on the cause-specific hazards of relapse and
NRM varied over time, especially for NRM. To distinguish between short-term
and long-term effects in our analysis, we define subsequently the time-dependent
binary covariates:

ZV Rl (t) = 1{occurrence of low grade aGvHD within one month before t},
ZRl (t) = 1{occurrence of low grade aGvHD between 6 and one months before t},
ZPl (t) = 1{occurrence of low grade aGvHD more than 6 months before t}.

The superscripts are abbreviations of ”very recent”, ”recent” and ”past”, respec-
tively. Similarly, define ZV Rh (t), ZRh (t) and ZPh (t) for high grade aGvHD. By
definition, we have

Zk(t) = ZV Rk (t) + ZRk (t) + ZPk (t), k ∈ {l, h}.

We fitted a Cox model on the cause-specific hazards of relapse and non-relapse
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mortality with these time-dependent covariates and the two baseline covariates.
Year of transplantation (centered around 2000) is included as a continuous covari-
ate. A backward selection procedure based on the likelihood ratio test was used
to test whether ZV Rl (t), ZRl (t) and ZPl (t) could be replaced by Zl(t) (and simi-
larly for Zh(t)) both for relapse and NRM. This procedure showed no significant
difference among the effects of ZV Rl (t), ZRl (t) and ZPl (t) on the cause-specific
hazard of relapse, therefore resulting in inclusion of only Zl(t) in the model for
the cause-specific hazard of relapse. The results in Table 4.2 confirm some known
facts about CML patients. Occurrence of aGvHD has a highly significant, pro-
tective effect on the risk of relapse; for high grade aGvHD, one month after its
occurrence, this protective effect even increases followed by a non-significant de-
crease after 6 months. This finding could be real or an artefact caused by an
immortal time bias due to the fact that the time of onset of aGvHD may be
before the time at which the highest grade is reached. Another contributing fac-
tor could be the fact that in general patients with low grade aGvHD are not
treated, while patients with high grade aGvHD are treated with immunosuppres-
sion. The risk of non-relapse mortality is increased by the occurrence of aGvHD;
the highest detrimental effect is seen immediately after the occurrence of high
grade aGvHD. Later year of transplantation seems to be associated with higher
relapse and lower NRM rates, both effects being close to significance level of 0.05.
Higher risk score increases the risk of both causes of failure.

Table 4.2: Estimated parameters for time-dependent effects of aGvHD.

Prognostic factor Relapse NRM

β̂ SE(β̂) β̂ SE(β̂)

Year 0.029 0.015 -0.027 0.013
Risk score

Low risk
Medium risk 0.297 0.058 0.372 0.055
High risk 1.038 0.085 0.895 0.077

Low grade aGvHD -0.428 0.072
Very recent 1.028 0.135
Recent 0.550 0.100
Past 0.649 0.099

High grade aGvHD
Very recent -0.365 0.359 2.794 0.083
Recent -1.153 0.241 1.922 0.080
Past -0.848 0.167 1.208 0.114
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Checking the validity of the proportionality assumption for the time-fixed
covariates revealed that the effect of EBMT risk score varies considerably over
time. Stratification by risk score would improve the modeling of cause-specific
hazards and would be preferable to obtain predictions, but this is not pursued
here since the emphasis of this paper is on the use of landmarking for prediction
purposes.

In a traditional approach, prediction of relapse-free survival and cumulative
incidences of relapse and of non-relapse mortality would require a joint model
comprising a model for event time (time to relapse and time to non-relapse mor-
tality) which incorporates time-dependent and baseline covariates, and a model
for the time-dependent covariates incorporating the baseline covariates: Table 4.3
shows the effects of the baseline covariates estimated from a Cox proportional
hazards model on the cause-specific hazards of low and high grade aGvHD, re-
spectively. In this particular model, being in the highest risk score increases the
rate of low and high grade aGvHD with more than 50%, while year of transplan-
tation is slightly protective. Interpretation of the results in Table 4.3 in terms of
cumulative incidences is not straightforward. The presence of lagged covariates,
ZV Rk (t), ZRk (t) and ZPk (t), k ∈ {l, h}, in this comprehensive joint model makes
prediction far more difficult, because the multi-state model defined by the clinical
events low and high grade aGvHD, relapse and NRM would be non-Markovian.
The motivation for this last statement is that after the occurrence of an aGvHD
event, the rate of relapse and NRM depend on when (in the history) the aGvHD
occurred.

Table 4.3: Cause-specific hazard ratios (HR) of the prognostic factors and the
corresponding 95% confidence intervals (95% CI) for the competing events low
and high grade aGvHD.

Prognostic factor Category Low grade aGvHD High grade aGvHD
HR (95% CI) HR (95% CI)

Year 0.93 (0.90-0.96) 0.92 (0.88-0.95)
Risk score Low risk 1 1

Medium risk 1.16 (1.03-1.31) 1.47 (1.28-1.71)
High risk 1.53 (1.26-1.86) 2.04 (1.65-2.53)
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4.3 Dynamic prediction based on the landmark
model

In this section we extend the landmark approach of van Houwelingen (2007) to
competing risks. There are recent advancements in this direction; Parast et al.
(2011) give non-parametric estimators to prediction probabilities for a fixed land-
mark time point in the context of semi-competing risks and Cortese and Andersen
(2010) use landmarking to estimate the effects of time-dependent covariates on
the cause-specific hazards of competing events, their principal aim being estima-
tion rather than dynamic prediction. For this purpose, these authors only fit
models at the landmark time points and do not go to supermodels as proposed
in van Houwelingen (2007).

Our goal is to develop a dynamic prediction model for relapse-free survival and
for the cumulative incidence of relapse and non-relapse mortality based on the
time-dependent covariates ZV Rk (t), ZRk (t) and ZPk (t), k ∈ {l, h}, and the time-
fixed covariates year of transplantation and risk score. Since the intermediate
clinical events occur within the first year (see Figure 4.2), the target period for
initiating dynamic prediction could be anywhere in the first year. Our aim is
to predict 5 years ahead from some time s within the first year post-transplant.
In other words, we want to obtain dynamic models for relapse-free survival and
for the cumulative incidences of relapse and non-relapse mortality for a window
with a fixed width of 5 years from anywhere in the first year post-transplant.
Section 4.3.1 gives the general theory, while Section 4.3.2 contains an application
to the EBMT data.

4.3.1 Landmarking and competing risks

Suppose that data are available from n individuals each of whom can experience
one of J types of failure, which we term 1, . . . , J , respectively, or can be subject
to a noninformative censoring. Let T̃ denote the time of failure, C the censoring
time, and D the cause of failure. Let Z(·) denote a p-vector of covariates, which
could be measured at baseline or be time-dependent. The observed data for
individual i is (Ti,∆i, Zi(·)), where Ti = min(T̃i, Ci) is the earliest of failure and
censoring time, ∆i = 1{T̃i < Ci}·Di is the cause of failure in case of failure and 0
in case of censoring and where Zi(·) denotes the covariates of individual i observed
until Ti, for i = 1, . . . , n. The usual requirement of conditional independence of
(T̃ , D) and C, given Z(·), is assumed to be true here as well. Data from different
individuals are supposed to be independent.

We are interested in the dynamic prediction of survival and of the cumulative
incidences of cause j, j = 1, . . . , J . More precise, our aim is to estimate the
survival probability and the cumulative incidences of cause j, j = 1, . . . , J at
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time s + w, respectively, conditional on surviving event-free at a certain time s
and on Z(s), that is

SLM(s+ w| Z(s), s) = P (T > s+ w| T > s, Z(s)) (4.1)

Fj,LM(s+ w| Z(s), s) = P (T ≤ s+ w,D = j| T > s, Z(s)), j = 1, . . . , J,

respectively.
The landmark approach to dynamic prediction consists of two steps: the con-

struction of a landmark data set and the development of models for the competing
endpoints based on that landmark data set. The first step requires the choice
of a set of landmark time points tLM within an interval [s0; s1] and the length
of the prediction interval, w. For each landmark time point tLM, a new data
set is built as a subset of the initial data set, referred as the tLM-landmark data
set. This tLM-landmark data set comprises only the subjects at risk at tLM, for
which the events occurring after the horizon time as defined by thor = tLM + w
are administratively censored at thor. The time-dependent covariates are fixed at
their current value at tLM, that is Z(tLM). The result of this data construction
procedure is a large data set, obtained by stacking the individual tLM-landmark
data sets. In the following, we shall replace tLM by s for the sake of convenience.

The second step of the landmark approach consists of obtaining models for
each of the cause-specific hazards within a prediction interval [s; s+w] and com-
bining these into a supermodel which dictates prediction in any time period of
length w starting anywhere in [s0; s1].

To this goal, we define models for the cause-specific hazards, conditional on
survival beyond time s and covariates Z(s), that is for

λj(t| Z(s), s) = lim
δ→0

1

δ
· P (t ≤ T ≤ t+ δ,D = j| T ≥ t, Z(s)), j = 1, . . . , J,

for s ≤ t ≤ s+w, based on the s-landmark data set, and we use these models to
obtain estimates of the quantities in (4.1) through the relations

S(s+ w| Z(s), s) = exp
(
−
∫ s+w

s

λj(u| Z(s), s)du
)
, (4.2)

Fj(s+ w| Z(s), s) =

∫ s+w

s

λj(u| Z(s), s) · S(u| Z(s), s)du.

The simplest model we could consider for the conditional cause-specific hazards
on each s-landmark data set would be

λj(t| Z(s), s) = λj0(t|s) exp(βj(s)Z(s)), j = 1, . . . , J, (4.3)
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where λj0(t|s), j = 1, . . . , J , are unspecified baseline hazards, and βj(s), j =
1, . . . , J , are unknown regression coefficients that are unique for each s-landmark
data set. Note that (4.3) specifies a time-fixed Cox model, where the time-
dependent covariates are taken at their values at s and hence βj may depend
on s but not on t. Fitting this model for each landmark point separately would
lead to the estimation of the desired dynamic prediction probabilities in (4.1),
but would ignore the overlap of subjects in the landmark data sets. We can
expect that the coefficients βj(s) depend on s in a smooth way. We can bring
more structure into the analysis by modeling the regression parameters βj(s) as
functions of s:

βj(s) = f(s;β(j)), j = 1, . . . , J, (4.4)

where β(j) = (βj1, . . . , βjk) is a pj-vector of regression parameters and f(·) is
a parametric function of s. This choice could include, for instance, polynomial
or splines. We gather all the regression coefficients of the models (4.3)-(4.4)
into βLM. Fitting this model with the Breslow partial likelihood for those tied
observations is equivalent to maximizing the pseudo-partial log-likelihood

ipl(βLM) =

J∑
j=1

∑
i

dij

( ∑
s: s<ti≤s+w

[
Zi(s)

>βj(s)− ln
∑

tk: ti≤tk≤s+w

eZk(s)βj(s)

])
,

(4.5)
where dij = 1{Di = j} is the event indicator of patient i. It can be fitted
to the data by means of standard software, provided that the software allows
for delayed entry at s, using the stacked data set, containing all the landmark
data sets with stratification on the landmark. Repeated observations of the same
subject automatically lead to the presence of many ties. Models (4.3)-(4.4) can
be used to inspect whether the regression coefficients depend on the landmark.
However, such a fit cannot be used directly to test the statistical significance of
the components β(j), j = 1, . . . , J , since the data of the same patient are used
repeatedly in the different landmark strata. The correct standard errors can
by obtained by taking into account the ”clustering” of the data and using the
sandwich estimators proposed in Lin and Wei (1989).

After fitting the model, Breslow type estimators of the conditional baseline
hazards are available, given by

λ̂j0(ti|s) =
1∑

tk: s≤ti≤tk<s+w exp(Zk(s)>β̂j(s))
, j = 1, . . . , J.

The estimated baseline hazards λ̂j0(t|s) can be expected to vary continuously
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with s through βj(s) via (4.4). We can model this dependence directly through

λj0(t|s) = λj0(t) exp(γj(s)), j = 1, . . . , J, (4.6)

where γj(s), j = 1, . . . , J , are some parametric functions of s with the restriction
γ(s0) = 0 to guarantee identifiability. More specifically, assume that

γj(s) = g(s; γ(j)), j = 1, . . . , J, (4.7)

where γ(j) = (γj1, . . . , γjr) is a rj-vector of regression parameters and g(·) is a
parametric function of s. We gather the parameters from (4.6)-(4.7) in a vector
denoted by γ. The model (4.3), (4.4), (4.6), (4.7), which we shall refer to as the
landmark supermodel, can be fitted directly by applying a simple Cox model to
the stacked data set, again provided that the software allows for delayed entry
at s. Again, repeated observations of the same subject automatically lead to the
presence of many ties. Fitting the model with the Breslow partial likelihood for
those tied observations is equivalent to maximizing a different pseudo-likelihood,
namely

ipl∗(βLM, γ) =

J∑
j=1

∑
i

dij ln

( ∑
s: s≤ti≤s+w exp(Zi(s)

>βj(s) + γj(s))∑
s: s≤ti≤s+w

∑
tk: tk≥ti exp (Zk(s)>βj(s) + γj(s))

)
.

(4.8)
The estimators of the corresponding baseline hazards are given by

λ̂∗j0(ti) =
#(s ≤ ti ≤ s+ w, Di = j)∑

s: s≤ti≤s+w
∑
tk: s≤ti≤tk<s+w exp(Zk(s)>β̂j(s) + γ̂j(s))

, j = 1, . . . , J.

Again, standard errors of the regression parameters can be obtained by sandwich
estimators.

Let Λ̂∗j0(t) =
∑
ti≤t λ̂

∗
j0(ti) be the cumulative cause-specific baseline hazard of

cause j, j = 1, . . . , J . Then the estimated dynamic prediction probabilities are
given by substituting the estimators of βLM, γ and λj0 into (4.2), resulting in

ŜLM(s+ w|Z(s), s) = exp
(
−

J∑
j=1

eZ(s)β̂j(s)+γ̂j(s)
[
Λ̂∗j0(s+ w)− Λ̂∗j0(s−)

])
(4.9)

and

F̂j,LM(s+ w|Z(s), s) =
∑

s<ti≤s+w

λ̂∗j (ti|Z(s))ŜLM(ti − |Z(s), s), j = 1, . . . , J.

(4.10)
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4.3.2 Application to the EBMT data

In this section we apply the theory described in Section 4.3.1 to the EBMT data
where we shall initiate prediction anywhere in the interval [0, 1] for a prediction
interval of width w = 5. Competing endpoints are relapse (cause 1) and NRM
(cause 2), while the covariate vector Z(·) comprises the prognostic covariates at
baseline and low and high grade aGvHD with their counterparts, very recent,
recent and past, respectively. We set up a grid of 13 landmark (prediction) time
points tLM = 0, 1, . . . , 12 months.

The frequencies of the outcomes in each of the landmark data sets across
the first year post-transplant are shown in Figure 4.3. The combination of high
relapse and NRM rates and modest censoring in the first year post-transplant (see
Figure 4.1) explains that the relative size of the alive/censoring part increases
from 45% at tLM = 0 to 70% at tLM = 12 months.
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Figure 4.3: Frequencies of outcomes for each of the landmark data sets.

Figure 4.4 shows the frequencies of the values of the time-dependent covariates
in each of the landmark data sets. For a given s, s ∈ {1, 2, . . . , 12} months, the
corresponding bar comprises the frequencies of the relapse-free survivors patients
at s who either have not developed aGvHD yet or who are subjected to low or high
grade aGvHD exclusively in one of the intervals [s, s−1] (very recent), [s−1, s−6]
(recent) or [0, s− 6] (past), when applicable; this last possibility corresponds to
a change in value from 0 to 1 of one of the ZV Rk (s), ZRk (s) and ZPk (s), k ∈ {l, h},
respectively. White areas at s correspond to patients who developed low (bottom
part) or high (upper part) grade aGvHD within one month before s (very recent),
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therefore spanning from s = 1 to s = 4 only, in agreement with Figure 4.2.
Light grey areas correspond to patients who developed low (bottom part) or high
(upper part) grade aGvHD within one month and six months before s (recent),
therefore spanning from s = 2 to s = 9 only; these include patients counted in
white areas at earlier landmark time points who survived relapse-free at time
s. Dark grey areas correspond to patients who developed low (bottom part) or
high (upper part) grade aGvHD within more than six months before s (past),
therefore spanning from s = 7 to s = 12 only; these include patients counted in
light grey areas at earlier landmark time points who survived relapse-free at the
corresponding s.

0 1 2 3 4 5 6 7 8 9 10 11 12

Past high grade aGvHD
Recent high grade aGvHD
Very recent high grade aGvHD
No aGvHD
Very recent low grade aGvHD
Recent low grade aGvHD
Past low grade aGvHD

Landmark time points (months)

F
re

qu
en

cy

0

1000

2000

3000

4000

5000

6000

Distribution of patients per landmark data set

Figure 4.4: Frequencies of the values of the time-dependent covariates in each of
the landmark data sets.

We fitted the ipl∗ - model to our data, with

βj(s) = βj0 + βj1s+ βj2s
2, j = 1, 2,

and
γj(s) = γj1s+ γj2s

2, j = 1, 2.

For each of the competing end points j = 1 and j = 2, a backward selection
procedure was used, starting from a model with all time-fixed covariates effects
described by quadratic terms, where Wald tests were used to test whether the
linear and quadratic terms could be removed. Interaction terms between ZV Rk (s),
ZRk (s) and ZPk (s), k ∈ {l, h}, on the one hand, and landmark time points on the
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other hand, were not tested because they would make the model overly compli-
cated. From the model obtained after this initial selection procedure, a further
backward selection procedure was used again using Wald tests to replace ZV Rk (t),
ZRk (t) and ZPk (t) by Zk(t), k ∈ {l, h}. This resulted in the final supermodel re-
ported in Table 4.4. For NRM, the interaction between year of transplantation
and landmark time points was found to be non-significant, and was therefore not
included in the model of NRM. The linear and quadratic terms of the EBMT
risk score effects were significant for both causes of failure. Similarly to the anal-
ysis in Section 2, indication of when low and high grade aGvHD occurred in
the past exhibits non-significant effects on relapse; only Zl(s) and Zh(s) show
significant effects on relapse. In contrast, Wald tests showed differential effects
of ZV Rk (s), ZRk (s) and ZPk (s), k ∈ {l, h}, on the cause-specific hazard of NRM
and therefore they are kept in the model. A plot of the regression parameters
of the EBMT risk score which vary with s together with their 95% confidence
intervals is given in Figure 4.5. The effect of year on relapse varies with s; it
decreases from 0.044 at s = 0 to 0 at s = 1. The detrimental effect of higher risk
score shows a decreasing trend for later times s; the behaviour in the right tail
might reflect the artefact of selecting healthier patients (those who are event-free
before s, for late s) made intrinsically by the model. As expected, occurrence of
aGvHD before s is beneficial for preventing relapse. We see that the earlier high
grade aGvHD occurred before s, the higher the risk of NRM. The increase in
the estimated regression coefficients for ZV Rl (s), ZRl (s) and ZPl (s) is unexpected.
Note that especially for NRM the estimated effects of ZV Rk (s), ZRk (s) and ZPk (s),
k ∈ {l, h}, are attenuated compared to those based on the time-dependent Cox
models of Table 4.2. The explanation for this is that the estimates based on the
supermodel are weighted averages of the possibly time-varying effects over the
follow-up period [s; s + 5] of the Cox model. The parameters γj connecting the
baseline parameters at the different landmark time points are more difficult to
be interpreted by themselves, but they can be interpreted in connection with the
baseline hazards.

In Figure 4.6 we show the estimated cumulative baseline hazards Λ̂∗j0(t) and
the exponent of the linear combination of the baseline parameters, exp(γj(s)).
The rapidly decreasing trend with increasing s in Fig. 4.6 (b) and the concave
shape in Fig. 4.6 (a), especially for non-relapse mortality, leads us - via (4.6) and
(4.10) - to expect a marked decrease in the dynamic prediction probabilities for
the cumulative incidence function of non-relapse mortality with increasing s.
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Table 4.4: Estimated regression parameters of the landmark supermodel for re-
lapse and non-relapse mortality.

Covariate Relapse NRM

β̂ SE(β̂) β̂ SE(β̂)

Year of transplantation
Constant 0.044 0.016 -0.021 0.016
s -0.070 0.033
s2 0.026 0.031

Risk score
Low risk
Medium risk

Constant 0.344 0.063 0.538 0.061
s -0.287 0.121 -0.585 0.219
s2 0.061 0.118 0.437 0.211

High risk
Constant 1.171 0.099 1.216 0.091
s -0.959 0.233 -1.552 0.356
s2 0.352 0.225 1.201 0.330

Low grade aGvHD -0.370 0.080
Very recent 0.205 0.063
Recent 0.531 0.077
Past 0.616 0.113

High grade aGvHD -0.873 0.155
Very recent 1.392 0.062
Recent 1.369 0.079
Past 1.100 0.130

Baseline parameters
γ1 -0.173 0.095 -3.224 0.185
γ2 -0.429 0.088 1.429 0.167

In Figure 4.7 we show the stacked estimated prediction probabilities for a
patient transplanted in 2003. The lower curve represents F̂1,LM, the conditional
cumulative incidence of relapse before s+5 years, given no relapse or NRM up to
time s and no aGvHD. The distance between the top curve and the lower curve
represents F̂2,LM, the conditional cumulative incidence of non-relapse mortality at
s+5 years given no event up to time s and no aGvHD, while the distance between
1 and the upper curve represents 1− F̂1,LM − F̂2,LM, the conditional probability
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Figure 4.5: Time-varying regression coefficients β(s) of EBMT risk score and
associated pointwise 95% confidence intervals implied by the landmark super-
model of Table 4.

of being alive without relapse at s + 5, given no relapse or NRM up to time s
and no aGvHD. By looking simultaneously at all the plots in this figure, we see
that surviving relapse-free and having no aGvHD the first year after SCT greatly
improves relapse-free survival after 5 years. As expected, the higher the risk score,
the higher the cumulative incidence of failure of both causes and the smaller
the relapse-free survival probability. Interestingly, the differences between the
dynamic 5-years width cumulative incidences for the three risk scores are much
smaller at the end of the prediction period (s = 1) than at the beginning (s = 0).
Figures 4.8 and 4.9 clearly show that (especially high grade) aGvHD increases the
conditional cumulative incidence of non-relapse mortality. The gradual decrease
with later s of the cumulative incidences is a natural consequence of conditional
probabilities estimated solely on individuals event-free at s. The reason why the
time axes are truncated in Figures 4.8 and 4.9 in the presence of ZV Rk (s), ZRk (s)
and ZPk (s), k ∈ {l, h}, is that these time-dependent covariates can only be non-
zero in a limited time window (see Figure 4.4). The landmark model will allow
us to do prediction in the presence of these covariates also outside these time
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Figure 4.6: (a) Estimated cumulative baseline hazards; (b) Estimated γ’s on
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windows, but these predictions will not be meaningful in practice.
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Figure 4.7: The estimated 5-years fixed width predictive cumulative incidences
of relapse and NRM for a patient transplanted in 2003 with no aGvHD, for each
of the levels of EBMT risk score.
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Figure 4.8: The estimated 5-years fixed width predictive cumulative incidences
of relapse and NRM for a patient transplanted in 2003 with low grade aGvHD,
for each of the levels of EBMT risk score.
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Figure 4.9: The estimated 5-years fixed width predictive cumulative incidences
of relapse and NRM for a patient transplanted in 2003 with high grade aGvHD,
for each of the levels of EBMT risk score.
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Figure 4.10 shows an example of dynamic fixed width prediction, based on
the landmark supermodel, for a patient transplanted in 2003, at different values
of the EBMT risk score, who experienced high grade aGvHD at 1 month post-
transplant. This patient initially follows the predicted probabilities of the Figure
4.7, until one month, when he/she switches to the predictions from the ”very
recent” cell of Figure 4.9. One month later, the aGvHD is no longer very recent,
so he/she switches again, now to the predictions from the ”recent” cell, until the
seventh month, when the aGvHD is no longer recent. From that time on, the
predictions from the ”past” cell of Figure 4.9 are followed.
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Figure 4.10: The estimated 5-years-fixed width predictive cumulative incidences
for a patient transplanted in 2003 with high grade aGvHD at 1 month after
SCT.(a) Low risk; (b) Medium risk; (c) High risk.

4.4 Discussion

In the practice of prediction, measurements are ascertained at baseline and pa-
tients are followed over time until the occurrence of a clinical outcome of interest.
But this approach does not take into account the fact that the risk of the event
of interests may change over time, depending on the evolution of the patient.
Therefore, it is important to take all the available information into account when
the intention is to predict future clinical events of interest at later points in time.
In this paper we extended landmarking and in particular landmark supermod-
els to dynamic prediction in the presence of competing risks. We used these
landmark supermodels based on the cause-specific hazards to obtain long term
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dynamic prediction probabilities of the cumulative incidences of the causes of
failure, accounting for baseline information and intermediate clinical events. The
proposed method when applied per landmark is robust against violations of the
hazard assumption in (4.3). The use of supermodels as proposed in this paper
have the advantage of gaining efficiency but possibly at the cost of introducing
model assumptions such as (4.4) and (4.7) which might not be met. The proposed
landmark supermodel provides a prediction rule at baseline using only covariate
information available at baseline. If time-dependent covariates are available, the
landmark supermodel provides an updated prediction rule at the landmark time
point s using covariate information collected up to s. Such a model is used for
prognostic purposes without requiring a model for the distribution of the time-
dependent covariate(s). The landmark approach is applicable for any choice of s
and w, given that the time-dependent covariate values are known at the specific
landmark time-points.

Interpretation of the regression coefficients of the landmark supermodel is not
straightforward. This is already the case for ordinary survival analysis with a
single endpoint, but even more so in the context of competing risks, because
the present approach is based on the cause-specific hazards and there is no one-
to-one correspondence to covariate effects on the cause-specific hazards and the
cumulative incidences (Putter et al., 2007), which makes it hard to summarize the
covariate effect on the cumulative scale. Moreover, it is hard to identify the time-
varying effect on the cumulative incidence function for a specific covariate when
regression is based on cause-specific hazards. Koller et al. (2011) made the point
that for etiological research regression models based on the cause-specific hazards
would usually be the most appropriate approach, while regression models based
on the subdistribution hazards (Fine and Gray, 1999) would be most appropriate
if prediction is the aim. These would argue for a dynamic prediction landmark
model based on the Fine and Gray approach (Fine and Gray, 1999). This is a topic
for future research; landmark supermodels based on the Fine and Gray approach
are not straightforward because it is not clear whether or not to include in the
s-landmark data set individuals with a competing event before the landmark time
point s and what to use as value of their time-dependent covariates.

We have shown how the clinical event aGvHD can be used to provide a prog-
nostic tool that can be updated for each new landmark time point. One limitation
in our analysis is that time of onset of aGvHD and time of attaining highest grade
are not (necessarily) the same but are taken as such in this analysis (because we
do not have any more information); therefore, patients are inappropriately classi-
fied only by their final grade of aGvHD and the time they spend on ”waiting” to
reach a higher grade of aGvHD is incorrectly credited to higher grade of aGvHD.
This could have lead to a bias the direction of which is difficult to predict in our
specific setting as it is unclear how much time a patient spent 1. to reach the
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stage of onset of aGvHD and 2. to reach higher grade aGvHD from the onset of
aGvHD. A correct approach would require that the time to onset of aGvHD and
the time from onset to higher grade aGvHD be known and accounted for.



5
Dynamic pseudo-observations: a robust

approach to dynamic prediction in
competing risks

Abstract

In this paper, we propose a new approach to the problem of dynamic prediction of
survival data in the presence of competing risks as an extension of the landmark
model for ordinary survival data of van Houwelingen (2007). The key feature of
our method is the introduction of dynamic pseudo-observations constructed from
the prediction probabilities at different landmark prediction times. They specifi-
cally address the issue of estimating covariate effects directly on the cumulative
incidence scale in competing risks. A flexible generalized linear model based on
these dynamic pseudo-observations and a generalized estimation equations ap-
proach to estimate the baseline and covariate effects will result in the desired
dynamic predictions and robust standard errors. Our approach has a number of
attractive features. It focuses directly on the prediction probabilities of interest,
avoiding in this way complex modeling of cause-specific hazards or subdistribu-
tion hazards. As a result, it is robust against departures from these omnibus
models. From a computational point of view an advantage of our approach is
that it can be fitted with existing statistical software and that a variety of link

89
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functions and regression models can be considered, once the dynamic pseudo-
observations have been estimated. We illustrate our approach on a real data set
of chronic myeloid leukemia patients after bone marrow transplantation.

5.1 Introduction

In medical studies, dynamic prediction of time-to-event data has recently received
a lot of attention in terms of statistical development (van Houwelingen, 2007;
van Houwelingen and Putter, 2008; Proust-Lima and Taylor, 2009; Cortese and
Andersen, 2010; Parast et al., 2011; van Houwelingen and Putter, 2012), though
clinical applications are seriously lagging behind with some happy exceptions
(Zamboni et al., 2010; Sabatier et al., 2012). The dynamic aspect refers to how
prognosis changes over the course of time as information on clinical events and/or
measurements of biomarkers becomes available during follow-up.

In this paper we address the problem of dynamic prediction in the context
of competing risks as an extension of the landmark model for ordinary survival
data of van Houwelingen (2007). The advantages of landmarking for dynamic
prediction are that the method is very direct and robust against misspecification
of the proportional hazards assumption. These advantages are also valuable in
competing risks situations especially in conjunction with the Fine and Gray model
(Fine and Gray, 1999; Cortese and Andersen, 2010).

Currently, the use of landmarking in competing risks has been addressed in
a number of papers (Cortese and Andersen, 2010; Cortese et al., 2013; Nicolaie
et al., 2013a). In particular, Nicolaie et al. (2013a) have proposed supermodels
which yield the dynamic cause-specific probabilities over an interval of prediction
time points. In that approach, dynamic prediction probabilities were based on
landmark models for the cause-specific hazards which were specified by propor-
tional hazards models. However, for dynamic prediction primary interest is in the
conditional cause-specific cumulative incidence, that is the probability of dying
before some future time t from a specific cause in the presence of other risks,
conditional on being alive at the prediction time. It is well-known that there is
no one-to-one relation between covariate effects on the cause-specific hazards and
on the cumulative incidence scale. Recently, a number of direct regression models
have been proposed to assess covariate effects on cumulative incidences (Fine and
Gray, 1999; Andersen et al., 2003; Klein and Andersen, 2005; Scheike et al., 2008);
they primarily address the necessity of capturing the possibly time-varying co-
variate effects directly on the cumulative incidence scale. The aim of the present
paper is to explore the possibility of combining the landmark paradigm and di-
rect modeling the cumulative incidence function using pseudo-observations. We
propose supermodels based on what we call dynamic pseudo-observations asso-
ciated with cumulative incidences, that is pseudo-observations updated at each
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prediction time point. Similar ideas have been proposed in Cortese et al. (2013),
but for a different purpose, namely estimation of prediction error of dynamic
prediction probabilities. These supermodels are intended to directly yield the
desired prediction probabilities of cumulative incidences of the event of interest
in a fixed, prespecified prediction time point, avoiding the burden of complex
modeling of the complete survival process jointly with the covariate process.

Our paper is organized as follows: in Section 5.2 we introduce and discuss our
approach. In Section 5.2.1 we lay out the notation. In Section 5.2.2 we define
dynamic pseudo-observations and illustrate some of their asymptotic properties.
In Section 5.2.3 we describe regression models based on pseudo-observations and
we show how to obtain dynamic prediction probabilities from these models. In
Section 5.3 we apply the approach to data from European Group for Bone and
Marrow Transplantation (EBMT). Section 5.4 concludes the paper with a discus-
sion.

5.2 Dynamic prediction

5.2.1 Notation

Suppose that data are available from n individuals each of whom can experience
one of J types of failure, which we term 1, . . . , J , respectively, or can be subject
to noninformative censoring within a time interval [0, τ ]. Let T̃ denote the time
of failure, C the censoring time, and D the cause of failure. Let Z(·) denote a
p-vector of covariates, which could be measured at baseline or be time-dependent;
this could be either internal or external covariates. Z(·) is shorthand for the entire
covariate process, which is assumed to be observed without error over the time
interval(s) for which the individual is at risk. The observed data for individual i
is {Ti,∆i,Zi(·)}, where Ti = min(T̃i, Ci) is the earliest of failure and censoring
time, and ∆i = 1(T̃i < Ci) ·Di is the cause of failure in case of failure and 0 in
case of censoring. Data from different individuals are assumed to be independent.
Let S be the survival function of T̃ and G the survival function of C.

Let s < t be two time points and define the cumulative incidence of event j,
conditional on being event-free at time s, by

Fj(t|s) = P (T ≤ t,D = j|T > s), for j = 1, . . . , J.

We denote by t1 < t2 < . . . the times at which events occur irrespective of the
cause. Let dj(tk) be the number of individuals who die at time tk from cause j

and d(tk) =
∑J
j=1 dj(tk) be the number of individuals who die at time tk from

any cause. Let r(tk) be the number of individuals at risk just prior to time tk.

Let F̂j(·|s) be the non-parametric estimator of the conditional probability Fj(·|s),
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as given by

F̂j(t|s) =
∑

s<tk≤t

Ŝ(tk − |s)
dj(tk)

r(tk)
, (5.1)

where

Ŝ(t− |s) =
∏

s<tl≤t

{
1− d(tl)

r(tl)

}
is the Kaplan-Meier estimate of the conditional survival function given no event
before time s. Consistency of F̂j(·|s) as an estimator of Fj(·|s) follows from
the same arguments as in Aalen and Johansen (1978) under the assumption of

independence of T̃ and C.

5.2.2 Dynamic pseudo-observations in competing risks

Let [s1, sK ] be the interval within which we want to obtain dynamic prediction
probabilities and denote by w a fixed prediction window width. Our aim is to
obtain estimators for the dynamic fixed width prediction probabilities P{T ≤
s + w,D = j|Z(s), T > s} for varying s ∈ [s1, sK ] and fixed prediction width
w. Let us fix a landmark time point s in [s1, sK ]. In the following, we refer
to the corresponding landmark data set as Ls, obtained by selecting only the
individuals who are at risk at time s, and fixing the time-dependent covariates
at their current value at s, that is Z(s). Denote by ns the sample size of this
landmark data set Ls.

Define the dynamic pseudo-observation within Ls for 1(T ≤ s+w,D = j) for
individual i at risk in s as

θ̂jisw = nsF̂j(s+ w|s)− (ns − 1)F̂j
(−i)

(s+ w|s) , (5.2)

where F̂j
(−i)

is the Aalen-Johansen estimator (6.12) based on the sample of size
ns − 1 obtained by eliminating individual i from Ls, for j = 1, . . . , J and i =
1, . . . , ns (see also Cortese et al. (2013)). We stress that θ̂jisw is defined if and only
if Ti exceeds s, i.e. for an individual i at risk at s, irrespective of whether a failure
or censoring occurs before time s + w. These dynamic pseudo-observations can
be computed using existing statistical software (Klein et al., 2008). Note that

for complete data, i.e. data with no censoring, in Ls the relationships θ̂jisw =
1(Ti ≤ s+w,Di = j) hold, for i = 1, . . . , ns. In the following we shall focus on a
fixed cause of failure j and fixed prediction width w and to simplify notation we
therefore suppress j and w in the notation of θ̂jisw and replace it by θ̂is.

Following Graw et al. (2009), we will impose the following conditions:
(C1) The censoring time C is independent of {T,D,Z(·)};
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(C2) Any prediction time point s satisfies s + w < τ with G(τ) > 0 and
S(τ) > 0.

Some asymptotic properties of dynamic pseudo-observations which are im-
portant in the next section, when regression models based on dynamic pseudo-
observations are considered, are gathered in the following proposition; see Ap-
pendix B for a brief proof.

Proposition 5.2.1 Assume that (C1) and (C2) hold. Then the following prop-
erties hold:

(P1) θ̂is is asymptotically independent of θ̂ls for individuals i 6= l as n tends
to infinity.

(P2) θ̂is is asymptotically independent of θ̂ls′ for individuals i 6= l and land-

mark time points s 6= s
′

as n tends to infinity.
(P3) E{θ̂is|Zi(s), Ti > s} equals asymptotically its theoretical counterpart

E{1(Ti ≤ s+ w,Di = j)|Zi(s), Ti > s} as n tends to infinity.

5.2.3 Specification of models

In this section we consider regression models based on the dynamic pseudo-
observations. In Subsection 5.2.3 we consider models for fixed s, while Sec-
tion 5.2.3 will be devoted to supermodels combining dynamic pseudo-observations
for a collection of landmark time points.

Models for fixed landmark time points

Let us fix s. For complete data, i.e., when no censoring occurs, we give a deriva-
tion in Appendix A that shows how dynamic prediction can be achieved based on
(observable) binomial variable Y (s) = 1(T ≤ s+w,D = j), using standard mod-
eling approaches for these variables. In the presence of censoring, we do not al-
ways observe the binomial random variable Y (s) = 1(T ≤ s+w,D = j). For this
reason, we replace the (unobservable) Yi(s) by the dynamic pseudo-observations

θ̂is based on the sample Ls; the θ̂is are meant to mimic the behaviour of Yi(s),
in the sense that they approximate a 0− 1 variable and they are asymptotically
independent, as stated in Proposition 5.2.1. Let

µis = E{Yi(s)|Zi(s), Ti > s}. (5.3)

We shall postulate a generalized linear model on the binomial expectations µis
of the form

g[E{Yi(s)|Zi(s), Ti > s}] = β>(s)Z∗i (s) , (5.4)

for a given link function g, where β(s) = {β0(s), β1(s), . . . , βp(s)} and Z∗(s) =

{1, Z>(s)}>, so that β0(s) stands for the intercept. In the following, since we
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consider a fixed value of s we shall suppress the dependence of β(s) on s in the
notation.

Since we can approximate µis by E{θ̂is|Zi(s), Ti > s}, as stated in Proposi-
tion 5.2.1, our estimate of β is based on the quasi-score equations (see McCullagh
and Nelder, 1999), where Yi(s) is replaced by the pseudo-observations:

U(β) =

ns∑
i=1

Ui(β) =

ns∑
i=1

∂µis(β)

∂β
· 1

µis(1− µis)
· (θ̂is − µis) = 0 , (5.5)

with µis as defined in (5.3). Note that this model was used in Klein and Andersen
(2005) for prediction in the competing risks framework for the special case where
s = 0.

With specific choices of the link function g, equation (5.5) can again be sim-
plified. For the logit link function g(x) = log x

1−x , (5.5) simplifies to

ns∑
i=1

Z∗i · (θ̂is − µis) = 0 , (5.6)

and for the cloglog link function g(x) = log{− log(1− x)} to

ns∑
i=1

Z∗i ·
log(1− µis)

µis
· (θ̂is − µis) = 0.

Model (5.4) with the cloglog link function is equivalent to

Λ∗ij(s+ w|s) = exp (β>(s)Z∗i (s)),

where Λ∗ij(s + w|s) =
∫ s+w
s

λ∗ij(u|s)du, with λ∗ij the subdistribution hazard of
cause j of subject i. Thus, it has clear similarities with the Fine-Gray model on
the subdistribution hazard of cause j: covariate Zi(s) in (5.4) plays the role of
the time-independent covariate in the Fine-Gray model. However, the important
distinction is that the Fine-Gray model is being used here only at a single time
point, s+w, conditionally on no event yet at s. Since only the functional relation
between covariates and conditional cumulative incidence function at s+w is used
in model (5.4), and no proportional hazards assumption of the Fine-Gray model
on the subdistribution hazard over the entire follow-up, the estimates β are robust
against departures from the proportionality assumption of the subdistribution
hazards. This could however be at a cost of loss of efficiency if the proportionality
assumption of the Fine and Gray model is true. A similar distinction holds
between our estimating equations in (5.5), which uses pseudo-observations of the
conditional cumulative incidence functions at a single time point s+w, and those
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in Klein and Andersen (2005), who use several pseudo-observations, evaluated at
different prediction widths; see also the Discussion section. Yet another choice of
link function is g(x) = log (x), which has similarities with absolute risk regression
(Gerds et al., 2012). See Gerds et al. (2012) for a discussion on the choice of link
functions and on the interpretation of regression coefficients in these models.

Define the sandwich estimate by

{I(β̂)}−1 · v̂ar{U(β̂)} · {I(β̂)}−1 , (5.7)

where

I(β) =
1

ns

ns∑
i=1

∂µis(β)

∂β
· V −1

i (β) ·
{∂µis(β)

∂β

}>
with

Vi(β) = µis(β) · {1− µis(β)}

and

v̂ar{U(β)} =
1

ns

ns∑
i=1

Ui(β) · {Ui(β)}>.

We will impose the following additional condition:
(C3) g is invertible and its inverse g−1 is continuously differentiable at each

of the β>Zi.

Proposition 5.2.2 Assume model (5.4) is correctly specified. Under conditions

(C1), (C2) and (C3), the solution β̂ to (5.5) is consistent and asymptotically
normal for estimating the parameter β of model (5.4):

√
ns(β̂ − β) ∼ N (0,Σ)

where the asymptotic variance Σ can be consistently estimated by (5.7).

See Appendix B for a brief proof of Proposition 5.2.2.
Let Z̃(s) be the covariate vector for a new patient at prediction time s and

consider Fj(s + w|s, Z̃(s)) = P (T ≤ s + w,D = j|T > s, Z̃(s)). Consider the
estimate given by

F̂j(s+ w|s, Z̃(s)) = g−1(β̂
>

Z̃
∗
(s)) , (5.8)

obtained by plugging in the estimated β̂, the solution to (5.5), in (5.4) and where

Z̃
∗
(s) = (1, Z̃(s)>)>.
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Proposition 5.2.3 Under conditions (C1), (C2) and (C3), a consistent, asymp-

totically normal distributed estimator of Fj(s+ w|s, Z̃(s)) is given by (5.8). The
variance of (5.8) is estimated consistently by{dg−1(x)

dx

}2

|x=β̂
>
Z̃
∗(s) · (Z̃

∗
(s))> · v̂ar(β̂) · Z̃

∗
(s) , (5.9)

with v̂ar(β̂) as derived from Proposition 5.2.2.

See Appendix B for a brief proof of Proposition 5.2.3.

Supermodels for dynamic pseudo-observations

In Section 5.2.3 we have considered models based on dynamic pseudo-observations
θ̂is obtained from a landmark data set Ls for a fixed landmark point s. These
separate models can be used to estimate β̂ = β̂(s) and to obtain estimates of

the prediction probabilities Fj(s+w|s, Z̃(s)) for several different values of s. As
in landmark prediction models for ordinary survival (van Houwelingen, 2007),

we would expect β̂(s) to vary smoothly with s. This idea can be exploited by

combining dynamic pseudo-observations θ̂is from different landmark data sets.
To this end, define a set of landmark time points 0 ≤ s1 < . . . < sK , such that
sK +w < τ , and construct the corresponding landmark data sets Lk := Lsk ; each
of these comprises the nk := nsk individuals at risk at time sk only. Within each
Lk we fix the time-dependent covariates at their current values at sk, that is we
use Z(sk).

For each prediction point sk we estimate the cumulative incidence function
of cause j at sk + w based on the complete landmark data set Lk of size nk and
the cumulative incidence function of cause j based on the sample of size nk − 1
obtained by deleting the ith observation from Lk. We then define the dynamic
pseudo-observation θ̂ji,sk,w of individual i at time sk+w as in (6.13) and denote it

shorthand by θ̂ik. When only right censoring is present, individual i with failure
or censoring time ti will be represented in landmark data sets Lk for all k such
that sk < ti. For landmark points sk ≥ ti the individual will not be in the risk
set. Let Si ⊂ {1, . . . ,K} denote the set of indices k of the landmark time points
such that individual i is at risk at sk and let li be the last index in Si. Define
the li-vector of dynamic pseudo-observations of individual i by

θ̂i = {θ̂ik, k ∈ Si}.

Our goal is to specify a regression model for

µis = E{Yi(s) |Zi(s), Ti > s}.



5.2. DYNAMIC PREDICTION 97

Thus, our target of inference, in the terminology of Kurland and Heagerty (2005),
is a partly conditional mean model, conditioning on being alive (Pepe et al., 1999).
This implies that our regression model for µik = µi,sk conditions on being alive
at sk; the cohort of survivors at sk might comprise survivors, dead or censored
patients at sk + w. For a link function g, assume

g(µik) = β>(sk)Z∗i (sk) , (5.10)

where µik = µi,sk with µis as defined in (5.3), β(s) = {β0(s), β1(s), . . . , βp(s)}
and Z∗(s) = {1, Z(s)>}>, so that β0(s) stands for the intercept. To model the
time-dependent behaviour of β(s) across s ∈ [s1, sK ], we can employ a linear
model for the lth component of β(s)

βl(s) = β>l hl(s), s ∈ [s1, sK ] , (5.11)

where hl(s) is a suitable set of basis functions and βl is a vector of parameters,
for l = 0, . . . , p. Different covariates Zl(s) may use different time functions hl(s),
l = 0, . . . , p. Define β to be the vector with length q containing all βl vectors.
Then the vector β(s) can be written as H(s)β, with H(s) a (p + 1) × q matrix
containing the basis functions. We shall refer to the model (5.10)-(5.11) as the
landmark supermodel.

For a link function g and independence working correlation, a linear quasi-
score equation for regression parameter vector β is given by

U(β) =

n∑
i=1

Ui(β) =

n∑
i=1

∂µi
∂β
·V−1

i · (θ̂i − µi) = 0 , (5.12)

with µi = µi(β) = {µi1(β), . . . , µili(β)}> and Vi = Vi(β) an li × li diagonal
matrix with elements Vik(β) = µik(β) · {1− µik(β)}.

Define the sandwich estimator by

{I(β̂)}−1 · v̂ar{U(β̂)} · {I(β̂)}−1 , (5.13)

where

I(β) =
1

n

n∑
i=1

∂µi(β)

∂β
· V −1

i (β) ·
{∂µi(β)

∂β

}>
with

v̂ar{U(β)} =
1

n

n∑
i=1

Ui(β) · {Ui(β)}>.

Given correctly specified regression models on the means µik and on the β(s),
the above generalized estimating equations (GEE) approach leads to consistent
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estimators of parameters β, as specified in the next

Proposition 5.2.4 Assume models (5.10) and (5.11) are correctly specified. Un-
der conditions (C1), (C2) and (C3) and assuming independence working corre-

lation, the solution β̂ to (5.12) is consistent and asymptotically normal for esti-
mating β of models (5.10) and (5.11):

√
n(β̂ − β) ∼ N (0,Σ)

where the asymptotic variance-covariance matrix Σ can be consistently estimated
by (5.13).

A short proof of Proposition 5.2.4 is given in Appendix B and relies on showing
that the estimating equations in (5.12) are asymptotically unbiased. Kurland and
Heagerty (2005, p. 247) argue that with non-independence working correlation,
the solution to (5.12) is no longer guaranteed to be consistent. The reason is that
for non-independence working correlation additional random terms multiplying
(θ̂i−µi) appear in the estimating equations coming from the inverse of Vi, which
may disrupt the (asymptotic) unbiasedness of these estimating equations.

Let Z̃(s) be the covariate vector for a new patient at prediction time s and

consider Fj(s + w|s, Z̃(s)) = P (T ≤ s + w,D = j|T > s, Z̃(s)). An estimate

of this quantity is obtained by calculating β̂(s) = H(s)β̂, for β̂ the solution to
(5.12), and s and setting

F̂j(s+ w| s, Z̃(s)) = g−1{β̂(s)>Z̃
∗
(s)} , (5.14)

where Z̃
∗
(s) = (1, Z̃

>
(s))>.

Proposition 5.2.5 Assume (5.10) and (5.11) are correctly specified. Under con-
ditions (C1), (C2) and (C3), the estimator given by (5.14) is a consistent esti-
mator of Fj(s + w|s,Z(s)) for any s ∈ [s1, sK ] and its variance is estimated
consistently by{dg−1(x)

dx

}2

|x=β̂(s)
>
Z̃
∗
(s)
· (Z̃

∗
(s))> ·H(s) · v̂ar(β̂) ·H(s)> · Z̃

∗
(s) , (5.15)

with v̂ar(β̂) as derived from Proposition 5.2.4.

See Appendix B for a brief proof of Proposition 5.2.5.
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5.3 Exploratory data analysis

5.3.1 Data

Our data is the same as in Nicolaie et al. (2013a) and consists of 5582 chronic
myelogenous leukaemia (CML) patients, registered at the EBMT who received
allogeneic stem cell transplantation (SCT) between 1997 and 2003. We also use
the same time-dependent covariates (acute graft versus host disease (aGvHD),
which is a major complication in SCT, being associated with increased mortal-
ity and decreased relapse rates) and endpoints relapse and non-relapse mortality
(NRM). It was shown in cause-specific hazards analysis (Nicolaie et al. (2013a))
that aGvHD is significantly associated with the two endpoints; aGvHD was fur-
ther classified into low grade aGvHD, corresponding to grade 2 or lower, and high
grade aGvHD, corresponding to grade 3 or higher. Let

Zlow(t) = 1(occurrence of low grade aGvHD before time t) and

Zhigh(t) = 1(occurrence of high grade aGvHD before time t)

be binary time-dependent covariates which refer to having experienced low or
high grade aGvHD, respectively, before time t. Prognostic information at baseline
includes: year of SCT, a continuous covariate which was centered around 2000
and divided by 10 in our analysis, and the EBMT risk score, a prognostic index
based on available marker information at baseline, known to be predictive of both
relapse and NRM. The latter covariate is divided into three risk groups, denoted
as low risk (set as reference value in the analysis), medium risk and high risk.
The frequencies of the values of these covariates are shown in Table 5.1.

Table 5.1: Prognostic factors for all patients.

Prognostic factor Category n (%)
Risk score Low 2361 (42%)

Medium 2663 (48%)
High 558 (10%)

Year of SCT 1997 773 (14%)
1998 956 (17%)
1999 1004 (18%)
2000 956 (17%)
2001 669 (12%)
2002 658 (12%)
2003 566 (10%)
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A stacked plot of the estimated cumulative incidences of relapse and NRM,
shown in Figure 5.1a, suggests that the majority of events occur within the first 5
years post-transplant. The estimated cumulative incidence functions of low and
high grade aGvHD, respectively, displayed in Figure 5.1b, show a steep increase
up to approximately first four months post-transplant only, due to the fact that
by definition this intermediate event occurs quite early in the follow-up interval
(within 100 days after SCT).

The clinical purpose of our approach is to obtain a dynamic prognostic model
of conditional cumulative incidence functions of relapse and NRM at pre-specified
prediction time points, given the history of aGvHD and the baseline covariates
and given that no terminal event has occurred yet. To facilitate comparison
with the landmark dynamic prediction model based on cause-specific hazards,
we shall use the same grid of 13 landmark time points consisting of the first 12
months post-transplant including 0, namely s = 0, 1/12, . . . , 1 years and the same
prediction width w = 5 years as in Nicolaie et al. (2013a).

5.3.2 Dynamic pseudo-observations

In Appendix C, we show examples of what dynamic pseudo-observations may look
like for the entire grid of landmark time points under four different scenarios. The
two main messages are: 1. θ̂jis resembles 1(Ti ≤ s+w,Di = j) and 2. the closer in

time are the landmark time points s and s
′
, the stronger the correlation between

the dynamic pseudo-observations θ̂jis and θ̂j
is′

is. More specifically, in our data

correlation decreases from an average of 0.995 (for landmark time points s and s
′

1 month apart) to 0.912 (for s and s
′

12 months apart) for relapse and from an
average of 0.996 (for landmark time points 1 month apart) to 0.903 (for landmark
time points 12 month apart) for NRM.

5.3.3 Dynamic prediction by landmarking using dynamic
pseudo-observations

In this section we shall apply the theory described in Section 5.2 to the EBMT
data where we initiate prediction anywhere in the interval [0, 1] years for a fixed
prediction interval width of w = 5 years. Competing endpoints are relapse (cause
1) and NRM (cause 2), while the covariate vector Z(·) comprises the prognostic
covariates at baseline and low and high grade aGvHD. We set up a grid of 13
landmark (prediction) time points s = 0, 1/12, . . . , 1 years.
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Figure 5.1: Stacked cumulative incidences of the competing events relapse and
NRM (a), stacked cumulative incidence functions of low and high grade aGvHD
(b).
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Separate analyses per landmark time point

Here we follow the approach described in Section 5.2.3, separating the analysis
per landmark time point s, for all s. We show results based on the logit link
function, i.e., we fit the GLM model (5.6) on the dynamic pseudo-observations of
each of the two competing events to model the effects on outcome of the baseline
covariates and time-dependent covariates fixed at their current value in s. The
resulting regression parameter estimates together with 95% confidence intervals
based on the sandwich estimators of their standard errors as given by (5.7) are
reported in Table 5.2 for a coarsened subset of the landmark time points.

Looking simultaneously at the estimates, the effect of year of SCT appears to
be important in the beginning (s = 0) and quickly looses importance afterwards.
At s = 0 more recent year of SCT (Table 5.2) implies higher 5-years risk of relapse
and lower risk of NRM. In Figure 5.2 we display as error bars the estimated
regression coefficients of intercept β̂0(s) (corresponding to the reference value,
low risk, of EBMT risk score) and of intercept plus effects of medium and high
risk score, implied by these separate landmark models, along with associated
95% confidence intervals. Both for relapse and NRM, the three error bars in
Figure 5.2 develop in parallel which suggests that the effects of medium and high
risk scores remain stable over time for both competing events. Figure 5.2 also
shows that overall prognosis of NRM improves over time, illustrated by the steep
decrease of the intercept; this is in accordance with Figure 5.1a, which shows a
steep increase of the cumulative incidence of NRM in the first year which quickly
levels off afterwards. Similar plots of year of SCT and low/high grade aGvHD
are shown in Figures 5.7, 5.8 and 5.9. Dynamic prediction results from these
models using (5.8) are shown in Figure 5.3 and discussed in conjunction with the
supermodels of the next section.

Supermodels

In this section we apply the approach of Section 5.2.3, again using the logit link
function. To apply our approach we used independence working correlation (see
our remark just below Proposition 5.2.4). We fitted a landmark supermodel

(5.10)-(5.11) on θ̂is with covariate vector Z(·) and regression parameters for each
covariate Zl(·), l = 1, . . . , p, of the form βl(s) = βl0 + βl1s + βl2s

2, s ∈ [0, 1],
and g the logit link function. For each of the competing events, a backward
selection procedure was used, starting from a model with all time-fixed covariates
effects described by quadratic terms, where Wald tests were used to test whether
the linear and quadratic terms could be removed. This resulted in the final
supermodel reported in Table 5.3.

For the two competing causes, the interaction between year of transplanta-
tion and landmark time points was found to be significant, and was therefore
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Table 5.3: Estimated regression parameters of the landmark super model for
relapse and non-relapse mortality.

Covariate Relapse NRM

β̂ SE(β̂) β̂ SE(β̂)

Intercept
Constant -1.160 0.027 -1.156 0.029
s 0.839 0.126 -3.603 0.165
s2 -1.072 0.129 2.080 0.183

Year of transplantation
Constant 0.530 0.126 -0.591 0.125
s -1.165 0.657 1.604 0.718
s2 0.553 0.678 -1.079 0.766

Risk score
Low risk
Medium risk 0.166 0.022 0.431 0.025
High risk 0.725 0.039 0.880 0.042

Low grade aGvHD
Constant -0.490 0.030 0.168 0.102
s 2.032 0.461
s2 -1.738 0.436

High grade aGvHD
Constant -1.305 0.054 1.916 0.129
s -0.416 0.579
s2 -0.524 0.545
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Figure 5.2: Regression coefficients of intercept (Low risk) and of intercept plus
effects of medium risk and high risk, together with associated 95% confidence
intervals implied by the stratified landmark models. The solid lines show the
same regression coefficients implied by the landmark supermodel of Section 5.3.3.

included in the models: for relapse the effect decreases from 0.530 at s = 0 to
almost 0 at s = 1, while for NRM it increases from −0.591 at s = 0 to almost
0 at s = 1. Figure 5.7 presents regression coefficients of year of SCT based on
the separate models (error bars) and on the supermodel (solid lines) for the two
competing risks and the estimated 95% confidence intervals; it suggests that the
two approaches agree on quantifying the trend of this covariate. Moreover, ap-
proximately the same behavior was found in the supermodel on cause-specific
hazards in Nicolaie et al. (2013a). The linear and quadratic terms of the risk
score effects were non-significant for both causes of failure, and therefore not
included in the models (see Figure 5.2). For relapse, interactions between oc-
currence of aGvHD and landmark time points were not found to be significant,
and therefore not included in the model. In contrast, Wald test showed for NRM
significant interactions between Zlow(s) and Zhigh(s) and landmark time points
s and therefore they are kept in the model. In Figures 5.8 and 5.9 we plot the
regression coefficients of Zlow(s) and Zhigh(s) based on the separate models (error
bars) and the supermodel (solid lines) for the two competing risks. Even though
the effects of low grade and high grade aGvHD may vary across landmarks, oc-
currence of aGvHD before s consistently decreases the conditional probability of
relapse within 5 years and increases the conditional probability of NRM within
5 years, as found in Nicolaie et al. (2013a). Increasing the number of land-
mark time points in the prediction interval did not have noteworthy effects (data
not shown): it resulted in comparable, slightly more accurate estimates of the
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Figure 5.3: Dynamic prediction of probability of relapse and NRM at s+ 5 years
and associated 95% confidence intervals for different landmark time points s, for
a patient transplanted in 2003. The error bars are based on the separate models
and the solid lines are based on the supermodel.

regression coefficients of the landmark supermodel, implying slightly narrower
confidence intervals of the dynamic prediction estimates.

In Figure 5.3 we show the estimated prediction probabilities of experiencing
relapse and NRM, respectively, before 5 years after the prediction time points
for all prediction time points between SCT and 1 year after SCT, resulting from
the separate models (error bars) and from the supermodel (smoothed lines) with
pointwise 95% confidence intervals using (5.9) and (5.15), respectively, for a pa-
tient transplanted in 2003. The two approaches agree with respect to the esti-
mated dynamic prediction probabilities. However, the pointwise confidence in-
tervals for prediction from the supermodel are narrower than those based on the
separate models, which can be explained by a higher degree of accuracy obtained
by combining in one model information from all individual landmark data sets.
Looking simultaneously at all the plots in Figure 5.3, we see that, as expected,
the higher the risk score, the higher the conditional cumulative incidence of both
relapse and NRM. Figure 5.3 clearly shows that (especially high grade) aGvHD
increases the conditional cumulative incidence of NRM, while it decreases the con-
ditional cumulative incidence of time to relapse. The gradual decrease with later
s of the conditional cumulative incidences is a natural consequence of conditional
probabilities estimated solely on individuals event-free at s.
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Example R code implementing our methods is available in Appendix E. The
majority of the computing time of our approach is in the computation of the
dynamic pseudo-observations (few tens of seconds in our application). Once these
have been computed both model fitting and prediction can be done in a matter
of seconds.

5.4 Discussion

In this paper we proposed an alternative approach to dynamic prediction of time-
to-event data with competing risks using dynamic pseudo-observations. Our aim
is to directly estimate the conditional probability of failing due to a given cause
within a given time window (≤ s + w) conditionally given failure-free at a pre-
diction point s ≥ 0. We used the dynamic pseudo-observations as extensions of
”static” pseudo-observations to obtain landmark supermodels for these probabil-
ities. The use of dynamic pseudo-observations for dynamic prediction of (condi-
tional) cumulative incidences has a number of practical advantages. The first is
that the approach can be implemented using standard statistical software. Af-
ter having obtained the dynamic pseudo-observations, regression estimates may
be obtained with relative ease using generalized estimation equations (GEE);
standard statistical software like PROC GENMOD in SAS or the geepack pack-
age (Højsgaard et al., 2006) in R may be used for fitting the GEE. The dynamic
pseudo-observations may be obtained in R using the packages dynpred (van
Houwelingen and Putter, 2012) and pseudo (Klein et al., 2008). The second
practical advantage of our approach is that it can deal with both internal (en-
dogenous) and external (exogenous) time-dependent covariates; see Kalbfleisch
and Prentice (2002, Chapter 6) and Cortese and Andersen (2010) for a discus-
sion on internal versus external time-dependent covariates. Standard modeling
procedures like the Fine-Gray model do not allow internal time-dependent co-
variates for the prediction of cumulative incidences, see for instance Latouche et
al. (2005); Beyersmann and Schumacher (2008). In contrast, landmarking can
incorporate internal time-dependent covariates for prediction because it avoids
joint modeling of the internal time-dependent covariates and the endpoints (van
Houwelingen, 2007; van Houwelingen and Putter, 2008; Cortese and Andersen,
2010). A third advantage of the current approach in comparison with land-
mark supermodels based on cause-specific hazards (Nicolaie et al., 2013a) is that
the dynamic pseudo-observations may be used to directly model the conditional
cumulative incidences. As a result, the regression models allow a direct interpre-
tation in terms of the cumulative incidence(s) of the event(s) of interest. In our
application the two approaches led to comparable estimated prediction probabil-
ities.

An important distinction between the traditional use of (static) pseudo ob-
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servations and our use of dynamic pseudo-observations is that we only use a
single dynamic pseudo-observation per subject for each landmark time point.
Traditionally, for a fixed prediction time point (s = 0) pseudo-observations for
1(T ≤ t,D = j) are calculated and used for several time points t, either at a
grid (Klein and Andersen, 2005) or at all event time points. These approaches
exploit the proportional hazards assumption on either the logit or the cloglog
scale, the latter being equivalent with the Fine and Gray (1999) model. In
our dynamic prediction setting it would also be possible to use several predic-
tion widths rather than a single one. Different models could be fitted for each
width separately. Combining these into a single supermodel is also possible, but
would require the proportional hazards assumption. By using dynamic pseudo-
observations at a single time point s+w for each landmark time point s we avoid
the proportional hazards assumption, which makes our approach robust to devi-
ations from such assumptions. The disadvantage of using only a single dynamic
pseudo-observation at each landmark time point is a possible loss of efficiency if
the proportional hazards assumption holds.

An issue with the present pseudo-observations approach is that the correlation
structure of dynamic pseudo-observations is ignored in the working correlation
used in the supermodels; an independence working correlation yields consistent
estimators, but may lead to loss of efficiency. Simulation studies performed in
Andersen and Klein (2007) suggest that efficiency is indeed influenced by the
choice of correlation structure in the working correlation matrix, but the influence
is not great. We are currently investigating this issue in a simulation study. It
may be possible to account for correlation, but additional work is needed to
determine scenarios where consistency of estimators may be achieved.

A cautionary remark is in order when the dynamic prediction model is to
be applied to an external population. If in the new population the probability
of the competing risk is much different than in the original population on which
the dynamic prediction model was developed, then this could distort the dynamic
predictions for the event of interest. A common situation where this could happen
is when interest is in disease-specific survival and where death due to other causes
is a competing risk. If the dynamic prediction model is developed in a young
population, for instance, then application in an older population with higher risk
of death due to other causes (old age) may be problematic because as a result
one would expect a lower probability of the event of interest. We don’t expect
such issues to play a role in our specific application because the competing risk
of relapse, non-relapse mortality, is mainly disease-specific, consisting of direct
treatment-related mortality and mortality due to aGvHD.
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Appendix A: Specification of models for complete
data

Suppose that the data are complete, that is, censoring does not occur. In this case,
the indicators Yi(s) = 1(Ti ≤ s+w,Di = j) are observed for all subjects i in Ls.
The observed values of Yi(s), denoted by yi(s), form a sample of ns independent
binomial variables. We have E{Yi(s)|Zi(s), Ti > s} = P{Yi(s) = 1|Zi(s), Ti > s}
and let

µi(s) = E{Yi(s)|Zi(s), Ti > s}.

We postulate a generalized linear model on the binomial expectations µi(s) of
the form

g{µi(s)} = β>(s)Z∗i (s) ,

for a given link function g, where β(s) = {β0(s), β1(s), . . . , βp(s)} and Z∗(s) =
{1, Z(s)>}>, so that β0(s) stands for the intercept. In the following, since we
consider a fixed value of s we shall suppress the dependence on s of the notation.

For the case of complete data the analysis is completely standard and follows
a generalized linear model (GLM). The regression parameters β = β(s) can be
estimated by a maximum likelihood approach; the likelihood would be given by
the product of binomial probabilities

L(β) =

ns∏
i=1

pyii · (1− pi)
1−yi , (5.16)

with pi = pi(β) = P (Yi = 1|Zi) = E(Yi|Zi) = µi(β) =: g−1(β>Z∗i ), where
g−1 stands for the inverse of g. Using µi(β) instead of pi, the log-likelihood
`(β) = logL(β) is given by

`(β) =

ns∑
i=1

[
yi logµi(β) + (1− yi) log{1− µi(β)}

]
,

and the score equations by

ns∑
i=1

∂

∂β
`(β) =

ns∑
i=1

yi
µi
· ∂µi(β)

∂β
− 1− yi

1− µi
· ∂µi(β)

∂β

=

ns∑
i=1

∂µi(β)

∂β
· 1

µi(1− µi)
· (yi − µi) = 0 ,

(5.17)

where ∂µi(β)

∂β
=
{ ∂µi(β)

∂β1
, . . . ,

∂µi(β)

∂βp

}> is the vector of partial derivatives of µi(β)
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with respect to β.
The asymptotic variance of β̂, the solution to (5.17), can be estimated by the

inverse of the matrix

ns∑
i=1

{∂µi(β)

∂β

}>
· 1

µi(1− µi)
· ∂µi(β)

∂β
.

It is seen that equation (5.17) indeed follows the score equations of a GLM
on a binary variable, that is

ns∑
i=1

∂µi(β)

∂β
· 1

var(yi)
·
(
yi − µi

)
= 0 , (5.18)

where ∂µi(β)

∂β
are the rows of the matrix dµ =

{
∂µi(β)

∂βr

}
ns×(p+1)

. With specific

choices for the link function g, equation (5.18) may be simplified to

ns∑
i=1

Z∗i ·
(
yi − µi

)
= 0 ,

for the logit link function, g(x) = log x
1−x , or to

ns∑
i=1

Z∗i ·
log(1− µi)

µi
·
(
yi − µi

)
= 0 ,

for the cloglog link function, g(x) = log{− log(1− x)}.

Appendix B: Proofs of Propositions

Proof of Proposition 5.2.1

The proof follows directly from Lemma 2 of Graw et al. (2009). Note that as-
sumption (C2) guarantees ns →∞ as n→∞.

Proof of Proposition 5.2.2

The proof of consistency relies on similar arguments as those in Theorem 2 of
Graw et al. (2009). The asymptotic distribution of β̂ follows from the asymptotic
unbiasedness of Ui(β) in (5.5) and the results of Liang and Zeger (1986).
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Proof of Proposition 5.2.3

The asymptotic behaviour of F̂j(s + w| s, Z̃(s)) could be derived by means of

the delta-method using the asymptotic distribution of β̂.

Proof of Proposition 5.2.4

Consider the estimating equations

Ũ(β) =

n∑
i=1

∂µi
∂β
·V−1

i · (Yi − µi) = 0 , (5.19)

with µi and Vi as defined in (5.12), and Yi = (Yi1, . . . , Yi,li) is the vector
with true (possibly unobservable) outcomes Yik = 1(Ti ≤ sk + w,Di = j).
By the assumption that the regression models are correctly specified, we have
E{Yik |Zi(sk), Ti > sk} = µik. Some care should be taken here because of the
fact that µik are not only functions of βl, but of s as well via (5.11). However,
hl(s), as deterministic functions of s contribute to the asymptotic behavior of
Ui(β) only as scaling factors. In the absence of censoring, by including only the
Yik’s for which Ti > sk, we are implicitly fitting

n∑
i=1

K∑
k=1

∂µik
∂β
· 1

µik(1− µik)
·Aik · (Yik − µik) = 0 ,

where Aik = 1 if Ti > sk and 0 otherwise. This coincides with the equation
U(βA) = 0 in the middle of page 247 of Kurland and Heagerty (2005), for the
special case of the logit link function (see Equation (5.6)), for which Kurland
and Heagerty (2005) argue that the estimating equations are unbiased. We have
additional missingness due to censoring, but because of condition (C1) these
(potential) outcomes are missing completely at random, and hence the estimation

equations (5.19) are still asymptotically unbiased. Finally, replacing Yi by θ̂i will
retain the asymptotic unbiasedness of (5.12), by Proposition 5.2.1. This concludes
the proof of Proposition 5.2.4.

Proof of Proposition 5.2.5

The asymptotic behaviour of F̂j(s+w|s, Z̃(s)) follows from the asymptotic dis-

tribution of β̂ using the delta-method. Indeed,
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v̂ar{F̂j(s+ w| s, Z̃(s))} = v̂ar[g−1{β̂(s)>Z̃
∗
(s)}]

=
[ d
dβ̂

g−1{β̂(s)>Z̃
∗
(s)}

]>
· v̂ar(β̂)

·
[ d
dβ̂

g−1{β̂(s)>Z̃
∗
(s)}

]
The expression (5.15) follows immediately if we notice that

d

dβ̂
g−1{β̂(s)>Z̃

∗
(s)} =

{dg−1(x)

dx

}
|x=β̂(s)>Z̃

∗
(s)
· ∂
∂β̂
{β̂(s)>Z̃

∗
(s)}

=
{dg−1(x)

dx

}
|x=β̂(s)>Z̃

∗
(s)
· Z̃
∗
(s) ·H(s).

Appendix C: Illustration of properties of dynamic
pseudo-observations

In Figure 5.4 we illustrate what the dynamic pseudo-observations may look like
for the entire grid of landmark time points, for four patients chosen from the
data. ”Patient A” (first column) was censored at 5.88 years, ”patient B” (second
column) experienced relapse at 5.07 years, ”patient C”(third column) experienced
non-relapse mortality at 5.50 years, while ”patient D” was censored at 0.76 years.
The upper row presents the dynamic pseudo-observations for relapse, θ̂1

is, for these
four patients, while the bottom row presents the dynamic pseudo-observations for
non-relapse mortality, θ̂2

is. Dynamic pseudo-observations are defined at all pre-
diction time points for the first three individuals, because their event takes place
after the last landmark time point, while for the last patient we only have 10 dy-
namic pseudo-observations for both endpoints relapse and non-relapse mortality.
The main message of these figures is that θ̂jis resembles 1(Ti ≤ s + w,Di = j)
(represented by the dotted lines in Figure 5.4); for patient A, for instance, the
pseudo-observations for relapse jump from approximately 0 to approximately 1
at the first landmark time point s for which relapse took place before s+w. We
observe that for individuals at risk at s + w the dynamic pseudo-observations
tend to be negative, with an increasing trend with increasing s; this phenomenon

is explained by the fact that omitting the individual i in F̂
(−i)
j , irrespective of

their status (censoring or death), lowers the risk set causing the discrepancy

between F̂j and F̂
(−i)
j to increase with increasing s. In case of patient failing,

their dynamic pseudo-observations corresponding to the cause in question jump
above 1 while the dynamic pseudo-observations corresponding to the competing
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Figure 5.4: Dynamic pseudo-observations for relapse and non-relapse mortality
for four example patients. ”Patient A” (first column) was censored at 5.88 years,
”patient B” (second column) experienced relapse at 5.07 years, ”patient C” (third
column) experienced non-relapse mortality at 5.50 years, while ”patient D” was
censored at 0.76 years.

cause remain negative, increasing with increasing s. In case of an early censored
patient, their dynamic pseudo-observations increase at the very first event time
point which corresponds to a failure due to the cause in question (see ”patient
D”) succeeding their censoring time point. These trends were also observed in
Andersen and Perme (2010).

Figures 5.5 and 5.6 show some of the variation and co-variation of the dynamic
pseudo-observations θ̂1

is and θ̂2
is, respectively, at a coarser selection of landmark

time points: 0 years, 0.25 years, 0.5 years, 0.75 years and 1 year. The closer
in time are the landmark time points, the stronger the correlation between two
individual sets of dynamic pseudo-observations is, as seen in the upper-diagonal
plots. For s

′
< s, the correlation of the indicators 1(Ti ≤ s

′
+ w,D = j) and

1(Ti ≤ s+ w,D = j) in Ls (i.e. given Ti > s) is given by√
Fj(s

′ + w|s)
1− Fj(s′ + w|s)

· 1− Fj(s+ w|s)
Fj(s+ w|s)

.
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This implies that for s
′

close to s,

corr(θ̂j
is′
, θ̂jis) ≈ 1− 1

2
(s− s

′
)

F
′

j (s+ w|s)
Fj(s+ w|s){1− Fj(s+ w|s)}

,

where F
′
(s+w|s) stands for the derivative of F (t|s) with respect to t, evaluated

at t = s + w. The diagonal plots show histograms of the dynamic pseudo-
observations for each of the selected landmark time points. The subdiagonal plots
show scatter-plots of any two sets of the selected dynamic pseudo-observations;
the superdiagonal plots show some correlations. Most striking are the points
visible in the upper-left corner of each of the subdiagonal plots. For a particular
subdiagonal plot corresponding to two landmark time points s and s

′
, these are

individuals at risk at both landmark time points and failing due to the event type
in question at a time point between the two prediction time points s + w and
s
′
+ w.

Appendix D: Selected figures

Appendix E: Example R code

The following code is a template for implementing our method in the R software;
the statistical models are those used in our paper for the analysis of the EBMT
data (see Section 5.2.3).

library(pseudo)

library(geepack)

########################################################

### building of the stacked landmark data set ###

########################################################

LMs <- seq(0, 12, by =1) # time in the data is in months

LMdata <- NULL

for (i in seq(along = LMs)) {
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Figure 5.5: Scatterplot of dynamic pseudo-observations associated with the cu-
mulative incidence of relapse. Diagonals show histograms of dynamic pseudo-
observations; the numbers in the upper-diagonal plots are the correlations be-
tween the dynamic pseudo-observations at different landmark time points.
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Figure 5.6: Scatterplot of pseudo-observations associated with the cumulative in-
cidence of non-relapse mortality. Diagonals show histograms of dynamic pseudo-
observations; the numbers in the upper-diagonal plots are the correlations be-
tween the dynamic pseudo-observations at different landmark time points.
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Figure 5.7: Regression coefficients of year of SCT (centered at 2000, scaled by fac-
tor 10) and associated 95% confidence intervals implied by the separate landmark
models (error bars) and by the landmark supermodel (solid lines).
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Figure 5.8: Regression coefficients of the low grade aGvHD and associated 95%
confidence intervals implied by the separate landmark models (error bars) and
by the landmark supermodel (solid lines).
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Figure 5.9: Regression coefficients of the high grade aGvHD and associated 95%
confidence intervals implied by the separate landmark models (error bars) and
by the landmark supermodel (solid lines).
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LM <- LMs[i] # current landmark time point

datai <- data[data$ci > LM, ] # select subjects at risk

# low and high grade aGvHD at landmark

#(a.t is time, a.sc grade, 1=low, 2=high)

#low grade aGvHD:

alo <- as.numeric(datai$a.t <= LM)*as.numeric(datai$a.sc == 1)

#high grade aGvHD:

ahi <- as.numeric(datai$a.t <= LM)*as.numeric(datai$a.sc == 2)

# pseudo-observations are calculated using pseudoci from pseudo package

dfri <- data.frame(id = datai$id, alo = alo, ahi = ahi,

year = datai$year/10, score = datai$score,

# time to event

time = datai$ci,

# type of event

status = datai$ci_s,

pse1 = pseudoci(datai$ci, datai$ci_s,

tmax = 60 + LM)$pseudo$cause1,

pse2 = pseudoci(datai$ci, datai$ci_s,

tmax = 60 + LM)$pseudo$cause2,

LM = rep(LM, nrow(datai)))

LMdata <- rbind(LMdata, dfri)

}

########################################################

### fitting separate landmark models ####

########################################################

# do this for (i in seq(along = LMs))

datap <- LMdata[LMdata$LM == i, ]

fit <- geese(pse1 ~ year + score + alo + ahi, data = datap,

id = id, scale.fix = TRUE, family = gaussian,

jack = TRUE, mean.link = "logit",

corstr = "independence", var = "binomial")

########################################################

### fitting the landmark supermodel ####

########################################################

########################################################

### 1. prepare the regression coefficients ###
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########################################################

f0 <- function(t) 1

f1 <- function(t) t/12 # change of time scale to years

f2 <- function(t) (t/12)^2

LMdata$year.t0 <- LMdata$year

LMdata$year.t1 <- LMdata$year * f1(LMdata$LM) #interaction with s

LMdata$year.t2 <- LMdata$year * f2(LMdata$LM) #interaction with s^2

LMdata$sc1 <- as.numeric(LMdata$score == 2)

LMdata$sc2 <- as.numeric(LMdata$score == 3)

LMdata$alo.t0 <- LMdata$alo

LMdata$alo.t1 <- LMdata$alo * f1(LMdata$LM)

LMdata$alo.t2 <- LMdata$alo * f2(LMdata$LM)

LMdata$ahi.t0 <- LMdata$ahi

LMdata$ahi.t1 <- LMdata$ahi * f1(LMdata$LM)

LMdata$ahi.t2 <- LMdata$ahi * f2(LMdata$LM)

LMdata$LM1 <- f1(LMdata$LM)

LMdata$LM2 <- f2(LMdata$LM)

########################################################

#### 2. fitting the landmark super models ####

########################################################

# Final model for Rel (selection procedure not shown)

fit1 <- geese(pse1 ~ year.t0 + year.t1 + year.t2

+ sc1 + sc2

+ alo.t0 + ahi.t0

+ LM1 + LM2 , data = LMdata, id = id,

scale.fix = TRUE, family = gaussian,

jack = TRUE, mean.link = "logit",

corstr = "independence", var = "binomial")

# Final model for NRM

fit2 <- geese(pse2 ~ year.t0 + year.t1 + year.t2

+ sc1 + sc2

+ alo.t0 + alo.t1 + alo.t2

+ ahi.t0 + ahi.t1 + ahi.t2
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+ LM1 + LM2 , data = LMdata, id = id,

scale.fix = TRUE, family = gaussian,

jack = TRUE, mean.link = "logit",

corstr = "independence", var = "binomial")

########################################################

#### 3. estimate dynamic predictions (supermodels) ####

########################################################

# Time points at which we want predictions

tt <- seq(0,12,length = 101)

expit <- function(x) exp(x)/(1 + exp(x))

# Dynamic prediction for relapse

# example for patient with medium risk score,

# transplanted in 2003 (standardized value 0.3), high grade aGvHD

coef <- fit1$beta

# will contain the dynamic predictions:

dynpred.Rel <- rep(NA, length(tt))

for (i in 1:length(tt)) {

linpred <- coef[["(Intercept)"]] + coef[["year.t0"]]*0.3

+ coef[["year.t1"]]*0.3 * f1(tt[i])

+ coef[["year.t2"]]*0.3 * f2(tt[i])

+ coef[["sc1"]] + coef[["ahi.t0"]]

+ coef[["LM1"]]*f1(tt[i]) + coef[["LM2"]]*f2(tt[i])

dynpred.Rel[i] <- expit(linpred)

}

# Dynamic prediction for NRM, same patient

coef <- fit2$beta

# will contain the dynamic predictions:

dynpred.NRM <- rep(NA, length(tt))

for (i in 1:length(tt)) {

linpred <- coef[["(Intercept)"]] + coef[["year.t0"]]*0.3

+ coef[["year.t1"]]*0.3 * f1(tt[i])

+ coef[["year.t2"]]*0.3 * f2(tt[i])
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+ coef[["sc1"]] + coef[["ahi.t0"]]

+ coef[["ahi.t1"]]*f1(tt[i]) + coef[["ahi.t2"]]*f2(tt[i])

+ coef[["LM1"]]*f1(tt[i]) + coef[["LM2"]]*f2(tt[i])

dynpred.NRM[i] <- expit(linpred)

}
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6
Comparison of dynamic prediction models

Abstract

In this paper, we consider the problem of prediction accuracy in survival data
with competing risks when the target of estimation is the dynamic prediction
probabilities of the terminal events. We evaluate the properties of a number of
methods for dynamic prediction in competing risks using simulated data. We gen-
erate several scenarios for the transition intensities leading to multi-state models
with multiple endpoints and intermediate states, under the Markov assumption
or subjected to departures from it. This technique conveniently mirrors com-
peting risks modeling in the presence of time-dependent covariates. We compare
modeling approaches which either are based on comprehensive modeling or which
are focused directly on the dynamic prediction probabilities.

6.1 Introduction

Dynamic prediction models for survival data with competing risks have recently
gained growing interest in terms of theoretical developments (Cortese and An-
dersen, 2010; Parast et al., 2011; Nicolaie et al., 2013a,b; Cortese et al., 2013).
The task of dynamic prediction is challenging because (1) the presence of time-
dependent covariates implies a complicated mathematical form of the relation

123
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among variables and dynamic prediction probabilities; (2) different aspects of co-
variates, which are relevant to the response, might destroy the Markov assump-
tion typically used in modeling. In this work, we provide a comparison among
several approaches which yield dynamic prediction probabilities of competing ter-
minal events. The first approach is based on a Markov multi-state model which
includes, besides the competing terminal events, intermediate states correspond-
ing to the different stages in the development of the time-dependent covariates.
The remaining approaches use the landmark method (van Houwelingen, 2007;
van Houwelingen and Putter, 2012); they share the specific feature of being di-
rectly targeted to the modeling of the dynamic prediction probabilities. The first
landmark method consists of the approach of Nicolaie et al. (2013a) based on
modeling the cause-specific hazards and the second landmark method consists
of the approach of Nicolaie et al. (2013b) based on modeling dynamic pseudo-
observations of the cause-specific cumulative incidences, each of them using the
current information at different landmark time points. We consider two types of
such landmark models: separate landmark models, obtained from separate land-
mark data sets, and supermodels, obtained by combing information from different
landmark data sets. Related work is comprised in a previous paper of Cortese et
al. (2013), which evaluated dynamic prediction models for cause-specific cumula-
tive incidences in the presence of an internal time-dependent covariate, including
separate landmark models for cause-specific hazards or for subdistribution haz-
ards.

The aim of this paper is to evaluate among these competing risks models
which can be applied best, in the framework of Markov or non-Markov multi-
state settings, to evaluate the dynamic prediction probability of experiencing a
terminal event at a certain point in time using all available information until that
point.

Under the Markov assumption, it is natural to expect that a joint analysis of
the time-dependent covariates and survival data, as the Markov multi-state model
does, would provide more efficient estimates. When the Markov assumption
does not hold it is natural to expect that the pragmatic and robust approaches
based on landmarking have lower bias at the cost of a higher variability when
compared to misspecified models, like a Markovian multi-state approach. The
difference is due to the direct modeling which is robust against departures from
the Markov assumption. In this paper, we will show that for dynamic prediction
it is convenient to postulate a model on the probabilities of interest and to collect
only the necessary information to estimation.

Our paper is organized as follows: in Section 6.2 the simulation scenarios
are introduced. In Section 6.3 the dynamic prediction problem is introduced.
Section 6.4 presents different approaches to this problem. Section 6.5 presents
the simulation results. Final comments and directions for future research are
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given in Section 6.6.

6.2 Data generation

We simulated data for n = 500, 1000, 2500 individuals, each of whom can fail from
one of two causes. Individuals are followed over a period of maximally 14 years;
random right-censoring, which is independent of survival time, occurred uniformly
between 5 years and 14 years. Assume Z = (Z1, Z2) is a vector of two binary
baseline covariates chosen such that P (Z1 = 0) = 0.7 and P (Z2 = 0) = 0.5.
We generated data as random samples drawn from a multi-state model X(t)t≥0,
as shown in Figure 6.1, whose state space comprises 4 states: an initial state,
denoted by state 1, an intermediate state, denoted by 2, and two terminal events
which act as competing risks, denoted by states 3 and 4, respectively. In the
multi-state model there are five transitions possible across these states, whose
transition intensities, defined by

λgh(t| Ft− , Z) = lim
∆t→0

P (X(t+ ∆t) = h|X(t) = g,Z,Ft−)

∆t
,

are modeled by

λgh(t| Ft− , Z) = λgh,0(t) exp(βgh(t)>Z) , (6.1)

where λgh,0(t) is the baseline transition intensity of the transition from g to h,
βgh(t) = (βgh,1(t),βgh,2(t)) is a vector of (possibly, time-varying) transition-
specific regression parameters for the transition from g to h, for g, h ∈ {1, 2, 3, 4},
and Ft− stands for the process history up to time t, that is Ft− = {X(u) : 0 ≤
u < t}. Later (see (6.2)) we will consider the (non-Markov) case where λ23 and
λ24 depend on Ft− .

We chose piecewise constant baseline transition-specific intensities with a cut-
off point at t = 5; using matrix notation, λgh,0(t) is the (g, h) element of the
baseline transition intensity matrix denoted by Q(t), where

Q(t) ≡ Q1 =


−0.35 0.15 0.15 0.1

0 −0.35 0.25 0.1
0 0 1 0
0 0 0 1

 ,
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1 2

3

4

λ14(t|Z)

λ13(t|Z)

λ12(t|Z)

λ24(t|Z)

λ23(t|Z)

Figure 6.1: The multi-state model used in the data generation.

for t ∈ [0, 5) and

Q(t) ≡ Q2 =


−0.15 0.1 0.05 0.1

0 −0.3 0.25 0.15
0 0 1 0
0 0 0 1

 ,

for t ∈ [5, 14]. The diagonal terms Qgg(t) are defined as Qgg(t) = −
∑
h 6=g Qgh(t).

The choice of Q(t) is loosely based on the European Organization for Research
and Treatment of Cancer (EORTC) trial 10854 breast cancer data (van der Hage
(2001)), also used in Putter et al. (2006) and in van Houwelingen and Putter
(2012), with local recurrence as intermediate event (state 2) and distant metas-
tasis and death as endpoints (states 3 and 4, respectively).

In terms of regression coefficients, the effect of Z1 is taken to be constant,
equal to 0.75 for each transition, that is

βgh,1(t) = 0.75 for all transitions g → h ,
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while the effect of Z2, also taken to be the same for all transitions, is possibly
time-varying, that is

βgh,2(t) =

{
c1 if t ∈ [0, 2.5)

c2 if t ∈ [2.5, 14]
,

for all possible combinations (c1, c2), where we take c1 = ±0.5, and for c1 = −0.5
we take c2 ∈ {−1,−0.5, 0} and for c1 = 0.5 we take c2 ∈ {0, 0.5, 1}.

Data from different individuals are supposed to be independent.
Under this setting, we deal with a Markov multi-state model, which we refer

to as the ”true” Markov model and which will be used to generate various data
sets in our simulations; note that its initial distribution is degenerate in state
1. Notably here, several transition probabilities of the true Markov model are
referential because they will be used to assess the accuracy of our methods in
estimating several dynamic prediction probabilities. More exactly, the targeted
transition probabilities are Pgh(s, t|Z = 0) = P

(
X(t) = h|X(s) = g,Z = 0) at

various pre-specified time points s. They are referred to as the ”true” dynamic
prediction probabilities, and are given by

P
(M)
gh (s, t|Z = 0

)
=

[
exp{(t− s) ·Q1}

]
gh
, for 0 ≤ s < t ≤ 5 ,

P
(M)
gh (s, t|Z = 0

)
=

[
exp{(5− s) ·Q1} · exp{(t− 5) ·Q2}

]
gh
, for 0 ≤ s ≤ 5 < t ,

P
(M)
gh (s, t|Z = 0

)
=

[
exp{(t− s) ·Q2}

]
gh
, for 5 ≤ s < t ≤ 14 ,

where, for a matrix W , notation
[

exp{W}
]
gh

stands for the (g, h) element of the

matrix exp{W} (see Horn et Johnson (1991)).
We will also be interested to study the performance of different dynamic pre-

diction methods under departures from the Markov assumption, allowing transi-
tion probabilities to the terminal states to depend on the time to reach state 2.
To accomplish this we modify the cause-specific hazards model in (6.1) such that

λ2h(t| Ft− , Z) = λ2h,0(t) exp(β2h(t)>Z + ξ2h · T2) , (6.2)

where T2 stands for the time to reach state 2 from state 1 and ξ2h is the corre-
sponding regression coefficient for transition 2 → h, h ∈ {3, 4}. Possible combi-
nations (ξ23, ξ24) considered in our set-up are ξ23 = −0.5 and ξ24 ∈ {±0.5, 0}.

Under this new setting, we deal with a non-Markov multi-state model, which
we refer to as the ”true” non-Markov model and which will be used to generate
various data sets in our simulations; note that its initial distribution is degenerate
in state 1. Again, several transition probabilities of the true non-Markov model
are of reference because they will be used to asses the accuracy of our methods
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in estimating several dynamic prediction probabilities. These are the transition
probabilities to the terminal states h = 3, 4 at various pre-specified time points

s, which we denote by P
(nM)
gh (s, t|Z = 0

)
. They cannot be estimated exactly; in-

stead, they can be approximated by a Monte Carlo method. To this goal, during
the data generation process from this non-Markov model, before the censoring is
applied we counted for each of the simulated data set for each of the relevant com-
binations of g, h, s, t,Z how many satisfied X(s) = g,Z (denominator) and how
many satisfied X(s) = g,Z, X(t) = h (nominator). The Monte Carlo conditional
probabilities were finally obtained by adding the numerators and denominators
over all simulated data sets and taking the ratio.

6.3 Dynamic prediction

Our problem can be formulated in two equivalent ways, as follows.

The multi-state formulation

We are interested in the dynamic prediction probability of experiencing a terminal
event of a given type h, h ∈ {3, 4}, i.e. we want to model and estimate the
probability of experiencing a terminal event of type h by time t, conditional on
being event-free at a certain time s and possibly on a set of values for prognostic
factors Z of a patient, that is

P (X(t) = h|Z, {X(u), u ≤ s}, X(s) ∈ {1, 2}) , (6.3)

where h ∈ {3, 4}.

The competing risks formulation

It is worth noting that the multi-state process X(t) can be reformulated as a
competing risks process with a time-dependent covariate. Using the standard
competing risks notation, we denote by T the event time variable, that is the
time spent by the multi-state process X(t) to reach one of the two competing,
terminal events 3 or 4 from state 1, irrespective of the trajectory taken to reach
it (irrespective whether it previously reached state 2 or not), and by D the cor-
responding type of terminal event, that is D ∈ {3, 4}. The transition of X(·)
from state 1 to state 2 at some time s can be conveniently interpreted in this
new framework as the change in status, at time s, of a binary time-dependent
covariate Z3(·) from 0 (before s) to 1 (from time s onwards). More exactly, given
that the subject is event-free at time s, Z3(s) = 0 if and only if X(s) = 1 and
Z3(t) = 1 for all t ≥ s if and only if X(s) = 2. Our target can be reformulated as
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to model and estimate the conditional (on T > s) cumulative incidence function
of cause h at time t, given no event by time s and given the current status of
covariates at time s, that is

P (T ≤ t, D = h|Z(s), T > s) , (6.4)

where Z(s) = (Z1, Z2, Z3(s)) and h ∈ {3, 4}.
In the remainder of the paper, we will specify in each context which formula-

tion is preferred.

6.4 Methods

There are different ways to approach the modeling and estimation of the dynamic
prediction probabilities (6.3) or (6.4). In the following, we will discuss three
different perspectives on this problem.

6.4.1 Landmarking based on cause-specific hazards

General methods

We adopt the competing risks formulation and use the landmark approach de-
scribed in Nicolaie et al. (2013a). To this goal, define a set of landmark time
points 0 ≤ s1 < . . . < sK . We want to model and estimate dynamic prediction
probabilities at each s ∈ [0, sK ] and for a fixed width prediction window w (such
that sK + w < 14), that is we want to infer over intervals of the form [s, s + w]
for varying s, s ∈ [0, sK ]. We build the landmark data sets corresponding to the
selected grid of landmark time points.

For a fixed s, we postulate a Cox proportional hazards model on each condi-
tional (on T > s) cause-specific hazard, that is

λh(t| Z(s), s) = λh0(t|s) exp(φh(s)>Z(s)), t ∈ [s, s+ w], (6.5)

where λh0(t|s) is the conditional (on T > s) cause-specific baseline hazard of
cause h, φh(s) is a vector of unknown regression coefficients, for h = 3, 4. We
refer to (6.5) as to the separate landmark model; its parameters can be estimated
by fitting the model to the landmark data set corresponding to s, where we
impose administrative censoring at s+ w. The dynamic prediction probabilities
(6.4) can be estimated by

P̂ sep
h,CS(s+ w|Z(s), s) =

∑
s<ti≤s+w

λ̂h(ti|Z(s), s)ŜLM(ti − |Z(s), s), h = 3, 4, (6.6)
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where
λ̂h(ti| Z(s), s) = λ̂h0(ti|s) exp(φ̂h(s)>Z(s)), ti > s,

is the estimated conditional cause-specific hazard at the event time ti,

ŜLM(s+ w|Z(s), s) = exp
(
−

4∑
h=3

eφ̂h(s)>Z(s)Λ̂h0(s+ w|s)
)

and Λ̂h0(t|s) =
∑
ti≤t λ̂h0(ti|s) is the estimated conditional (on T > s) cumulative

cause-specific baseline hazard of cause h at time t, h = 3, 4. Note that the
estimated baseline hazards depend on the landmark time point s, because a
separate model is fitted at each s.

Further, we include dynamic prediction methods based on cause-specific haz-
ards that combine information from all landmark data sets. For s ∈ [0, sK ], we
postulate model (6.5) and we model the regression coefficients as follows

φh(s) = f(s;φ(h)), (6.7)

where φ(h) = (φ(h1), . . . , φ(hph)) is a ph-vector of regression parameters for h =
3, 4 and f(·) is a parametric function of s, and the cause-specific baseline hazards
λh0(t|s), conditional on T > s, is an unspecified function of t, that is, for each
cause h, each landmark time point s has a separate cause-specific baseline hazard,
h = 3, 4.

Combining models (6.5) and (6.7) leads to the stratified supermodels on the
conditional (on T > s, for varying s) cause-specific hazards, which are denoted

now by λ]h(t|Z(s), s), h = 3, 4 and can be estimated by fitting the stratified
supermodels to the data set obtained by stacking the landmark data sets, where
we impose administrative censoring at s+w, for varying s (see van Houwelingen
(2007) and Nicolaie et al. (2013a)). The dynamic prediction probabilities (6.4)
can be estimated by

P̂ str
h,CS(s+ w|Z(s), s) =

∑
s<ti≤s+w

λ̂]h(ti|Z(s), s)ŜLM(ti − |Z(s), s), s ∈ [0, sK ],

(6.8)
h = 3, 4, where

λ̂]h(ti|Z(s), s) = λ̂]h0(ti|s) exp(φ̂h(s)>Z(s)),

ŜLM(s+ w|Z(s), s) = exp
(
−

4∑
h=3

eφ̂h(s)>Z(s)Λ̂]h0(s+ w|s)
)
,

s ∈ [0, sK ] and Λ̂]h0(t|s) =
∑
ti≤t λ̂

]
h0(ti|s) is the estimated cumulative cause-
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specific baseline hazard of cause h at time t, h = 3, 4, specific to landmark time
point s.

We obtain another dynamic prediction model if we postulate

λh0(t|s) = λh0(t) exp(γh(s)), (6.9)

where γh(s) are some parametric functions of s for h = 3, 4, with the restriction
γ(0) = 0 to guarantee identifiability. We assume that

γh(s) = g(s; γ(h)) , (6.10)

where γ(h) = (γ(h1), . . . , γ(hrh)) is a rh-vector of regression parameters and g(·)
is a parametric function of s, for h = 3, 4.

Combining models (6.5), (6.7) and (6.9)–(6.10) leads to the so-called super-
models on the conditional (on T > s, for varying s) cause-specific hazards, which
are denoted now by λ∗h(t|Z(s), s), h = 3, 4, and can be estimated by fitting the
supermodels to the data set obtained by stacking the landmark data sets, where
we impose administrative censoring at s+w, for varying s (see van Houwelingen
(2007) and Nicolaie et al. (2013a)). The dynamic prediction probabilities (6.4)
can be estimated by

P̂ sup
h,CS(s+ w|Z(s), s) =

∑
s<ti≤s+w

λ̂∗h(ti|Z(s), s)ŜLM(ti − |Z(s), s), s ∈ [0, sK ],

(6.11)
h = 3, 4, where

λ̂∗h(ti|Z(s), s) = λ̂h0(t) exp(φ̂h(s)>Z(s) + γ̂h(s)),

ŜLM(s+ w|Z(s), s) = exp
(
−

4∑
h=3

eφ̂h(s)>Z(s)+γ̂h(s)
[
Λ̂∗h0(s+ w)− Λ̂∗h0(s−)

])
,

s ∈ [0, sK ] and Λ̂∗h0(t) =
∑
ti≤t λ̂

∗
h0(ti) is the estimated cumulative cause-specific

baseline hazard of cause h at time t, h = 3, 4.

Model building

We fix the prediction window width w at 5 years and prediction time points
sk ∈ {0, 1, . . . , 5} years. We computed predictions over [sk, sk + 5]. Building of
the separate and (stratified) supermodels is based on a covariate selection pro-
cedure, which is described in the following. Besides, for building the (stratified)
supermodel we select a denser grid of prediction time points, that is, the sequence
from 0 to 5 of equally spaced values with an increment of 0.2.
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First, for a fixed sk, the separate landmark model at sk is given by

λh(t| Z(sk), sk) = λh0(t|sk) exp(φh1(sk)Z1 + φh2(sk)Z2 + φh3(sk)Z3(sk)),

t ∈ [sk, sk + 5], with the restriction φh3(0) = 0. We removed from the model
those covariates for which the corresponding subset of individuals at sk belongs
to only one subgroup as defined by that covariate. For h = 3, 4, we computed
P̂ sep
h,CS(sk+5|Z1i, Z2i, Zi3(sk) = 0, sk) using (6.6) for individuals i with Zi3(sk) = 0

and P̂ sep
h,CS(sk + 5|Z1i, Z2i, Z3i(sk) = 1, sk) for individuals i with Zi3(sk) = 1.

For building the (stratified) supermodels, we chose for each covariate fh(s) =
φ(h1) + φ(h2)s + φ(h3)s2 and γh(s) = γ(h1)s + γ(h2)s2, h = 3, 4. For each of the
competing endpoints h = 3 and h = 4, a backward selection procedure was used,
starting from a model with all time-fixed covariates effects described by quadratic
terms, where Wald tests were used to test whether the linear and quadratic terms
φ(h2), φ(h3), γ(h1) and γ(h2) could be removed. This resulted in a final (stratified)

supermodel based on which we computed P̂M
h,CS(sk + 5|Z1i, Z2i, Zi3(sk) = 0, sk)

based on (6.8) and (6.11) for individuals i with Zi3(sk) = 0 and P̂M
h,CS(sk +

5|Z1i, Z2i, Z3i(sk) = 1, sk) for individuals i with Zi3(sk) = 1, where M = str and
M = sup.

6.4.2 Models based on dynamic pseudo-observations

General methods

We adopt the competing risks formulation and we use the landmark approach
described in Nicolaie et al. (2013b). To this goal, define a set of landmark time
points 0 ≤ s1 < . . . < sK . We want to model and estimate dynamic prediction
probabilities at each s ∈ [0, sK ] and for a fixed width prediction window w (such
that sK + w < 14), that is we want to infer over intervals of the form [s, s + w]
for varying s, s ∈ [0, sK ]; note that this time we do not impose administrative
censoring at the horizon s+w. Denote by Ds the landmark data set corresponding
to s and by ns its sample size.

Let s < t be two time points and define the cumulative incidence of event h,
conditional on being event-free at time s, by

Fh(t|s) = P (T ≤ t,D = h|T > s), for h = 3, 4.

We denote by t1 < t2 < . . . the distinct times at which events occur irrespective
of the cause. Let dh(tk) be the number of individuals who die at time tk from

cause h and d(tk) =
∑4
h=3 dh(tk) be the number of individuals who die at time tk

from any cause. Let r(tk) be the number of individuals at risk just prior to time

tk. Let F̂h(·|s) be the non-parametric estimator of the conditional probability
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Fh(·|s), as given by

F̂h(t|s) =
∑

s<tk≤t

Ŝ(tk − |s)
dh(tk)

r(tk)
, (6.12)

where

Ŝ(t− |s) =
∏

s<tl≤t

{
1− d(tl)

r(tl)

}
is the Kaplan-Meier estimate of the conditional survival function given no event
before time s.

Define the dynamic pseudo-observation within Ds for 1{T ≤ s + w,D = h}
for individual i at risk at s by

θ̂his = nsF̂h(s+ w|s)− (ns − 1)F̂h
(−i)

(s+ w|s), (6.13)

where F̂h
(−i)

(t|s) is the non-parametric Aalen-Johansen estimator of Fh(t|s)
based on the sample of size ns − 1 obtained by eliminating individual i from
Ds, for h = 3, 4 and i = 1, . . . , ns.

For a fixed s and a cause h, the separate landmark approach consists of specify-

ing a generalized linear model on the expectation µ
(h)
i (s) = E[Yi(s)|Zi(s), Ti > s]

of the indicators Yi(s) = 1{Ti ≤ s+w,Di = h} for individual i at risk at s, that
is

g(µ
(h)
i (s)) = β>(h)(s)Z

∗
i (s), (6.14)

for a given link function g, where β(h)(s) = (β
(h)
0 (s), β

(h)
1 (s), . . . , β

(h)
p (s)) and

Z∗(s) = (1, Z>(s))>, so that β
(h)
0 (s) stands for the intercept, for h = 3, 4. We

shall refer to model (6.14) as the separate landmark model based on the dynamic
pseudo-observations.

Under mild conditions, the vector of regression parameters β(h)(s) could be
estimated consistently by using generalized estimating equations; for details see
Nicolaie et al. (2013b). Let β̂(h)(s) be the estimator of β(h)(s). The dynamic
prediction probabilities (6.4) can be estimated by

P̂ sep
h,PS(s+ w|Z(s), s) = g−1(β̂>(h)(s)Z̃

∗
(s)), h = 3, 4, (6.15)

where Z̃
∗
(s) = (1, Z̃(s)).

Now we want to combine information from different Ds. For s ∈ [0, sK ], we
postulate model (6.14) and we model the time-dependent β(h)(s) such that

β(h)(s) = f(s;β(h)), (6.16)
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where f(·) is a parametric linear function of s. Define β(h) to be the vector
containing all regression vectors.

Combining models (6.14) and (6.16) leads to the supermodel on the dynamic
pseudo-observations. Under mild conditions and assuming a working indepen-
dence correlation across the dynamic pseudo-observations of an individual for
different landmark time points, the vector of regression parameters β(h) could

be estimated consistently by using generalized estimating equations. Let β̂(h) be

the estimator of β(h). Then the vector β̂(h)(s) can be written as H(s)β̂(h), with
H(s) a (p + 1) × q matrix containing the linear components of function f . The
dynamic prediction probabilities (6.4) can be estimated by

P̂ sup
h,PS(s+ w|Z(s), s) = g−1(β̂(h)(s)

>Z̃
∗
(s)), s ∈ [0, sK ], h = 3, 4, (6.17)

where Z̃
∗
(s) = (1, Z̃(s)).

Model building

We fix the prediction window width and prediction time points as in Section 6.4.1.
Building of the separate model and of the supermodel is based on a covariate
selection procedure, which is described in the following. Besides, for building the
supermodel we select a wider grid of prediction time points, that is, the sequence
from 0 to 5 of equally spaced values with an increment of 0.2.

First, for a fixed sk and a fixed h, the separate landmark model at sk is given
by

g(µi(sk)) = β
(h)
1 (sk)Z1 + β

(h)
2 (sk)Z2 + β

(h)
3 (sk)Z3(sk),

with the restriction β
(h)
3 (0) = 0, for h = 3, 4. We removed from the model those

covariates for which the corresponding subset of individuals at baseline belongs
to only one subgroup as defined by each covariate. We computed P̂ sep

h,PS(sk +

5|Z1i, Z2i, Zi3(sk) = 0, sk) for individuals i with Zi3(sk) = 0 and P̂ sep
h,PS(sk +

5|Z1i, Z2i, Z3i(sk) = 1, sk) for individuals i with Zi3(sk) = 1, both using (6.15).
For building supermodels, we chose for each covariate β(h)l(s) = β(h)l1 +

β(h)l2s + β(h)l3s
2. For each of the competing end points h = 3 and h = 4, a

backward selection procedure was used, starting from a model with all time-fixed
covariates effects described by quadratic terms, where Wald tests were used to test
whether the linear and quadratic terms could be removed. This resulted in a final
supermodel based on which we computed P̂ sup

h,PS(sk + 5|Z1i, Z2i, Zi3(sk) = 0, sk)

for individuals i with Zi3(sk) = 0 and P̂ sup
h,PS(sk + 5|Z1i, Z2i, Z3i(sk) = 1, sk) for

individuals i with Zi3(sk) = 1, for h = 3, 4, both using (6.17).
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6.4.3 Markov multi-state model

General method

We adopt the multi-state formulation. The multi-state approach relies on as-
suming that the multi-state process X(t) is Markovian and its distribution is
specified through the transition-specific hazards λgh(t). We postulate Cox pro-
portional hazards model on each λgh(t|Z), that is

λgh(t| Ft− , Z) = λgh,0(t) exp(ζ>ghZ), (6.18)

where λgh,0(t) is an unspecified transition-specific intensity and ζgh stands for a
vector of regression parameters, for all possible transitions g → h.

The transition probabilities, for s ≤ t and h = 3, 4 are given by:

P12(s, t|Z) =

∫ t

s

P11(s, u− |Z)λ12(u|Z)P22(u, t|Z)du,

P2h(s, t|Z) =

∫ t

s

P22(s, u− |Z)λ2h(u|Z)du,

P1h(s, t|Z) =

∫ t

s

[
P11(s, u− |Z)λ1h(u|Z) + P12(s, u− |Z)λ2h(u|Z)

]
du,

where Pjj(s, t|Z) = exp
{
−
∑
l>j

∫ t
s
λjl(u|Z)du

}
, j = 1, 2, stand for the state

occupation probabilities. The transition probability matrix

P (s, t|Z) = (Pgh(s, t|Z))g,h∈{1,...,4}

can be estimated by the Aalen-Johansen estimator (Aalen and Johansen, 1978).
However, note that the effect of Z on P1h(s, t|Z) is not described by simple param-
eters. We denote the estimated dynamic prediction probabilities (6.3) obtained

via this Markov multi-state approach by P̂h,MM(s+ w|Z, s), h = 3, 4.

Model building

We fix the prediction window width and prediction time points as in Section 6.4.1.
We removed from the modeling of a certain transition those baseline covariates for
which the corresponding subset of individuals at risk for that transition belongs
to only one subgroup as defined by each covariate. We computed P̂h,MM(sk +

5|Zi, X(sk) = 1, sk) for individuals i with X(sk) = 1 as P̂1h(sk, sk + 5|Zi) and

P̂h,MM(sk + 5|Zi, X(sk) = 2, sk) for individuals i with X(sk) = 2 as P̂2h(sk, sk +
5|Zi).
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6.5 Simulation and results

Each of the methods introduced in Sections 6.4.1, 6.4.2 and 6.4.3 were ap-
plied to each of the simulated data sets. We computed the probabilities P̂ sep

h,CS,

P̂ str
h,CS, P̂ sup

h,CS, P̂ sep
h,PS, P̂ sup

h,PS and P̂h,MM at each of the prediction time points
sk ∈ {0, 1, . . . , 5} years and for a prediction window width of 5 years, for an
individual i with Zi1 = Zi2 = 0. We reported the estimated bias and root mean
squared error (RMSE) on a scale of order 10−2, when the true underlying model
is either Markovian or non-Markovian. Results will be shown for specific choices
of scenarios. We ran 10000 simulations on each scenario.

6.5.1 True Markovian model

First, we study the case where the multi-state model is Markovian and the co-
variates exhibit time-fixed effects on the transition intensities. Results are shown
for c1 = c2 = −0.5 and ξ23 = ξ24 = 0. Therefore, the distinction between the two
competing events becomes apparent only at the baseline transition intensities.
Table 6.1 shows the results.

In terms of model fitting, the multi-state model of Section 6.4.3 is larger than
the true underlying model because the proposed model (6.18) allows Z to exhibit
transition-specific effects. The landmark models of Sections 6.4.1 and 6.4.2 are
hard to reconcile with the true underlying model because they are not compre-
hensive models; however, note that they assume no common effect of Z on the
dynamics of the two competing events (see (6.5) and (6.14)). Instead, the two
landmark approaches of Sections 6.4.1 and 6.4.2 differ from each other with re-
spect to the functional relation between covariates and conditional cumulative
incidence function at s+ w (see, e.g., (6.11) and (6.17)).

In general, the estimates are close to the true values though a slight bias is
observed. The clear winner is the multi-state approach: virtually unbiased and
smaller RMSE than competitors.

As expected, the most accurate estimates across the landmark models are
P̂ sep
h,CS, P̂ sep

h,PS and P̂ sup
h,PS, while the most efficient estimates overall are P̂h,MM.

With the landmark model based on dynamic pseudo-observations, the esti-
mators produced comparable RMSE, but higher bias for supermodels than for
separate models. With the separate landmark model based on cause-specific haz-
ards, the estimators produced acceptable bias and slightly smaller RMSE than
the separate landmark model based on dynamic pseudo-observations. Of special
note, supermodels based on cause-specific hazards come with large bias, smaller
for the stratified one.

An interesting observation goes directly to the core of the issue concerning
the large bias of P̂ sup

h,CS. We plotted the estimated cumulative baseline all-causes
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Table 6.1: Estimated bias and RMSE for c1 = c2 = −0.5 and ξ23 = ξ24 = 0.

P̂h,MM P̂ sup
h,CS

No intermediate Event Intermediate Event No intermediate Event Intermediate Event
LM Event 3 Event 4 Event 3 Event 4 Event 3 Event 4 Event 3 Event 4

0 0.00 (3.29) 0.00 (2.93) 4.21 (5.89) 2.86 (4.70)
1 0.03 (3.59) 0.01 (3.25) 0.05 (6.21) -0.11 (5.55) 2.04 (4.71) 0.92 (3.91) 3.35 (7.63) 0.42 (5.58)
2 0.09 (3.99) 0.04 (3.75) 0.06 (6.24) -0.07 (5.62) -1.36 (4.96) -0.38 (4.45) -1.56 (6.74) -0.61 (5.53)
3 0.16 (4.51) 0.10 (4.38) 0.12 (6.69) -0.05 (6.12) -4.28 (6.69) -1.45 (5.34) -6.79 (9.76) -1.36 (6.10)
4 0.08 (5.10) 0.25 (5.40) 0.21 (7.42) -0.10 (6.94) -5.36 (7.84) -2.80 (6.80) -11.14 (13.81) -2.28 (7.15)
5 0.09 (5.88) 0.34 (7.00) 0.22 (8.44) -0.11 (8.12) -3.38 (7.42) -4.93 (9.24) -13.91 (17.42) -3.56 (9.25)

P̂ str
h,CS P̂ sep

h,CS

No intermediate Event Intermediate Event No intermediate Event Intermediate Event
LM Event 3 Event 4 Event 3 Event 4 Event 3 Event 4 Event 3 Event 4

0 0.05 (3.61) 0.00 (3.24) 0.02 (3.40) 0.01 (3.05)
1 -0.29 (3.96) -0.09 (3.57) 0.46 (6.86) 0.45 (5.57) -0.06 (4.07) 0.00 (3.72) -0.51 (7.61) -0.18 (6.67)
2 -0.12 (4.41) 0.00 (4.13) -0.82 (6.29) 0.00 (5.35) 0.04 (4.87) 0.11 (4.62) -1.13 (7.17) -0.45 (6.31)
3 0.23 (4.91) 0.33 (4.83) -1.27 (6.45) -0.55 (5.60) 0.13 (5.84) 0.33 (5.79) -1.29 (7.71) -0.59 (6.82)
4 0.82 (5.97) 0.75 (5.95) -1.52 (7.82) -0.93 (6.47) -0.04 (6.98) 0.43 (7.43) -0.74 (8.80) -0.48 (7.90)
5 2.73 (8.40) 0.55 (7.72) -2.21 (10.61) -0.74 (8.32) -1.14 (8.19) 0.11 (9.64) 1.17 (10.94) -0.05 (9.61)

P̂ sup
h,PS P̂ sep

h,PS

No intermediate Event Intermediate Event No intermediate Event Intermediate Event
LM Event 3 Event 4 Event 3 Event 4 Event 3 Event 4 Event 3 Event 4

0 -0.93 (3.85) -0.48 (3.37) -0.70 (3.53) -0.58 (3.12)
1 -0.44 (4.00) -0.62 (3.51) -0.54 (6.97) -0.72 (5.76) -0.59 (4.24) -0.54 (3.79) -0.90 (7.92) -0.83 (6.71)
2 -0.52 (4.65) -0.59 (4.19) -0.37 (6.36) -0.51 (5.45) -0.50 (5.10) -0.58 (4.68) -0.61 (7.30) -0.55 (6.39)
3 -0.85 (5.30) -0.54 (5.00) -0.27 (6.82) -0.23 (6.03) -0.53 (6.15) -0.62 (5.82) -0.22 (7.78) -0.27 (6.92)
4 -0.81 (6.58) -0.65 (6.59) -0.16 (7.98) -0.07 (7.06) -0.68 (7.46) -0.74 (7.51) 0.09 (8.97) 0.08 (8.11)
5 0.90 (8.68) -1.19 (9.66) -0.04 (11.17) 0.10 (9.79) -0.78 (8.91) -0.90 (9.93) 0.25 (11.20) 0.49 (9.90)
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hazards of the stratified supermodel and of the supermodel on cause-specific
hazards in Figure 6.2 based on a representative simulated data set. We compared
them with the cumulative baseline all-causes hazards obtained from the true
Markovian model of this scenario. The steeper increase in the cumulative all-
causes hazards obtained from the former landmark method compared to the
latter landmark method reflects the fact that information on the number and
type of events is used differently in the two models. An exploratory analysis in
which we replaced the second degree polynomials in (6.10) by smoothing splines
led to the same amount of bias. This aspect needs to be further investigated.

The higher variability in the estimates of dynamic prediction probabilities of
cause h = 3 compared to those of cause h = 4 consistently observed for each
modeling technique can be explained by the steeper decrease of the number of
events of type h = 3 compared to those of cause h = 4 across the prediction
intervals [s, s+ w], as suggested by Figure 6.3.

Secondly, we study the case where the true underlying multi-state model is
Markovian and the covariates exhibit either time-fixed or time-varying effects on
the transition intensities. We take c1 = c2 = −0.5 for t ∈ [0, 2.5], c1 = −0.5 and
c2 = −1 for t ∈ [2.5, 14], and ξ23 = ξ24 = 0. Again, the distinction between the
two competing events becomes apparent only at the baseline transition intensities.
Table 6.2 shows the results.

In terms of model fitting, the multi-state model of Section 6.4.3 misspecifies
the true underlying model because the model (6.18) does not capture the time
varying-effect βgh,2(t) of Z2, but ζgh,2 rather estimates a time averaged effect of
Z2 over [0, 14].

In terms of variability, the winner is again the multi-state model, which pro-
duces the best precision despite the fact that the fit of the model is not perfect.
In terms of bias, the estimators P̂ str

h,CS, P̂ sep
h,CS, P̂ sep

h,PS and P̂ sup
h,PS are quite compa-

rable, with smaller bias than the multi-state model. This phenomenon clearly
shows the trade-off present with modeling by the two techniques, the (separate)
landmark model on dynamic pseudo-observations producing smallest bias, while
the Markovian multi-state inferring at the least waste of information. Intuitively,
having less information should result in the variance increasing. Again, the P̂ sup

h,CS

performs dramatically in terms of bias. However, when we increased the mag-
nitude of the time-varying effect of Z2 (we replaced c2 = −1 by c2 = −2 for
t ∈ [2.5, 14] in the true model), the variability (both bias and RMSE) exceedingly
increased for the multi-state approach, while the landmark models performed
relatively stable (results not shown).

We were also interested to check how much our dynamic prediction techniques
were influenced by the sample size. To this goal, we increased the sample size
to n = 1000. As expected, all the methods produced slightly more accurate
estimators in terms of RMSE, while bias did not change appreciably.
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Figure 6.2: The all-causes cumulative baseline hazards from (a) the stratified
landmark supermodel and (b) the supermodel on cause-specific hazards based
on one simulated data set (in black), and the true cumulative baseline all-causes
hazards (in grey), when the true underlying model is Markovian with no covariate
effects.
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Table 6.2: Estimated bias and RMSE for c1 = c2 = −0.5 for t ∈ [0, 2.5], c1 = −0.5
and c2 = −1 for t ∈ [2.5, 14], and ξ23 = ξ24 = 0.

P̂h,MM P̂ sup
h,CS

No intermediate Event Intermediate Event No intermediate Event Intermediate Event
LM Event 3 Event 4 Event 3 Event 4 Event 3 Event 4 Event 3 Event 4

0 -0.68 (3.35) -0.14 (2.96) 4.51 (6.05) 3.32 (4.97)
1 -1.76 (3.99) -0.81 (3.42) -0.17 (6.27) -0.15 (5.56) 1.31 (4.51) 0.63 (3.94) 2.69 (7.59) 0.26 (5.76)
2 -3.27 (5.17) -1.62 (4.22) -0.91 (6.52) -0.39 (5.81) -3.16 (5.84) -1.25 (4.82) -3.06 (7.54) -1.20 (5.84)
3 -4.38 (6.26) -2.40 (5.19) -1.50 (7.22) -0.46 (6.49) -6.61 (8.44) -2.76 (6.06) -8.75 (11.47) -2.21 (6.56)
4 -4.43 (6.63) -3.02 (6.25) -1.55 (8.02) -0.52 (7.39) -7.52 (9.51) -4.34 (7.73) -12.85 (15.47) -3.22 (7.73)
5 -3.87 (6.61) -4.12 (7.90) -1.63 (9.15) -0.52 (8.69) -5.36 (8.51) -6.51 (10.27) -15.08 (18.65) -4.43 (9.81)

P̂ str
h,CS P̂ sep

h,CS

No intermediate Event Intermediate Event No intermediate Event Intermediate Event
LM Event 3 Event 4 Event 3 Event 4 Event 3 Event 4 Event 3 Event 4

0 -0.40 (3.84) 0.14 (3.43) -0.97 (3.53) -0.58 (3.16)
1 -0.83 (4.03) -0.24 (3.61) -0.04 (7.07) 0.36 (5.75) -1.09 (4.21) -0.56 (3.84) -1.57 (7.93) -0.73 (6.83)
2 -1.20 (4.86) -0.54 (4.43) -1.36 (6.68) -0.47 (5.56) -0.65 (4.98) -0.16 (4.71) -1.39 (7.53) -0.78 (6.54)
3 -1.18 (5.74) -0.50 (5.48) -1.93 (7.31) -1.17 (6.13) -0.20 (5.99) 0.34 (5.94) -0.85 (7.95) -0.65 (7.08)
4 -0.33 (6.93) -0.22 (6.81) -1.95 (8.95) -1.54 (7.26) -0.56 (7.21) 0.47 (7.64) -0.33 (9.00) -0.58 (8.02)
5 1.59 (9.15) -0.72 (8.82) -2.67 (11.90) -1.39 (9.24) -1.61 (8.28) 0.03 (9.86) 1.45 (10.95) -0.10 (9.65)

P̂ sup
h,PS P̂ sep

h,PS

No intermediate Event Intermediate Event No intermediate Event Intermediate Event
LM Event 3 Event 4 Event 3 Event 4 Event 3 Event 4 Event 3 Event 4

0 -0.79 (3.92) -0.44 (3.50) -0.80 (3.59) -0.73 (3.23)
1 -0.52 (4.06) -0.84 (3.65) -0.53 (7.10) -0.72 (5.91) -0.68 (4.28) -0.76 (3.91) -1.03 (8.05) -0.93 (6.91)
2 -0.77 (4.84) -1.02 (4.39) -0.28 (6.59) -0.51 (5.65) -0.65 (5.14) -0.91 (4.80) -0.34 (7.52) -0.46 (6.64)
3 -1.28 (5.55) -1.19 (5.28) -0.07 (7.11) -0.07 (6.28) -0.79 (6.18) -1.19 (6.01) 0.25 (8.01) 0.04 (7.24)
4 -1.31 (6.75) -1.51 (6.94) 0.29 (8.25) 0.34 (7.34) -1.06 (7.53) -1.45 (7.78) 0.69 (9.20) 0.53 (8.28)
5 0.32 (8.70) -2.12 (10.10) 0.96 (11.42) 0.92 (10.14) -1.37 (8.90) -1.91 (10.18) 0.83 (11.26) 1.24 (10.09)
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Figure 6.3: The true prediction probabilities P
(M)
1h (s, s+5|Z1 = Z2 = 0), h = 3, 4,

for varying s ∈ [0, 5], when the underlying model is the Markovian model used
for Table 1 or for Table 2 at the baseline values of covariates Z1 = Z2 = 0.

6.5.2 True non-Markovian model

Here, we study the case where the true underlying multi-state model is non-
Markovian and the baseline covariates exhibit time-fixed effects on the transition
intensities. We take c1 = c2 = −0.5 and ξ23 = −0.5, ξ24 = 0.5. Therefore,
the distinction between the two competing events becomes apparent at baseline
transition intensities and covariate effects levels. Table 6.3 shows the results.

A remarkable fact is that across the landmark models, the estimators remain
nearly of the same quality as in the previous scenarios. Instead, the multi-state
model of Section 6.4.3 produced larger bias and RMSE; this is especially true
for early prediction times and when the intermediate event occurs. Here, for
sk ∈ {0, 1}, the multi-state approach is beaten by the last four methods for
”no intermediate event”; instead, for ”intermediate event”, this is true for sk ∈
{0, 1, 2, 3}.

6.6 Discussion

We have compared several modeling approaches to competing risks in order to
asses their prediction accuracy when the goal is to do dynamic prediction of the
competing events in the presence of time-dependent covariates. Several important
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Table 6.3: Estimated bias and RMSE for the non-Markovian scenario for c1 =
c2 = −0.5 and ξ23 = −0.5, ξ24 = 0.5.

P̂h,MM P̂ sup
h,CS

No intermediate Event Intermediate Event No intermediate Event Intermediate Event
LM Event 3 Event 4 Event 3 Event 4 Event 3 Event 4 Event 3 Event 4

0 -0.02 (3.28) 0.00 (3.11) 5.15 (6.57) 1.36 (4.13)
1 2.18 (4.13) -3.00 (4.61) -13.68 (14.96) 19.66 (20.62) 1.26 (4.22) 2.32 (4.83) -1.52 (7.28) 3.55 (8.16)
2 3.17 (5.00) -4.84 (6.27) -9.28 (10.87) 15.50 (16.67) -2.77 (5.13) 1.92 (5.38) -4.08 (7.33) 2.45 (7.23)
3 2.64 (5.07) -3.95 (6.12) -5.06 (7.62) 8.87 (10.92) -5.55 (7.18) 0.51 (5.85) -5.69 (8.01) -0.62 (7.37)
4 0.37 (4.94) -0.37 (5.65) -0.70 (6.22) 1.97 (7.19) -6.91 (8.67) -1.77 (7.14) -6.09 (8.20) -3.74 (9.18)
5 -3.94 (6.89) 5.54 (8.96) 4.62 (8.66) -5.26 (9.62) -7.25 (9.66) -4.28 (9.09) -5.91 (8.49) -5.82 (12.13)

P̂ str
h,CS P̂ sep

h,CS

No intermediate Event Intermediate Event No intermediate Event Intermediate Event
LM Event 3 Event 4 Event 3 Event 4 Event 3 Event 4 Event 3 Event 4

0 0.18 (3.63) -0.20 (3.39) 0.13 (3.36) -0.16 (3.27)
1 0.37 (3.82) -0.39 (3.96) -1.94 (6.99) 1.09 (6.83) 0.03 (3.92) -0.11 (4.07) -0.17 (7.56) 0.01 (7.34)
2 0.06 (4.12) 0.12 (4.58) -0.09 (6.05) -0.88 (6.44) 0.10 (4.61) 0.18 (4.96) -0.51 (7.02) -0.65 (7.27)
3 -0.34 (4.54) 1.03 (5.43) 0.52 (5.71) -1.94 (6.86) 0.33 (5.54) 0.57 (6.07) -0.86 (7.04) -1.16 (7.77)
4 -0.42 (5.30) 1.25 (6.44) -0.19 (5.57) -0.62 (6.93) 0.45 (7.01) 0.39 (7.38) -0.73 (7.37) -0.63 (8.33)
5 0.29 (6.92) 0.23 (7.88) -2.77 (6.80) 3.68 (8.93) 0.08 (9.24) -1.69 (8.89) -0.22 (8.63) 1.83 (9.76)

P̂ sup
h,PS P̂ sep

h,PS

No intermediate Event Intermediate Event No intermediate Event Intermediate Event
LM Event 3 Event 4 Event 3 Event 4 Event 3 Event 4 Event 3 Event 4

0 -0.52 (3.69) -0.85 (3.63) -0.50 (3.45) -0.97 (3.43)
1 -0.35 (3.85) -0.99 (3.95) -1.24 (7.25) -0.99 (6.37) -0.48 (4.03) -0.94 (4.23) -0.72 (7.86) -1.07 (7.35)
2 -0.32 (4.27) -1.07 (4.74) -0.51 (6.35) -0.47 (6.39) -0.46 (4.68) -0.88 (5.11) -0.42 (7.23) -0.76 (7.35)
3 -0.59 (4.76) -0.77 (5.49) 0.02 (6.45) -0.39 (7.03) -0.46 (5.56) -0.85 (6.25) -0.15 (7.24) -0.29 (7.84)
4 -0.90 (6.15) -0.68 (6.99) 0.42 (7.02) 0.14 (7.63) -0.57 (7.03) -0.89 (7.92) 0.27 (7.68) 0.32 (8.43)
5 -0.68 (8.87) -1.35 (9.51) 0.74 (8.74) 1.31 (9.51) -0.69 (9.39) -1.12 (10.15) 0.55 (9.00) 1.04 (9.81)
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distinctions can be made concerning these approaches. From the point of view of
functionals involved in the construction of the dynamic prediction probabilities,
the multi-state approach uses all the transition-specific intensities, which includes
the use of the covariate process; dynamic prediction probabilities are derived as
complex functionals of these intensities. In contrast, the landmark approaches
are concerned directly with the dynamic prediction probabilities and do need not
to specify a model for the covariate process. From the point of view of model-
ing and estimation, the multi-state approach relies on models for the transition
intensities; the estimated regression parameters and dynamic prediction proba-
bilities are obtained by means of one regression analysis on the original data. In
contrast, the estimated dynamic prediction probabilities from the landmark ap-
proaches are obtained either from one single regression analysis (the (stratified)
supermodels) or from several regression analyses (the separate landmark models)
based only on the subset of the original data which is necessary for dynamic pre-
diction. From the point of view of the underlying assumptions, the multi-state
approach requires adapted modeling to whether the process is Markov or semi-
Markov. In contrast, the landmark approaches do not need to account for such
assumption, because here modeling is not done over the entire follow-up, but only
over the prediction intervals (landmark (super)models on cause-specific hazards)
or precisely in the prediction time points (landmark (super)models on dynamic
pseudo-observations).

The present competing risks example was meant to assess which is the best
model in terms of prediction accuracy when one time-dependent covariate is in-
corporated. It has shown that the landmark models resulted in less biased es-
timates when the true underlying model does not fulfil the Markov assumption,
compared to the multi-state approach. Retrospectively, this is open to debate
because the multi-state model used in estimation stays conveniently within the
Markov framework where the Aalen-Johansen formula is available for prediction.

The question arises whether the resulting prediction accuracy from this exam-
ple can be generalized to other settings; a relevant aspect might be the amount
of censoring within the prediction interval [s, s + w]. We would expect here the
landmark model based on dynamic pseudo-observations to perform best, because
censored observations within [s, s+w] provide nonparametric estimators of their
event status at s+w, while in the multi-state approach and in the landmark ap-
proach based on cause-specific hazards censored observations do not contribute
anymore once they disappear from the risk set.

The unexpected large bias in P̂ sup
h,CS needs further investigation. Most probably

this is caused by the fact that in our particular setting the prediction intervals
[s, s + 5], s ∈ {0, 1, . . . , 5} share overall only the time point t = 5. This phe-
nomenon could explain why a model over the interval [0, 5] leads to such different
predictions than a model for [5, 10]. We would expect considerable improvements
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in terms of bias of P̂ sup
h,CS when the prediction intervals [s, s + w], s ∈ [s1, sK ],

share a larger amount of common information, that is when the prediction inter-
vals overlap over a continuous line.
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Nederlandse samenvatting

Hoofdstuk 1 geeft een algemene introductie tot analysemethoden voor overle-
vingsduurgegevens met zogenaamde concurrerende risico’s (competing risks). De
belangrijkste concepten worden gëıintroduceerd en enkele reeds bestaande me-
thodes voor de statistische analyse van dergelijke data worden behandeld. Er is
een grote hoeveelheid literatuur over overlevingsduurgegevens gewijd aan model-
bouw en testen. Het doel van dit hoofdstuk is om te laten zien hoe de standaard
methodes voor overlevingsduurgegevens zijn aangepast voor gegevens met concur-
rerende risico’s. De overige hoofdstuken gaan in detail in op een aantal specifieke
problemen opgeworpen in de introductie.

Hoofdstuk 2 en 3 zijn gewijd aan de analyse van gegevens met concurrerende
risico’s, in het bijzonder voor het geval waarin voor sommige individuën de oor-
zaak van falen ontbreekt. Een nieuwe aanpak voor concurrerende risico’s wordt
gëıntroduceerd, ”vertical modeling”genaamd, en de belangrijkste eigenschappen
worden beschreven. Hoofdstuk 2 presenteert de wiskundige eigenschappen van
de methode; expliciete uitdrukkingen worden gegeven door de variantie van de
oorzaak-specifieke cumulatieve incidentie functie, verkregen door middel van de
delta-methode. Eigenschappen van de schatters worden bestudeerd in simulatie-
studies en vergeleken met niet-parametrische schatters. Een aantrekkelijke eigen-
schap van onze methode is dat het gaat om natuurlijk observeerbare entiteiten in
concurrerende risico’s; dit zorgt ervoor dat de parameters makkelijk interpreer-
baar zijn. De methode vangt bijvoorbeeld het patroon van faaloorzaken in de
tijd. Dit hoofdstuk bevat ook een analyse van echte data, waaruit de praktische
toepasbaarheid van de methode blijkt.

Aangezien het in de praktijk lastig kan zijn om concurrerende risico’s data te
verkrijgen die volledig is, is het belangrijk om in staat te zijn om ook in min-
der optimale maar meer reële omstandigheden te kunnen opereren. Hoofdstuk 3
laat nog een aantrekkelijke eigenschap zien van vertical modeling, namelijk dat
de methode om kan gaan met concurrerende risico’s waarin missende faaloorza-
ken voorkomen. Onder bepaalde redelijke aannames wordt deze situatie op een
natuurlijke manier aangepakt door vertical modeling, omdat deze methode alle
informatie op het moment van falen gebruikt (ook van de individuen waarvan
alleen het moment en niet de oorzaak van falen bekend is), en ook gedeeltelijke
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informatie over de precieze oorzaak van falen optimaal gebruikt. De vertical mo-
deling aanpak resulteert in juiste inferentie; de maximum likelihood schatters van
de regressie parameters gebaseerd op de volledige likelihood vallen samen met de
maximum likelihood parameters verkregen met onze aanpak. Andere voorde-
len van onze methode ten opzichte van sommige al bestaande methodes worden
besproken en gëıllustreerd aan de hand van analyses op echte data.

In hoofdstuk 4 wordt een nieuwe aanpak voorgesteld om dynamische voorspel-
lingen te kunnen doen binnen het kader van concurrerende risico’s, een aanpak
die gezien kan worden als een uitbreiding van de landmark aanpak voor gewone
overleving. De aanpak is gebaseerd op het combineren van Cox proportionele
hazards modellen van oorzaak-specifieke hazards voor het cohort van overlevers
per landmark tijdstip in zogenaamde ”supermodellen”. Supermodellen, verkregen
door het combineren van de oorzaak-specifieke baseline hazards voor een reeks
landmark tijdstippen, kunnen omgaan met tijdsvariërende effecten van baseline
covariaten of tijdsafhankelijke covariaten, tegelijkertijd rekening houdend met
meerdere faaloorzaken. Het schatten van de regressie parameters wordt gedaan
door middel van pseudo partiële likelihood. Het voordeel van de methode is dat
zij het modelleren vergemakkelijkt, omdat ze de dynamische voorspelkansen di-
rect modelleert; op deze manier wordt alleen de informatie die essentieel is voor
het voorspellen gedestilleerd uit het complexe onderliggende proces. De methode
wordt empirisch gevalideerd op een echte dataset.

In hoofdstuk 5 wordt een alternatief geboden voor de in hoofdstuk 4 be-
schreven methode. De nieuwe aanpak is direct gericht op het tijdstip waarop de
dynamische voorspelling gewenst is, en gebruikt dus niet het volledige predictie in-
terval raamwerk zoals de methode uit hoofdstuk 4. De voornaamste ingrediënten
voor de methode zijn pseudo-observaties die zijn berekend voor het cohort overle-
venden per landmark tijdstip, de zogenaamde ”dynamische pseudo-observaties”.
Ze worden samengevoegd in supermodellen voor een reeks landmark tijdstippen
door middel van een GLM aanpak, waarin gladgestreken tijdsvariërende effecten
van covariaten of tijdsafhankelijke covariaten hun gemiddelde waarden kunnen
bëınvloeden. Het schatten wordt gedaan door middel van een GEE methode.
We beschrijven de wiskundige eigenschappen van onze methode aangaande het
asymptotisch gedrag van de schatters. Het voordeel van het op deze manier mo-
delleren van een enkel tijdstip is de robuustheid tegen model-misspecificaties die
snel optreden wanneer men ingewikkelder methoden gebruikt. Onze methode
wordt gëıllustreerd op een echte data analyse.

Hoofdstuk 6 gaat door middel van simulatie studies in op de eigenschappen
van verschillende dynamische voorspelmethodes binnen het concurrerende risico’s
kader, waaronder de methoden zoals beschreven in hoofdstukken 4 and 5. De fo-
cus ligt niet op het passen van het model, maar op de accuraatheid als het gaat
om het voorspellen van een toekomstige gebeurtenis. Twee hoofdscenarios wor-
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den bekeken; ter eerste het scenario waarin het ware onderliggende stochastische
model voldoet aan de Markov eigenschap, ten tweede een scenario waarin niet
aan deze eigenschap wordt voldaan.
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