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Abstract

Background: Among the most commonly applied microarray nor-
malization methods are intensity-dependent normalization methods such
as lowess or loess algorithms. Their computational complexity makes
them slow and thus less suitable for normalization of large datasets. Cur-
rent implementations try to circumvent this problem by using a random
subset of the data for normalization, but the impact of this modifica-
tion has not been previously assessed. We developed a novel intensity-
dependent normalization method for microarrays that is fast, simple and
can include weighing of observations.

Results: Our normalization method is based on the P-spline scat-
terplot smoother using all data points for normalization. We show that
using a random subset of the data for normalization should be avoided as
unstable results can be produced. However, in certain cases normaliza-
tion based on an invariant subset is desirable, for example, when groups
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CHAPTER 6. A NOVEL AND FAST NORMALIZATION METHOD

of samples before and after intervention are compared. We show in the
context of DNA methylation arrays that a constant weighted P-spline
normalization yields a more reliable normalization curve than the one
obtained by normalization on the invariant subset only.

Conclusions: Our novel intensity-dependent normalization method
is simpler and faster than current loess algorithms, and can be applied to
one- and two-colour array data, similar to normalization based on loess.

Availability: An implementation of the method is currently avail-
able as an R package called TurboNorm from BioConductor.

6.1 Background

Intensity-dependent normalization methods are among the most commonly
used methods for microarray normalization. Most of these methods are based
on the lowess or loess algorithms of Cleveland [Cleveland and Devlin, 1988,
Cleveland and Grosse, 1991]. A wide variety of loess-based normalization meth-
ods exists [Bolstad et al., 2003, Irizarry et al., 2008, Risso et al., 2009].

Since the density of microarrays is still expanding, increasingly large datasets
are being produced. Normalization of these datasets can take a considerable
amount of time and can result in memory usage problems. The widely used R
loess [R Development Core Team] implementation is not specifically designed
for the normalization of large sets of high-density microarrays. A common ap-
proach to overcome long run times involves computing the loess trend using a
random subset of the data, thereby artificially reducing the size of the problem.
We will show here that subset choice may have a large impact on the results,
an issue that has not been assessed previously.

Normalization methods that rely on a random subset of the data assume
most points are invariant between samples and, the bulk of points represent a
baseline. In some cases, however, this assumption does not hold, as for example
when samples are studied before and after exposure to a compound that affects
most of the points. A common solution is the use of a subset of invariant
features, provided it spans the entire intensity range. However, such a solution
is not always possible as invariant probes are not available or they do not cover
the complete intensity range.

Here, we present a new normalization method that uses invariant features
without requirement to cover the complete intensity range. The method com-
pensates for unequal coverage by using weights for all features, while the in-
variant features are given a higher weight. Our method is an extension of the
P-spline scatterplot smoother from Eilers and Marx [1996] and can be used in
general as an intensity-dependent normalization method applicable to one- and
two-colour array data.

The P-spline scatterplot smoother is a special kind of penalized spline re-
gression model for nonparametric regression. It uses equally spaced knots and
a discrete penalty, similar to the approach of O’Sullivan [1986] for solving ill-
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6.2. METHODS

posed inverse problems using regularization and B-splines. Penalized splines
have become a standard tool in scatterplot smoothing and semiparametric re-
gression (see e.g. Ruppert et al. [2003], or the recent review by Eilers and Marx
[2010].

We compare our P-spline normalization with lowess/loess-based normal-
ization methods on a selection of the MAQC data described by Shi et al.
[2006]. We then go on to show that using loess on a random subset of the
data yields unstable results, and thereby potentially interesting genes could be
missed. Subsequently, we apply the weighted P-spline normalization method
to an array-based DNA methylation study, in which one group of samples has
a baseline shift due to treatment with a demethylating agent. The advantages
of the weighted normalization using invariant probes are shown in a simulation
study. Run time and memory usage analysis on high-density NimbleGen tiling
arrays [Heintzman et al., 2009] show that the P-spline normalization outper-
forms loess.

6.2 Methods

Introduction

Intensity-dependent normalization methods assume that the majority of the
genes are unaffected between the conditions being studied. An easy way to
visually verify this assumption is by using the ratio-intensity plot (RI-plot, aka
MA-plot). The log2 intensity ratio (M-values) of two samples in case of single-
colour microarray data, or the log2 intensity ratio of the red and green channel
in case of two-colour data, are plotted against the average log2 intensities (A-
values). Ideally, the majority of the data points should be centered around
M = 0, but due to systematic errors a non-linear intensity-dependent trend
is usually observed. This non-linear trend is corrected by fitting a non-linear
function to the MA-plot (M = f(A)) and subtracting it from the observed
M-values. Examples of methods that can find this non-linear trend, f(A), are
the lowess- and loess-algorithms [Cleveland and Devlin, 1988, Cleveland and
Grosse, 1991].

These scatterplot smoothers of Cleveland are flexible, robust and versa-
tile non-linear smoothers [Cleveland and Devlin, 1988, Cleveland and Grosse,
1991]. The older lowess is a robust iteratively locally weighted linear regression
smoothing method. The more flexible loess algorithm is able to smooth regres-
sion surfaces either locally linear or quadratic as well and can include point
specific weights.

Normalization based on P-splines

The P-spline smoother introduced by Eilers and Marx [1996] is a combination
of B-splines with a difference penalty on the regression coefficients. P-splines
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CHAPTER 6. A NOVEL AND FAST NORMALIZATION METHOD

belong to the family of penalized splines using B-spline basis functions, where
the penalization is on the curvature of the smoothed function. For the P-
splines of Eilers and Marx [1996], a discrete approximation to the integrated
squared second derivative of the B-splines is made. This results in an easy-
to-construct penalty matrix. Additionally, by using B-splines of degree zero
(piecewise constants) with equally-spaced knots allows us to construct the B-
spline basis very efficiently. These properties make P-splines attractive and fast
smoothers.

Here we introduce a weighted P-spline smoother. Let y represent the M-
values and x the A-values, then the weighted non-linear trend, y = f(x), is
estimated by the weighted P-spline smoother, y = WBα̂, where B is the B-
spline basis matrix constructed from x and W is a diagonal matrix of weights.
Estimates of the coefficients, α, are obtained by minimizing the objective func-
tion:

Q = (y − Bα)′W (y − Bα) − λα′D′Dα. (6.1)

Here D represents the matrix operator for the second-order differences. The
basis for B-splines of degree zero is constructed as follows: define k equally-
spaced knots on the range of x, then each row of Bn×k has the value 1 in only
one interval between two knots and zero everywhere else. In practice B′B and
B′y can be calculated directly without constructing the large basis B. As, B′B
is a diagonal matrix with each diagonal element equal to the sum of a column
of B, which is just the number of x’s that fall into an interval between two
knots. Similarly, each element of B′y is the sum of all y that correspond to x’s
in the interval between two knots.

We propose a weighted P-spline normalization method that uses invariant
features without the requirement to cover the complete intensity range. The
invariant feature set is given weight, w = n/m, while the remaining features
have weight, w = 1. The rationale is that the invariant feature set, of size
m, and remaining features, of size n − m, contribute equally to the smoothed
curve. It then follows that (n − m) = wm and the moderated data-dependent
weight is given by w = n/m assuming that the number of invariant features is
much smaller than the remaining features. In this way, regions that are not
covered by the invariant features still contribute to the fitted curve.

In order to show the role played by these weights, consider the estimated
coefficients of the weighted P-spline smoother:

α̂ = (B′WB + λD′D)−1B′Wy. (6.2)

Define the B-spline basis matrix Bn×k, with n data points and k knots
as a block matrix [B(n−m)×k|Bm×k]

′

with Bm×k the B-spline basis matrix for
the invariant features and B(n−m)×k for the remaining features (reordering the
B-spline basis matrix by rows has no influence on the estimated regression

(n−m)/m = n/m − 1 ≈ n/m
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coefficients). Equation 2 can now be rewritten as:

α̂ =

(

B′WB +
λ

w
D′D

)−1

B′Wy, (6.3)

where

W =

[

w−1In−m 0
0 Im

]

,

with In−m and Im identity matrices. Observe that if the weight w ≫ 1,
w−1In−m will vanish and equation 6.3 simplifies to equation 6.2, with B =
Bm×k, W = I and y = (y1, . . . , ym). Note also that the penalty parameter will
absorb the weight, as it is calculated a posteriori. Thus a biweighted P-spline
smoother with weights (1, w), where w ≫ 1, is identical to a P-spline smoother
on the invariant subset. Thus, our proposed weigthed P-spline normalization
with moderated data-dependent weight is a compromise between normalization
on all features and normalization based only on the invariant features.

Description of data

We make use of three experimental datasets: 1) a selection of the MAQC
data [Shi et al., 2006] for comparing the P-spline normalization with lowess
and to assess the effect of using a subset for normalization, 2) data from an
epigenetics experiment to show the performance of the constant weighted P-
spline normalization method and 3) a selection of high-density NimbleGen tiling
array data described by Heintzman et al. [2009] for a run time and memory
usage analysis. Simulated data is used to show the advantages of the weighted
P-spline normalization.

MAQC data:

The selected data contained two different RNA sources, namely Universal Hu-
man Reference RNA from Stratagene (source A) and a Human Brain Reference
RNA from Ambion (source B), each with 5 replicates. A total of 10 whole hu-
man genome oligo Agilent two-colour microarrays (G4112A) containing 43,931
probes produced by the same laboratory were selected (GEO Edgar et al. [2002]
accession numbers from GSM128989 to GSM128998).

CpG island methylation array data:

The 244K CpG island methylation arrays were used to measure methylation
levels in six neuro-ectodermal cell lines (NMB, SK-N-MC, CHP-100, IMR-32,
AMC106c and SK-N-FI). These cell lines were treated with a demethylating
agent (5-aza-2’-Deoxycytidine (DAC), Calbiochem, San Diego, USA) and a his-
tone deacetylase inhibitor (Trichostatin A (TSA), Sigma-Aldrich, Zwijndrecht,
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CHAPTER 6. A NOVEL AND FAST NORMALIZATION METHOD

The Netherlands). Cells were treated for 72 hours with 30 nM DAC and 25
nM TSA was added during the last 48 hours. Culture conditions and DNA
isolation procedures are described in Appendix D. Differential methylation
hybridization (DMH) was used for genome-wide methylation screening and is
further described in Appendix D.1, Figure D.1.

Invariant subset

For normalization purposes an invariant subset of probes was required. We
selected fragments without methylation-sensitive restriction sites after MseI
digestion. The probes (984) on these fragments are not influenced by differ-
ences in methylation (Figure D.2). Therefore, the log2 intensity ratio for these
fragments is expected to be 0. The weighted normalization, especially the attri-
bution of control probes and all other probes is further explained in the section
about weighted P-spline normalization.

Simulation

In this simulation study, weighted intensity-dependent normalization is treated
as a nonlinear fitting or scatterplot smoothing problem, y = f(x), where y and
x represent the M- and A-values respectively. Data is generated according to:

yi = f(xi) + y01{xi 6∈X } + ǫi i = 1, · · · , n. (6.4)

The nonlinear trend is represented by f(x) ∝ x(1 − x)4, where x is sample
uniformly at random from [0, 1]. A baseline shift y0 is added to those points
that are not in the invariant set (X ) and, for simplicity, standard white noise
is assumed for the error term ǫ ∼ N (0, 1). With this simple setup, we try
to mimic the weigthed normalization process of example 2 and focus on the
effect of weighing invariant probes. Here we used n = 1000 points, of which
10% is consider to be invariant of the treatment effect. Figure D.1 shows two
simulation scenario’s: a) one where the invariant set is restricted to a small
range of x and b) one where the invariant set covers the whole ranges of x.

NimbleGen tiling array data:

For the run time and memory usage analysis we chose the high-resolution oligo
microarray data described by Heintzman et al. [2009] containing 391K probe
sets. Heintzman et al. developed a chromatin-immunoprecipitation-based mi-
croarray method (ChIP-chip) to locate promoters, enhancers and insulators
in the human genome. From the ChIP-chip data we arbitrarily selected the
NimbleGen tiling array that contained chromatin immunoprecipitated DNA
from unstimulated HeLa cells using H3ac antibody (GEO accession number
GSM144308).
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6.3 Software

All data analyses was performed in R version 2.10.0 [R Development Core
Team]. Several packages from BioConductor version 2.5 [Gentleman et al.,
2004] were used. The effect of demethylating treatment on methylation levels
was estimated using the limma package [Smyth, 2005]. Because of large differ-
ences between the cell lines, the limma-model included the factor ‘cell line pair’
to evaluate the treatment effect properly. Significance was defined as an FDR
< 5% after multiple testing adjustment by the Benjamini-Hochberg method.

From limma we used the loessFit interface in all normalizations, as both
fast lowess and loess implementations were available. The faster lowess is called
by default and, when weights are supplied, loess is called.

Our implementation of the weighted P-spline method is available as an R
package called TurboNorm from BioConductor. The package contains, besides a
loess-like function for scatterplot smoothing, wrapper functions for both single
and two-colour microarray data normalization. It also contains a function for
adding the fitted curves on plots produced by the lattice package [Sarkar, 2009]
(see for examples figures 6.1 and 6.5). See Appendix A for the vignette of the
package. For profiling of the run time and memory usage, the R Rprof function
as described by Gentleman [2009] was used. All calculations were run on an
Intel®Core™2 Duo CPU 3.00GHz processor, 40GB and with an Ubuntu 9.10
64-bit architecture.

6.4 Results

Comparison with lowess

In order to show that normalization based on lowess or the P-spline method are
comparable, we took a subset of samples from the MAQC data [Shi et al., 2006]
and applied both normalization methods. Figure 6.1 shows the MA-plots of
four technical replicates of the MAQC data, containing RNA source A. There
is good agreement between lowess and the P-splines normalization as the fitted
curves largely overlap.

Normalization using a random subset of probes

Here, we asses the effect of using a random subset of probes from the data for
normalization. We took the same subset of samples from the MAQC data as
described above. The loess-fitted curve based on all probes were compared with
loess-fitted curves based on several randomly selected subsets of probes. The
use of a randomly selected subset resulted in a large fluctuation of the loess-
fitted curves around the M = 0 line, particularly at the boundaries (Figure
6.2).
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Figure 6.1: MA-plots of four technical replicates of the MAQC data,
containing RNA source A: The black line represents the lowess curve, the
red line the curve based on normalization using the P-spline method.

Figure 6.3 shows the influence of the randomly chosen subsets of probes
on the significance of differentially expressed genes using a volcano plot. An
empirical Bayes linear regression model [Smyth, 2005] was fitted to compare
RNA sources A and B. The largest changes, as indicated by the length of the
arrow, occur at the ‘main vent of the volcano’, as genes with fold-changes in this
area are mostly affected by changes of the fitted curve. This phenomenon was
observed with other probe subsets but affecting specific genes for each subset
considered (Figure D.2).

The overlap of significant differentially expressed up- and down-regulated
genes between normalization using subsets with that of normalization using all
probes is shown in table 6.1. If 1% of the data is used, there is an overlap of
around 90% for both up- and down-regulated genes with the normalized data
based on all probes. In other words, there may be an increase of false positives
and false negatives when a subset is used. When 10% or more of all the probes
is used, the overlap is at least 98%. We should point out, however, that these
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results are data-dependent and, in particular, the MAQC data is likely to yield
higher overlaps than in most studies, as it only involves technical variability.

Table 6.1: The percentage overlap of significant differentially expressed up-
and down-regulated genes between normalization using subsets of different sizes
with that of normalization using all probes. A 5% FDR threshold was used on
the Benjamini-Hochberg corrected p-values.

subset (%) 0.1 0.5 1 5 10 25

up 62 84 89 96 98 99
down 71 87 93 94 98 99

Normalization of CpG island methylation array data using an
invariant subset

Normalization based on a subset of the data is sometimes necessary, to see this
we will use the CpG island dataset and demonstrate the use of the weighted
P-spline normalization method. Treatment of cell lines with demethylating
agents resulted in a general decrease of methylation levels between untreated
and treated cell line pairs (see raw signals, Figure 6.4, upper panel). Conven-
tional array normalization methods such as lowess and variance stabilization
normalization [Huber et al., 2002] or the P-spline method without using weights
did not preserve the demethylating treatment effect (Figure 6.4 or D.3 middle
panel, Figure 6.5 left panel). Indeed, after lowess normalization we found a
significant decrease of methylation for only 1.7% of the probes and an increase
of methylation for 2.2% of the probes. Results were similar for unweighted
P-spline normalization. Clearly this does not reflect the decrease of overall
methylation level after treatment. It instead results from a violation of the
assumption, made by these as most normalization methods, that the bulk of
the data is invariant between samples.

To correct this, we used a subset of invariant probes, that could be deduced
from the arrays used (see Description of datasets: Invariant subset and Figure
D.1). Normalization based on this subset resulted in a significant increase of
methylation for 0.7% of the probes and a decrease for 69.9%, after weighted P-
spline normalization. Similar results can be observed for loess in the right panel
of Figure 6.5 (see also Figure D.3). The invariant probes’ intensity distribution
was optimal in the middle intensity range, while only few invariant probesets
represented the highest or lowest intensity ranges. This diminishes the esti-
mates’s reliability on the boundaries (Appendix, Figures D.4 and D.5) and led
us to apply a weighted version of the P-spline as well as the loess normalization
method. Weights were assigned in such a way that invariant probes received
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Figure 6.2: Differences between normalized M-values using loess on
all points and loess on a random subset: The curves represent differences
between the loess-fitted curve on all data points with that of loess curves for 25
randomly selected subsets of the data with sizes of 10% (dark blue) or of 1%
(grey) of the original number of probes for a single Agilent array of the MAQC
data. On the y-axis the difference between normalized M-values are displayed,
and on the x-axis the intensity (A-values).

a higher weight than the other probes, such that the total influence was kept
equal to that of the remaining probes (see Methods). This weighted normal-
ization had a superior coverage in the boundary regions than normalization on
only the invariant probes (Figure 6.6). In Figures 6.4 and 6.5, we show that the
weighted P-spline normalization retains the biological difference. This resulted
in decreased methylation for 36.4% of the probes and increased methylation
for only 1.1%. In comparison, a weighted loess normalization showed similar
results with a significant decrease of methylation for 32.6% of the probes and
an increase for 1.2% of the probes after the combined epigenetic treatment.

This data was validated by LUMA analysis for global methylation levels and
methylation specific PCR for gene-specific methylation (Appendix, D). In five

94
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Figure 6.3: Volcano plot for the selection of the MAQC data: The
volcano plot shows the difference between loess normalization on a subset (1%
of the probes), with a loess normalization using all probes. The volcano plot
shows − log10(P-value) on the y-axis and the fold-change on the x-axis. The
0.5% of the largest changes (euclidean distance) are indicated by arrows, with
increasing significance from subset to the full data indicated by green arrows
and decreasing significance in red. The top 100 of most significant probes are
indicated by + sign.

cell lines, the average demethylation was 9.3%, which ranged between no change
in methylation (AMC106c and NMB) to more than 20% demethylation (CHP-
100) (Figure 6.7). Additionally, gene specific demethylation was validated by
an unmethylated specific PCR (USP) of two known hypermethylated genes.
Figure D.5 (of the Appendix) shows an increase of unmethylated product after
demethylating treatment.
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Figure 6.4: Box and whisker plots of the raw, P-spline and weighted
P-spline normalized methylation data: On the x-axis six cell line pairs
NMB, SK-N-MC, CHP, IMR, AMC and FISK (from left to right) are displayed.
Each pair consist of the untreated and treated cell line where the treatment
was with Decitabine and Trichostatin A. The y-axis displayed the methylation
ratio. Note the different scale of the y-axis for the highest panel.

Simulation

Both loess and the P-spline smoother were used to obtain smoothed fits,
with and without weights. Moderated data-dependent weights were used as
described in Section 6.2. As expected, the unweighted fits follow the nonin-
variant trend (solid black line) as they are much more abundant. However,
the weighted fits capture much better the invariant trend (dashed black line).
In scenario a, where the invariant probes are restricted to a certain range, the
fitted curves outside this range follow the noninvariant trend. Both loess and
P-spline perform well.
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Figure 6.5: Methylation changes with different normalization meth-
ods: The bar plots show the percentages of probes that significantly decrease
or increase in methylation after demethylating treatment using different nor-
malization methods. These were loess or the P-spline method using all probes
(left panel) weighting the invariant probes (middle panel) and using the in-
variant probes only. Decreased methylation is indicated in green and increased
methylation in red.

Run time and memory usage analysis

Run time and memory usage analysis were performed on normalization of the
NimbleGen tiling array data involving 391K probe sets, described by Heintzman
et al. [2009]. They used previously loess-based intensity-dependent normaliza-
tion on these high-resolution oligo microarray data [Heintzman et al., 2007].

Random subsets of increasing size were drawn, on which a normalization
was performed and run time and memory use was profiled. Both lowess and
P-spline outperformed loess in terms of speed, with the P-spline algorithm the
fastest. The normalization of one complete array took a fraction of a second
using lowess and the P-spline algorithm, but more than 4s for loess (Figure 6.8).
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Figure 6.6: MA-plots for two cell lines, NMB and SK-N-MC: Each cell
line is hybridized with and without treatment of Decitabine and Trichostatin
A. The green curve is computed using all points, the blue curve uses only the
invariant probes, and the red curve uses the invariant probes with larger weights
(≈ 250) than the remaining probes.

On memory requirements, lowess and the P-spline agorithm are comparable in
memory usage, using around 10Mb in memory for normalization of the whole
array, whereas the loess memory usage were 5 times higher. This difference can
be explained by the computational complexity of the algorithms used.

The run time complexity of the P-spline algorithm is approximately O(N +
M3), since construction of the piecewise constant basis takes O(N) and solving
the reduced linear system of equations O(M3). Here M is the number of knots
(by default 100 in our implementation) and N is the number of data points.
On the other hand, lowess and loess are at least of O(MN3) because on M
carefully chosen locations a least-square fit of O(N3) is performed, with M the
number of equidistant intervals in case of lowess and the number of bins in the
case of loess. Lowess uses as default equidistant intervals of size 1/100 of the
range of the data and thus M = 100. Loess uses a data-dependent number of
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Figure 6.7: LUMA for measurement of global DNA methylation lev-
els: This barplot shows global methylation levels at HpaII restriction sites for
normal and SSSI treated controls and five neuro-ectodermal cell lines untreated
(U) and treated (T) with Decitabine and Trichostatin A. The digestions and
measurements were performed in duplicate.

bins, for which it is difficult to give an estimate of the number of bins used.

6.5 Discussion

We showed that our weighted P-spline normalization method is an efficient
approach for intensity-dependent microarray normalization. It is also as ver-
satile as the loess algorithm of Cleveland and Grosse [1991], being applicable
to one- and two-colour array data, but with lower computational complexity.
The P-spline normalization method yields considerably faster implementations,
avoiding the need for subset-based normalization and allowing for normaliza-
tion using a set of invariant features via weights.

Normalization methods that are based on loess frequently use a subset of
the data of which, to our knowledge, the effect has not yet been assessed.
The cyclic loess normalization method [Bolstad et al., 2003] as implemented in
the affy package calls the R loess-function, by default using 5000 randomly
chosen probes, although this number can be altered by the user as it is soft-
coded. The loess normalization method as implemented in the marray package,
on the other hand, calls the R loess-function with a fixed, hard-coded, number
of 2000 randomly chosen probes as subset. Here we have shown that the results
of such a normalization are unstable. When subsets are randomly chosen they
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Figure 6.8: Performance of different implementations of lowess/loess
and the P-spline method: Run time was measured in seconds (left-panel)
and memory usages in Mb (right panel) as function of the number of probes in
the data (x-axis ×1000) for P-spline (▽), lowess (+) and loess (◦).

may not represent the entire dataset well, either because they do not span the
entire data range or because they do not represent the trend. In particular, the
less dense boundary regions of the MA-plot tend to be under-sampled. In an
example using the MAQC data, 10% of the probes yielded already acceptable
overlap with normalization based on all probes. In practice, however, most
studies involve smaller signal-to-noise ratios than the MAQC data, so a stable
subset-based normalization is unlikely to be achieved using a percentage as low
as 10%. In addition, even if the lower bound of 10% is considered to suffice, for
a 100K array this would involve using 10.000 probes, which is already a large
number of probes for current loess implementations.

In some studies, the typical normalization assumption that the majority of
the probes remains unchanged across samples does not hold, as was true for our
methylation dataset containing samples before and after treatment. The same
effect is observed for low-density custom arrays [Oshlack et al., 2007]. Oshlack
et al. proposed a modification of the lowess algorithm by using probe-specific
quantitative weights. Arbitrarily, we chose the weight for the invariant probes
versus the remaining probes as the weight that gives both groups of probes an
equal attribution in the normalization curve fit. This implies that the estimated
trend will be somewhere in between the trends of invariant and noninvariant
probes. If desired, larger weights could be used to force the estimated trend
closer to the invariant probes trend.

The results of the methylation array experiment after using our new nor-
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malization are generally comparable to the demethylating effect found in the
validation experiments. The difference in demethylation between the array
analysis (36.4% demethylation) and the demethylation measured by a LUMA
validation experiment (10%) can be explained by the methodological differ-
ence. LUMA is a quantitative measurement of methylation throughout the
genome, whereas the array data are relative measurements of methylation in
selected gene promoter areas. These differences render an exact comparison of
percentages impossible.

Specifically in the context of methylation arrays, others [Ibrahim et al.,
2006, Irizarry et al., 2008, Laird, 2010] also recognized that current microarray
normalization methods fail to adequately normalize the data. Irizarry et al.
[2008] proposed a method, CHARM, to detect methylation difference between
samples, which also corrects for CG-content. As their method requires control
probes to be present on the array, it is hard to be generalized to other types
of data. Our method is much more versatile, as it can be used in any study
where lowess/loess is typically used.

The lowess/loess algorithms make use of robust estimation techniques to
guard against outliers that can be seen on custom arrays. It is also possible to
achieve this type of robustness by adapting the P-spline algorithm, for example
by using the L1 norm, instead if L2, when writing equation 6.2. Another
robustifying modification is to apply iteratively weighted regression using the
residuals as weights. These extensions are beyond the scope of this work and
will appear elsewhere.

6.6 Conclusions

We propose a versatile and fast intensity-dependent normalization method ap-
plicable to one- and two-colour array data. The method has comparable prop-
erties to lowess and loess, but its lower computational complexity allows it to
be faster and more memory efficient.
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