Admissible constants for genus 2 curves
Jong, R.S. de

Citation

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/61746

Note: To cite this publication please use the final published version (if applicable).
ADMISSIBLE CONSTANTS FOR GENUS 2 CURVES

ROBIN DE JONG

Abstract. S.-W. Zhang recently introduced a new adelic invariant φ for curves of genus at least 2 over number fields and function fields. We calculate this invariant when the genus is equal to 2.

1. Introduction

Let X be a smooth projective geometrically connected curve of genus $g \geq 2$ over a field k which is either a number field or the function field of a curve over a field. Assume that X has semistable reduction over k. For each place v of k, let N_v be the usual local factor connected with the product formula for k.

In a recent paper [11], S.-W. Zhang proves the following theorem:

Theorem 1.1. Let $(\omega, \omega)_a$ be the admissible self-intersection of the relative dualizing sheaf of X. Let $\langle \Delta_\xi, \Delta_\xi \rangle$ be the height of the canonical Gross-Schoen cycle on X. Then the formula:

$$(\omega, \omega)_a = \frac{2g - 2}{2g + 1} \left(\langle \Delta_\xi, \Delta_\xi \rangle + \sum_v \varphi(X_v) \log N_v \right)$$

holds, where the $\varphi(X_v)$ are local invariants associated to $X \otimes k_v$, defined as follows:

- if v is a non-archimedean place, then:
 $$\varphi(X_v) = -\frac{1}{4} \delta(X_v) + \frac{1}{4} \int_{R(X_v)} g_v(x, x)((10g + 2)\mu_v - \delta_{K_{X_v}}),$$
 where:
 - $\delta(X_v)$ is the number of singular points on the special fiber of $X \otimes k_v$,
 - $R(X_v)$ is the reduction graph of $X \otimes k_v$,
 - g_v is the Green’s function for the admissible metric μ_v on $R(X_v)$,
 - K_{X_v} is the canonical divisor on $R(X_v)$.

In particular, $\varphi(X_v) = 0$ if X has good reduction at v;

- if v is an archimedean place, then:
 $$\varphi(X_v) = \sum_{\ell} \frac{2}{\lambda_\ell} \sum_{m,n=1}^g \left| \int_{X(k_v)} \phi_\ell \omega_m \bar{\omega}_n \right|^2,$$
 where ϕ_ℓ are the normalized real eigenforms of the Arakelov Laplacian on $X(k_v)$ with eigenvalues $\lambda_\ell > 0$, and $(\omega_1, \ldots, \omega_g)$ is an orthonormal basis for the hermitian inner product $(\omega, \eta) \mapsto \frac{i}{2} \int_{X(k_v)} \omega \bar{\eta}$ on the space of holomorphic differentials.

The author is supported by a VENI grant from the Netherlands Organisation for Scientific Research (NWO). He thanks the Max Planck Institut für Mathematik in Bonn for its hospitality during a visit.
Apart from giving an explicit connection between the two canonical invariants \((\omega, \omega)_a\) and \((\Delta_\xi, \Delta_\xi)\), Zhang’s theorem has a possible application to the effective Bogomolov conjecture, i.e., the question of giving effective positive lower bounds for \((\omega, \omega)_a\). Indeed, the height of the canonical Gross-Schoen cycle \((\Delta_\xi, \Delta_\xi)\) is known to be non-negative in the case of a function field in characteristic zero, and should be non-negative in general by a standard conjecture of Gillet-Soulé (op. cit., Section 2.4). Further, the invariant \(\varphi\) should be non-negative, and Zhang proposes, in the non-archimedean case, an explicit lower bound for it which is positive in the case of non-smooth reduction (op. cit., Conjecture 1.4.2). Note that it is clear from the definition that \(\varphi\) is non-negative in the archimedean case; in fact it is positive (op. cit., Remark after Proposition 2.5.3).

Besides \(\varphi(X_v)\), Zhang also considers the invariant \(\lambda(X_v)\) defined by:

\[
\lambda(X_v) = \frac{g - 1}{6(2g + 1)} \varphi(X_v) + \frac{1}{12} (\varepsilon(X_v) + \delta(X_v)),
\]

where:

- if \(v\) is a non-archimedean place, the invariant \(\delta(X_v)\) is as above, and:
 \[
 \varepsilon(X_v) = \int_{R(X_v)} g_v(x, x)((2g - 2)\mu_v + \delta_{K_{X_v}}),
 \]
- if \(v\) is an archimedean place, then:
 \[
 \delta(X_v) = \delta_F(X_v) - 4g \log(2\pi)
 \]
 with \(\delta_F(X_v)\) the Faltings delta-invariant of the compact Riemann surface \(X(\bar{k}_v)\), and \(\varepsilon(X_v) = 0\).

The significance of this invariant is that if \(\deg \det R_\pi^* \omega\) denotes the (non-normalized) geometric or Faltings height of \(X\) one has a simple expression:

\[
\deg \det R_\pi^* \omega = \frac{g - 1}{6(2g + 1)} \langle \Delta_\xi, \Delta_\xi \rangle + \sum_v \lambda(X_v) \log N_v
\]

for \(\deg \det R_\pi^* \omega\), as follows from the Noether formula:

\[
12 \deg \det R_\pi^* \omega = (\omega, \omega)_a + \sum_v (\varepsilon(X_v) + \delta(X_v)) \log N_v.
\]

Now assume that \(X\) has genus \(g = 2\). Our purpose is to calculate the invariants \(\varphi(X_v)\) and \(\lambda(X_v)\) explicitly. For the \(\lambda\)-invariant we obtain:

- if \(v\) is non-archimedean, then:
 \[
 10\lambda(X_v) = \delta_0(X_v) + 2\delta_1(X_v),
 \]
 where \(\delta_0(X_v)\) is the number of non-separating nodes and \(\delta_1(X_v)\) is the number of separating nodes in the special fiber of \(X \otimes k_v\);
- if \(v\) is archimedean, then:
 \[
 10\lambda(X_v) = -20 \log(2\pi) - \log \|\Delta_2\|(X_v),
 \]
 where \(\|\Delta_2\|(X_v)\) is the normalized modular discriminant of the compact Riemann surface \(X(\bar{k}_v)\) (see below).

Thus, the \(\lambda(X_v)\) are precisely the well-known local invariants corresponding to the discriminant modular form of weight 10 \([6][9][10]\). In particular we have:

\[
\deg \det R_\pi^* \omega = \sum_v \lambda(X_v) \log N_v
\]
and we recover the fact that the height of the canonical Gross-Schoen cycle vanishes for X.

2. The non-archimedean case

Let k be a complete discretely valued field. Let X be a smooth projective geometrically connected curve of genus 2 over k. Assume that X has semistable reduction over k. In this section we give the invariants $\varphi(X)$ and $\lambda(X)$ of X.

The proof of our result is based on the classification of the semistable fiber types in genus 2 and consists of a case-by-case analysis. The notation we employ for the various fiber types is as in [8]. We remark that there are no restrictions on the residue characteristic of k.

Theorem 2.1. The invariant $\varphi(X)$ is given by the following table, depending on the type of the special fiber of the regular minimal model of X:

<table>
<thead>
<tr>
<th>Type</th>
<th>δ_0</th>
<th>δ_1</th>
<th>ε</th>
<th>φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$II(a)$</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>$III(a)$</td>
<td>a</td>
<td>0</td>
<td>$\frac{1}{6}a$</td>
<td>$\frac{1}{12}a$</td>
</tr>
<tr>
<td>$IV(a,b)$</td>
<td>b</td>
<td>a</td>
<td>$a + \frac{1}{6}b$</td>
<td>$a + \frac{1}{12}b$</td>
</tr>
<tr>
<td>$V(a,b)$</td>
<td>$a + b$</td>
<td>0</td>
<td>$\frac{1}{6}(a + b)$</td>
<td>$\frac{1}{12}(a + b)$</td>
</tr>
<tr>
<td>$VI(a,b,c)$</td>
<td>$b + c$</td>
<td>a</td>
<td>$a + \frac{1}{6}(b + c)$</td>
<td>$a + \frac{1}{12}(b + c)$</td>
</tr>
<tr>
<td>$VII(a,b,c)$</td>
<td>$a + b + c$</td>
<td>0</td>
<td>$\frac{1}{6}(a + b + c) + \frac{1}{6} \frac{abc}{ab+bc+ca}$</td>
<td>$\frac{1}{12}(a + b + c) - \frac{5}{12} \frac{abc}{ab+bc+ca}$</td>
</tr>
</tbody>
</table>

For $\lambda(X)$ the formula:

$$10\lambda(X) = \delta_0(X) + 2\delta_1(X)$$

holds.

Let us indicate how the theorem is proved. Let r be the effective resistance function on the reduction graph $R(X)$ of X, extended bilinearly to a pairing on $\text{Div}(R(X))$. By Corollary 2.4 of [2] the formula:

$$\varphi(X) = -\frac{1}{4}(\delta_0(X) + \delta_1(X)) - \frac{3}{8}r(K,K) + 2\varepsilon(X)$$

holds, where K is the canonical divisor on $R(X)$. The invariant $r(K,K)$ is calculated by viewing $R(X)$ as an electrical circuit. The invariant ε is calculated on the basis of explicit expressions for the admissible measure and admissible Green’s function; see [7] and [8] for such computations. The results we find are as follows:
The values of φ follow. The formula for $\lambda(X)$ is verified for each case separately.

3. The Archimedean Case

Let X be a compact and connected Riemann surface of genus 2. In this section we calculate the invariants $\varphi(X)$ and $\lambda(X)$ of X. Let $\text{Pic}(X)$ be the Picard variety of X, and for each integer d denote by $\text{Pic}^d(X)$ the component of $\text{Pic}(X)$ of degree d. We have a canonical theta divisor Θ on $\text{Pic}^1(X)$, and a standard hermitian metric $\| \cdot \|$ on the line bundle $O(\Theta)$ on $\text{Pic}^1(X)$. Let ν be its curvature form. We have:

$$\int_{\text{Pic}^1(X)} \nu^2 = \Theta \cdot \Theta = 2.$$

Let K be a canonical divisor on X, and let P be the set of 10 points P of $\text{Pic}^1(X) - \Theta$ such that $2P \equiv K$. Denote by $\| \theta \|$ the norm of the canonical section θ of $O(\Theta).$

We let:

$$\| \Delta_2 \|(X) = 2^{-12} \prod_{P \in P} \| \theta \|^2(P),$$

the normalized modular discriminant of X, and we let $\| H \|(X)$ be the invariant of X defined by:

$$\log \| H \|(X) = \frac{1}{2} \int_{\text{Pic}^1(X)} \log \| \theta \| \nu^2.$$

These two invariants were introduced in [1].

Theorem 3.1. For the φ-invariant and the λ-invariant of X, the formulas:

$$\varphi(X) = -\frac{1}{2} \log \| \Delta_2 \|(X) + 10 \log \| H \|(X)$$

and

$$10\lambda(X) = -20 \log(2\pi) - \log \| \Delta_2 \|(X)$$

hold.

The key to the proof is the following lemma. Let Φ be the map:

$$X^2 \to \text{Pic}^1(X), \quad (x, y) \mapsto [2x - y].$$

Lemma 3.2. The map Φ is finite flat of degree 8.
Proof. Let \(y \mapsto y' \) be the hyperelliptic involution of \(X \). We have a commutative diagram:

\[
\begin{array}{ccc}
X^2 & \xrightarrow{\Phi} & \text{Pic}^1(X) \\
\downarrow{\alpha} & & \downarrow{\beta} \\
X^2 & \xrightarrow{\Phi'} & \text{Pic}^3(X)
\end{array}
\]

where \(\alpha \) and \(\beta \) are isomorphisms, with:

\[
\alpha : X^2 \to X^2, \quad \Phi' : X^2 \to \text{Pic}^3(X), \quad \beta : \text{Pic}^3(X) \to \text{Pic}^1(X),
\]

\[
(x, y) \mapsto (x, y'), \quad (x, y) \mapsto [2x + y], \quad [D] \mapsto [D - K].
\]

It suffices to prove that \(\Phi' \) is finite flat of degree 8. Let \(p : X^{(3)} \to \text{Pic}^3(X) \) be the natural map; then \(p \) is a \(\mathbb{P}^1 \)-bundle over \(\text{Pic}^3(X) \), and \(\Phi' \) has a natural injective lift to \(X^{(3)} \). A point \(D \) on \(X^{(3)} \) is in the image of this lift if and only if \(D \), when seen as an effective divisor on \(X \), contains a point which is ramified for the morphism \(X \to \mathbb{P}^1 \) determined by the fiber \(|D| \) of \(p \) in which \(D \) lies. Since every morphism \(X \to \mathbb{P}^1 \) associated to a \(D \) on \(X^{(3)} \) is ramified, the map \(\Phi' \) is surjective. As every morphism \(X \to \mathbb{P}^1 \) associated to a \(D \) on \(X^{(3)} \) has only finitely many ramification points, the map \(\Phi' \) is quasi-finite, hence finite since \(\Phi' \) is proper. As \(X^2 \) and \(\text{Pic}^3(X) \) are smooth and the fibers of \(\Phi' \) are equidimensional, the map \(\Phi' \) is flat.

By Riemann-Hurwitz the generic \(X \to \mathbb{P}^1 \) associated to a \(D \) on \(X^{(3)} \) has 8 simple ramification points. It follows that the degree of \(\Phi' \) is 8.

Let \(G : X^2 \to \mathbb{R} \) be the Arakelov-Green’s function of \(X \), and let \(\Delta \) be the diagonal divisor on \(X^2 \). We have a canonical hermitian metric on the line bundle \(\mathcal{O}(\Delta) \) on \(X^2 \) by putting \(\|1\|(x, y) = G(x, y) \), where 1 is the canonical section of \(\mathcal{O}(\Delta) \). Denote by \(h_\Delta \) the curvature form of \(\mathcal{O}(\Delta) \). We have:

\[
\int_{X^2} h_\Delta^2 = \Delta \cdot \Delta = -2.
\]

Restricting \(\mathcal{O}(\Delta) \) to a fiber of any of the two natural projections of \(X^2 \) onto \(X \) and taking the curvature form we obtain the Arakelov \((1, 1)\)-form \(\mu \) on \(X \). We have \(\int_X \mu = 1 \) and:

\[
\int_X \log G(x, y) \mu(x) = 0
\]

for each \(y \) on \(X \). Let \((\omega_1, \omega_2) \) be an orthonormal basis of \(H^0(X, \omega_X) \), the space of holomorphic differentials on \(X \). We can write explicitly:

\[
h_\Delta(x, y) = \mu(x) + \mu(y) - i \sum_{k=1}^2 (\omega_k(x) \bar{\omega}_k(y) + \omega_k(y) \bar{\omega}_k(x))
\]

and:

\[
\mu(x) = \frac{i}{4} \sum_{k=1}^2 \omega_k(x) \bar{\omega}_k(x).
\]

By [11] Proposition 2.5.3 we have:

\[
\varphi(X) = \int_{X^2} \log G \, h_\Delta^2.
\]

We compute the integral using our results from [11] and [5]. Let \(W \) be the divisor of Weierstrass points on \(X \), and let \(p_1 : X^2 \to X \) be the projection onto the first
coordinate. The divisor \(W \) is reduced effective of degree 6. According to \cite{3} p. 31 there exists a canonical isomorphism:

\[
\sigma : \Phi^* \mathcal{O}(\Theta) \xrightarrow{\sim} \mathcal{O}(2\Delta + \mu_1 W)
\]

of line bundles on \(X^2 \), identifying the canonical sections on both sides. In \cite{4}, Proposition 2.1 we proved that this isomorphism has a constant norm over \(X^2 \). Thus, the curvature forms on both sides are equal:

\[
\Phi^* \nu = 2h_\Delta + 6\mu(x) \quad \text{on} \quad X^2.
\]

Squaring both sides of this identity we get:

\[
h^2_\Delta = \frac{1}{4} \Phi^*(\nu^2) - 6h_\Delta \mu(x),
\]

since \(\mu(x)^2 = 0 \). Denote by \(S(X) \) the norm of \(\sigma \). Then we have:

\[
2 \log G(x, y) + \sum_w \log G(x, w) = \log \|\theta\|(2x - y) + \log S(X)
\]

for generic \((x, y) \in X^2\), where \(w \) runs through the Weierstrass points of \(X \). By fixing \(y \) and integrating against \(\mu(x) \) on \(X \) we find that:

\[
\log S(X) = -\int_X \log \|\theta\|(2x - y) \mu(x).
\]

By integrating against \(h^2_\Delta \) on \(X^2 \) we obtain:

\[
2\varphi(X) + \sum_w \int_{X^2} \log G(x, w) h^2_\Delta = -2 \log S(X) + \int_{X^2} \log \|\theta\|(2x - y) h^2_\Delta.
\]

As we have:

\[
h^2_\Delta = 2\mu(x)\mu(y) - \sum_{k,l=1}^2 (\omega_k(x)\bar{\omega}_l(x)\omega_l(y) + \bar{\omega}_k(x)\omega_l(x)\omega_k(y)\bar{\omega}_l(y))
\]

it follows that:

\[
\int_{X^2} \log G(x, w) h^2_\Delta = 0
\]

for each \(w \) in \(W \) and hence we simply have:

\[
2\varphi(X) = -2 \log S(X) + \int_{X^2} \log \|\theta\|(2x - y) h^2_\Delta.
\]

Using our earlier expression for \(h^2_\Delta \) this becomes:

\[
2\varphi(X) = -2 \log S(X) + \int_{X^2} \log \|\theta\|(2x - y) \left(\frac{1}{4} \Phi^*(\nu^2) - 6h_\Delta \mu(x) \right).
\]

It is easily verified that \(h_\Delta \mu(x) = h_\Delta \mu(y) = \mu(x)\mu(y) \) and hence:

\[
\int_{X^2} \log \|\theta\|(2x - y) h_\Delta \mu(x) = \int_{X^2} \log \|\theta\|(2x - y) \mu(x)\mu(y) = -\log S(X).
\]

From Lemma \cite{32} it follows that:

\[
\int_{X^2} \log \|\theta\|(2x - y) \Phi^*(\nu^2) = 8 \int_{\text{Pic}^1(X)} \log \|\theta\| \nu^2 = 16 \log \|H\|(X).
\]

All in all we find:

\[
\varphi(X) = 2 \log S(X) + 2 \log \|H\|(X).
\]
Let $\delta_F(X)$ be the Faltings delta-invariant of X. According to [5, Corollary 1.7] the formula:
\[
\log S(X) = -16 \log(2\pi) - \frac{5}{4} \log \|\Delta_2\|(X) - \delta_F(X)
\]
holds, and in turn, according to [1, Proposition 4] we have:
\[
\delta_F(X) = -16 \log(2\pi) - \log \|\Delta_2\|(X) - 4 \log \|H\|(X).
\]
The formula:
\[
\varphi(X) = -\frac{1}{2} \log \|\Delta_2\|(X) + 10 \log \|H\|(X)
\]
follows.

By definition we have:
\[
\lambda(X) = \frac{1}{30} \varphi(X) + \frac{1}{12} \delta_F(X) - \frac{2}{3} \log(2\pi)
\]
so we obtain:
\[
10\lambda(X) = -20 \log(2\pi) - \log \|\Delta_2\|(X)
\]
by using [1, Proposition 4] once more.

References

Address of the author:

Robin de Jong
Mathematical Institute
University of Leiden
PO Box 9512
2300 RA Leiden
The Netherlands
Email: rdejong@math.leidenuniv.nl