
Clinical aspects of endogenous hypothyroidism and subclinical
hyperthyroidism in patients with differentiated thyroid carcinoma
Heemstra, K.A.

Citation
Heemstra, K. A. (2009, September 2). Clinical aspects of endogenous hypothyroidism and
subclinical hyperthyroidism in patients with differentiated thyroid carcinoma. Retrieved from
https://hdl.handle.net/1887/13946
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13946
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13946


01
General Introduction



10

Contents
I. Introduction
II. Differentiated Thyroid Carcinoma
III. Thyroid hormones
IV.  Bone metabolism
V. Glucose metabolism
VI. Autonomic nervous system
VII.  Quality of Life
VIII.  D2-Thr-92-Ala and thyroxin dose
IX. Outline of this thesis



11

I. Introduction 

Differentiated thyroid carcinoma (DTC) is a rare disease with an incidence varying from 2-
10/100.000 (1-4). The prevalence of DTC is, however, high because of the good prognosis. 
In general, 80% of the newly diagnosed tumors are differentiated tumors originating from 
the epithelial follicular cells. Median age at diagnosis is between 45 and 50 year with a 
female to male predominance of 2:1 (5). 
DTC is associated with an excellent prognosis, with reported 10-year survival rates reaching 
90% (6). This is because of a combination of the favorable biological behaviour of the tumor 
as well as the availability of effective therapy, consisting of total thyroidectomy followed by 
radioiodine ablation. After initial therapy, all patients with DTC are initially treated with high 
doses of thyroxin aiming at significantly suppressing thyrotropin (TSH) levels, resulting in 
a subclinical hyperthyroid state. The rationale of this approach is based on the potential 
harmful effects of TSH on tumor recurrence (7;8). However,  long-term TSH suppression may 
be associated with potential harmful effects on various systems, including bone metabolism 
(9-11), glucose metabolism (12-14), the autonomic nervous system (15-18) and quality of 
life (19-23). 
According to protocollized follow up, thyroxin replacement therapy can be transiently stopped 
in these patients to detect residual or recurrent disease by TSH stimulated thyroglobulin 
levels. As a result of this standardized procedure, patients become overtly hypothyroid within 
4-6 weeks. This may reversely affect the systems influenced by subclinical hyperthyroidism, 
mentioned above.  
DTC patients are an unique model to study the metabolic effects of thyroid hormone, both 
depletion and excess, on physiological systems, because these DTC patients are treated with 
total thyroidectomy and therefore don’t produce any endogenous thyroid hormones. Thyroid 
hormone levels are well documented in these patients and can be exactly regulated by 
changing the thyroxin dosages. During clinical follow-up, patients are sometimes withdrawn 
from thyroxin, which creates a state of controlled hypothyroidism, whereas many patients will 
be treated with TSH suppressive dosages of thyroxin, thereby creating a state of subclinical 
hyperthyroidism. Moreover, there is no interfering effect from thyroid disease, like in patients 
substituted with thyroxin for autoimmune thyroid disease. 
In this introductory chapter a general overview of DTC, thyroid hormones and the clinical 
consequences of exogenous subclinical hyperthyroidism and thyroxin withdrawal will be 
provided and the questions addressed in this thesis will be introduced.

II. Differentiated thyroid carcinoma

Pathogenesis
Genetic alterations are involved in the pathogenesis of thyroid carcinoma. The analysis of 
these genetic alterations is important not only for the diagnosis of DTC, but also for the 
understanding of the pathophysiology of thyroid disorders(24-26). Mutations in one of 
the three RAS-genes are frequently found in follicular adenomas and carcinomas. Benign 
hyperfunctioning nodules or adenomas are associated with mutations in the GSP and TSH 
receptor genes. 
The recent identification of mutations in B-RAF, which are present in 40-60 % of papillary 
thyroid carcinomas (PTC), has improved the understanding of the molecular pathogenesis 
of PTC. B-RAF is a component of the RET RAS RAF cascade that activates MAP kinase. 
Almost all patients with PTC have rearrangements and mutations of B-RAF, RAS, RAF and 
TRK (neutrotrophic tyrosine kinase receptor). Translocations of RET, that are found in DTC, 
give rise to a chimeric protein consisting of an activated RET tyrosine kinase domain (24;27-
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42). Transcriptional and post-transcriptional mechanisms are thought to regulate MET 
overexpression as a secondary effects (43). 
The genetic pathogenesis of follicular thyroid carcinoma (FTC) is less clear. However, it 
was found that FTC is related with rearrangements in PAX8 and PPAR-γ genes, which are 
traditionally associated with thyroid development (PAX 8) and cell differentiation and 
metabolism (PPAR-γ) (44). The chimeric protein acts as a dominant negative competitor for 
PPAR-γ. A downregulation of the PPAR-γ signaling route has been observed in experimental 
models of DTC (45).
The genetic alterations that are involved in the pathogenesis of DTC, result in proliferation 
by multiple pathways and the loss of thyroid specific proteins. Thyroid peroxidase (TPO) is 
believed to disappear in an early phase, followed by the disappearance of NIS. 

Diagnosis
Fine needle aspiration (FNA) is the procedure of choice in patients presenting with thyroid 
nodules. The sensitivity of FNA is 90-95 %. The specificity of FNA is lower, 60-80%, when 
all patients with a non-benign FNA are referred for surgery (46). The distinction between 
benign and malignant follicular tumors is difficult to make by FNA, because the essential 
criterion for FTC is capsular invasion which can not be determined by cytology. Another 
problem is the differentiation between follicular adenoma and follicular variant of papillary 
thyroid carcinoma (FVPTC), because the essential criterion is the aspect of the nuclei. As 
a consequence, the frequency of FTC in hemi-thyroidectomies performed after suspicious 
outcome from FNA is only 20-30%.
The Tumor-Node-Metastases classification system is based on pathologic findings. This 
classification system divides patients into four stages, with progressively poorer survival with 
increasing stage. Recently, the 6th edition of the TNM system has become available (47). The 
most important difference with he 5th edition is the fact that the dimension of T1 has been 
extended to 1.5 cm and that tumors with limited extrathyroidal extension are designated T3 
instead of T4, which has implications for the prognosis of DTC (48). Therefore, some experts 
propagate to continue the use of the 5th edition. In the studies in his thesis the 5th edition of 
the TNM staging system is used (49).

T0 No evidence of primary tumor
T1  Tumor 1 cm or less in greatest dimension
T2 Tumor > 1 cm, but nor more then 4 cm in greatest dimension, limited to the thyroid
T3 Tumor > 4 cm in greatest dimension limited to the thyroid
T4 Tumor of any size, beyond the thyroid capsule
Nx Regional lymph nodes (cervical and upper mediastinum) cannot be assessed
N0 No regional lymph node metastases
N1 Regional lymph node metastases
N1a Metastasis in ipsilateral cervical lymph node(s)
N1b Metastasis in bilateral, midline or contralateral cervical or mediastinal lymph node(s)
Mx Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis

Figure 1. TNM classification system 5th edition, AJJC, Adapted from (50)

Initial therapy
Initial therapy for DTC consists of near-total thyroidectomy followed by radioiodine ablation. 
There is still some controversy about the extent of thyroid surgery. However, there are strong 
arguments in favor of total or near-total thyroidectomy in all patients (51). Only very low-risk 
patients (T1 (< 1 cm) N0M0 (5th edition) DTC, unifocal) may be treated by hemi-thyroidectomy. 
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In tumor stages of T2 and higher a total thyroidectomy is indicated (52-54). Near-total 
thyroidectomy results in lower recurrence rates than more limited thyroidectomy because 
many papillary tumors are multifocal and bilateral (55;56). In addition, total thyroidectomy 
facilitates total ablation with iodine-131 and reveals a higher specificity of thyroglobulin (Tg) 
as a tumor marker (52-55). Complications of total thyroidectomy are laryngeal nerves palsy 
in 2 % of DTC patients and hypoparathyroidism. The latter occurs in 1/3 of patients after 
total thyroidectomy, but persists longer then 3 months in only 2 % (50). 
Controversy also exists about the routine use of iodide-131 ablation of thyroid remnants. 
However, many clinics give postoperative iodide-131 ablation for three reasons. First, 
iodide-131 destroys any remaining normal thyroid tissue thereby increasing the specificity 
of detectable serum Tg levels and positive whole-body scintigraphy  indicating persistent or 
recurrent disease (5;54;57). Second, iodide-131 may destroy occult microscopic carcinomas, 
thereby decreasing the risk of recurrence thyroid carcinoma (8;54;58;59). Third, the use of 
large amounts of iodide-131 for therapy permits post ablative scanning to detect recurrent 
disease (60;61). A meta-analysis showed that the use of iodide-131 to prevent recurrence 
or death is uncertain (62). A beneficial effect is probably only present in patients with high 
risk or irradical surgery (8;53;63;64). Many authors are more careful advising I-131 ablation 
since various papers reported a relation between I-131 therapy and non-thyroid carcinoma 
(65-67). 
In patients with a very low risk of recurrence/mortality (T1 (<1 cm) N0M0 unifocal) I-131 
is not indicated. I-131 ablation is still the treatment of choice in patients with a high risk 
of recurrence/mortality 1) T3 or T4, 2) any T N1, and 3) Any T M1, and incomplete tumor 
resection (68;69). Controversy exists about patients with a low risk (T1 (>1 cm)N0M0, 
T2N0M0 or T1(<1 cm)N0M0 multifocal) of recurrence/mortality (50).
After initial therapy, all patients with DTC are treated with high doses of thyroxin aiming at 
significantly suppressing thyrotropin (TSH<01 mU/L) levels. The rationale of this approach 
is based on the potential harmful effects of TSH on tumor recurrence (7;8). One study 
demonstrated a preventive effect of TSH suppression on tumor recurrence or progression 
only in high risk DTC patients (70). However, long-term TSH suppression may be associated 
with potential harmful effects on various systems including bone metabolism, glucose 
metabolism, the autonomic nervous system and quality of life. The recent European 
Consensus on thyroid cancer (71), recommended that not all patients with DTC should be 
indiscriminately treated with TSH suppressive therapy because this represents in effect a 
state of subclinical hyperthyroidism, as defined by suppressed serum TSH levels (below 0.4 
mU/l), in the presence of normal serum levels of (free) thyroxin. A recent analysis of our 
institution showed that TSH levels are positively associated to thyroid carcinoma related 
death and relapse (72). This effect became apparent at TSH levels above 2 mU/L and is in 
line with other studies (73). 

Follow-up
The purpose of follow-up protocols in DTC is the early detection of tumor recurrence or 
metastatic disease in order to optimize additional treatment. Most patients during follow 
up have been cured definitely, and, as a consequence, have a low pre-test probability for 
recurrent disease. Therefore, the sensitivity of the diagnostic test must be adequate to 
detect the few patients with evident thyroid carcinoma, whereas specificity must also be 
high to avoid unnecessary treatments in patients without recurrent disease. In addition, the 
burden of diagnostic tests for the patient should be kept at a minimum. 

a. Thyroglobulin
Thyroglobulin (Tg) is produced by normal or neoplastic thyroid follicular cells and Tg 
production is stimulated by TSH. In patients treated with a total thyroidectomy and I-131 
ablation, Tg should be undetectable. The clinical interpretation of Tg is hampered by the 
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following analytical problems: 
1. lack of universal standardization of the Tg assays, which results in considerable inter-
assay variability (74), 
2. a high intra-assay variability, which results in a poor comparability of results obtained 
within one patient during follow-up, 
3. “hook” effects may be present, which affect IMA methods in particular and can lead to 
inappropriately low- or normal range Tg values in sera with very high serum Tg concentrations, 
4. the presence of Tg auto-antibodies that can lead to lower or higher Tg levels. 

Despite these analytical problems, Tg measurements are still the basis in the follow-up in 
DTC. Several studies have been performed on the diagnostic value of Tg measurements. 
The interpretation of these studies is difficult, because 1. heterogeneous patient groups 
with respect to initial therapy are included, 2. the time points of Tg measurements after 
diagnosis are not clearly indicated, and 3. fixed Tg cut-off levels are used, without receiver 
operator curve (ROC) analyses. The application of ROC data is essential, as a chosen cut-off 
level is a subjective choice based on the balance between a desired percentage of missed 
recurrences versus unnecessary therapies. Therefore, in the recent European consensus 
paper, it was recommended to define institutional Tg cut-off levels (71). In addition, most 
studies provide data on the diagnostic value of Tg for tumor presence, but do not give data 
on the prognostic significance for recurrence or death. The few studies that were published 
on the prognostic significance of Tg measurements used fixed cut-off levels, contained 
selected subgroups of patients, and included either Tg measurements at one time point or 
at undefined time points (75-79).
We, therefore, performed a study on the diagnostic and prognostic value of Tg in a 
homogeneous group of DTC patients with respect to initial therapy, using Tg measurements 
at 5 defined time-points after diagnosis, in combination with ROC analyses (chapter 2). 

b. Thyroxin withdrawal versus rhTSH 
Serum Tg measurements, I-131 ablation and diagnostic I-131 whole body scans are based 
on the responsiveness of DTC to TSH (80). TSH stimulated Tg measurements have superior 
diagnostic value in DTC compared to Tg measurements on thyroxin replacement therapy 
(81).  High serum levels can be achieved by thyroxin withdrawal or injection with recombinant 
human TSH (rhTSH), which has less impact on quality of life (82). rhTSH is an adequate 
method to detect recurrence or metastases (78;83-85). A rhTSH stimulated Tg level greater 
than 2 mg/ml predicts persistent disease (78;83;86), whereas a rhTSH stimulated Tg 
level lower than 0.5 mg/dl has a 98 % likelihood of detecting patients free of tumor (78). 
Whole body scans performed after rthTSH-injections have a similar sensitivity and negative 
predictive value compared to thyroxin withdrawal (83-85). However, more negative whole 
body scans were found after rhTSH-injections compared to thyroxin withdrawal (83-85). The 
sensitivity and negative predictive value of Tg values after rhTSH-injections are 96.3 % and 
99.5 % respectively by combining these measurements with a neck ultrasound (87). 
Several studies have reported that radioiodine ablation of thyroid remnants after rhTSH-
injections is as effective as ablation after thyroxin withdrawal (88;89). Radioiodine ablation 
after rhTSH-injections in patients with recurrence or distant metastases results in a 
beneficial effect in 75 % of patients (90;91). However, rhTSH has not been approved for this 
indication.

c. I-131 scintigraphy, Ultrasound, and FDG-PET
The result of iodine-131 whole body scanning depends on the presence and the ability 
of thyroid-cancer tissue to accumulate iodine-131 in the presence of high serum TSH 
concentrations. Diagnostic RaI whole body scintigrapies have a much lower sensitivity 
than ultrasound and Tg measurements. Therefore, the routine use of RaI scintigraphy in 
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the diagnostic follow-up of DTC patients is no longer recommended (87;92). Ultrasound 
combined with FNA had the highest sensitivity (even higher than Tg) for local recurrence and 
lymph node metastases in recent papers (87;93;94). Thus, ultrasound has an important 
place in he follow up of DTC. 18-F Fluorodeoxyglucose-positron emission tomography (FDG-
PET) may be useful in patients with elevated serum Tg levels, in whom no RaI uptake is 
observed after diagnostic or post-therapeutic scintigraphy. The sensitivity of FDG-PET 
is increased with elevating serum Tg levels and after TSH stimulation (95). Robbins et al 
showed that FDG-PET positivity is associated with worse survival (96). 

III. Thyroid hormones

The production of thyroid hormones by the thyroid is regulated by the hypothalamus-pituitary-
thyroid axis. Thyrotropin releasing hormone (TRH), which is produced by the hypothalamus, 
stimulates the secretion of thyrotropin (TSH) by the anterior pituitary. TSH promotes the 
thyroid to synthesize the prohormone tetraiodothronine (T4) in the thyroid. Iodide is actively 
taken up by the thyroid gland by the sodium-iodide-symporter (NIS) at the basolateral 
plasma membrane. The expression and activity of NIS are controlled by TSH. Thyrogobulin, 
which is synthesized by the follicular cells, is then iodinated with one or two iodides to form 
monoiodotyrosine (MIT) or diiodotyrosine (DIT). This process is catalyzed by the enzyme 
thyroid peroxidase (TPO). Two DIT molecules are then coupled to form T4 and one DIT and 
one MIT molecule are coupled to form T3. The thyroid secretes approximately 90 % T4, 10 
% triiodothyronine (T3) and less then 1 % reverse T3. The T3 molecule is the active form 
of thyroid hormone. The majority of the active form of thyroid hormone T3 is derived from 
conversion of T4 to T3 in peripheral tissues, such as the liver (see deiodinases). T4 and T3, 
in turn, have a negative effect on the TRH secretion by the hypothalamus and TSH secretion 
by the pituitary. Iodide is important for the synthesis of thyroid hormones. 

Deiodinases 
Peripheral thyroid metabolism is mainly regulated by the iodothyronine deiodinases D1, D2 
and D3 (97;98). D1 convertes the prohormone T4 in T3, plays a role in the breakdown of 
rT3 (97;99) and is expressed in liver, kidney, thyroid and pituitary and at lower levels in other 
tissues as skeletal muscle, spleen and lung. D2 is essential for the production of T3 through 
outer ring deiodination of T4. It is present in brain, skeletal muscle, thyroid, pituitary, brown 
adipose tissue (BAT) and aortic smooth muscle cells (97;100-104). D3 inactivates T3 and 
prevents T4 activation by innerring deiodination (98) and is present in brain, skin, placenta 
and fetal tissues (97).
The deiodinases adjust the thyroid hormone levels of individual tissues in response to 
various conditions. The peripheral conversion of T4 to T3 is increased during hypothyroidism 
(97;105;106). Extrathyroidal T3 production changes from PTU sensitive to PTU insensitive 
during hypothyroidism in rats, representing an increase in the conversion of T4 to T3 by D2 
and a decreased conversion by D1 (107). D1 gene transcription is decreased in liver and 
kidney during hypothyroidism (108), which is related to the presence of two T3 response 
elements in the human D1 gene (97;108-110). Thyroid status regulates D2 activity both at 
the pre- and posttranslational level. D2 activity is increased in different tissues predominantly 
during hypothyroidism by a decrease in substrate (T4)-induced degradation of D2 protein 
(97;111-113). Hypothyroidism elevates D2 mRNA in rat brain and BAT (97;100;114;115). 
D2 mRNA expression and activity were found in skeletal muscle samples from healthy 
subjects (103;116). This is fascinating, because D2 could therefore play a role in peripheral 
and intracellular T3 production (103). Maia et al. reported that D2 is a major source of 
T3 during euthyroidism and could therefore play an important role during hypothyroidism 
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(117). As patients treated for DTC have no thyroid tissue left, we hypothesized that during 
hypothyroidism D2 in skeletal muscle could be essential in promoting the conversion of T4 
to T3 (chapter 3). 
Several polymorphisms in D2 have been described (118-120), with most studies investigating 
the consequences of the D2-Thr92Ala polymorphism. This D2-Thr92Ala polymorphism has 
been associated with BMI and insulin resistance in obese subjects and type 2 diabetes 
mellitus (118;119), although this was not confirmed in another study (121). The maximal 
velocity of D2 in vitro in thyroid and skeletal muscle of homozygous carriers of the Ala92 
allele was decreased by 3–10-fold (118). 

IV. Bone metabolism

Thyroid hormone impacts on bone metabolism, ranging from decreased skeletal development 
in childhood hypothyroidism to an increased risk for osteoporosis in hyperthyroidism 
(11;122;123). Thyroid hormone indirectly promotes osteoclast formation and activation 
by inducing the expression of cytokines, prostaglandins and the receptor activator of 
nuclear factor NF-κB ligand (RANKL) (124-126). RANKL, the key molecule in osteoclast 
differentiation, binds to its receptor, RANK, which is expressed on dendritic cells, T cells, 
osteoclast precursors and mature osteoclasts (127;128). RANKL promotes the survival 
of RANK positive T cells (127), stimulates osteoclast differentiation (129-133), increases 

Figure 1. Structure of the iodothyronines and their activation and inactivation by iodothyronine deiodinase. 
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the activity of mature osteoclasts (130;134;135) and stimulates survival of osteoclasts 
by preventing apoptosis (135). Contact with stromal cells and M-CSF also promotes 
osteoclast differentiation (136;137). Thyroid hormone inhibits chondrocyte proliferation and 
promotes hypertrophic differentiation, mineralization, matrix synthesis but also apoptosis of 
chondrocytes in the growth plate. 
Overt hyperthyroidism results in an increased risk for osteoporosis (123), the pathophysiology 
of which is multifactoral (124), including shortening of the bone remodelling cycle (138) 
and acceleration of bone turnover (139). The effects of subclinical hyperthyroidism on 
bone metabolism are not clear. Several studies have addressed this issue, but there is 
no consensus largely because of differences in study design, including patient groups, 
methodology used, follow-up time and choice of outcome parameters. To study the effects 
of subclinical hyperthyroidism on bone mineral density, we performed a systematic review 
including all clinical studies on TSH suppressive thyroxin therapy in thyroid cancer patients 
(chapter 4). 
An interesting development has been the discovery of the TSH receptor (TSHR) in bone 
(140-142). TSHR knockout and haploinsufficient mice with normal thyroid hormone levels 
have decreased bone mass suggesting that TSH might directly influence bone remodeling 
(141;143;144). This is intriguing, because effects on bone metabolism that were previously 
ascribed to high thyroid hormone levels could also be attributed to suppressed TSH levels (143-
145). Abe et al. suggested that TSH inhibits osteoclast formation and survival by attenuating 
JNK/c-jun and NFκB signaling in response to RANK-L and inhibits osteoblast differentiation 
and type 1 collagen expression as well by downregulating Wnt and VEGF signaling (141). 
The same group found also that TSH directly inhibits Tumour Necrosis Factor-α (TNF-α) 
production and that TNF-α is the critical cytokine mediating the downstream antiresorptive 
effects of TSH on the skeleton (146). Other studies suggest that serum TSH activates the 
type 2 deiodinase in osteoblasts, thereby linking TSH and increased local thyroid hormone 
availability (142). Furthermore, in animal studies, low doses of TSH increased bone volume 
and improved microarchitecture in ovariectomized rats (147), without increasing serum 
thyroid hormone levels.
It was recently reported that the TSHR-Asp727Glu polymorphism was associated with 
2.3% higher BMD in elderly carriers (148). Although the functional consequences of this 
polymorphism are debated (149), the lower plasma TSH levels in patients carrying the 
polymorphism could point toward a higher sensitivity of the variant compared to the wild-
type TSHR (150;151).  
We, therefore, evaluated the independent relation between serum TSH levels and indicators 
of bone turnover in thyroidectomized patients for differentiated thyroid carcinoma receiving 
thyroid hormone substitution (chapter 5). In addition, we studied the relationship between 
the TSHR-Asp727Glu polymorphism and bone as these subjects are not expected to show 
compensatory lower serum TSH levels if they carry the TSHR-Asp727Glu polymorphism 
(150;151).
The consequences of hypothyroidism on bone metabolism are not clear. Various studies 
report decreased bone resorption (152-155) or bone formation (152), whereas other 
studies document no impact on bone turnover (156-158). Furthermore, it is not clear if 
the effects of hypothyroidism must be attributed to the increased TSH levels or decreased 
thyroid hormone levels. As mentioned above, TSHR knockout and haploinsufficient mice 
with normal thyroid hormone levels have decreased bone mass, suggesting that TSH might 
directly influence bone remodeling (141;143;144). However, other studies question the role 
of TSH in bone metabolism (159;160). Three studies in humans have investigated the effect 
of TSH on bone metabolism, but their results were not consistent showing either no impact 
on bone turnover (161), increased bone formation (162;163) or decreased bone resorption 
(163).
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To document the effects of hypothyroidism on bone metabolism and to discriminate 
between effects mediated by decreased thyroid hormone levels versus those mediated by 
increased TSH levels, we studied bone metabolism in eleven patients with differentiated 
thyroid carcinoma (DTC) during short-term thyroxin withdrawal and compared with eleven 
age-, gender- and BMI-matched DTC patients with increased TSH levels and normal thyroid 
hormone levels due to rhTSH injections (chapter 6). 
Although earlier studies on the role and functional expression of iodothyronine deiodinase 
enzymes in the skeleton have not revealed unequivocal answers (142;164-167), a recent 
study reported normal growth in mice with deficiencies in D1 and D2 indicating that D2 
may not be critical in skeletal development (168). This was supported by another study, 
which found that D2 activity is restricted to mature osteoblasts, suggesting a possible role 
for D2 in mature osteoblast function (169). Because it is difficult to study the role of D2 
per se on skeletal metabolism in humans, we choose to study the effects of functional D2 
polymorphisms on BMD and indicators of bone turnover. Canani et al. (118) reported that 
the maximal velocity of D2 in vitro in thyroid and skeletal muscle of homozygous carriers of 
the Ala92 allele was decreased by 3–10-fold. We, therefore, studied the relationship between 
the functional D2-Thr92Ala polymorphism, BMD and indicators of bone turnover (chapter 
7).

V. Glucose metabolism

Thyroid hormone has effects on glucose- and lipid metabolism (13;170). There is a relation 
between serum thyroid hormone levels and basal and insulin-mediated glucose metabolism 
in euthyroid subjects with preserved thyroid function (171-173). It has been suggested that 
T3 regulates insulin response after glucose ingestion in humans (174). 
Hyperthyroidism has been associated with impaired glucose tolerance and increased insulin 
resistance (175-181), predominantly at the level of the liver (182). The pathophysiology has 
not been completely elucidated, but it has been ascribed to a combination of multiple factors, 
including diminished pancreatic secretion of insulin (183;184), diminished suppression of 
glucagon by glucose (185) and increased adrenergic activity (186). 
Limited data are available on the consequences of subclinical hyperthyroidism on glucose- 
and lipid metabolism. This issue has been studied only by Yavuz et al., who reported a 
decreased insulin sensitivity index by oral glucose tolerance test in patients with exogenous 
subclinical hyperthyroidism compared to values after restoration of euthyroidism and 
compared to controls (187). Regarding lipid metabolism, most studies report no differences 
in lipid profiles during subclinical hyperthyroidism (188-190), with the exception of 2 studies, 
that observed decreased total and LDL cholesterol levels (191;192). Franklyn et al. reported 
decreased total cholesterol concentrations only in patients older than 55 years and LDL 
cholesterol levels were decreased only in patients older than 65 years (193). We therefore 
performed a prospective placebo-controlled randomized trial to investigate the effects of 
restoration of exogenous subclinical hyperthyroidism to euthyroidism on glucose- and lipid 
metabolism (chapter 8).

VI. Autonomic nervous system

The consequences of hyperthyroidism on the heart are profound, including tachycardia 
and/or arrhythmias, increased systolic pressure, increased systolic function, left ventricular 
hypertrophy and diastolic dysfunction (194-196). It is suggested that these effects are the 
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Result of direct effects of thyroid hormone on the cardiovascular system and the interaction 
of thyroid hormones with the sympathetic nervous system (195;197). Hyperthyroidism is 
associated with a sympathicovagal imbalance, characterized by increased sympathetic activity 
in the presence of reduced vagal tone, which corresponds with increased urinary excretion 
of catecholamines (15;16;198). Therefore, the current consensus is that manifestations of 
altered autonomic nervous system function play a role in the pathophysiology and clinical 
presentation of thyrotoxicosis. 
During subclinical hyperthyroidism, cardiovascular effects may also occur, but these are less 
well known and seemingly less severe. Regular findings during subclinical hyperthyroidism 
include increased heart rate, supraventricular arrhythmias and abnormalities of LV 
morphology and function (195;199-201). The consequences of subclinical hyperthyroidism 
on the autonomic nervous system function are less well defined. Several studies, using 
measures of heart rate variability, found evidence that in patients with endogenous 
subclinical hyperthyroidism a reduction of cardiac parasympathetic control is present (18), 
(200), (202). This is supported by findings on heart rate turbulence by Osman et al (203). 
However, in the study of Goichot (18) no differences in the ratio of low frequency power over 
high frequency power (LF/HF) were reported in these patients. The LF/HF ratio is commonly 
used to characterize the balance between vagal and sympathetic influences. To further clarify 
this issue, we performed a prospective, randomized, placebo-controlled study using heart 
rate variability to assess the autonomic nervous system in patients with DTC with longer 
than 10 years exogenous subclinical hyperthyroidism and investigated whether restoration 
to euthyroidism affects autonomic nervous function (chapter 9).
Hypothyroidism is associated with bradycardia, mild diastolic hypertension, increased 
peripheral cardiovascular resistance (194;204;205), decreased cardiac output and 
diastolic dysfunction (194;204;206;207). Hypothyroidism also induces sympathovagal 
imbalance (17;208;209). Nevertheless, current literature shows inconsistent results with 
either an increased sympathetic activity (17), a decreased sympathethic modulation (208) 
or an increased vagal tone (209). We therefore investigated the effects of short-term 
overt hypothyroidism, 4 weeks after thyroxin withdrawal, and restoration to subclinical 
hyperthyroidism on the autonomic nerves system (chapter 10).

VII. Quality of life

DTC is associated with an excellent prognosis. This may imply that quality of life in cured DTC 
patients may be quite normal. However, patients are treated long-term with TSH suppressive 
thyroxin replacement therapy, reflecting in effect a state of subclinical hyperthyroidism, 
which may impact quality of life (210-212). 
Quality of life in cured DTC patients is investigated in a few studies (20;21;213-215). However, 
these studies are limited by small patient numbers(21;213), limited number of quality of life 
questionnaires (20;215) or the absence of a healthy control group (20;213;214). 
Studies reporting the relation between the level of TSH suppression and quality of life in 
DTC patients are inconclusive because of small patient numbers, selection of patients with 
symptoms of hyperthyroidism or selection of patients with a long duration of cure (210;216). 
For that reason, we investigated quality of life in a large cohort of cured DTC patients 
compared to controls matched for age, gender and socioeconomic status. In addition, the 
determinants of quality of life, including serum TSH levels were investigated (chapter 11).
Thyroxin withdrawal resulting in overt hypothyroidism may also impact quality of life. It results 
in fatigue, anorexia, constipation, problems with motor skills and fluid retention. Quality of 
life during thyroxin withdrawal is also affected by a decreased motivation, productivity and 
quality of work and by interfering with family and social life (22). In addition, a decreased 
psychomotor function and an increased fear are reported during thyroxin withdrawal 
(19;217).
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VIII. D2-Thr-92-Ala and thyroxin dose

Several polymorphisms in D2 have been described (118;119;218;219). The functional 
implications of the D2-Thr92Ala polymorphism are inconclusive. One in vitro study found an 
association with a decreased D2 activity (118) whereas another study found no difference 
(219). So far no associations between the D2-Thr92Ala polymorphism and serum thyroid 
hormone levels were documented (151;218;220). A study of Torlontano et al. documented 
that homozygous carriers of the D2-Ala92 allele needed higher dosages of thyroxin in 
thyroidectomized differentiated thyroid carcinoma (DTC) patients, particular in the group 
with near-suppressed TSH levels (TSH values between 0.1 and 0.5 mU/L)(221). However, 
this study had limitations, because actual values of serum TSH levels for wild-type and 
homozygous groups within the near-suppressed TSH group were not given. It is, therefore, 
unclear whether TSH levels in both groups were indeed identical, which would be a key 
finding to ascribe the slight differences in thyroxin dose indeed to the polymorphism. The 
fact that serum T4 and T3 levels did not differ between the wild-type group and D2-Thr92Ala 
homozygotes is also remarkable. We, therefore, studied the association between the D2-
Thr92Ala polymorphism, thyroid hormone levels and thyroxin dosage (chapter 12).

IX. Outline of this thesis

In chapter 2, we describe the diagnostic and prognostic value of thyroglobulin (Tg) in a 
homogeneous group of differentiated thyroid carcinoma (DTC) patients with respect to initial 
therapy, using Tg measurements at 5 defined time-points after diagnosis, in combination 
with ROC analyses.
In the continuation this thesis, questions about the clinical consequences of exogenous 
subclinical hyperthyroidism and hypothyroidism on bone metabolism, glucose metabolism, 
the autonomic nervous system and quality of life in patients with DTC are addressed.
Chapter 3 evaluates the D2 activity and expression of deiodinases 1, 2 and 3 in skeletal 
muscle samples in DTC patients both during hypothyroidism and thyroxin replacement 
therapy.  
Chapter 4 shows the results of a systematic review describing the effects of TSH suppressive 
thyroxin therapy on bone mineral density in DTC patients. 
In chapter 5, we evaluate the independent relation between serum TSH levels and indicators 
of bone turnover in DTC patients receiving thyroid hormone substitution. 
In chapter 6 we describe a prospective study to investigate the effects of hypothyroidism 
on bone metabolism and to discriminate between potential effects mediated by decreased 
thyroid hormone levels versus those mediated by increased TSH levels. 
Chapter 7 presents the relationship between the functional D2-Thr92Ala polymorphism, 
BMD and indicators of bone turnover. 
In chapter 8, we investigate the effects of restoration of exogenous subclinical hyperthyroidism 
to euthyroidism on glucose- and lipid metabolism in a prospective, randomised, placebo-
controlled trial.
Chapter 9 describes a prospective, randomized, placebo-controlled study to assess 
autonomic nervous function in patients with DTC with longer than 10 years exogenous 
subclinical hyperthyroidism and to investigate whether restoration to euthyroidism affects 
autonomic nervous function.
In chapter 10 we show the effects of short-term overt hypothyroidism, 4 weeks after thyroxin 
withdrawal, and restoration to subclinical hyperthyroidism on the autonomic nervous 
system.
Chapter 11 describes quality of life in a large cohort of cured DTC patients compared to 
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controls matched for age, gender and socioeconomic status. In addition, the determinants 
of quality of life, including serum TSH levels were investigated.
In chapter 12, we studied the association between the D2-Thr92Ala polymorphism and 
thyroid hormone levels and thyroxin dosage
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